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Abstract: A class of nearly Sasakian manifolds is considered in this paper. We discuss the geometric
effects of some symmetries on such manifolds and show, under a certain condition, that the class
of Ricci semi-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. We prove
that a Codazzi-type Ricci nearly Sasakian space form is either a Sasakian manifold with a constant
φ-holomorphic sectional curvatureH = 1 or a 5-dimensional proper nearly Sasakian manifold with a
constant φ-holomorphic sectional curvatureH > 1. We also prove that the spectrum of the operator
H2 generated by the nearly Sasakian space form is a set of a simple eigenvalue of 0 and an eigenvalue
of multiplicity 4, and we induce that the underlying space form carries a Sasaki–Einstein structure.
We show that there exist integrable distributions with totally geodesic leaves on the same manifolds,
and we prove that there are no proper nearly Sasakian space forms with constant sectional curvature.
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1. Introduction

Blair, Yano, and Showers introduced in [1] the concept of nearly Sasakian structures as
an odd-dimensional counterpart of nearly Kähler structures. They proved that a normal
nearly Sasakian structure is Sasakian, and, hence, is contact in particular. Also, in the same
paper, it was shown that a hypersurface of a nearly Kähler manifold is nearly Sasakian if
and only if it is quasi-umbilical with respect to the (almost) contact form. This result was
supported by an example stating that S5 properly imbedded in S6 inherits a nearly Sasakian
structure, which is not a Sasakian structure. That is why nearly Sasakian manifolds may
also be considered as an odd-dimensional analogue of nearly Kähler manifolds. However,
it is very difficult to find relationships between the two structures, such as for the duo
Sasakian and Kähler structures (see [2] for details).

Nearly Sasakian structures can also be seen as the vanishing of the symmetric part
of Sasakian structures. Several authors have studied these structures in [2–5] and the
references therein. For instance, Olszak in [4,5] gave a good number of properties for nearly
Sasakian structures. He proved that if nearly Sasakian manifolds are not Sasakian, they are
of dimension 5 and of a constant curvature. Olszak also proved some equivalent conditions
for non-Sasakian nearly Sasakian manifolds to be of dimension 5 and showed that such
manifolds are Einstein manifolds.

In Ref. [2], among other results, the authors proved that there are two types of inte-
grable distributions with totally geodesic leaves in a nearly Sasakian manifold, which are
Sasakian and 5-dimensional nearly Sasakian manifolds. Note that a (2n + 1)-dimensional
nearly Sasakian with n ≥ 3 is a Sasakian manifold ([3], Theorem 4.9).
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In this paper, we consider the same nearly Sasakian structures by paying attention
to certain foliations and curvature properties. We prove that some of these foliations are
naturally generated by the symmetry properties on curvature and Ricci tensors.

The study of locally symmetric Riemannian manifolds has a long history, and several
authors have worked in this direction. In Ref. [6] and the references therein, a series of
results is presented regarding locally symmetric contact manifolds derived under some
restrictions. In a direct way, Boeckx and Cho, in [7], proved that a locally symmetric contact
manifold is either a Sasakian manifold with a constant sectional curvature 1 or is locally
isometric to a unit tangent sphere bundle of a Euclidean space endowed with its standard
contact metric structure.

A smooth manifold M is locally symmetric if its Riemannian curvature tensor R is
parallel, i.e., ∇R = 0, where ∇ is the Levi–Civita connection on M extended to act on
tensors as a derivation. This class of manifolds contains manifolds of a constant curvature.
The integrability condition of ∇R = 0 is R · R = 0, where again R is extended to act on
tensors as a derivation. Manifolds that satisfy the latter condition are called semi-symmetric
(see [8,9], for more details). A smooth manifold is said to be Ricci semi-symmetric, if
R · Ric = 0. The set of all manifolds that are Ricci semi-symmetric contains the set of
manifolds that are semi-symmetric. This means that semi-symmetric conditions imply
Ricci semi-symmetric conditions, but the converse is not true, in general.

The present paper studies the two foliations stated by Olszak in papers [4,5]. He
proved that, if a proper nearly Sasakian manifold is locally symmetric, then it is of a constant
curvature and of dimension 5. These foliations were also investigated by Cappelletti-
Montano et al. in [2,3].

The organization of the paper is as follows. Section 2 deals with a definition and
properties of a nearly Sasakian manifold and some identity formulas of the underlying
tensors, which are supported by two examples. In Section 3, we discuss the two foliations
as stated in [2,4]. We establish the geometric effects of semi-symmetry and Ricci semi-
symmetry on nearly Sasakian manifolds. Under a certain condition, we show that the class
of Ricci-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. We prove
that these foliations exist canonically in a locally symmetric nearly Sasakian manifold of a
constant sectional curvature and k space. Some examples are also established. In Section 4,
we derive some algebraic formulas of the curvature tensor for nearly Sasakian manifolds
(Proposition 3). We prove that a Codazzi-type Ricci nearly Sasakian space form is either
Sasakian with a constant φ-holomorphic sectional curvature H = 1 or a 5-dimensional
proper nearly Sasakian manifold with a constant φ-holomorphic sectional curvatureH > 1.
In the same settings, we also prove that the spectrum of the operator H2 has a simple
eigenvalue of 0 and an eigenvalue of multiplicity 4, which therefore induces that such a
Codazzi-type Ricci nearly Sasakian space form carries a Sasaki–Einstein structure. We show
that there exist integrable distributions with totally geodesic leaves (Theorems 9 and 10).
Contrary to ([4], Theorem 6.1), we prove that there are no proper nearly Sasakian space
forms with a constant sectional curvature (Theorem 12).

2. Preliminaries

Let M be a (2n + 1)-dimensional manifold equipped with an almost contact structure
(φ, ξ, η), that is, φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form
satisfying [6]

φ2 = −I+ η ⊗ ξ, η(ξ) = 1. (1)

This implies that φξ = 0, η ◦ φ = 0, and rank(φ) = 2n. In this case, (φ, ξ, η, g) is
called an almost contact metric structure on M if (φ, ξ, η) is an almost contact structure of
M and g is a Riemannian metric of M such that [6]

g(φ X, φ Y) = g(X, Y)− η(X)η(Y) (2)
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for any vector field X, Y of M. It is easy to see the (1, 1)-tensor field φ is skew-symmetric,
and so η(X) = g(ξ, X).

If, moreover,

(∇Xφ)Y + (∇Yφ)X = 2g(X, Y)ξ − η(X)Y− η(Y)X, (3)

where ∇ is the Levi–Civita connection for the Riemannian metric g, then M is called a
nearly Sasakian manifold. From (3), one has

∇Xξ = −φ X− HX, (4)

where
HX = φ

(
∇ξφ

)
X. (5)

This operator is skew-symmetric and also anti-commutes with φ. The tensor field H is
of type (1, 1) and satisfies Hξ = 0, η ◦ H = 0, and

∇ξ H = −∇ξ φ = φH = −1
3
Lξ φ, (6)

where Lξ is the Lie derivative with respect to ξ. If H vanishes, then a nearly Sasakian
manifold is Sasakian (see [10] and the references therein).

