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Abstract: Machine learning model sharing markets have emerged as a popular platform for indi-
viduals and companies to share and access machine learning models. These markets enable more
people to benefit from the field of artificial intelligence and to leverage its advantages on a broader
scale. However, these markets face challenges in designing effective incentives for model owners to
share their models, and for model users to provide honest feedback on model quality. This paper pro-
poses a novel game theoretic framework for machine learning model sharing markets that addresses
these challenges. Our framework includes two main components: a mechanism for incentivizing
model owners to share their models, and a mechanism for encouraging the honest evaluation of
model quality by the model users. To evaluate the effectiveness of our framework, we conducted
experiments and the results demonstrate that our mechanism for incentivizing model owners is
effective at encouraging high-quality model sharing, and our reputation system encourages the
honest evaluation of model quality.

Keywords: model sharing; MLaaS; incentive mechanism; smart contract
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1. Introduction

Machine learning has revolutionized a multitude of industries, from face recognition [1]
to automated vehicles [2] and disease diagnosis [3,4]. For instance, in the healthcare sector,
machine learning algorithms have played a pivotal role in medical image analysis, enabling
more accurate diagnoses and personalized treatment plans. Furthermore, the financial
industry has embraced machine learning for fraud detection, where sophisticated models
can identify fraudulent transactions in real-time, preventing substantial financial losses.
However, training a high-quality machine learning model requires a large amount of data.
For example, in the training process of an image recognition model, tens of thousands of
images are needed, and these images need to be labeled. Additionally, during the training
process, high-performance GPUs are also required to complete the training tasks over a
shorter amount of time. This can limit the ability of smaller companies to benefit from
machine learning technology. ML-as-a-service (MLaaS) [5] has emerged as a solution,
led by industry giants such as Google, Amazon, and Microsoft, making machine learning
accessible to a broader range of users. By easing the need for training models, users can now
enjoy the benefits of machine learning services without the need for extensive infrastructure
or data models.

Moreover, sharing machine learning models has the potential to encourage innova-
tion and discovery by allowing others to build upon existing models and to develop new
approaches. This can lead to further improvements in machine learning applications and
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accelerate progress in various fields [6]. Despite the potential benefits of machine learning
model sharing, challenges remain in incentivizing model owners to share high-quality mod-
els and to ensure the honest evaluation of model quality by users. A decentralized game
theoretic framework based on blockchain [7,8] that includes mechanisms for incentivizing
model owners and encouraging honest evaluation by users can address these challenges
and improve the efficiency and effectiveness of model sharing markets [9–11].

In summary, machine learning has a tremendous potential to transform numerous
industries and to make significant improvements to our lives. The emergence of MLaaS
has made machine learning technology more accessible to a broader range of users, and
sharing machine learning models can spur innovation and progress. However, chal-
lenges remain in designing effective mechanisms for incentivizing high-quality model
sharing and honest evaluation, which can be addressed through the development of game
theoretic frameworks.

Developing a machine learning model sharing platform can be a complex undertaking,
and several challenges need to be addressed to ensure the platform’s success. Firstly,
ensuring the quality of models is critical. To achieve this, a robust vetting process is
necessary to verify the accuracy and reliability of models uploaded to the platform. This will
require a team of experts to review the models and to assess their quality, which can be time-
consuming and costly. Secondly, developing an effective incentive mechanism is crucial to
encourage model owners to upload their high-quality models to the platform. This can be
accomplished by offering a revenue-sharing model that rewards model owners for high-
quality models and penalizes them for low-quality ones. The revenue-sharing model can
incentivize model owners to upload their best models and to promote a culture of quality
sharing. Lastly, an efficient execution application is necessary to evaluate machine learning
model quality and to allocate rewards automatically. This will require the development
of an automated evaluation process that can assess the accuracy and reliability of models
and allocate rewards based on the results. This process can be challenging, given the
complexity of machine learning algorithms, but it is essential to ensure the platform’s
success. In conclusion, developing a machine learning model sharing platform requires
addressing several challenges, including ensuring model quality, developing an effective
incentive mechanism, and implementing an efficient execution application. Overcoming
these challenges will be crucial to the success of the platform and will help promote a
culture of quality sharing in the machine learning community.

Main Contributions

The main contributions of this paper are as follows: (1) We propose an honest evalu-
ation incentive mechanism based on the EM algorithm and the sigmoid-prime function.
Using the evaluation data provided by users, the EM algorithm is introduced to evaluate
the model quality. We measure the honesty of evaluations using the deviation between the
evaluation provided by users and the model quality evaluation result, and we propose an
incentive function based on the sigmoid-prime function to encourage users to provide hon-
est evaluations. (2) We propose a quality and similarity-driven dynamic incentive model
for model sharing. Traditional incentives focus more on the quantity of the models shared,
with no differentiation in terms of content similarity and quality, which can easily induce
model owners to share low-quality, homogeneous models. Therefore, based on the sigmoid
function, we propose an incentive function driven by model quality and similarity, and
realize the dynamic adjustment of the incentive function by constructing an evolutionary
game model, to encourage model owners to share high-quality, innovative models. (3) Our
proposed solution is built upon blockchain technology, enabling a decentralized approach
without the need for intermediaries. Every step of the process is conducted openly and
transparently, with the added advantage of automated execution through smart contracts.
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2. Related Work

MLaaS: MLaaS is an emerging technology that provides machine learning services
over the internet, allowing users to utilize machine learning algorithms and models without
the need for in-house development and maintenance. In recent years, MLaaS has gained
significant attention and has become increasingly popular due to its potential to democra-
tize machine learning and to make it more accessible to businesses and individuals alike.
Freenome provides AI-powered cancer screening and diagnosis services, while Sound-
Hound uses natural language processing and machine learning to provide voice-enabled
AI assistants. Despite the benefits of MLaaS, there is one drawback to consider. When users
upload their data to MLAAS for prediction, there is a risk that the platform may steal their
data, leading to potential privacy breaches. The authors in [12] propose a decentralized
model marketplace based on blockchain technology for Machine Learning as a Service
(MLaaS) platforms. The proposed system aims to address the limitations of centralized
MLaaS platforms, including data privacy and security concerns. However, evaluating
model quality in this paper requires a benchmark dataset, which can be very difficult for a
model sharing market where there are many models. Building a testing dataset for every
model is a challenging task.

Model Evaluation: The value of a machine learning model depends on its quality,
with a higher prediction accuracy indicating a higher quality and value. Currently, there
are two methods for evaluating models. The first involves constructing a standardized
test dataset with labeled data, and evaluating the model’s quality based on its accuracy in
predicting the test data [13–15]. This approach requires a large amount of data, which can be
time-consuming and even impossible for a shared market with numerous types of models,
and may raise privacy concerns. The second method for evaluating models involves using
user feedback, which is often employed in crowdsourcing systems [16–18]. By allowing
users to test the model and provide feedback, its quality can be assessed. However, current
research lacks incentives for user feedback, leading to low user engagement and even
malicious feedback. The authors in [19,20] utilize formal approaches to verify machine
learning systems; however, these approaches do not directly evaluate the quality of the
machine learning models.

3. Problem Formulation
3.1. System Overview

Figure 1 illustrates the system architecture of the model sharing platform, which
comprises four entities: the model user, the model owner, blockchain, and IPFS. Model
owners have large amounts of data and expertise to train their machine learning models and
decide whether to share them in the market. Model owners can receive rewards from users
who utilize their models and benefit from the models. Model users have data to predict,
but they do not have their own machine learning models. They can search for models that
satisfy their requirements from the market, and pay a deposit before downloading and
evaluating the model. The blockchain serves as a mediator between model owners and
model users. It collects models from model owners and queries requests from model users,
and matches them. It should be noted that model owners can also purchase models that
are shared by others and then become model users in this scenario. The InterPlanetary
File System (IPFS) is a decentralized protocol and network that is designed for storing and
sharing files in a distributed manner. Unlike traditional file systems that rely on centralized
servers, IPFS operates on a peer-to-peer network, where files are addressed based on their
content and stored across multiple nodes. Because blockchain is not suitable for storing
large-capacity files, the model is stored on IPFS. Overall, the workflow of our design is
shown in Figure 1 as follows:

• Share Models: Model owners query reward information and existing models in the
market through the platform, and then decide whether to share their own models.
If they choose to do so, they upload the model to IPFS and add a description of the
model to the market.
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• Search Models: When model users search for the desired model on the platform and
find it, they will be required to pay a deposit to the platform before they can proceed
to download the model.

