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Abstract: Numerous deep learning-based object detection methods have achieved excellent perfor-
mance. However, the performance on small-size object detection and positive and negative sample
imbalance problems is not satisfactory. We propose a multi-scale feature selective matching network
(MFSMNet) to improve the performance of small-size object detection and alleviate the positive
and negative sample imbalance problems. First, we construct a multi-scale semantic enhancement
module (MSEM) to compensate for the information loss of small-sized targets during down-sampling
by obtaining richer semantic information from features at multiple scales. Then, we design the
anchor selective matching (ASM) strategy to alleviate the training dominated by negative samples
caused by the imbalance of positive and negative samples, which converts the offset values of the
localization branch output in the detection head into localization scores and reduces negative samples
by discarding low-quality anchors. Finally, a series of quantitative and qualitative experiments on the
Microsoft COCO 2017 and PASCAL VOC 2007 + 2012 datasets show that our method is competitive
compared to nine other representative methods. MFSMNet runs on a GeForce RTX 3090.

Keywords: deep learning; object detection; selective matchting; positive and negative sample imbalance

MSC: 68T07

1. Introduction

Object detection is an important task in the field of computer vision [1,2], which aims
to search for the location of the object of interest in an image or video using algorithms [3].
The object detection task can be decomposed into two subtasks: localization and classifica-
tion. The randomness of the spatial location of the target in the image makes it difficult
for the algorithm to locate it precisely, and the variability in size and shape affects the
accuracy of the category determination [4]. These reasons make it impossible to achieve
object detection using a fixed scale and pose a challenge to the object detection.

In anchor-based object detection methods, the one-stage object detection methods
do not need to use the selective search method to extract the region of interest (RoI),
which can be predicted directly, so the one-stage methods has a better speed advantage.
However, because the one-stage methods abandon selective search, a large number of
negative samples are generated in the one-stage methods. After SSD [5] was proposed
as a one-stage method, it received attention from many researchers. A series of YOLO
methods [6–9] were proposed to bring the one-stage methods to a climax.

Although numerous one-stage methods have made great progress, they still have
shortcomings in small-size object detection and positive and negative sample imbalance.
To alleviate these problems, in this paper, we proposed a multi-scale feature selective
matching network (MFSMNet) for object detection. MFSMNet is based on one-stage object
detection methods, and the main contribution of this paper are as follows:
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• In order to improve the detection performance of small-size objects, we propose a
multi-scale semantic enhancement module (MSEM) architecture. The MSEM can
accomplish semantic enhancement at multi-scales and enrich the semantic features of
MFSMNet. The MSEM can improve the detection performance of small-size objects.

• In order to alleviate the performance constraints caused by positive and negative sample
imbalance, we propose a anchor selective matching (ASM) strategy. It uses an anchor
scoring mechanism to discard low-quality localized anchors as a way to alleviate positive
and negative sample imbalance and improve MFSMNet detection performance.

• Our proposed multi-scale feature selective matching network (MFSMNet) has good
experimental results on PASCAL VOC 2007 + 2012 and Microsoft COCO datasets,
which effectively improves the performance of object detection.

The remainder of the paper is structured as follows. Section 2 describes the related
work. Sectoin 3 presents our proposed approach, and the proposed network’s training
information is also introduced. Section 4 gives the experimental results. A brief conclusion
is given in Section 5.

2. Related Work

In recent years, the development of hardware technology, especially the improvement
of the performance of graphics processing units (GPUs), has provided for the possibility of
fast training of deep learning models [10]. GPUs with compute unified device architecture
(CUDA) provide a powerful tool for massively parallel computing power for tens of millions
of parameters of deep learning models and thus for training deep learning models [11].
Therefore, deep learning-based object detection methods have become a key research direction
at present. Depending on whether they use an anchor, the present deep learning-based object
detection techniques can be divided into anchor-based methods and anchor-free methods.