It is easy to see that
H2X =

(
∇ξ φ

)2X. (7)

The divergence of ξ is given by

div ξ = 0. (8)

Example 1. Let M be a 5-dimensional smooth manifold defined as
M = {(x1, x2, · · · , x5) ∈ R5 : x2 6= 0, x5 6= 0} with standard coordinates (x1, x2, · · · , x5). The
vector fields

X1 = 2
(

x2
∂

∂x3
− ∂

∂x1

)
, X2 =

∂

∂x2
, X3 = ξ = − ∂

∂x3
,

X4 = 2
(

x5
∂

∂x3
− ∂

∂x4

)
, X5 =

∂

∂x5
,

are linearly independent at each point of M. Denote g to be the Riemannian metric of M, defined
as g(Xi, Xj) = δij, for any i, j = 1, 2, · · · , 4, where δij is the Kronecker symbol, and g(ξ, ξ) = 1.
Locally, the metric g takes the form

g = (
1
4
− x2

2)dx2
1 + dx2

2 + dx2
3 + (

1
4
− x2

5)dx2
4 + dx2

5.

We define the 1-form η and (1, 1)-tensor field φ, respectively, by, η = −dx3 and φX1 = X2,
φX2 = −X1, φX3 = 0, φX4 = X5, and φX5 = −X4. The relations (1) and (2) are satisfied for R5

by the linearity of φ and g. Thus, the structure (φ, ξ, η, g) defines an almost contact metric structure
for R5. Let ∇ be the Levi–Civita connection compatible with the metric g. Then, the non-vanishing
Lie brackets are [X1, X2] = [X4, X5] = 2ξ. These lead to the following non-vanishing components
of the covariant derivative

∇X1 X2 = ξ, ∇X1 ξ = −X2, ∇X2 X1 = −ξ, ∇X2 ξ = X1,

∇ξ X1 = −X2, ∇ξ X2 = X1, ∇ξ X4 = −X5, ∇ξ X5 = X4,

∇X4 ξ = −X5, ∇X4 X5 = ξ, ∇X5 ξ = X4, ∇X5 X4 = −ξ.

Using these covariant derivatives, it is easy to see that relation (3) is satisfied, and, therefore,
(φ, ξ, η, g) is a nearly Sasakian structure.
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Throughout this note, manifolds are assumed to be of class C∞ and connected, and
all tensor fields are of class C∞. We will denote the F (M) module of smooth sections of a
vector bundle E with Γ(E).

A vector field V on M is said to be an affine Killing vector field if it satisfies (see [11],
p. 51)

LV∇ = 0. (9)

Relation (9) reduces to

R(V, X)Y +∇X∇YV −∇∇XYV = 0, (10)

where R is the Riemannian curvature tensor R of M defined by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, ∀X, Y, Z ∈ Γ(TM). (11)

Relation (9) is the integrability condition for the Killing vector field V (see [11], for
more details). If M is nearly Sasakian, then by using (4), it is easy to see that ξ is a Killing
vector. Hence, the vector field ξ is an affine Killing vector field. The converse is not true, in
general. In [11], it was proven that the converse holds when the underlying manifold is
compact and without a boundary.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional nearly Sasakian manifold. Through (10),
we obtain

R(X, ξ)Y = ∇X∇Yξ −∇∇XYξ. (12)

Therefore, we have [10]:

R(ξ, X)Y = (∇Xφ)Y + (∇X H)Y

= g(X− H2X, Y)ξ − η(Y)(X− H2X) (13)

= {g(X, Y)− g(H2X, Y)}ξ − η(Y)X + η(Y)H2X,(
∇X H2

)
Y = η(Y)(φ + H)H2X + g((φ + H)H2X, Y)ξ, (14)

g((∇Xφ)Y, HZ) = −η(Y)g(H2X, φZ) + η(X)g(H2Y, φZ) + η(Y)g(HX, Z) (15)

for any X, Y, Z ∈ Γ(TM).
As proven in [10] and using the relations (13)–(15), we have

(∇Xφ)Y = −η(X)φHY− η(Y)(X− φHX) + g(X− φHX, Y)ξ, (16)

(∇X H)Y = η(X)φHY + η(Y)(H2X− φHX)− g(H2X− φHX, Y)ξ, (17)

(∇XφH)Y = η(Y)(φH2X + HX)− η(X)(φH2Y + HY)

− g(HX + φH2X, Y)ξ.
(18)

Now, for any vector fields X and Y of M,

R(X, Y)ξ = η(Y)X− η(X)Y + η(X)H2Y− η(Y)H2X. (19)

Then,
Ric(X, ξ) = (2n− trace H2)η(X), ∀X ∈ Γ(TM). (20)

By (13), we have, for any X, Y ∈ Γ(TM),

R(X, ξ)Y = −g(X, Y)ξ + η(Y)X− η(Y)H2X + g(H2Y, X)ξ. (21)

3. Foliations of a Nearly Sasakian Manifold

In Refs. [2,4], for instance, the authors showed that there are two foliations in any
nearly Sasakian manifold with leaves that are Sasakian or 5-dimensional nearly Sasakian
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non-Sasakian manifolds. This fact is led by the square of a skew-symmetric operator H,
i.e., H2. The latter plays an important role, as well as its spectrum.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional nearly Sasakian manifold. Olszak, in [4],
showed that, if M satisfies the condition

H2 = α{I− η ⊗ ξ} (22)

for a real number α, then dim M = 5. The converse is true if the real number α is non-zero
(see [5], Theorem 4.1 for more details).

We say that M is a proper nearly Sasakian manifold if it is a nearly Sasakian non-Sasakian
manifold.

Let D := ker η denote the contact distribution, and let D⊥ denote the one spanned
structure vector field ξ. Then, the tangent space TM is decomposed as

TM = D⊕ D⊥, (23)

where ⊕ is the orthogonal direct sum. Through (23), any X ∈ Γ(TM) can be rewritten as

X = QX + Q⊥X, (24)

where Q and Q⊥ are the projection morphisms of TM onto D and D⊥, respectively. Then,
for any vector field X ∈ Γ(TM), Q⊥X = η(X)ξ, and X = QX + η(X)ξ.

If (22) is satisfied, then, for any non-zero vector field X ∈ Γ(D),

−g(HX, HX) = αg(X, X), i.e., α = − g(HX, HX)

g(X, X)
. (25)

This means that there is λ ∈ R such that α = −λ2 ≤ 0, and, therefore, (22) becomes

H2 = −λ2{I− η ⊗ ξ}. (26)

As examples for both Sasakian and proper nearly Sasakian manifolds, we have the
following.

Example 2. Let us recall the 5-dimensional manifold M considered in Example 1. Then, the
components of the tensor field H of the type (1, 1) are given

Hξ = φ
(
∇ξφ

)
ξ = 0,

HX1 = φ∇ξ X2 − φ2∇ξ X1 = φX1 + φ2X2 = X2 − X2 = 0,

HX2 = −φ∇ξ X1 − φ2∇ξ X2 = −X1 + X1 = 0,

HX4 = φ∇ξ X5 − φ2∇ξ X4 = X5 − X5 = 0

HX5 = −φ∇ξ X4 − φ2∇ξ X5 = −X4 + X4 = 0.