• Evaluate Models: When a model user completes a prediction task using a model
shared by others, they are required to evaluate the model.

• Update Reputation: When the smart contract receives a threshold number of evalua-
tions from users, it calculates the actual quality of the computational model. Based on
the deviation between the user evaluations and the actual quality, the smart contract
calculates the user’s reputation value.

For clarity of presentation, we omit the process of user registration and authentication.

...BlockBlock Block

IPFS

Blockchain

Model
Owners

Model
Users

Post Model Descriptions Query

Download ModelsUpload Models

BlockBlock

Figure 1. The overview of blockchain-based model sharing system.

3.2. Background

Gaussian Mixture Model: A Gaussian Mixture Model (GMM) is a probabilistic model
used for clustering and density estimation tasks. It assumes that the data are generated
from a mixture of several Gaussian distributions, each with its own mean and covariance
matrix. The parameters of the model include the mixing coefficients, which represent the
probabilities of each Gaussian distribution being responsible for generating a particular
data point. The goal of fitting a Gaussian mixture model is to estimate the parameters
of the model that maximize the likelihood of the observed data. This can be achieved
using the expectation-maximization (EM) algorithm, which iteratively updates the model
parameters until convergence. Once the Gaussian mixture model has been fitted to the
data, it can be used for various tasks such as clustering and density estimation. The model
can assign each data point to one of the Gaussian distributions in the mixture, allowing it
to be used for clustering. It can also be used to estimate the probability density function of
the data, which can be useful for anomaly detection or for generating new samples from
the same distribution. In our proposed solution, the EM algorithm is utilized to classify
honest evaluations and malicious evaluations.

Blockchain and smartcontract: Blockchain is a decentralized, distributed ledger that
records transactions on a network [21–26]. Each block in the chain contains a set of trans-
actions that have been verified by network participants, and once added to the chain,
the transaction cannot be altered. This makes blockchains highly secure and transparent,
as all transactions are visible to all participants on the network [27–30]. Smart contracts
are self-executing contracts with the terms of the agreement between buyer and seller
being directly written into lines of code. These contracts are stored on a blockchain and
can be automatically executed when certain conditions are met [31–34]. Smart contracts
can be used for a wide range of applications, from financial transactions to supply chain
management [35–37]. Together, blockchain and smart contracts can be used to create secure
and transparent systems for a wide range of applications, from financial transactions to
supply chain management, and beyond [38]. The decentralized nature of blockchain and
the automated execution of smart contracts make these technologies highly efficient and
cost-effective, with the potential to revolutionize many industries. In our proposed solution,
smart contracts automatically collect user evaluations and calculate the true quality of
the model.
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Evolutionary Game: Evolutionary game theory is a branch of game theory that studies
how populations of individuals, each following a particular strategy, interact over time,
and how their strategies evolve based on their past successes and failures [39–42]. In an
evolutionary game, individuals are represented by strategies that determine their behavior
in a given situation. Each individual has a fitness value, which represents their success in
terms of survival or reproduction, and this value is influenced by the strategies of other
individuals in the population [43]. Over time, the strategies that result in higher fitness
values become more prevalent in the population, while those that result in lower fitness
values become less prevalent. This process of natural selection can lead to the emergence of
stable equilibria, where the strategies of all individuals in the population are in balance and
no individual can improve its fitness by changing its strategy. In our proposed solution,
evolutionary game theory is used to analyze the cooperative and competitive relationships
among model sharers.

4. System Design

In this section, we provide a detailed overview of the design of our blockchain-
based system for sharing machine learning models. We first discuss our approach for
incentivizing users to provide honest feedback on models, as opposed to maliciously
leaving negative comments. Next, we propose solutions for motivating model owners to
share high-quality models.

4.1. Honest Evaluation Incentive Model

The honest evaluation incentive stage can be divided into three steps. The first step
is to collect user evaluations, and when the number of evaluations reaches a threshold,
the system proceeds to the second step. In the second step, the collected evaluations
are classified into honest and malicious evaluations, and the model quality is calculated
using the honest evaluations. In the third step, the system calculates the user’s reputation
value based on the deviation between the model quality and the user’s evaluation. In
our proposed system, model users may either provide honest or malicious feedback.
Due to the anonymity and lack of trust in blockchain-based systems, the possibility of
collusion between model owners and model users is low, thereby reducing the likelihood
of malicious praise. However, model users may also be potential model owners themselves,
and therefore, there is a high probability of providing poor evaluations for other models in
order to improve the competitiveness of their own models. Therefore, while considering
the evaluation behaviors of malicious model users, we only take into account malicious
negative comments and we do not consider malicious favorable comments for the time
being. In general, the evaluation data are expected to follow a normal distribution [44]. For
the model quality evaluation phase, we consider two possible states of the model users—
honest or malicious—and treat the evaluation data as a combination of data that follow a
normal distribution with different parameters. We use the Gaussian mixture model to fit
the evaluation data. The problem of determining the model quality is then transformed
into finding the expectation of the normal distribution that fits the honest evaluation data,
which can be abstracted as a parameter estimation problem of the Gaussian mixture model.
We use the EM algorithm to classify honest evaluations and malicious negative comments,
and we use the mean of the honest evaluations as the model quality evaluation result.
In the honest evaluation incentive phase, we use reputation as the incentive carrier and
we measure the honesty of the evaluation behavior by calculating the deviation between
the model user’s evaluation and the model evaluation result. We design an evaluation
incentive function based on the sigmoid-prime function to provide feedback and targeted
incentives for the model user’s evaluation behavior. The sigmoid function, also known
as the logistic function, is a mathematical function that maps input values to a range of
between 0 and 1. The sigmoid function has the property where it has the maximum slope at
x = 0, meaning that the rate of change of the y-value is higher. As x increases or decreases,
the rate of change of the y-value gradually decreases. Based on this characteristic, the
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reputation value of users undergoes significant changes in the initial state, but as the system
stabilizes, the rate of change of the reputation value decreases. The more honest the model
user is, and the closer the evaluation is to the evaluation result, the more reputation value
they can obtain.

The proposed system estimates model quality based on honest evaluations, but it
needs to determine whether the user’s evaluation is honest, since the system cannot
identify it directly. Assuming that there are more honest model users than malicious users,
the distribution with a higher mixing coefficient in the Gaussian mixture model can be
considered as the distribution followed by the evaluation data of honest model users. Its
parameters can represent the quality of models. The problem of estimating model quality
based on comments can be transformed into a parameter problem of solving the Gaussian
mixture model. The EM algorithm is a commonly used algorithm for solving the Gaussian
mixture model. In the following section, we will describe how the EM algorithm is used to
estimate the quality of models.

LetM be the set of models, mi be the i-th model, and MCi be the comments set of
mi. The MCi can be divided into two groups; the first group of comments are from honest
model users and the second group of comments are from malicious model users. We denote
the first group of comments as MCi

1; these comments fit the normal distribution Ni
1, whose

mean value is µi
1, and the variance is σi

1. We denote the first group of comments as MCi
2;

these comments fit the normal distribution N2
i , whose mean value is µi

2, and the variance is
σi

2 and MCi
1 + MCi

2 = MCi. The length of MCi equals the number of mi users, that is, each
user can only evaluate a mode once, and must evaluate once. We denote the coefficients of
Ni

1 and Ni
2 in the Gaussian mixture model as αi

1,αi
2, representing the proportion of data from

Ni
1 and Ni

2 in the total data; we can obtain αi
1 + αi

2 = 1. Generally, honest users are more
common than malicious users, i.e., 0 ≤ αi

2 ≤ 0.5 ≤ αi
1 ≤ 1. The probability distribution

function of the Gaussian mixture model can be expressed as:

P
(

MCi|θ
)
=

2

∑
k=1

αi
kφi

k

(
MCi, µi

k, σi
k

2)
(1)

In Equation (1), θ is a model parameter, and θ =
(

αi
k, µi

k, θi
K

2
)

, k ∈ 1, 2. φi
k is the k-th

normal distribution Ni
k

(
µi

k, σi
k

2
)

.