2.1. Anchor-Free Methods
2.1.1. Keypoint-Based Methods

Keypoint-based detectors uses heatmaps to predict key points. To get the bounding
box, they are divided into several groups. CornerNet [12] uses the top-left and bottom-right
corner points of an object.Then the detector embeds them and predicts Predict categories
and location. ExtremeNet [13] uses five key points to complete the prediction of the
bounding box. Deep extreme cut [14] concatenates the heatmap with the original RGB
image to form a 4-channel CNN. RepPoints [15] is the same as deformable convolutional
networks [16], but the difference is that RepPoints generates a pseudo box to compare
with GT to calculate the loss to regress the location of the points. CenterNet [17] adds a
centroid detection branch to CornerNet and greatly improves the performance by centroid
verification. CentripetalNet [18] proposes a centripetal displacement module to group
corner points after corner point prediction, which reduces the false detection rate while
ensuring the recall rate.

2.1.2. Center-Based Methods

In center-based methods, YOLOv1 [19] divides the image into cells and directly
predicts the targets whose object centroids fall within the cells. DenseBox [20] introduces
fully convolutional networks (FCN) to the field of target detection, thus enabling end-
to-end detection, which directly regresses the confidence level and relative position of
target occurrence. Unitbox [21] uses intersection over union (IoU) loss, and the methods is
more robust to changes in scale. Due to the relatively small number of positive samples,
the recall of these detectors is low. To increase the recall rate, FCOS [22], inspired by the
idea of segmentation, performs object detection tasks with the help of segmentation ideas.
MSRNet uses a residual structure to alleviate overfitting while improving the detection of
small-sized targets [23].
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2.2. Anchor-Based Methods
2.2.1. Two-Stage Methods

Two-stage methods has more stages of regions of interest (RoI) extraction than one-
stage methods. R-CNN is the first algorithmic model to introduce CNN into the field
of object detection [24]. Fast R-CNN [25] transforms model training from multi-stage to
single-stage training by using multi-task loss. Faster R-CNN [26] uses a region proposal
network (RPN) to generate the RoI. Oriented R-CNN [27] uses a full convolutional structure
to reduce the number of parameters. By Mask R-CNN [28] found pixel bias in the RoI
Pooling layer, so it used bilinear interpolation to replace the RoI Pooling layer with the
RoI Align layer to achieve better detection. In addition, the mask head uses a top-down
approach for segmentation [29–31]. The use of region proposals with appropriate ORPs
for training increased the detection performance of irregular objects in [32]. Additionally,
the method suppresses error detection using a model-driven algorithm.

2.2.2. One-Stage Methods

The one-stage methods directly classify and regress the pre-defined anchor to ac-
complish the target detection task [33]. SSD [5] uses feature maps from several different
convolutional layers to classify and regress the anchor with different step sizes. DSSD [34]
uses the residual module to further extract the depth features for regression and clas-
sification based on SSD. YOLOv2 [6] adds a batch normalization (BN) layer after each
convolutional layer to solve the problem of gradient disappearance and explosion while
reducing hyperparameters, and YOLOv2 [6] also further takes into account fine-grained
features. DarkNet-53 proposed by YOLOv3 [7] further reduces the number of network
layers with similar accuracy as ResNet-101. RetinaNet [35] proposes focal loss to improve
detection accuracy. RefineDet [36] filters and eliminates negative samples by introducing
the anchor refinement module, thus alleviating the positive and negative sample balance.
In [37], the method focuses on objects with high ORP and provides a straightforward
method to enhance their detection.

3. Our Proposed Method
3.1. Network Structure Design

We propose multi-scale feature selective matching network (MFSMNet) for object
detection using a residual network (ResNet) as the backbone. The features are extracted
from the last three layers of the backbone. Then, we use the features in the multi-scale
semantic enhancement module (MSEM) structure. The semantic enhancement module
(SEM) at different scales can be used to further enrich the multi-scale and multi-spatial
semantic information, and the feature maps processed by the MSEM structure are fed to
the detection head. The detection head completes the classification and regression tasks
according to the anchor selective matching (ASM) strategy to achieve object detection.
The MFSMNet is shown in Figure 1.