This means that H vanishes everywhere. Therefore, in this case, the structure in (3) reduces to
(∇Xφ)Y = g(X, Y)ξ − η(X)Y, ∀X, Y ∈ Γ(TM), which shows that M is a Sasakian manifold.

In [1], the authors showed how to induce a nearly Sasakian structure for S5. In order to
do so, they looked at S5 as a hypersurface in S6 equipped with its nearly Kähler structure.

Example 3. We recall an example of 5-dimensional nearly Sasakian manifolds as detailed in [1,2,6].
Let S6 be the unit sphere in R7 with its cross product × induced by Cayley algebra. Let N =

∑7
i=1 xi

∂
∂xi

denote the unit outer normal. We define an almost complex structure J for S6 as
JX = N × X, which implies,

J2 = N × (N × X) = −X, ∀X ∈ Γ(TS6).
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It is easy to see that J is almost complex structure and is also nearly Kähler (but non-Kähler)
when associated with the induced Riemannian metric. As detailed in [2], now we consider S5

as a totally umbilical hypersurface of S6 defined by x7 =
√

2
2 , with unit normal at each point x,

which is given by ω = x−
√

2 ∂
∂x7

= ∑6
i=1 xi

∂
∂xi
−
√

2
2

∂
∂x7

and the shape operator is A = −I. Let
(φ, ξ, η, g) be the almost induced contact metric structure with

ξ = −Jω =
√

2
(

x1
∂

∂x6
− x2

∂

∂x5
− x3

∂

∂x4
+ x4

∂

∂x3
+ x5

∂

∂x2
− x6

∂

∂x1

)
,

and η is given by the restriction of
√

2(x1dx6 − x6dx1 + x5dx2 − x2dx5 + x4dx3 − x3dx4) to S5.
This is a nearly Sasakian non-Sasakian structure with a constant sectional curvature of 2. The latter
means that

R(X, Y)ξ = 2{η(Y)X− η(X)Y}, ∀X, Y ∈ Γ(TS5),

which implies that −φ2X − H2X = 2{X− η(X)ξ}; that is, H2X = −{X− η(X)ξ} with
λ2 = 1.

Next, we present some classes of nearly Sasakian manifolds in which condition (26) is
satisfied.

Suppose M is a semi-symmetric nearly Sasakian manifold. Then, the curvature tensor
R of M satisfies, for any vector fields X and Y of M, R(X, Y) ·R = 0, where R(X, Y) operates
on R as a derivation of the tensor algebra at each point (see [8,9] for more details). Now, let
X and Y be vector fields in D such that g(X, Y) = 0. Then, using (19) and (21), we have,

(R(X, ξ) · R)(X, Y)Y = R(X, ξ)R(X, Y)Y− R(X, Y)R(X, ξ)Y− R(R(X, ξ)X, Y)Y

− R(X, R(X, ξ)Y)Y

= −g(X, R(X, Y)Y)ξ + η(R(X, Y)Y)X− η(R(X, Y)Y)H2X

+ g(H2X, R(X, Y)Y)ξ + {g(X, X)− g(H2X, X)}{g(Y, Y)− g(H2Y, Y)}ξ
− g(X, H2Y)g(X, H2Y)ξ.

(27)

Hence,

− g(X, R(X, Y)Y)ξ + η(R(X, Y)Y)X− η(R(X, Y)Y)H2X

+ g(H2X, R(X, Y)Y)ξ + {g(X, X)− g(H2X, X)}{g(Y, Y)− g(H2Y, Y)}ξ
− g(X, H2Y)g(X, H2Y)ξ = 0.

(28)

Thus, considering the ξ-component of (28), we obtain

g(R(X, Y)Y, X) = g(H2X, R(X, Y)Y) + g(X, X)g(Y, Y) + g(X, X)g(HY, HY)

+ g(Y, Y)g(HX, HX) + g(HX, HX)g(HY, HY)

− g(HX, HY)g(HX, HY).

(29)

If condition (26) is satisfied, then, from relation (29), one obtains,

(1 + λ2)g(R(X, Y)Y, X) = (1 + 2λ2 + λ4)g(X, X)g(Y, Y). (30)

That is,
g(R(X, Y)Y, X) = (1 + λ2)g(X, X)g(Y, Y). (31)

Therefore, we have
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Theorem 1. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold satisfying the Nomizu’s condition,
i.e., R(X, Y) · R = 0 for any vector fields X and Y of M. If

H2 = −λ2{I− η ⊗ ξ}

for some real number λ, then M is of a constant curvature 1 + λ2. Moreover, M is either a Sasakian
manifold or a 5-dimensional proper nearly Sasakian manifold.

Let κ be a real constant. Denote N(κ) as the κ-nullity distribution of M. Then, N(κ) is
seen as the function p 7−→ Np(κ) with p ∈ M, where Np(κ) is the κ-nullity space at p given
by (see [12,13] for more details and reference therein)

Np(κ) =
{

Z ∈ Tp M : R(X, Y)Z = κ(g(Y, Z)X− g(X, Z)Y), ∀X, Y ∈ Tp M
}

,

where Tp M is the tangent space at p. If the vector field ξ on the nearly Sasakian manifold
M belongs to N(κ), then M is called κ space.

Therefore, we have this result.

Theorem 2. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. Then, M satisfies the condition (26)
if and only if M is a (1 + λ2) space.

Proof. If condition (26) is satisfied, then, for any vector vector fields X and Y of M,

R(X, Y)ξ = η(Y)X− η(X)Y− λ2η(X){Y− η(Y)ξ}+ λ2η(Y){X− η(X)ξ}
= (1 + λ2){η(Y)X− η(X)Y}.

The converse is straightforward and this completes the proof.

If a nearly Sasakian manifold M is Ricci semi-symmetric, then

(R(X, Y) · Ric)(Z, W) = −Ric(R(X, Y)Z, W)− Ric(Z, R(X, Y)W)

= 0, ∀X, Y, Z, W ∈ Γ(TM). (32)

Using (19) and (20), one has

(R(X, Y) · Ric)(ξ, Z) = −Ric(R(X, Y)ξ, Z)− Ric(ξ, R(X, Y)Z)

= −η(Y)Ric(X, Z) + η(X)Ric(Y, Z)− η(X)Ric(H2Y, Z) (33)

+ η(Y)Ric(H2X, Z)− (2n− trace H2)η(R(X, Y)Z).

Now, through relation (20), we obtain

(R(ξ, X) · Ric)(Y, ξ) = −Ric(R(ξ, X)Y, ξ)− Ric(Y, R(ξ, X)ξ)

= −(2n− trace H2)g(X, Y) + (2n− trace H2)g(H2X, Y) (34)

+ Ric(X, Y)− Ric(H2X, Y).

If condition (26) is satisfied for M, then (34) becomes

(R(ξ, X) · Ric)(Y, ξ) = −2n(1 + λ2)2g(X, Y) + (1 + λ2)Ric(X, Y). (35)

Therefore, we obtain this result.

Theorem 3. A Ricci semi-symmetric nearly Sasakian manifold satisfying (26) is Einstein.
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Proof. If M is a Ricci semi-symmetric nearly Sasakian manifold satisfying (26), then, using
(35), the Ricci tensor is given by Ric(X, Y) = 2n(1 + λ2)g(X, Y) for any vector fields X and
Y of M, and the proof is completed.