φi
k(MCi, µi

k, σi
k

2
) =

1√
2πθi

k

e
−

(MCi−µi
k)

2

2σi
k

2
(2)

We define hidden variables as variables that cannot be directly observed but can be
derived from other variables. We do not know whether the user is honest; we can calculate
the probability that the user belongs to each state. So, the state of the model user is a hidden
variable. We define the state of a model user as Z = {zik|i ∈ [1, n], k ∈ [1, 2], Σ2

k=1Zik = 1}

P
(

SCl, Z; θ
)
=

n

∏
i=1

2

∏
k=1

[
αk ϕk

(
sc1; µk, σ2

k

)]zik

=
2

∏
k=1

α
∑n

i=1 zik
k

n

∏
i=1

 1√
2πσk

e
− (

sc1−µk)
2

2σ2
k


zik (3)

In order to reduce the computational complexity and to eliminate irrelevant variables,
take the logarithm of the left and right sides of Equation (3) at the same time and obtain the
log-likelihood function of the complete data as follows:

logP
(

SC1, Z; θ
)
=

2

∑
k=1

{
n

∑
i=1

zik log αk +
n

∑
i=1

zik

[
log
(

1√
2π

)
− log σk −

(
sc1

i − µk
)2

2σ2
k

]}
(4)
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The EM algorithm is an iterative algorithm, and the input of each iteration is the
output of the previous iteration. Assuming that we are at the (m + 1)th iteration and need
to solve for the parameter values, we can use θm to represent them. Based on the existing
evaluation data SCl and parameter estimation value θm, the conditional expectation of the
complete data log-likelihood function Q(θ, θm) can be constructed as follows:

Q(θ, θm) = E
(

log P(SC, Z; θ) | SCl, θm
)

=
2

∑
k=1

n

∑
i=1

E
(

zik | SCl, θm
)

log αm
k +

2

∑
k=1

n

∑
i=1

E
(

zik | SCC1, θm
)

log
(

1√
2π

)
− log σm

k −

(
scili − µm

k

)2

2
(
σm

k

)2


(5)

E represents the expectation of the user’s state under all data. The user’s state can only
be honest or malicious, and the expression for expectation can be expanded as Equation (6).

E
(

zik | SCl, θm
)

= 1 ∗ p
(

zik = 1 | SCl, θm
)
+ 0 ∗ p

(
zik = 0 | SCl, θm

)
= p

(
zik = 1 | SCl, θm

) (6)

The expected value of the latent variable is equivalent to the conditional probability
when the latent variable takes a value of 1, which is the probability of the user’s state, given
that the parameters of the Gaussian mixture model and the evaluation data are known, and
belongs to the posterior probability. According to Bayes’ theorem, the posterior probability
can be expressed as Equation (7).

p
(

zik = 1 | SC1, θm
)
=

αm
k ϕk

(
sc1

i , µm
k ,
(
σm

k

)2
)

∑2
u=1 αm

u ϕu

(
scl

i, µm
u , (σm

u )2
) (7)

where θm =
(

αm
k , µm

k ,
(
σ2

k

)m
)

, k ∈ {1, 2} represents the expected value of parameters after
the m-th iteration. Substituting Equation (7) into Equation (5), the expected complete-data
log-likelihood function Q can be obtained.

Next, we move on to the M-step of the EM algorithm, where we calculate the parameter
values θm that corresponds to the maximum of the expected log-likelihood function. We
calculate the partial derivatives of Q(θ, θm) with respect to the parameters µk, θ2

k , and αk,

set them to zero, and solve for each parameter. Letting p
(

zik = 1 | SCl, θm
)
= τik, the new

parameter µm+1
k ,

(
σ2

k

)m+1, αm+1
k can be expressed as follows:

∂Q(θ, θm)

∂µk
= 0, µm+1

k =
∑n

i=1 τikscl
i

∑n
i=1 τik

∂Q(θ, θm)

∂σk
= 0, σm+1

k =
∑n

i=1 τik

(
scl

i − µm+1
k

)2

∑n
i=1 τik

∂Q(θ, θm)

∂αk
= 0, αm+1

k =
∑n

i=1 τik
n

If the expectation of the log-likelihood function does not converge, we update the param-
eters θm =

(
αm

k , µm
k ,
(
σ2

k

)m
)

, k ∈ {1, 2}, and Q(θ, θm). We iterate the E and M steps to
update the expectation of the log-likelihood function Q(θ, θm) until it converges or reaches
the maximum number of iterations, and output the current parameter value θ′. Based on
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the assumption that there are more honest learners than malicious ones, µk′ corresponding
to maxα′k is the evaluation result of the model quality, denoted as scl .

If users cannot obtain any reward after evaluating the model, their willingness to
evaluate will decrease, and malicious or arbitrary evaluation behaviors will emerge, which
will increase the difficulty and error of quality evaluation, reduce the credibility of the
system, and be unfavorable for the sustainable development of the sharing ecosystem.
Therefore, designing reasonable and effective incentive functions is of great significance.
As an attribute of users, reputation is related to the cost of purchasing models, and it can
also be used as the weight of user evaluation data to measure the credibility of evalua-
tion. Therefore, using reputation to provide targeted incentives to users, and designing
an honest evaluation incentive function is necessary. The function should satisfy two
conditions: motivate users to actively participate in evaluations, and motivate users to
provide honest evaluations.

Firstly, we evaluate the honesty level of the user using the evaluation bias. The
evaluation bias of useri is defined as the distance between the evaluation scil

i and the
quality evaluation result scil

i , denoted as Devl
i = |scl

i − scl |. The smaller the evaluation
bias, the more honest the user is, and the more rewards they will receive. Evaluations that
are higher or lower than scl by the same amount are considered to have the same level of
honesty. We assume that the user’s evaluation of models is a real number within the range
of [0, 5], and that the evaluation bias is also a real number within the range of [0, 5].

Secondly, the incentive function ∆R related to the honesty level is defined to measure
the reputation value obtained by users participating in the evaluation in a quality evaluation
process. The user’s total reputation value is the cumulative result of the incentive received
from a single evaluation. When reputation is used to exchange system models, the total
reputation value will decrease correspondingly. To incentivize users to actively and honestly
evaluate, the function ∆R should satisfy the following two properties.

Property 1. For any participating useri, ∆R ≥ 0 always holds. According to the law of large
numbers, when a large number of users participates in the evaluation, the expected evaluation is
closer to the model quality. However, evaluations incur costs for users. In order to encourage users
to actively participate in the model evaluation process, the evaluation incentive function needs to
satisfy the participation constraint. The participation constraint, also known as the individual
rationality constraint, in the context of teaching quality evaluation, refers to the expected benefit
of participating in the evaluation being not less than the expected benefit of not participating in
the evaluation. When users do not participate in the evaluation, their reputation gain is 0, and so
satisfying the participation constraint is equivalent to the evaluation incentive function ∆R ≥ 0.

Property 2. For any two users useri and userj, who evaluate scl , if Devl
i ≤ Devl

j, then ∆Ri ≥ ∆Rj.
The incentive function for evaluation needs to satisfy the incentive compatibility constraint, which
means that the behaviors of individuals who pursue the maximization of their own interests should
be consistent with the goal of maximizing the collective interests. Incentivizing users to provide
honest evaluations is a goal that maximizes collective interests, as it helps to reduce the error of
model quality evaluation, and improves the authenticity and accuracy of quality evaluation results.
To satisfy the incentive compatibility principle, under the induction of the evaluation incentive
function, honest evaluation should be the optimal strategy for users. For the same model, the more
honest the user is, the smaller the evaluation deviation, and the more rewards they receive.