Figure 1. Architecture diagram of multi-scale feature selective matching network.
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The mathematical expression of backbone network output features of multi-scale
feature selective matching network can be defined as:

Pk = fresnet(Pin, k), k ∈ {n− 2, n− 1, n} (1)

where Pk is the backbone ResNet-50 output feature, fresnet for the feature extraction opera-
tion of ResNet, Pin is the input image, k is the number of backbone output feature layers,
and n is the maximum number of network layers of the backbone ResNet. The output
feature of the anchor selective matching (ASM) strategy can be defined as:

Pi = fasm( fmsem(Pk, i), i), i ∈ [1, 3] (2)

where Pi is the output feature of ASM, fasm is the anchor matching performed by ASM
strategy, fmsem is the semantic enhancement operation of the MSEM structure, and i is the
number of output feature layers of ASM. The output image can be defined as:

Pout =

[
fcls

(
smooth

3

∑
i=1

Pi

)
, freg

(
smooth

3

∑
i=1

Pi

)]
(3)

where Pout is the output image of MFSMNet, fcls is the classification operation branch, freg
is the localization operation branch, smooth is the feature smoothing operations, and Pi is
the output feature of ASM.

3.2. Multi-Scale Semantic Enhancement Module

Because the use of down-sampling structure in a convolutional neural network (CNN)
provides richer semantic information, medium-sized and large-sized targets have more
pixel points than small-sized objects. During down-sampling, the number of convolutions
for small-sized targets is much smaller than for other-sized targets. This results in less
valuable information about small-sized objects in the deep feature maps. In addition,
as small objects carry limited information on their own, this makes it difficult for the
feature extraction stage to obtain more effective features on small-sized targets. Therefore,
we propose a multi-scale semantic enhancement module (MSEM).

The multi-scale semantic enhancement module (MSEM) architecture consists of five
scales of semantic enhancement module (SEM). The features extracted from the backbone
are fed into the semantic enhancement module, and the input features are fed into the
detection head for the prediction task by two branches of spatial pyramid pooling (SPP)
and depthwise separable convolution (DSC) after concat and other operations. In addition,
to further mitigate gradient disappearance or gradient explosion, a residual structure is
introduced. The structure of SEM is shown in Figure 2.

Figure 2. Architecture diagram of SEM.
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The mathematical expression of the multi-scale semantic enhancement structure can
be defined as:

Fi+1 = Concat(Add(DSC(Fi), P(Fi)), Concat(Concat(DSC(Fi), P(Fi))) (4)

where Fi is the input feature, Fi+1 is the output feature, DSC denotes depth-separable
convolution, P denotes pooling operation, Add denotes feature fusion, and Concat denotes
channel connection.

The effective information of small-size targets is lost as the network layers are deep-
ened during down-sampling. Therefore, nearest neighbor up-sampling is used in multi-
scale semantic enhancement module (MSEM) to make the size of the feature map rich in
semantic information larger, and the larger size feature map is used to detect small-size
objects. At the same time, we introduced spatial pyramid pooling (SPP) and depthwise
separable convolution (DSC) in the semantic enhancement module (SEM). Spatial pyramid
pooling allows pooling of image blocks of different sizes into fixed size feature vectors.
It obtains multiple feature vectors at different scales by constructing image pyramids at
different scales, down-sampling the images multiple times, and then performing pool-
ing operations on the images at each scale. Deep separable convolution is a lightweight
convolutional neural network (CNN) structure, which divides the standard convolution
operation into two steps: deep convolution and point-by-point convolution. DSC can
greatly reduce the number of parameters and computational effort while ensuring high
accuracy. In order to enhance the semantic information as much as possible, two feature en-
hancement operations, concat and add, are used in the SEM. Thus, the MSEM structure can
be applied to five-scale feature maps to improve accuracy while minimizing computational
effort, thus achieving semantic enhancement of multi-scale features.