In Ref. [4], Olszak proved that if a nearly Sasakian non-Sasakian manifold is locally
symmetric, then it is of a constant curvature and of dimension 5. If we assume that the
nearly Sasakian manifold M is of a constant sectional curvature κ, then the curvature tensor
R of M satisfies the equation in [14,15]:

R(X, Y)Z = κ{g(Y, Z)X− g(X, Z)Y}, ∀X, Y ∈ Γ(TM). (36)

Then, by putting Z = ξ into (36) and using (19), we obtain

η(Y){(κ − 1)X + H2X} = η(X){(κ − 1)Y + H2Y}. (37)

This implies that
H2X = −(κ − 1){X− η(X)ξ}. (38)

Therefore, we obtain:

Theorem 4. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. If M is of a constant sectional
curvature κ, then M is either Sasakian or satisfies condition (26), with κ = 1 + λ2, λ 6= 0, and a
(1 + λ2) space.

A nearly Sasakian manifold M is locally symmetric if

(∇W R)(X, Y)Z = 0, , ∀X, Y, Z, W ∈ Γ(TM).

We know that the covariant derivative of R, namely, ∇ R, is defined as

(∇ZR)(X, Y, W) = ∇ZR(X, Y)W − R(∇ZX, Y)W − R(X,∇ZY)W

− R(X, Y)∇ZW.
(39)

By putting W = ξ into (39), one has

(∇ZR)(X, Y, ξ) = {g(φZ, X) + g(HZ, X)}Y− {g(φZ, Y) + g(HZ, Y)}X− {g(φZ, X)

+ g(HZ, X)}H2Y + {g(φZ, Y) + g(HZ, Y)}H2X + η(X)(∇Z H2)Y

− η(Y)(∇Z H2)X + R(X, Y)φZ + R(X, Y)HZ.

(40)

By using (14), the term η(X)(∇Z H2)Y− η(Y)(∇Z H2)X becomes

η(X)(∇Z H2)Y− η(Y)(∇Z H2)X = η(X)g(φH2Z, Y)ξ + η(X)g(H3Z, Y)ξ

− η(Y)g(φH2Z, X)ξ − η(Y)g(H3Z, X)ξ.
(41)

Therefore,

(∇ZR)(X, Y, ξ) = {g(φZ, X) + g(HZ, X)}Y− {g(φZ, Y) + g(HZ, Y)}X
− {g(φZ, X) + g(HZ, X)}H2Y + {g(φZ, Y) + g(HZ, Y)}H2X

+ η(X)g(φH2Z, Y)ξ + η(X)g(H3Z, Y)ξ − η(Y)g(φH2Z, X)

− η(Y)g(H3Z, X)ξ + R(X, Y)φZ + R(X, Y)HZ.

(42)

If a nearly Sasakian manifold M is locally symmetric, then (42) leads to
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0 = {g(φZ, X) + g(HZ, X)}g(Y, W)− {g(φZ, Y) + g(HZ, Y)}g(X, W)

− {g(φZ, X) + g(HZ, X)}g(H2Y, W) + {g(φZ, Y) + g(HZ, Y)}g(H2X, W)

+ η(X)g(φH2Z, Y)η(W) + η(X)g(H3Z, Y)η(W)− η(Y)g(φH2Z, X)η(W)

− η(Y)g(H3Z, X)η(W) + g(R(X, Y)φZ, W) + g(R(X, Y)HZ, W)

(43)

for any vector field X, Y, Z, and W of M. As a result,

g(R(X, Y)φZ, W) + g(R(X, Y)HZ, W) = −g(R(X, Y)W, φZ)− g(R(X, Y)W, HZ)

= −g(R(X, Y)W, φZ + HZ).
(44)

Relation (43) becomes

0 = g(Y, W)g(φZ + HZ, X)− g(X, W)g(φZ + HZ, Y)

− g(H2Y, W)g(φZ + HZ, X) + g(H2X, W)g(φZ + HZ, Y)

+ η(X)η(W)g(φZ + HZ, H2Y)− η(Y)η(W)g(φZ + HZ, H2X)

− g(R(X, Y)W, φZ + HZ).

(45)

Thus,

R(X, Y)W = g(Y, W)X− g(X, W)Y− g(H2Y, W)X + g(H2X, W)Y

+ η(X)η(W)H2Y− η(Y)η(W)H2X

= {g(Y, W)− g(H2Y, W)}X− {g(X, W)− g(H2X, W)}Y (46)

+ η(W){η(X)H2Y− η(Y)H2X}.

Therefore, we have the following.

Theorem 5. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. If M is locally symmetric, then the
curvature tensor R of M is given by, for any vector fields X, Y, and Z of M,

R(X, Y)Z = g(Y− H2Y, Z)X− g(X− H2X, Z)Y

+ η(Z){η(X)H2Y− η(Y)H2X}.
(47)

Moreover, the Ricci tensor Ric and scalar curvature Scal are given, respectively, by

Ric(X, Y) = 2ng(X− H2X, Y)− η(X)η(Y)trace H2, (48)

and Scal = (2n + 1)
{

2n− trace H2
}

. (49)

Proof. Let {Ei}1≤i≤2n+1 be an orthonormal frame with respect to g. Then, the scalar
curvature is given by

Scal =
2n+1

∑
i=1

Ric(Ei, Ei) = (2n + 1)
{

2n− trace H2
}

,

which completes the proof.

Note that the geometric information of relations (47)–(49) depends on the information
of the operator H2. Let M be a locally symmetric nearly Sasakian manifold. Then, the
curvature tensor R of M satisfies Equation (47). In addition, if M is of a constant curvature
κ, then, by comparing both (36) and (47), one has,
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(κ − 1){g(Y, Z)X− g(X, Z)Y} = −g(H2Y, Z)X + g(H2X, Z)Y

+ η(Z){η(X)H2Y− η(Y)H2X}.

By letting Y = Z = ξ, this equation reduces to H2X = −(κ − 1){X − η(X)ξ}. This
means that M is either Sasakian (when κ = 1) or non-Sasakian (when κ 6= 1), thus satisfying
H2X = −λ2{X − η(X)ξ}, with κ = 1 + λ2 and λ 6= 0. The converse is straightforward;
that is, if H2X = −(κ − 1){X− η(X)ξ}, then, using (47), the curvature tensor R satisfies

R(X, Y)Z = κ{g(Y, Z)X− g(X, Z)Y};

that is, M is of a constant curvature κ. Thus, according to [5], Theorem 4.1 we have the
following.

Theorem 6. Let (M, φ, ξ, η, g) be a locally symmetric nearly Sasakian manifold. Then, M is of a
constant curvature κ if and only if M is either Sasakian or is a 5-dimensional proper nearly Sasakian
manifold.

As a consequence to this theorem, we remark the following.

Corollary 1. There exist no locally symmetric nearly Sasakian manifolds of constant sectional
curvature such that, for some real number λ,

H2 6= −λ2{I− η ⊗ ξ}.

4. Curvature Tensor Properties

First of all, we shall prove the following propositions.