Based on the above two properties, a sigmoid-prime function is introduced as the
incentive function, with the evaluation deviation Dev as the independent variable. Accord-
ing to Skinner’s reinforcement theory, the ratio of reputation value to evaluation deviation
is not a fixed value, which is conducive to delaying the trend of the decay of the honest
evaluation behaviors of users. The sigmoid-prime function is the derivative of the sigmoid
function, and the gradient increases and then decreases. Using it as the evaluation incentive



Mathematics 2023, 11, 2636 9 of 25

function is conducive to long-term incentives for users to make honest evaluations. The
evaluation incentive function ∆R can be expressed as:

∆R =
be−kDev

(1 + e−kDev)2

where k and b are parameters of the incentive function that affect the range and strength of
incentives, as detailed in Section 5.2 and set by the educational institution deploying the
EIC. The function passes through the point (0, b/4), and when the user’s evaluation value
is equal to the model quality assessment result, the user receives the maximum reputation
value of b/4. The incentive function varies with changes in the user’s evaluation and
evaluation bias as follows.

Let Ri denote the reputation score of useri, and let R0
i be the initial reputation score

of the user. The change in the reputation score depends on the user’s behavior. Actively
participating in evaluation will increase the reputation score, while using reputation score
and points to exchange for other models will decrease the reputation score. In addition, as
a user’s attribute, reputation can be used to indicate the credibility of the user’s evaluation.
The higher the reputation score, the more honest the user is in the history of evaluations,
and the more likely the user will remain honest in future evaluations, indicating a higher
evaluation credibility. Therefore, reputation can be used as the weight of user evaluations to
calculate the weighted expectation of evaluations, assigned to the EM algorithm as the initial
model parameters. In summary, a reputation-based honest evaluation incentive function is
proposed based on the sigmoid-prime function as a prototype, and the user’s evaluation
bias as the independent variable. On the one hand, it provides feedback to users on their
evaluations, and on the other hand, it encourages them to actively and honestly evaluate,
constraining the evaluation behavior and promoting a good evaluation atmosphere.

4.2. Model Sharing Incentive Model

Model sharing can improve the utilization rate of models, reduce the repeated training
of models, and benefit more companies and individuals. However, training a high-precision
model requires a lot of data and consumes a lot of computing models. In addition, there
may be competition among them. In order to protect their own interests, many model
owners are unwilling to share their models. It is particularly important to establish a good
incentive mechanism to encourage model owners to share their own models.

A model owner can improve the accuracy of his own model by sharing the model
with others, so the model owners will benefit from each other, in addition to competition.
A large number of repetitive and inferior models will increase the difficulty of obtaining
information for model users, and increase the storage burden of the system.

Inspired by the above, we propose a model sharing incentive model based on evo-
lutionary game. We first introduce the overall model, and then we design an incentive
function based on the sigmoid function by integrating quality and similarity. Finally, we
construct an evolutionary game model among model owners, and we analyze the impact
of incentive function on model sharers’ strategy selection.

First, the model owner views the incentive information of the shared model through
the platform and decides whether to share his own model. If they choose to share the
model and upload it to the platform, the platform will calculate the similarity between
the model and the existing model based on the description information of the model. The
model users can search, download, and evaluate the model. The platform will evaluate
the quality of the model after receiving the evaluation. Finally, the platform calculates the
results of the incentive function according to the model quality, similarity, and parameters
of the incentive function, and rewards the model sharers.

4.3. Incentive Function Design

Improving the sense of value and identity of model owners and giving appropriate
incentives is the key to creating a good sharing atmosphere. The use of an integral system
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can encourage model owners to share models with high quality and low similarity, and
realize the long-term development of the model sharing system. Model owners can use
points to download the other models in the platform.

Model quality is an important factor affecting the development of the model sharing
system. However, the time cost and opportunity cost of high-quality models are higher in
the production process. If the quality factor is ignored and the same degree of incentive is
given to users who share different quality models, model owners will be guided to share
low-quality models. When the quality of most models in the system cannot satisfy the
requirements of the demanders, the attractiveness of the model sharing platform to users
will be greatly reduced, and sharing will lose its value.

Model repeatability is another important factor affecting the development of the model
sharing system. There is a common problem of the repeated construction of models in the
existing sharing system, which on the one hand increases the burden for model demanders
to retrieve and browse models, and on the other hand, increases the storage pressure of the
sharing system.

In order to solve the problems of poor model quality and high repeatability in the
shared system, we design an incentive function I (Q, sim) related to model quality Q and
similarity sim, which should satisfy the following properties. Among them, the model
quality Q is calculated using the quality evaluation function in Section 4.1. The similarity
sim is the ratio of the function of the repetitive part of the model to the total function of the
model in the sharing system, which is calculated using the smart contract.

Theory 1. ∀q, sim, ∂I(q,sim)
∂q ≥ 0, ∂I(q,sim)

∂sim ≤ 0

Function I is a monotone increasing function about Q and a monotone decreasing
function about sim. When the similarity is the same, the higher the quality of the teaching
models is, the more incentives will be obtained. When the quality is the same, the higher
the similarity of the model, the more repetitive parts of the model and existing models in
the system. Even if it is shared into the system, the less benefits it brings to the system as a
whole and to the model demanders, and so the less incentive it obtains.

Theory 2. I(0, sim) = I(q, 1) = 0

If all sharing behaviors can gain benefits, there will usually be malicious users who
gain benefits without labor, such as sharing blank files, meaningless models, or copying
existing models in the system. In order to prevent this phenomenon, users cannot obtain
any incentive when the quality of the shared model is 0 or the similarity is 1.

Theory 3. Let I(q, sim) = φ(sim) ∗ f (q); φ(sim) denotes the impact of model similarity on
incentives. We can obtain the following conclusions.

ϕsim→0 → 1
ϕsim→1 → 0

ϕ(0) = 1
ϕ(1) = 0

(8)

φ means the proportion of the incentives actually received by the model owner in the deserved
incentives. The revenue from sharing a certain model should be less than or equal to the revenue
from sharing the original model with the same accuracy and function. In extreme cases, when users
download models from the system and re-upload them to the system, no matter what the quality of
the models are, users will not benefit from them. When users share completely original models, the
benefits obtained are only related to the accuracy of model. So, 0 < φ(sim) < 1, and the closer sim
is to 0, the closer φ(sim) is to 1.
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Theory 4. With the increase in sim, the trend of φ(sim) is as follows:
d2 ϕ

d sim2 > 0, sim < simthreshold
d2 ϕ

d sim2 < 0, sim > simthreshold
(9)

It is assumed that the tolerance of model users to model similarity is nonlinear. When
the similarity is small, the users are more tolerant of models, and the change of the incentive
coefficient is small. When the similarity is large, the information gain brought by models
to users is small, and the change of the incentive coefficient is small. With the increase in
similarity, the incentive coefficient decreases, and the decreasing rate first increases and
then decreases.

If functions satisfy the above properties, they can be used as incentive functions. We
choose the sigmoid function, which is often used in machine learning as the excitation
function. Because the sigmoid function realizes the nonlinear mapping of input data to
(0, 1), the greater the absolute value of input data, the smaller the gradient and the lower
the sensitivity. This change trend is shown in Figure 2.
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Figure 2. The Graph of the Sigmoid Function.

We can obtain the φ function by converting the sigmoid function.