3.3. Anchor Selective Matching Strategy

Since the feature pyramid network [38] (FPN) methods have been proposed, many
methods often use FPN structures to implement multi-scale object detection tasks due to
the multi-scale feature maps of FPN. In addition, after combining the manual design of
an anchor, usually the lower layer of a large-size feature map in FPN is matched with a
small-size anchor to match the small-size target, and the upper layer of a small-size feature
map is matched with a large-size anchor. This is because the small-size feature map in the
upper layer of FPN has more semantic information and is suitable for the detection of large-
size objects, whereas the large-size feature map in the lower layer has more fine-grained
information and is suitable for the detection of small-size objects. This design creates two
limitations that limit the detection performance of the object detection task: One is that the
matching mechanism of the anchor is a heuristic, which leads to non-optimal matching of
each feature at training time. Second, the judging metrics used in previous non-maximum
suppression (NMS) are intersection over union (IoU), which is simple and intuitive, but it
only considers the overlapping area of two frames. Therefore, we propose the anchor
selective matching (ASM) strategy to alleviate the performance constraints caused by the
use of fixed threshold matching in existing methods.

First, the scoring mechanism of the anchor quality is defined, and the quality of the
anchor is reflected by the classification effect and regression effect. Therefore, the scoring of
anchor quality is shown below:

Sanchor = Scls × Sreg (5)

where Sanchor is the anchor score, Scls is the anchor category score (category probability),
and Sreg is the anchor positioning score. However, in the output header of the network,
the regression task outputs the value of the encoded offset, and not the regression score.
Therefore, we introduce DIoU into the output head of the network by the offset output
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from the regression task. The results of DIoU were used as regression quality scores as
shown below:

DIoU = IoU −
ρ2(b, bgt

)
c2 (6)

where DIoU is the conversion of ordered pairs of regression offset values into constants,
b is the center point of the prediction bounding box, bgt is the center point of the true
bounding box, and c is the diagonal length of the smallest enclosing box covering the two
boxes. However, the range of DIoU is [−1, 1]. Therefore, Sreg is defined as:

Sreg =

{
DIoU, DIoU > 0

0, DIoU ≤ 0
(7)

The regression branch scoring mechanism is shown in Equation (7). The anchor
selective matching (ASM) strategy discards low quality anchors. Then, the number of
negative samples will be massively reduced. Therefore, ASM can improve the detection
performance of the network by avoiding the training dominated by negative samples as
much as possible.

4. Experimental Result
4.1. Datasets and Metrics

The PASCAL VOC [39] and Microsoft COCO [40] datasets are the standard datasets in
the field of object detection. The experiments of our proposed multi-scale feature selective
matching network (MFSMNet) are also based on these.

Because the images in the PASCAL VOC 2007 datasets and PASCAL VOC 2012 datasets
are mutually exclusive, numerous object detection techniques combine training on the
PASCAL VOC 2007 and 2012 datasets with evaluation on images from the PASCAL VOC
2007 evaluation set. After merging, there are 16,551 training images with 40,058 target
objects and 4952 evaluation images with 12,032 objects. For the evaluation metrics of the
model on PASCAL VOC 2007 + 2012 datasets, we use the mean average precision (mAP).

Because the Microsoft COCO 2017 datasets have more images and objects than Mi-
crosoft COCO 2014, which makes the Microsoft COCO 2017 datasets more challenging,
we select the Microsoft COCO 2017 datasets. The Microsoft COCO 2017 datasets have over
118,000 training set images, 910,670 target annotations, and 5000 evaluation set images.
We also use Microsoft COCO evaluation criteria, such as: average precision (AP), average
precision of small-size objects (APS), average precision of medium-size objects (APM),
and average precision of large-size objects (APL).