Proposition 1. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold and R be the Riemannian curva-
ture tensor of M. Then,

R(X, Y)φZ− φR(X, Y)Z = 2{g(φX, Y) + g(HX, Y)}φHZ− η(Z){η(X)(φH2Y + HY)

− η(Y)(φH2X + HX)} − g(Y− φHY, Z){φX + HX}+ g(X− φHX, Z){φY + HY}
− {g(φY, Z) + g(HY, Z)}{X− φHX}+ {g(φX, Z) + g(HX, Z)}{Y− φHY}
+ {η(X)g(HY + φH2Y, Z)− η(Y)g(HX + φH2X, Z)}ξ,

(50)

for any vector fields X, Y and Z on M.

Proof. The proof follows from straightforward calculations.

From (2), one obtains the following

g(R(X, Y)φZ, φW)− g(R(X, Y)Z, W) = −η(W)g(R(Z, ξ)X, Y) + 2g(φX, Y)g(HZ, W)

+ 2g(HX, Y)g(HZ, W)− η(X)η(Z)g(H2Y, W)− η(X)η(Z)g(HY, φW)

+ η(Y)η(Z)g(H2X, W) + η(Y)η(Z)g(HX, φW)− g(φY, Z)g(X, φW)

+ g(φY, Z)g(HX, W)− g(HY, Z)g(X, φW) + g(HY, Z)g(HX, W) + g(φX, Z)g(Y, φW)

− g(φX, Z)g(HY, W) + g(HX, Z)g(Y, φW)− g(HX, Z)g(HY, W)− g(Y, Z)g(X, W)

+ η(X)η(W)g(Y, Z)− g(Y, Z)g(HX, φW) + g(φHY, Z)g(X, W)− η(X)η(W)g(φHY, Z)

+ g(φHY, Z)g(HX, φW) + g(X, Z)g(Y, W)− η(Y)η(W)g(X, Z) + g(X, Z)g(HY, φW)

− g(φHX, Z)g(Y, W) + η(Y)η(W)g(φHX, Z)− g(φHX, Z)g(HY, φW).

(51)

By using the equality, g(R(X, Y)φZ, φW) = g(R(φZ, φW)X, Y), the relation (51) re-
duces to
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g(R(φZ, φW)X, Y)− g(R(Z, W)X, Y) = −η(W)g(R(Z, ξ)X, Y) + 2g(φX, Y)g(HZ, W)

+ 2g(HX, Y)g(HZ, W)− η(X)η(Z)g(H2Y, W)− η(X)η(Z)g(HY, φW)

+ η(Y)η(Z)g(H2X, W) + η(Y)η(Z)g(HX, φW)− g(φY, Z)g(X, φW)

+ g(φY, Z)g(HX, W)− g(HY, Z)g(X, φW) + g(HY, Z)g(HX, W) + g(φX, Z)g(Y, φW)

− g(φX, Z)g(HY, W) + g(HX, Z)g(Y, φW)− g(HX, Z)g(HY, W)− g(Y, Z)g(X, W)

+ η(X)η(W)g(Y, Z)− g(Y, Z)g(HX, φW) + g(φHY, Z)g(X, W)− η(X)η(W)g(φHY, Z)

+ g(φHY, Z)g(HX, φW) + g(X, Z)g(Y, W)− η(Y)η(W)g(X, Z) + g(X, Z)g(HY, φW)

− g(φHX, Z)g(Y, W) + η(Y)η(W)g(φHX, Z)− g(φHX, Z)g(HY, φW).

(52)

Therefore, we have the following.

Proposition 2. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold and R be the Riemannian curva-
ture tensor of M. Then,

R(φX, φY)Z− R(X, Y)Z = −η(Y)g(H2X, Z)ξ + η(Y)η(Z)H2X + 2g(HX, Y)φZ

+ 2g(HX, Y)HZ− η(Z)η(X)H2Y− η(Z)η(X)φHY + η(X)g(H2Z, Y)ξ

+ η(X)g(HZ, φY)ξ + g(Z, φY)φX− g(HZ, Y)φX + g(Z, φY)HX− g(HZ, Y)HX

+ g(φZ, X)φY + g(φZ, Y)HY + g(HZ, X)φY + g(HZ, X)HY− g(Z, Y)X

− g(HZ, φY)X− g(Z, Y)φHX + η(Z)η(Y)φHX− g(HZ, φY)φHX + g(Z, X)Y

+ g(Z, X)φHY− g(φHZ, X)Y + η(Y)g(φHZ, X)ξ − g(φHZ, X)φHY,

(53)

for any vector fields X, Y, and Z of M.

Next, we deal with the φ-holomorphic sectional curvature on a nearly Sasakian mani-
fold. A plane section σ in Tp M of a nearly Sasakian manifold M is called a φ section if there
exists a vector field X for M that is orthogonal to ξ such that the basis {X, φX} spans σ.
The sectional curvature K(X, φX) of a φ section is called the φ-sectional curvature, and it is
denoted byH. If M has a pointwise constant φ-holomorphic sectional curvatureH = H(p),
p ∈ M, then, for any vector fields X and Y ∈ D = ker η, we have

g(R(X, φX)X, φX) = −Hg(X, X)2. (54)

By taking the g-dot with φW of (2) and for any X, Y, and Z of D, we have

g(R(X, Y)φZ, φW) = g(R(X, Y)Z, W) + 2{g(φX, Y) + g(HX, Y)}g(HZ, W)

− {g(φY, Z) + g(HY, Z)}g(X− φHX, φW) + {g(φX, Z)

+ g(HX, Z)}g(Y− φHY, φW)− g(Y− φHY, Z)g(φX + HX, φW)

+ g(X− φHX, Z)g(φY + HY, φW).

(55)

By putting the vector fields Y = φY, Z = φX, and W = Y into (55), one obtains

g(R(X, φY)X, φY) = g(R(X, φY)Y, φX) + g(X, Y)2 − g(HX, φY)2 + g(X, φY)2

− g(HX, Y)2 − g(X, X)g(Y, Y).
(56)

Likewise, for any X, Y ∈ Γ(D), we have,

g(R(X, φX)Y, φX) = g(R(X, φX)X, φY). (57)

By substituting X + Y in (54), and by using (57), the left-hand side of relation (54)
becomes
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g(R(X + Y, φX + φY)(X + Y), φX + φY) = g(R(X, φX)X, φX) + g(R(Y, φY)Y, φY)

+ g(R(Y, φX)X, φX) + g(R(X, φY)X, φX) + g(R(Y, φY)X, φX) + g(R(X, φX)Y, φX)

+ g(R(Y, φX)Y, φX) + g(R(X, φY)Y, φX) + g(R(Y, φY)Y, φX) + g(R(X, φX)X, φY)

+ g(R(Y, φX)X, φY) + g(R(X, φY)X, φY) + g(R(Y, φY)X, φY) + g(R(X, φX)Y, φY)

+ g(R(Y, φX)Y, φY) + g(R(X, φY)Y, φY).

(58)

By using (56) and (57), the Bianchi Identity, i.e., g(R(Y, φY)X, φX) = g(R(X, φY)Y, φX)
+ g(R(φX, φY)X, Y) and g(R(X, φX)Y, φY) = g(R(X, φY)Y, φX) + g(R(φX, φY)X, Y), one
has

g(R(X + Y, φX + φY)(X + Y), φX + φY)

= 4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)

+ g(R(X, φX)X, φX) + g(R(Y, φY)Y, φY).