ϕ =


1, sim = 0

1
1+e−a(1− sim-thr ),

0 < sim < 1
0, sim = 1

(10)

The thr(0 < thr < 1) is the threshold of similarity, and the tolerance of model
demanders to model similarity is relatively sensitive near the threshold. A (a > 0) affects
the decreasing speed of the excitation function. When the similarity is between 0 and 1, the
trend of incentive coefficient changing with the similarity is shown in Figure 3:
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Figure 3. The Graph of the φ Function.
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Then, we can obtain I(q, sim) as follows:

I(q, sim) =


ξq, sim = 0

ξq
1+e−a(1−sim−thr),

, 0 < sim < 1
0, sim = 1

(11)

ξ(ξ > 0) indicates the excitation parameter. For specific excitation function I, when
0 < sim < 1, ∂I/∂q = ξ/(1 + e−a(1−sim−thr)) > 0, and the incentive function is a
monotonically increasing function of model quality; ∂I/∂sim = −aξQe−a(1−sim−thr)/(1 +
e−a(1−sim−thr))2< 0, the incentive function is a monotonically decreasing function of model
similarity. The function satisfies Property 1. I(0, sim) = I(q, 0) = 0; the function satisfies
Theory 2. According to the figure, the function satisfies Theories 3 and 4. The function satisfies
the above three theories and can be used to encourage model owners to share high-quality and
low-homogeneity models.

4.4. Evolutionary Game Model

The model owner does not fully know other owners’ private information (such as
the quality and similarity of the model owned), the selection strategy, the utility function,
and other information. The computing power to derive the optimal strategy based on
the collected information is limited. Therefore, model owners belong to individuals with
limited rationality. In the multiple rounds of the game, model owners can choose strategies
to maximize their own interests, through learning and correcting mistakes. From the
perspective of the evolutionary game, this paper analyzes the strategic preferences of
model owners and the state of the group when it finally reaches dynamic equilibrium.

Assumption 1. N is a game group composed of a large number of participants with models, which
can be expressed as N = {1, 2, 3 . . .}. Assuming that each model owner is bounded and independent,
there is no conspiracy between model owners.

Assumption 2. S is the strategic space of the evolutionary game. Si is the set of strategies, and
si is the selected strategy in a certain round of the game. Each model owner has two strategies:
participating in sharing models and not participating in sharing models, namely, Si = {si|si =
P(participate)orNP(notparticipate)}. Define s−i = {s1, . . . , si−1, si+1, . . .} as the combination
of strategies of other owner except the owner i. In each round of game, model owners interact with
each other through repeated random matching. The evolution process conforms to natural laws, and
the final group will reach a dynamic and stable state. If at a certain stage, the proportion of model
owners who choose strategy si in the group is pi, the evolutionary game strategy can be expressed as
(pi, p−i), and the state of the group can be expressed as σ = pisi + p−is−i, where pi, p−i ≥ 0 and
pi + p−i = 1.

Assumption 3. U is a utility function that represents the mapping from the strategy combination
to the reward; u : s→ R. Given a strategy combination such as s = (sI , s−i), the utility function
ui(si, s−i) represents the benefit of model owner i when i selects strategy si and the strategy set
selected by others other than i is s−i.

Assumption 4. In the initial state, the model owner has a certain preference for strategy selection.
Randomly select two model owners as game subjects, representing two groups. Assuming that the
probabilities of both sides of the game choosing the sharing strategy are x and y, respectively, the
probabilities of choosing not to participate in the sharing strategy are 1− x, 1− y, 0 ≤ x, y ≤ 1,
respectively. X is a function of time t; x = x(t), y = y(t). According to the assumption of inertia
behavior, the proportions of people who choose to participate in the strategy in the two groups are x
and y, respectively.

Assumption 5. Model accuracy and model quantity are the private information of the model owner.
Before the collective makes a choice, this information is only known to the model owner. The guesses
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of other model owners about private information satisfy the common prior probability distribution.
In addition, users have the same level of information about the model.

Assumption 6. The knowledge production function is introduced to measure the value of the
model. The machine learning model not only has the function of prediction, but also has the value of
inspiration for the re-creation of the model. Model users can gain knowledge by accessing the shared
model, and combine the newly learned knowledge with the original model to create a new model.
This process is called knowledge spillover.

There are similarities between knowledge spillover and the production process. Eco-
nomics uses a production function to describe the relationship between the input factors
and the output in the production process. Greitz introduced the production function into
the research of knowledge sharing for the first time, and put forward the concept of the
knowledge production function [45]. Since then, the knowledge production function has
been widely used to study the relationship between the knowledge output and input
factors. Among them, the Cobb-Douglas function is widely used to predict production and
to analyze the development path because of its simple model and convenient calculation
in parameter estimation. Therefore, the Griliches-Jaffe knowledge production function
based on the Cobb Douglas function is introduced to measure the knowledge outputs of
teaching models in the sharing process. The calculation method is Q = AKαLβ, wherein, Q
represents the benefits brought about by knowledge output, namely, the knowledge value.
A(A > 0) is a coefficient, which is related to technical level, teaching model type, field,
productivity, and other factors. K is the model stock, expressed by the product of the model
scale and quality. L is the number of personnel. α, β represents the elasticity coefficient of
the knowledge stock and the number of inputs, and it represents the impact of the two
factors on the knowledge output.

When no one else shares the model in the system, the model stock of model owner
i Ki = miqi, where mi is the data volume of the model and qi is the model quality. When
other people share the model in the system, the model stock of model owner i Ki =
miqi + mjqj. mj is the amount of data available in the shared model, that is, the amount
of data complementary to the existing model, and qj is the quality of the shared model.
Let the number of personnel invested be 1, and the additional benefits obtained by model
owner i from the system model can be expressed as Fi = Ai[{(miqi + mjqj)

α − (miqi)
α}].

Other parameters used in the evolutionary game are shown in Table 1:

Table 1. Glossary.

Symbol Meaning

Fi The additional benefits that the model owner i obtains from the system model

Ii Rewards obtained by model owner i from the sharing system

ω Model owners’ losses due to sharing models

c Points paid to the system for accessing the model when the model owner does not
share models

γ Sharing income coefficient

Based on the above assumptions, the corresponding returns of game players 1 and 2
in different strategy choices are shown in Table 2:
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Table 2. Payoff Matrix for Game between Model Owners.

1
2

P NP

P (γF1 + I1 −ω, γF2 + I2 −ω) (I1 −ω, F2 − c)

NP (F1 − c, I2 −ω) (0, 0)

Each subject has two strategic choices. There are four possible outcomes of the game,
which can be summarized into the following three situations:

Case 1: When the game subjects choose not to share the strategy, neither party can
access the other party’s models, gain shared benefits, and pay no costs. At this time, the
income is 0.

Case 2: When one party in the game entity shares models while the other party
does not, it corresponds to (P, NP) or (NP, P) in the payment matrix. Most incentive
mechanisms believe that “the party who chooses not to share cannot obtain the models
of the sharing party” . However, realizing model sharing is the original intention of the
construction of teaching the model sharing platform. Therefore, on the basis of the article,
EduShare allows users to access models without sharing, but they need to pay a certain
amount of points to the system. At this time, the model owners who choose to share cannot
obtain the desired models from the other party, so they cannot obtain additional benefits,
but they need to bear the losses caused by sharing. For the party who does not share the
models, it is necessary to pay the system the credit c to access the models and to obtain
additional benefits from the models. Therefore, when player 1 chooses P and player 2
chooses Non, the income of player 1 is I1−ω, The income of entity 2 is F2− c. When player
1 chooses Non and player 2 chooses P, the income of player 1 is F1 − c, and the income of
player 2 is I2 −ω.

Case 3: When both sides of the game choose to share models, the model owner can
not only visit the other side’s models, but also understand the evaluations of others on their
own models, gain more recognition, and provide direction and motivation for improving
models. At this time, the benefits of model owners from shared models can be expressed as
γF. Among them, γ(γ > 1) is the sharing income coefficient. In addition, the model owner
will also receive the sharing incentive issued by the system and bear the losses caused by
sharing. Therefore, when all players choose to share, the benefit of player 1 is γF1 + I1 −ω.
The income of entity 2 is γF2 + I2 −ω.

4.5. Game Process Analysis

This section analyzes the change trend of the model owner’s choice preference by
solving the equilibrium strategy of the evolutionary game model. The equilibrium strategy
for solving the evolutionary game model can be transformed into solving the fixed point
problem of the dynamic system. Since the evolution direction is related to the expected
reward of the players in different strategy choices, the expected reward and the average
expected reward when the players choose to share and not share are analyzed, and the
dynamic system trajectory expression is constructed as follows.