4.2. Experimental Setup

Our proposed multi-scale feature selective matching network (MFSMNet) for object
detection is implemented through MMDetection [41], a toolbox for object detection based
on Pytorch. In ablation experiments, quantitative experiments, and qualitative experiments,
we trained and predicted using 1 GeForce RTX 3090. The experimental parameters of our
proposed MFSMNet method on the PASCAL VOC2007 + 2012 datasets are set as follows:
the backbone is ResNet-50; the image input size is 1000 × 600; the optimizer is SGD; the
learning rate is 2 × 10−2; and the weight decay is 10−4. The method is trained for 12
epochs. With other comparative representative methods, the batch size is set to 16. The
experimental parameters of our proposed MFSMNet method on the Microsoft COCO 2017
datasets are set as follows: the backbone is ResNet-50; the maximum size of the input
image is rescaled to 1333 × 800 without changing the aspect ratio; the optimizer is SGD;
the learning rate is 2 × 10−2; and weight decay is 10−4. The method is trained with other
comparative representative methods for 12 epochs, and the batch size is set to 8.

4.3. Quantitative Analysis of Ablation Experiments

Our ablation experiments are based on the Microsoft COCO 2017 datasets with a
ResNet-50 backbone, using a 12 epoch training scheme. In addition, the maximum size of the
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input image is rescaled to 1333 × 800 without changing the aspect ratio. Further, to show the
efficacy of our approach, we conduct ablation experiments on the MSEM structure and the ASM
strategy. In order to accomplish this, we remove the MSEM structure and ASM strategy from
our suggested MFSMNet. The resulting network is then utilized as a baseline for comparisons.

Our proposed MFFMNet method consists of a multi-scale semantic enhancement module
(MSEM) and anchor selective matching (ASM) strategy. To verify that the MSE structure can
enhance multi-scale semantic information and thus improve the detection performance of
small-size targets, the experimental results of Baseline + MSEM are used to demonstrate the
effectiveness of the MSEM structure. With the Baseline + MSEM structure, the APS improved
from 21.6% to 22.7%, with a performance gain of 1.1%. This demonstrates the effectiveness of
the MSEM structure for small-size targets. In addition, the AP of Baseline + MSEM improved
from 38.6% to 38.9%, and this average accuracy improvement was not significant. The reason
for this is that the MSEM structure is designed to mitigate the feature loss of small-sized
targets during down-sampling, so the AP improvement is not significant.

In order to show that the ASM strategy can anchor selection matching and thus improve
detection performance, the effectiveness of the ASM strategy is demonstrated by the experi-
mental results of Baseline + ASM. With the Baseline + ASM strategy, the AP reached 39.6%,
and the APS, APM, and APL reached 22.2%, 43.8%, and 51.4%, respectively. Compared with
Baseline, the AP of Baseline + ASM structure improved by 1%, and the APS, APM, and APL
improved by 0.6%, 1.4%, and 2.4%, respectively. The reason is that our proposed ASM strategy
addresses the problem of Intersection over Union (IoU) as a threshold to limit the detection
performance of the detector, and ASM is a novel anchor selective matching strategy, because
the anchor selection and matching is based on a multi-scale anchor.

Finally, the AP of MFSMNet using Baseline + MSEM + ASM structure reached 39.9%,
and the APS, APM, and APL reached 23.2%, 44.2%, and 51.9%, respectively. Compared with
the Baseline, the AP of MFSMNet with Baseline + MSEM + ASM structure is improved by
1.3%, whereas the APS, APM, and APL are improved by 1.6%, 1.8%, and 2.9%, respectively.
The ablation experiments demonstrated the effectiveness of MFSMNet, especially for small
object detection. The results of the quantitative experiments are shown in Table 1 (the bold
font in the table is the highest detection accuracy of the category).

Table 1. Quantitative results of ablation experiment.