(59)

Now, by using (54), the relation (59) becomes, for any X and Y of D,

g(R(X + Y, φX + φY)(X + Y), φX + φY)

= 4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)

−Hg(X, X)2 −Hg(Y, Y)2.

(60)

By substituting X + Y in (54), the right-hand side of relation (54) yields

−Hg(X, X)2 = −H{g(X, X)2 + 4g(X, X)g(X, Y) + 2g(X, X)g(Y, Y)

+ 4g(X, Y)2 + 4g(X, Y)g(Y, Y) + g(Y, Y)2}.
(61)

By calculating equality of (60) and (61), we obtain

1
2
{4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)}
= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.

(62)

By putting X = φY, Y = X, and Z = Y into (2), we have

−g(R(Y, φX)Y, φX)− g(R(φY, X)Y, φX) = g(HY, φX)2 − g(Y, φX)2

+ g(HY, X)2 + g(Y, Y)g(X, X)− g(X, Y)2.
(63)

Therefore, we have

g(R(Y, φX)Y, φX) = g(R(X, φY)Y, φX) + g(X, Y)2 − g(HY, φX)2

+ g(Y, φX)2 − g(HY, X)2 − g(X, X)g(Y, Y).
(64)

By adding (56) and (64), one obtains

g(R(X, φY)X, φY) + g(R(Y, φX)Y, φX) = 2g(R(X, φY)Y, φX)

+ 2g(X, Y)2 − 2g(HX, φY)2 + 2g(X, φY)2 − 2g(HX, Y)2

− 2g(X, X)g(Y, Y).

(65)
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By putting (65) into (62), we have

3g(R(X, φY)Y, φX) + 2g(R(Y, φY)Y, φX) + 2g(R(X, φX)X, φY)

+ g(R(φX, φY)X, Y) + g(X, Y)2 − g(HX, φY)2 + g(X, φY)2

− g(HX, Y)2 − g(X, X)g(Y, Y)

= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.

(66)

Since

g(R(φX, φY)X, Y) = g(R(X, Y)X, Y) + g(HX, Y)2 − g(X, φY)2

− g(X, Y)2 + g(HX, φY)2 + g(X, X)g(Y, Y),
(67)

the relation (66) becomes

3g(R(X, φY)Y, φX) + 2g(R(Y, φY)Y, φX) + 2g(R(X, φX)X, φY) + g(R(X, Y)X, Y)

= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.
(68)

By replacing Y with −Y in (68), one obtains

3g(R(X, φY)Y, φX)− 2g(R(Y, φY)Y, φX)− 2g(R(X, φX)X, φY)

+ g(R(X, Y)X, Y) = −H{2g(X, Y)2 − 2g(X, X)g(X, Y)

− 2g(X, Y)g(Y, Y) + g(X, X)g(Y, Y)}.
(69)

By summing the relations (68) and (69), we have

3g(R(X, φY)Y, φX) + g(R(X, Y)X, Y) = −H{2g(X, Y)2 + g(X, X)g(Y, Y)}. (70)

By replacing Y with φY in (70) and using curvature identities, we obtain,

3g(R(φY, φX)Y, X) + g(R(X, φY)X, φY) = −H{2g(X, φY)2 + g(X, X)g(Y, Y)}. (71)

Through the relations (56) and (67), the left-hand side of relation (71) becomes

3g(R(φY, φX)Y, X) + g(R(X, φY)X, φY) = 3g(R(X, Y)X, Y) + g(R(X, φY)Y, φX)

+ 2g(HX, Y)2 − 2g(X, φY)2 − 2g(X, Y)2 + 2g(HX, φY)2

+ 2g(X, X)g(Y, Y).

(72)

By putting the pieces (71) and (72) together, we have

g(R(X, φY)Y, φX) = −3g(R(X, Y)X, Y)−H{2g(X, φY)2 + g(X, X)g(Y, Y)}
− 2g(HX, Y)2 + 2g(X, φY)2 + 2g(X, Y)2 − 2g(HX, φY)2

− 2g(X, X)g(Y, Y).

(73)

Substituting (73) into (70) leads to

−8g(R(X, Y)X, Y)− 3H{2g(X, φY)2 + g(X, X)g(Y, Y)} − 6g(HX, Y)2

+ 6g(X, φY)2 + 6g(X, Y)2 − 6g(HX, φY)2

− 6g(X, X)g(Y, Y) = −H{2g(X, Y)2 + g(X, X)g(Y, Y)}.
(74)
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Therefore, we have

4g(R(X, Y)X, Y) = (H+ 3){g(X, Y)2 − g(X, X)g(Y, Y)}
− 3(H− 1)g(X, φY)2 − 3g(HX, Y)2 − 3g(HX, φY)2.

(75)

By replacing X and Y with X + Z and Y + W, respectively, in both sides of (75), one
has,

8g(R(X, Y)Z, W) + 8g(R(Z, Y)X, W) = −4(H+ 3)g(X, Z)g(Y, W)

+ 2(H+ 3){g(X, Y)g(Z, W) + g(X, W)g(Z, Y)}
− 6(H− 1){g(X, φY)g(Z, φW) + g(X, φW)g(Z, φY)}
− 6{g(HX, Y)g(HZ, W) + g(HX, W)g(HZ, Y)

+ g(HX, φY)g(HZ, φW) + g(HX, φW)g(HZ, φY)}.

(76)

In addition, by replacing Y with Z and Z with Y in (76) and then multiplying both
sides by −1, we have

− 8g(R(X, Z)Y, W)− 8g(R(Y, Z)X, W) = 4(H+ 3)g(X, Y)g(Z, W)

− 2(H+ 3){g(X, Z)g(Y, W) + g(X, W)g(Z, Y)}+ 6(H− 1){g(X, φZ)g(Y, φW)

+ g(X, φW)g(Y, φZ)}+ 6{g(HX, Z)g(HY, W) + g(HX, W)g(HY, Z)

+ g(HX, φZ)g(HY, φW) + g(HX, φW)g(HY, φZ)}.

(77)

By adding (76) and (77), we have

8g(R(X, Y)Z, W) + 16g(R(Z, Y)X, W)− 8g(R(X, Z)Y, W)

= 6(H+ 3){g(X, Y)g(Z, W)− g(X, Z)g(Y, W)} − 6(H− 1){g(X, φY)g(Z, φW)

− g(X, φZ)g(Y, φW) + 2g(X, φW)g(Z, φY)} − 6{g(HX, Y)g(HZ, W)

− g(HX, Z)g(HY, W) + 2g(HX, W)g(HZ, Y) + g(HX, φY)g(HZ, φW)

− g(HX, φZ)g(HY, φW) + 2g(HX, φW)g(HZ, φY)}.

(78)

By using the Bianchi identity, that is, R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 and
g(R(Z, Y)X, W) = g(R(X, W)Z, Y), the relation ((78) becomes

24g(R(X, W)Z, Y) = 6(H+ 3){g(X, Y)g(Z, W)− g(X, Z)g(Y, W)}
− 6(H− 1){g(X, φY)g(Z, φW)− g(X, φZ)g(Y, φW) + 2g(X, φW)g(Z, φY)}
− 6{g(HX, Y)g(HZ, W)− g(HX, Z)g(HY, W) + 2g(HX, W)g(HZ, Y)

+ g(HX, φY)g(HZ, φW)− g(HX, φZ)g(HY, φW) + 2g(HX, φW)g(HZ, φY)}.