When player 1 chooses the sharing strategy, the expected reward consists of two parts.
If game player 2 chooses the shared strategy, then player 1 gains γF1 + I1 −ω. If player 2
chooses not to share the model, the income obtained by player 1 is I1 −ω. According to
the assumptions, the probabilities of player 2 choosing the two strategies are y and 1− y,
respectively. For player 1, the expected income E1P corresponding to the strategy selected
to participate in the sharing is:

E1P = (γF1 + I1 −ω) ∗ y + (I1 −ω) ∗ (1− y)
= γF1y + I1 −ω

(12)
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In the same way, the expected income E1NP of the non-shared strategy can be expressed as:

E1Non = (F1 − c)y (13)

Then, the average expected income E1 can be expressed as:

E1 = xE1P + (1− x)E1NP (14)

For player 2, the strategies of sharing, not-sharing, and the average expected returns,
E2P, E2N , and E2 are, respectively:

E2P = (γF2 + I2 −ω) ∗ x + (I2 −ω) ∗ (1− x)

= γF2x + I2 −ω

E2Non = (F2 − c)x

E2 = yE2P + (1− y)E2N0

(15)

Assume that in the game group 1, x′ is the proportion of the individuals who choose
the sharing strategy in the next round in the group. Use the finite difference form to express
the dynamic change of the group strategy, then x′ can be expressed as x′ = xE1p/E1. The
change of the proportion of individuals who choose this strategy in the population per unit
time can be expressed as:

x′ − x
∆t

=
dx
dt

=
x
(
E1p − E1

)
E1

(16)

The trajectory and fixed point of the differential equation are equivalent to the follow-
ing equation, and we can build the replication dynamic equation of the evolutionary game.

dx
dt

= x
(
E1p − E1

)
= x(1− x){[(γ− 1)F1 + c]y + I1 −ω}

(17)

Similarly, the replication dynamic equation of game group 2 can be expressed as:

dy
dt

= y(1− y){[(γ− 1)F2 + c]x + I2 −ω} (18)

The replication dynamic equation reveals the evolution trend of the strategy of partici-
pation and sharing in the group. When the expected return of selecting shared models is
greater than the average expected return, the probability of selecting this strategy in the
next round of the game will increase, e.g., dx/dy > 0, dy/dt > 0. On the contrary, the
probability of selecting the sharing strategy will be reduced, e.g., dx/dt < 0, dy/dt < 0.
When Rdx/dt = 0 and dy/dt = 0, the evolutionary game reaches the equilibrium point.
Therefore, there are five equilibrium points in the model:

E1 = (0, 0), E2 = (0, 1), E3 = (1, 0), E4 = (1, 1),

E5 =

(
ω− I2

(γ− 1)F2 + c
,

ω− I1

(γ− 1)F1 + c

) (19)

Because the equilibrium of the evolutionary game is dynamic, the equilibrium point
may not be stable. Next, we analyze the local stability of the five equilibrium points.
According to evolutionary game theory, the linearization theorem is introduced to judge
the stability of the fixed point of the dynamic system, which is mainly divided into the
following three steps.

Step 1: According to the replication dynamic equation, the Jacobian matrix is con-
structed. Calculate the partial derivatives of x and y for dx/dt and dy/dt, respectively, to
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obtain the Jacobian matrix as follows:

J =

 ∂(dx/dt)
∂x

∂(dx/dt)
∂y

∂(dy/dt)
∂x

∂(dy/dt)
∂y


∂(dx/dt)

∂x
= (1− 2x){[(γ− 1)F1 + c]y + I1 −ω}

∂(dx/dt)
∂y

= x(1− x)[(γ− 1)F1 + c]

∂(dy/dt)
∂x

= y(1− y)[(γ− 1)F2 + c]

∂(dy/dt)
∂y

= (1− 2y){[(γ− 1)F2 + c]x + I2 −ω}

(20)

Step 2: Calculate the determinant value of the Jacobian matrix and the trace of the
matrix. The determinant Det.J of the Jacobian matrix can be expressed as:

Det. =
∂(dx/dt)

∂x
× ∂(dy/dt)

∂y
− ∂(dx/dt)

∂y
× ∂(dy/dt)

∂x

= (1− 2x)(1− 2y){[(γ− 1)F1 + c]y + I1 −ω)∗
{[(γ− 1)F2 + c]x + I2 −ω} − xy(1− x)(1− y)∗
[(γ− 1)F1 + c][(γ− 1)F2 + c]

(21)

The trace Tr.J of the Jacobian matrix can be expressed as:

Tr. J =
∂(dx/dt)

∂x
+

∂(dy/dt)
∂y

= (1− 2x){[(γ− 1)F1 + c]y + I1 −ω}
+ (1− 2y){[(γ− 1)F2 + c]x + I2 −ω}

(22)

Step 3: Judge the stability of the equilibrium point of the model according to the
linearization theorem. According to the linearization theorem, the equilibrium point is
stable if and only if the determinant of the Jacobian matrix is greater than 0 and the trace of
the matrix is less than 0, otherwise the equilibrium point is not stable. As the number of
games increases, the equilibrium point will eventually tend to evolve into a stable strategy.
The determinant and trace of the Jacobi matrix corresponding to the five equilibrium points
are as follows (Table 3):

Table 3. Equilibrium Analysis.

Equilibrium
Point Value of Determinant Trace of Matrix

E1 (ω− I1)(ω− I2) I1 + I2 − 2ω

E2 ((γ− 1)F1 + I1 + c−ω)(ω− I2) (γ− 1)F1 + I1 + c− I2

E3 (ω− I1)((γ− 1)F2 + I2 + c−ω) −I1 + (γ− 1)F2 + I2 + c

E4 ((γ− 1)F1 + I1 + c−ω)((γ− 1)F2 + I2 + c−ω) −((γ− 1)F1 + I1 + c−ω)− ((γ− 1)F2 + I2 + c−ω)

E5 / 0

The status of the equilibrium point is discussed according to the parameter values,
as follows:

Case 1: When I1 ≥ ω and I2 ≥ ω, the status of the equilibrium point is shown in
Table 4. At this point, (1,1) is an evolutionary stability strategy. Regardless of the initial
willingness of model owners to share, the group will eventually tend to share teaching
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models. At this time, the incentive function plays a strong incentive role, and the strategy
selection of individual benefit maximization is consistent with the strategy selection of
group benefit maximization, satisfying the incentive compatibility constraint.

Table 4. Stability Analysis of Equilibrium Point in Case 1.

Equilibrium Point Sign of Determinant Sign of Trace Result

E1 + + stable

E2 − unknown saddle point

E3 − unknown saddle point

E4 + − stable

E5 + 0 center

Case 2: When I1 ≤ ω − (γ− 1)F1 − c and I2 ≤ ω − (γ− 1)F2 − c, the status of the
equilibrium point is shown in Table 5. At this time (0,0) is an evolutionary stability strategy.
Regardless of the initial willingness of model owners to share, the group will eventually
tend to not share models. The incentive mechanism satisfying this condition is invalid.

Table 5. Stability Analysis of Equilibrium Point in Case 2.

Equilibrium Point Sign of Determinant Sign of Trace Result

E1 + + stable

E2 − unknown saddle point

E3 − unknown saddle point

E4 + + unstable

E5 + 0 center

Case 3: When ω − (γ − 1)F1 − c < I1 < ω and ω − (γ − 1)F2 − c < I2 < ω, the
equilibrium point status is shown in Table 6. At this time, (0,0) and (1,1) are evolutionary
stability strategies, and the evolution direction is related to the equilibrium point. When
the proportion of model owners selected to share in game subject 1 x>1, game subject
2 evolves towards sharing. When x < 1, game subject 2 evolves towards non-sharing.
When the proportion of shared model owners selected by game player 2 is y > (ω− I1)/
((γ− 1)F1 + c), game subject 1 evolves towards sharing. When y < c, the game subject 1
evolves towards non-sharing.