Method AP AP50 AP75 APS APM APL

Baseline 38.6 56.4 41.7 21.6 42.4 49.0
+MSEM 38.9 56.5 41.9 22.7 42.4 49.4
+ASM 39.6 56.9 43.2 22.2 43.8 51.4

Baseline + MSEM + ASM 39.9 57.1 43.6 23.2 44.2 51.9

4.4. Qualitative Analysis of Ablation Experiments

In order to demonstrate the detection performance of our proposed MSEM structure
and ASM strategy and to verify the quantitative experimental results, we perform qualita-
tive experiments and analysis of the ablation experiments. To more objectively demonstrate
the effectiveness of the MSEM structure and ASM strategy, this experiment uses the Mi-
crosoft COCO 2017 datasets for network training and the images from the PASCAL VOC
2007 + 2012 datasets for inference. In order to better reflect the detection effect of small-size
targets, example images rich in small-size targets are selected from the datasets. Otherwise,
each parameter setting is the same as above.
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As shown in Figure 3, Figure 3a shows the visual detection results of Baseline, where there
is a significant object miss in the phone booth in the middle of the image. In addition, the
confidence level of the detected targets is not satisfactory; for example, the confidence level of the
person in the lower left corner of the image is only 79%. In Figure 3b, the visualization detection
results using the Baseline + MSEM structure are shown, and the visual observation does not
reveal the existence of obvious missed objects. In addition, the photo of the person in the
phone booth in the middle of the image is no longer missed, the confidence level of each target
is significantly improved, and the small-sized targets in the distance are also detected better.
However, there is an obvious false detection frame in the image (misdetection of a bench under
the phone booth). This is due to the fact that Figure 3b uses only the Baseline + MSEM structure
to further enhance the semantic information in the feature map without a corresponding sample
assignment strategy. Figure 3c using Baseline + ASM strategy compared with Figure 3a using
Baseline only; the target miss detection is effectively improved and there is no obvious object
miss detection. At the same time, the confidence level of each target frame is significantly
improved, and the confidence level converges to a reasonable interval range. The visualization
results using the Baseline + MSEM + ASM strategy are shown in Figure 3d, where the confidence
level of the target frame has been further improved, and there are no significant misses and
false detections. In addition, the human-shaped display panel in the phone booth in the middle
of the image gives a more reasonable confidence level. In addition, the detection performance
of small target detection has also been more obviously improved. Taking the handbag in the
middle of the image as an example, the near handbag has a high confidence level, whereas
the distant handbag lacking semantic information also achieves the detection effect. In general,
after using Baseline + MSEM + ASM strategy, our proposed MFSMNet using ASM strategy can
enhance the MSEM structure with multi-scale semantic information for more effective anchor
selection, thus achieving better detection results, especially for small objects.

(a) (b)

(c) (d)

Figure 3. Visualization of ablation results: (a) Baseline, (b) Baseline + MSEM, (c) Baseline + ASM,
(d) Baseline + MSEM + ASM.
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4.5. Quantitative Analysis of Comparative Experiments

To demonstrate the competitiveness of our proposed MFSMNet, in this subsection
MFSMNet is compared with other 10 representative methods (RetinaNet [35], FSAF [42],
Reppoints [15], FCOS [22], ATSS [43], Foveabox [44], GFL [45], VFNet [46], Free Anchor [47],
and YOLOv5-s ) for quantitative experiments on the PASCAL VOC 2007 + 2012 datasets
and the Microsoft COCO 2017 datasets.

The results of the quantitative experiments on the PASCAL VOC 2007 + 2012 datasets
are shown in Table 2 (the bold font in the table is the highest detection accuracy for this
category). The MFSMNet method achieves the best experimental results in terms of mAP
compared to the other 10 representative methods. In addition, the highest accuracy was
achieved for seven categories on the PASCAL VOC 2007 + 2012 datasets.