(79)

By exchanging W and Y in (79), we obtain

24g(R(X, Y)Z, W) = 6(H+ 3){g(X, W)g(Z, Y)− g(X, Z)g(Y, W)}
− 6(H− 1){g(X, φW)g(Z, φY)− g(X, φZ)g(W, φY) + 2g(X, φY)g(Z, φW)}
− 6{g(HX, W)g(HZ, Y)− g(HX, Z)g(HW, Y) + 2g(HX, Y)g(HZ, W)

+ g(HX, φW)g(HZ, φY)− g(HX, φZ)g(HW, φY) + 2g(HX, φY)g(HZ, φW)}

(80)

for any X, Y, Z, and W ∈ Γ(D). Now, by considering a vector field X of M as X =
QX + η(X)ξ, where Q is the projection onto D, one has, for any X, Y , Z, and W ∈ Γ(TM),

g(R(QX, QY)QZ, QW) = g(R(X, Y)Z, W)− η(X)η(W){g(Y, Z)− g(H2Z, Y)}
+ η(X)η(Z){g(W, Y)− g(H2W, Y)} − η(Y)η(Z){g(W, X)− g(H2W, X)}
+ η(Y)η(W){g(Z, X)− g(H2Z, X)}.

(81)
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From (80), and by using (81), we have the following

24g(R(X, Y)Z, W) = 6(H+ 3){g(X, W)g(Z, Y)− η(Z)η(Y)g(X, W)

− η(X)η(W)g(Z, Y)− g(X, Z)g(Y, W) + η(Y)η(W)g(X, Z)

+ η(X)η(Z)g(Y, W)} − 6(H− 1){g(X, φW)g(Z, φY)− g(X, φZ)g(W, φY)

+ 2g(X, φY)g(Z, φW)} − 6{g(HX, W)g(HZ, Y)− g(HX, Z)g(HW, Y)

+ 2g(HX, Y)g(HZ, W) + g(HX, φW)g(HZ, φY)− g(HX, φZ)g(HW, φY)

+ 2g(HX, φY)g(HZ, φW)}+ 24η(X)η(W){g(Y, Z)− g(H2Z, Y)}
− 24η(X)η(Z){g(W, Y)− g(H2W, Y)}+ 24η(Y)η(Z){g(W, X)− g(H2W, X)}
− 24η(Y)η(W){g(Z, X)− g(H2Z, X)}.

(82)

Therefore, one has the following.

Proposition 3. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. Then, the necessary and sufficient
condition for M to have a pointwise constant φ-holomorphic sectional curvatureH is

R(X, Y)Z =
H+ 3

4
{g(Z, Y)X− g(X, Z)Y}+ H− 1

4
{η(X)η(Z)Y

− η(Z)η(Y)X + η(Y)g(X, Z)ξ − η(X)g(Z, Y)ξ + g(Z, φY)φX

+ g(X, φZ)φY + 2g(X, φY)φZ} − 1
4
{g(HZ, Y)HX + g(HX, Z)HY

+ 2g(HX, Y)HZ− g(HZ, φY)φHX− g(HX, φZ)φHY

− 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y− η(Y)H2X}
+ {η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ

(83)

for all vector fields X, Y, and Z of M.

From relation (83), the Ricci tensor Ric associated with the Riemannian metric g yields

Ric(X, Y) =
n(H+ 3) +H− 1

2
g(X, Y)− (n + 1)(H− 1)

2
η(X)η(Y)

− 5
2

g(X, H2Y)− η(X)η(Y)trace H2.
(84)

Moreover, we have the identity for the Ricci curvature:

Ric(φX, φY) = Ric(X, Y)− (2n− trace H2)η(X)η(Y). (85)

Let τ be the scalar curvature of g. Then, τ is given by

τ =
1
2
{n(2n + 1)(H+ 3) + n(H− 1)} − 7

2
trace H2. (86)

Lemma 1. In a nearly Sasakian manifold, the eigenvalues of the operator H2 are constant.

Proof. The proof follows from a direct calculation using (14).

For any vector field X, Y, Z, and W, one has
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(∇XRic)(Y, Z) =
n + 1

2
X(H)g(Y, Z)−

{
(n + 1)(H− 1)

2
+ trace H2

}
{η(Z)(∇Xη)Y

+η(Y)(∇Xη)Z}+ 5
2
{g((∇X H)Y, HZ) + g(HY, (∇X H)Z)}

=
n + 1

2
X(H)g(Y, Z) +

{
(n + 1)(H− 1)

2
+ trace H2

}
{η(Z)g(φX, Y)

+η(Z)g(HX, Y) + η(Y)g(φX, Z) + η(Y)g(HX, Z)}

+
5
2

{
η(Y)g(H2X, HZ)− η(Y)g(φHX, HZ) + η(Z)g(H2X, HY)

−η(Z)g(φHX, HY)}.

(87)

Let {Ei}1≤i≤2n+1 be an arbitrary local orthonormal frame field on M. Then,

∇Xτ = 2
2n+1

∑
i=1

(∇Ei Ric)(X, Ei) = (n + 1)X(H). (88)

On the other hand, by using (86) and Lemma 1, one obtains

∇Xτ =
1
2
{n(2n + 1)X(H) + nX(H)} − 1

2
X(trace H2) = n(n + 1)X(H). (89)

From the relations (88) and (89), we have

n(n + 1)X(H) = (n + 1)X(H), ∀X ∈ Γ(TM).

This leads to (n − 1)X(H) = 0. If n > 1, and the nearly Sasakian manifold M is
connected, then H is constant for M. Therefore, according to Ogiue [16], we obtain the
following theorem.

Theorem 7. Let M be a (2n + 1)-dimensional nearly Sasakian manifold (n > 1). If the
φ-holomorphic sectional curvature at any point of M is independent of the choice of the φ-holomorphic
section, then it is constant for M, and the curvature tensor R is given by

R(X, Y)Z =
H+ 3

4
{g(Z, Y)X− g(X, Z)Y}+ H− 1

4
{η(X)η(Z)Y− η(Z)η(Y)X

+ η(Y)g(X, Z)ξ − η(X)g(Z, Y)ξ + g(Z, φY)φX + g(X, φZ)φY + 2g(X, φY)φZ}

− 1
4
{g(HZ, Y)HX + g(HX, Z)HY + 2g(HX, Y)HZ− g(HZ, φY)φHX

− g(HX, φZ)φHY− 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y− η(Y)H2X}
+ {η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ

(90)

for any vector fields X, Y, and Z of M.

Note that a complete and simply connected nearly Sasakian manifold with a constant
φ-holomorphic sectional curvature H is said to be a nearly Sasakian space form. Thus, we
obtain the following result.

Theorem 8. Let M be a (2n + 1)-dimensional complete and simply connected nearly Sasakian
manifold (n > 1). Then, M is a nearly Sasakian space form if and only if the curvature tensor R is
given by (90).