Table 6. Stability Analysis of Equilibrium Point in Case 3.

Equilibrium Point Sign of Determinant Sign of Trace Result

E1 + − stable

E2 + + unstable

E3 + + unstable

E4 + − stable

E5 + 0 center

4.6. Dynamic Incentive for Model Sharing

Based on the above analysis, this model has different evolutionary outcomes when the
incentive function satisfies different conditions. When the incentive function satisfies the
conditions in Case 1, the model owner’s preference for strategy selection is sharing. When
the incentive function satisfies the condition in Case 2, the model owner’s preference for
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strategy selection is not sharing. When the incentive function satisfies the conditions in
Case 3, the evolution direction of the population, and the current state and the equilibrium
solution((ω− I2)/((γ− 1)F2 + c), (ω− I1)/((γ− 1)F1 + c)).

The system uses the integral incentive model owner to share the model. When the
integral in the system reaches the saturation state, the attraction of the integral to the model
owner decreases, and the increase in the share rate brought by the unit integral decreases,
which is called the phenomenon of the diminishing marginal effect. If the incentive is set
to a fixed value, if the setting is too low, the incentive effect will not be achieved. If the
setting is too high, the incentive saturation speed will be too fast and the marginal effect
will decrease. Therefore, the dynamic adjustment of the incentive function can achieve a
long-term incentive for model owners.

Based on the results of evolutionary game analysis, the incentive function is dynami-
cally adjusted. Realizing model sharing is the goal of maximizing social benefits. Therefore,
evolutionary stability strategy (1, 1) is the expected result of the game. Since the evo-
lutionary stability strategy corresponding to case 2 is (0, 0), which does not satisfy the
incentive compatibility principle, only case 1 and case 3 are considered. Under the initial
conditions, the proportion of the model owners selected to share in the system is small, and
the incentive function satisfying the conditions in Case 1 is used for the incentive. After a
period of time, the excitation function satisfying the conditions in Case 3 is used to continue
the excitation.

In order to make the shared models in the system have high quality, the model access
threshold is designed to realize the constraint on the model owner. Assume that the
minimum quality of models that the model demander can accept in the sharing system
is qmin, and that the maximum model similarity that can be tolerated is simmax. The
threshold of model access is recorded as T, then T shall satisfy:

T = max(qmin, qmax ϕ(simmax)) (23)

This means that the system allows for high-quality model sharing with high similarity,
and that it allows for low-quality but original model sharing. For example, the minimum
acceptable model quality for model demanders is 2, and the maximum tolerable similarity
corresponds to φ = 0.5; the threshold value is max(2, 2.5) = 2.5. After the introduction of
T, the incentive function parameters of game subject i are set as shown in Equation (24),
where λj is the proportion of model owners who choose to share with another subject in
the game.

ξi =


ω
T , λj = 0
ω−[(γ−1)Fi+c)]λj,

T , 0 < λj <
ω

(γ−1)Fi+c

0, λj >
ω

(γ−1)Fi+c

(24)

When the quality or similarity of models does not satisfy the system requirements, not
sharing models is the best strategy choice for rational individuals. With the increase in the
proportion of sharing strategies selected in the system, the dependence of the system on
incentives gradually decreases to 0. After that, the system can still maintain a good sharing
atmosphere without incentives.

Model owners can know the value of incentive parameters through smart contracts,
and then decide whether to share. If the quality of models is high and the innovation
is strong, and the expected return of model owners to share models is greater than the
average expected return, they will choose to share models. If the model has low quality,
high repeatability, and does not satisfy the system requirements, the model owner will
gain less than the average income when choosing to share the model. At this time, model
owners can choose to share models after improving the quality of models and reducing
the repetition rate, or give up sharing models. In this way, we encourage the sharing of
high-quality models, punish the sharing of inferior models, and realize the quality control
of the models shared in the system.
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When the model owner decides to share the model, the model will be uploaded to the
local database of the educational institution, and the address summary, digital signature,
detailed introduction, and parameter information of the current incentive function of the
model will be stored in the blockchain together. The model quality is calculated using
the quality evaluation function in Section 4.1. The incentive for model owners to share
models can be calculated using Equation (11). By adjusting the parameters of the incentive
function through Equation (24), the dynamic incentive for the model owner is realized,
which not only reduces the burden of the shared system, but also maintains the good
operation of the system and delays the incentive saturation and marginal effect decline
caused by excessive incentive.

5. Experiments

In order to evaluate the effect of the proposed scheme, we have conducted two sets of
numerical simulation experiments. Both groups of experiments are programmed in Python
3.7 and run on a 64-bit Win11 system with 64G RAM and Intel(R) Core(TM) i7-11700F CPU
@ 2.50GHz.

5.1. Numerical Simulation Experiment of an Honest Evaluation Incentive Model

In this experiment, five models were selected for testing. Each model has a real quality
realz and a set of evaluation data scz. We call the numpy library in Python to generate N
pieces of evaluations, each of which include evaluation and reputation values. Among
them, the evaluations of malicious users conform to the normal distribution, with a mean
value of µ1 and the standard deviation σ1. The reputation value corresponding to each data
point is a random number in the range of [r1min, r1max]. The evaluations of honest users
conform to the normal distribution, with the mean value of µ2 and the standard deviation
σ2. The reputation value corresponding to each data point is a random number in the range
of [r2min, r2max]. We use n1, indicating the number of malicious users. The parameters of
the experiment are listed in Table 7.

Table 7. Parameters of the Quality Evaluation Experiment.

n1 µ1 σ1 σ2 [r1min, r1max] [r2min, r2max]

100 0 0.5 1 [0.5, 1.4] [1.2, 2.5]

In the experiment, the number of malicious users was constant, and the proportions of
the two groups were changed by adjusting the number of honest users. The purpose of
malicious users is to lower the quality evaluation of the model, and the malicious evaluation
will be gathered around 0. Honest evaluation will be scattered around the real quality of
the model. Therefore, the evaluation of malicious users is set to confirm to the normal
distribution of N(0, 0.5). The evaluation of honest users is set to confirm to the normal
distribution with a standard deviation of 1. The reputation value of honest users is generally
higher than that of malicious users, but there may be an overlap. Therefore, we set the
reputation of the malicious users range to be from 0.5 to 1.4, and the reputation of honest
users ranges from 1.2 to 2.5. The evaluation data are assumed to be real numbers ranging
from 0 to 5; the data outside of the range need to be filtered out. The remaining data can
be regarded as the simulation evaluation data of models, which are confirmed to be the
truncated normal distribution N(µ, σ2; xl , xr); the expected can be calculated as follows:

E[X] = µ + σ
ϕ(x1)− ϕ(xr)

φ(xr)− φ(x1)
(25)

Among them, ϕ and φ are the probability density function and distribution function of
random variables that satisfy the standard normal distribution. xl and xr are two truncated
positions. Since the evaluation score is between 0 and 5, the corresponding truncated points
are xl = 0 and xr = 5.
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The expectation of the truncated normal distribution obeyed via honest evaluation
data is used to express the real quality of the models. The estimated quality of models is
expressed using the result of the quality evaluation function based on the EM algorithm.
We will analyze the deviation of the results of the quality evaluation function when the
proportion of honest users is different. Referring to the method of the article, the root-mean-
square-error (RMSE) is introduced to measure the comparison between the real quality of
the models and the estimated quality. The calculation method is as follows (Table 8):

RMSE =

√
∑num

z=1 (qreal − qappro)

num
(26)

Table 8. Parameters of Quality Evaluation Experiment.

µ1 σ1 µ2 σ2 rep1min rep1max rep2min rep2max

0 0.5 3 1 0.5 1.5 1.2 3

When the parameters correspond to different values, the real qualities of models are
calculated using Equation (25). The mean and the weighted mean, with reputation as the
benchmark method, are compared with the quality evaluation method (EM) based on the
EM algorithm, and the results are shown in Table 9. Because there are random errors in
the generation of simulation data, in order to offset the impacts of random errors, each
experimental result in the table is represented by the average of five repeated experiments
with the same parameters.