The results of the quantitative experiments on the Microsoft COCO 2017 datasets are
shown in Table 3 (the bold font in the table is the highest detection accuracy for this category).
Our proposed MFSMNet method achieves the best experimental results in all six metrics
compared with nine other representative methods. From the experimental results, it was shown
that it reached 39.9% in AP, which is only 0.3% higher compared to GFL [45], but 1.4% higher
in APS, proving that MFSMNet has merit in small object detection. Compared with the anchor
assignment-based target detection methods ATSS [43] and Free Anchor [47] , our proposed
MFSMNet is 1.3% and 1.7% higher in AP, respectively. Meanwhile, in terms of the APS of
small objects, MFSMNet is 1.6% and 2.4% higher than the other two methods based on anchor
assignment-based methods, respectively. In addition, our proposed MFSMNet has the same
advantage in detection accuracy for medium and large objects.

4.6. Qualitative Analysis of Comparative Experiments

In order to demonstrate the detection performance of our proposed MFSMNet method,
we select the top two quantitative results (Table 3) for visualization. The first is our pro-
posed MFSMNet, and the second is GFL [45] for visualizing the results. To ensure that the
visualization results actually reflect the real performance of the model, the images used for
the visualization result inference in this subsection are from the PASCAL VOC 2007 + 2012
datasets, whereas the training set of the model is from the Microsoft COCO 2017 datasets.
In the process of inference for the two methods, the parameters are set as above.

In Figure 4, to demonstrate the advantages of our proposed MFSMNet for multi-
scale detection, images with multi-scale targets are selected. The first column is the input
image of the detection network, the second column is the detection result of our proposed
MFSMNet, and the third column is GFL [45] (second place of detection accuracy in Table 2
of Microsoft COCO 2017 datasets). In the first row of horse racing images, our proposed
MFSMNet has a significant advantage in the localization of bounding boxes as well as
in the category confidence. In the second row of the image of the sailboat, the detection
result of GFL [45] in the lower right corner of the image shows a false detection for the
surfboard, whereas our proposed object detection method of MFSMNet achieves a correct
detection using local information. In the image of the third row of carriages, our proposed
MFSMNet has obvious advantages in the detection of people, although the detection of
horses is slightly lacking. In the last row of detection of small object bikes, our proposed
MFSMNet has better performance than GFL [45], which misdetects small object bikes as
motorcycles in the detection of small-size objects. In summary, the visualization detection
results verify the quantitative experimental results and verify the competitiveness of our
proposed MFSMNet.
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Table 2. Quantitative experimental results of PASCAL VOC 2007 + 2012 datasets.

Method mAP Plane Bike Bird Boat Cup Bus Car Cat Chair Cow Table Dog Horse Mbike Human Plant Sheep Sofa Train TV

RetinaNet [35] 79.13 87.2 86.2 78.1 66.4 71.0 84.7 87.7 88.4 62.9 85.2 72.6 85.8 85.7 82.7 84.1 53.4 82.9 77.0 82.9 77.7
FSAF [42] 76.31 79.3 79.3 76.0 65.1 67.6 83.1 86.7 87.1 59.8 83.2 69.5 85.3 85.1 81.9 84.4 48.2 76.3 71.6 82.8 74.0
Repponits [15] 79.47 83.5 82.4 77.1 72.4 71.6 85.1 87.8 88.3 63.4 86.3 75.7 87.5 85.8 84.1 83.8 50.7 84.0 76.2 86.3 77.4
FCOS [22] 71.59 78.5 78.7 68.3 61.8 57.6 78.0 82.2 83.0 54.8 80.2 65.8 80.4 78.4 77.4 76.5 41.4 74.5 66.9 81.1 66.2
ATSS [43] 77.77 84.7 81.9 76.8 67.9 69.5 85.4 86.4 88.1 61.7 86.4 72.3 85.1 85.4 80.2 83.1 48.3 81.1 72.3 81.7 77.1
Foveabox [44] 76.67 79.8 80.2 77.0 66.9 66.7 82.5 86.9 87.3 62.1 85.6 69.4 85.1 85.9 78.9 84.4 48.8 79.1 71.2 79.4 76.5
GFL [45] 77.04 85.4 83.6 76.1 63.9 67.6 82.2 86.5 86.9 59.6 83.4 72.8 83.9 84.9 83.2 83.3 48.7 78.2 70.6 83.9 76.2
VFNet [46] 77.83 83.1 84.3 76.7 68.4 69.5 84.5 86.7 87.3 61.3 83.7 70.5 84.8 85.4 83.4 84.2 49.8 79.0 73.1 84.3 76.6
Free Anchor [47] 78.16 85.0 83.6 76.0 65.5 69.7 85.4 86.9 87.6 62.5 82.3 72.3 85.1 86.0 84.4 85.0 47.5 82.3 74.9 85.1 76.1
YOLOv5-s 1 77.30 87.2 87.4 71.8 66.4 68.6 86.2 91.0 83.5 52.0 81.3 72.2 80.0 86.9 85.8 85.3 51.1 80.3 67.8 82.5 79.0