Table 9. Results of Quality Assessment Methods under Different Parameters.

µ qreal α2 Mean Weighted Mean EM

3 3.05

100 3.02 3 3.75
90 2.79 2.86 2.47
80 2.58 2.72 2.96
70 2.42 2.63 3.41
60 2.27 2.57 3.59
50 2.07 2.42 3.86

3.5 3.64

100 3.02 3 3.75
90 3.13 3.22 3.35
80 2.88 3.07 4.3
70 2.67 2.95 1.67
60 2.46 2.83 1.48
50 2.18 2.6 1.3

4 4.29

100 3.73 3.69 3.85
90 3.39 3.49 4.16
80 3.13 3.33 3.92
70 2.88 3.2 3.94
60 2.6 3.04 1.59
50 2.25 2.75 3.16

The test sample with the same proportion of honest users is a group, and a group of
data containing µ2 are the five cases of 2, 2.5, 3, 3.5, and 4, and the root mean square errors
of the three methods are calculated, respectively. In the three methods, the change of the
root mean square error with the proportion of honest users is shown in Figure 4.
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Figure 4. The relationship between RMSE and the percentage of honest users.

According to the experimental results, with an increase in the proportion of honest
learners, the error of the average and weighted average methods gradually decreases.
However, because the quality evaluation method based on the EM algorithm effectively
filters the evaluation data of malicious learners, it is less greatly affected by the proportion
of malicious learners. When there are more honest learners in the system, the result of the
model quality evaluation based on the EM algorithm is closer to the real value.

5.2. Analysis of the Parameters of the Incentive Function

The experiment adopts the method of controlling variables to analyze the effects of
the parameters k and b of the evaluation incentive function on the function.

Firstly, the impact of parameter k on the incentive function was analyzed. By keeping
the parameter b constant and by setting b = 4, the value of parameter k was adjusted to 2,
4, 6, 8, and 10. Under different parameter values, the change of the evaluation incentive
function ∆R with respect to the evaluation deviation Dev is shown in Figure 5. As the
parameter k increases, the rate at which the function value decreases with the evaluation
deviation gradually increases, and the incentive range gradually narrows. When k is 2,
users whose evaluation deviation is within the range of [0, 2.9932] obtain a reputation value
of greater than or equal to 0.01. When k is 10, only users whose evaluation deviation is
within the range of [0, 0.5986] obtain a reputation value that is greater than or equal to 0.01.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
k=2
k=4
k=6
k=8
k=10

Figure 5. The relationship between the incentive function and the parameter k.

The experimental results indicate that parameter k affects the incentive range of the
evaluation incentive function. If k is set too small, users can still benefit from large evalua-
tion biases, and the incentive function has insufficient constraints on the user evaluation
behavior. If k is set to be too large, only users with very accurate evaluations can benefit,
which is not conducive to mobilizing users’ enthusiasm for evaluation. Therefore, setting
an appropriate value for k according to the distribution of the evaluation data is beneficial
for incentivizing users to actively and honestly evaluate.

Secondly, we analyzed the impact of parameter b on the incentive function. Keeping
parameter k constant at k = 4, we adjusted the value of parameter b to 1, 2, 3, 4, and 5,
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respectively. The change of the evaluation incentive function ∆R with respect to the eval-
uation deviation Dev under different parameters is shown in Figure 6, with b=1 yielding
the smallest extremum value and corresponding incentive value for a given evaluation
deviation, while larger b values result in greater extremum values and corresponding in-
centive values for the same evaluation deviation. For instance, for a user with an evaluation
deviation of 0.5, the expected reputation value is 0.105 when b = 1, while it is 0.42 when
b = 4.
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0.8
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1.4
b=1
b=2
b=3
b=4
b=5

Figure 6. The relationship between the incentive function and the parameter b.

The experimental results show that parameter b affects the incentive strength of the
evaluation incentive function. If b is set too small, the incentive strength is insufficient,
which affects the users’ participation in evaluation. If b is set too large and the incentive
method is single, there will be a diminishing marginal effect. That is, with an increase
in time, the incentive effect corresponding to a unit reputation value decreases until the
reputation value reaches saturation and the incentive becomes ineffective. Therefore,
according to the actual situation, setting an appropriate value for b can incentivize users to
evaluate models in the long term and actively.

In summary, in the honest evaluation incentive function, parameter k affects the
incentive range of the function, and parameter b affects the incentive strength of the function.
The reasonable setting of parameter values is conducive to the long-term operation of the
honest evaluation incentive function.

5.3. Model Numerical Simulation Experiment Based on an Evolutionary Game

To verify that the parameter value of ξ in the incentive function results in different
evolutionary outcomes under different conditions, a numerical simulation experiment was
designed as follows. The parameter settings used in the experiment are shown in Table 10.

Table 10. Parameters for evolutionary game experiments.

k1 k2 q1 q2 sim1 sim2 γ c A α β ω a thr

2 2 3 4 0.2 0.1 1.1 1 1 1 1 3 10 0.5

The evolution paths and results of the game for both players under three different
conditions specified in Section 4.5 are shown in Figure 7 by adjusting the parameter ξ of
the incentive function. In Figure 7a–d, the x and y coordinates represent the proportions of
model owners who choose to participate in the game for players 1 and 2, respectively.
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Figure 7. The relationship between game outcome and parameter ξ. (a) ξ = 2; (b) ξ = 0.2; (c) ξ = 0.8;
(d) ξ = 0.9.

Set ξ = 2.0; the parameters satisfy the conditions in Case 1. As can be seen from
Figure 7a, regardless of the initial state of both sides of the game, they will eventually
converge to the equilibrium point (1, 1). The larger the initial probability, the faster the
convergence speed.

Set ξ = 0.2, the parameters satisfy the conditions in Case 2. As can be seen from
Figure 7b, regardless of the initial state of both sides of the game, they will eventually
converge to the equilibrium point (0, 0). The larger the initial probability, the faster the
convergence speed.

Set ξ = 0.8, the parameter satisfies the condition in Case 3, and the equilibrium
solution E5 = (0.6146, 0.6173). At this point, the evolutionary state is related to the initial
state. At the initial time, x > 0.6146 and y > 0.6173, and the game converges to the
equilibrium point (1, 1). At the initial time, x < 0.6146 and y < 0.6173, the game converges
to the equilibrium point (0, 0), as shown in Figure 7c; At the initial time, x < 0.6146 and
y > 0.6173, then game entity 2 evolves in the direction of non-sharing, and game entity 1
evolves in the direction of sharing. Figure 7d shows the changes in the critical point when
ξ = 0.9.

In summary, the incentive model for model sharing can dynamically motivate model
owners to share high-quality models, and the incentive function is feasible and effective.

6. Conclusions

This paper introduces a novel incentive model that addresses the critical issues of
quality control and sharing incentives in the existing model sharing system. By encour-
aging model users to provide active and honest feedback, and encouraging owners to
share high-quality models, the proposed model aims to improve the overall quality of the
models shared within the ecosystem. Furthermore, the integration of blockchain technol-
ogy enhances the security of the system, while the use of smart contracts automates the
transaction process, leading to reduced operating costs. To evaluate the feasibility and
effectiveness of the proposed model, extensive simulation experiments were conducted.
The results highlight the potential of this model to establish a model sharing market that
supports the high-quality, long-term development of the model sharing ecosystem. Overall,
the proposed model has significant implications for improving the quality of models shared
within the ecosystem and promoting a sustainable model sharing market. The findings of
this study could inform the development of similar incentive models for other collaborative
systems where quality control and sharing incentives are critical.

In the proposed approach, it is required that a certain number of user evaluations are
gathered before calculating the model quality, which may result in delayed rewards for
model owners. In our future work, we plan to address this issue and to make improvements.
Additionally, we will explore how to establish more reasonable pricing mechanisms for
the models.
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