Ours 79.73 87.3 85.6 79.0 70.8 70.9 85.7 87.4 89.0 63.2 85.9 73.4 85.9 86.7 84.3 85.4 53.8 82.4 75.5 84.4 78.0
1 YOLOv5. [Online]. Available: https://github.com/ultralytics/yolov5 (accessed on 15 April 2023).
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Table 3. Quantitative experimental results of Microsoft COCO 2017 datasets.

Method Backbone Input Shape Params FPS AP AP50 AP75 APS APM APL

RetinaNet [35] ResNet-50 3, 1280, 800 37.7 25.5 36.2 55.1 38.7 20.4 39.8 46.8

FSAF [42] ResNet-50 3, 1280, 800 35.3 28.3 37.0 56.2 39.4 20.3 40.1 47.8

Repponits [15] ResNet-50 3, 1280, 800 36.6 27.1 37.4 56.8 40.3 21.9 41.4 48.3

FCOS [22] ResNet-50 3, 1280, 800 32.0 19.6 36.9 45.8 39.3 20.7 40.1 47.2

ATSS [43] ResNet-50 3, 1280, 800 32.1 28.3 38.6 56.4 41.7 21.6 42.4 49.0

Foveabox [44] ResNet-50 3, 1280, 800 36.2 29.6 35.5 54.9 37.8 19.8 39.1 46.1

GFL [45] ResNet-50 3, 1280, 800 32.2 28.4 39.6 57.3 42.7 21.8 43.5 51.8

VFNet [46] ResNet-50 3, 1280, 800 32.7 26.3 37.5 53.9 40.5 21.0 41.0 49.0

Free Anchor [47] ResNet-50 3, 1280, 800 38.3 25.3 38.2 56.7 40.7 20.8 41.6 49.8

YOLOv5-s 1 Draknet-53 3, 640, 640 7.2 140.8 37.1 57.0 39.6 20.9 42.6 47.6

Ours ResNet-50 3, 1280, 800 32.9 22.8 39.9 57.1 43.6 23.2 44.2 51.9
1 YOLOv5. [Online]. Available: https://github.com/ultralytics/yolov5 (accessed on 15 April 2023).

(a) (b) (c)

Figure 4. Comparison of the visual detection results of our proposed MFSMNet with the second
method on the PASCAL VOC datasets: (a) input image, (b) ours, (c) GFL [45].

5. Conclusions

In this paper, we propose the multi-scale feature selection matching network (MFSM-
Net) for object detection. First, we construct the multi-scale semantic enhancement module
(MSEM), which can obtain richer semantic information of small-size objects, and thus
improve the detection accuracy of small-size objects. After that, we design the anchor selec-
tive matching strategy (ASM) strategy, which alleviates the positive and negative sample
imbalance problem and improves the performance of multi-scale object detection. Finally,
MFSMNet has advantages in detection accuracy compared with 10 other representative
object detection methods, and our proposed MFSMNet can achieve the highest detection

https://github.com/ultralytics/yolov5
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accuracy among the 11 methods. In particular, the detection performance of MFSMNet has
obvious performance improvement for small-size objects detection.
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