Next, we introduce another class of nearly Sasakian manifolds with a Codazzi-type
Ricci tensor in which the condition (26) is naturally derived.
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With regard to a Codazzi-type Ricci tensor, we mean a Ricci tensor Ric satisfying the
Codazzi equation; that is,

(∇XRic)(Y, Z) = (∇YRic)(X, Z), ∀X, Y, Z ∈ Γ(TM). (91)

A manifold with such a tensor is called a Codazzi-type Ricci manifold.
Now, from (87) and (91), one has{

(n + 1)(H− 1)
2

+ trace H2
}
{2η(Z)g(φX, Y + 2η(Z)g(HX, Y)

+η(Y)g(φX, Z)− η(X)g(φY, Z) + η(Y)g(HX, Z)− η(X)g(HY, Z)}

+
5
2

{
η(Y)g(H2X, HZ)− η(X)g(H2Y, HZ) + η(X)g(φHY, HZ)

−η(Y)g(φHX, HZ) + 2η(Z)g(H2X, HY)− 2η(Z)g(φHX, HY)
}
= 0.

(92)

Letting X = ξ in this equation yields{
(n + 1)(H− 1)

2
+ trace H2

}
{−g(φY, Z)− g(HY, Z)}

+
5
2

{
−g(H2Y, HZ) + g(φHY, HZ)

}
= 0.

(93)

If Z = φY, then this equation becomes

2
5

{
(n + 1)(H− 1)

2
+ trace H2

}
{g(Y, Y)− η(Y)η(Y)}+ g(HY, HY) = 0. (94)

We set

µ =
2
5

{
(n + 1)(H− 1)

2
+ trace H2

}
. (95)

Then, relation (94) leads to

H2 = µ{I− η ⊗ ξ}. (96)

In accordance with Lemma 1 and Theorem 8, the function µ defined in (95) on a nearly
Sasakian space form is a constant. This is achieved by taking into account the reasoning
that led to (26), µ = −λ2. This means that µ is non-positive. According to Theorem 4.1
in [5], we have the following result.

Theorem 9. A Codazzi-type Ricci nearly Sasakian space form is either a Sasakian manifold with a
constant φ-holomorphic sectional curvatureH = 1 or is a 5-dimensional proper nearly Sasakian
manifold with a constant φ-holomorphic sectional curvatureH > 1.

Proof. The last assertion follows from (95), (96), and the sign of µ.

Note that Hξ = 0, i.e., 0 is an eigenvalue of H2. Also, since the operator H is skew-
symmetric, the non-vanishing eigenvalues of H2 are negative, as proven by (26). Thus, the
spectrum of H2 is of the type

Spec(H2) = {0,−λ2, · · · ,−λ2}, λ 6= 0.

Let Rξ, D(0), and D(−λ2) denote the distribution of dimension 1 generated by ξ
and the distributions of the eigenvectors corresponding to the eigenvalues 0 and −λ2,
respectively.
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If X is an eigenvector of H2 with a corresponding eigenvalue of −λ2, then, from (4),
we have

H2∇Xξ = −(∇X H2)ξ = −(φ + H)H2X = −λ2∇Xξ. (97)

This means that ∇Xξ is an eigenvector corresponding to the eigenvalue −λ2. Given
that the relation (14) leads to ∇ξ H2 = 0, we have

H2∇ξ X = ∇ξ H2X = −ξ(λ2)X− λ2∇ξ X = −λ2∇ξ X. (98)

Thus,∇ξ X is also an eigenvector corresponding to the eigenvalue −λ2. If vector fields
X and Y are both eigenvectors with the eigenvalue −λ2 and are orthogonal to ξ, then, from
(14), one obtains

H2(∇XY) = ∇X H2Y− (∇X H2)Y = −λ2∇XY + λ2g(φX + HX, Y)ξ. (99)

If λ = 0, the ∇XY belongs to D(0). If λ 6= 0, one obtains

H2(φ2∇XY) = φ2(H2∇XY) = −λ2φ2(∇XY), (100)

and, thus,
∇XY = −φ2∇XY + η(∇XY)ξ ∈ Rξ ⊕ D(−λ2).

Note that, if X is an eigenvector of H2 with an eigenvalue −λ2, then the vector fields
X, φX, HX, and HφX are mutually orthogonal, and they are also eigenvectors of H2 with
the corresponding eigenvalue −λ2. By using Theorem 9, 0 becomes a simple eigenvalue,
and the multiplicity of the eigenvalue −λ2 is 4. Therefore, we obtain the following result.

Theorem 10. Let M be a Codazzi-type Ricci nearly Sasakian space form. Then, the spectrum of
H2 has the form

Spec(H2) = {0,−λ2, −λ2, −λ2, −λ2}, λ 6= 0,

where 0 is a simple eigenvalue, and −λ2 is an eigenvalue of multiplicity 4. Moreover, the distribu-
tions D(0) and Rξ ⊕ D(−λ2) are integrable with totally geodesic leaves.

Cappelletti-Montano and Dileo proved in ([Theorem 4.3] in [2]) that there is a one-
to-one correspondence between a nearly Sasakian space form and SU(2) structures. The
latter induces a Sasaki–Einstein structure (see [2] for more details). Therefore, we have the
following result.

Theorem 11. A Codazzi-type Ricci nearly Sasakian space form carries a Sasaki–Einstein structure.

A similar conclusion from Theorem 11 can also be induced from some of the results
found in Section 3. In [Theorem 6.1] in [4], Olszak proved, under the condition (22), that
a proper nearly Sasakian space form is a 5-dimensional manifold of a constant sectional
curvature. Next, we prove otherwise using the projectively flat notion. First of all, we note
that the class of Codazzi-type Ricci manifolds is a subclass of projectively flat manifolds
(see [Proposition 5] in [17] for more details). The concept of projectively flat is defined via
a tensor called the projective curvature tensor. This plays a role as an important tensor
in differential geometry. A manifold M is said to be locally projectively flat if there is a
one-to-one correspondence between each coordinate system of M and a subspace of a
Euclidean space E such that any geodesic of M corresponds to a straight line in E. As
known in ([17], p. 411), the Levi–Civita connection of a non-degenerate metric g is locally
projectively flat if and only if g has a constant sectional curvature.

For n ≥ 1, a nearly Sasakian manifold M is locally projectively flat if and only if the
projective curvature tensor P vanishes, where P is given by (see [17])

P(X, Y)Z = R(X, Y)Z− 1
2n
{Ric(Y, Z)X− Ric(X, Z)Y} (101)
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for any vector fields X, Y, and Z of M.

Theorem 12. A proper nearly Sasakian space form is not of constant sectional curvature.

Proof. Let M be a proper nearly Sasakian space form. If we assume that M is of a constant
sectional curvature, then it is locally projectively flat; that is, the projective curvature tensor
P in (101) vanishes. A direct calculation of (101) leads to

2nR(X, Y)Z− {Ric(Y, Z)X− Ric(X, Z)Y} = −H− 1
2
{g(Z, Y)X− g(X, Z)Y}

+

{
trace H2 +

H− 1
2

}
{η(Y)η(Z)X− η(X)η(Z)Y}+ n(H− 1)

2
{η(Y)g(X, Z)ξ

− η(X)g(Z, Y)ξ + g(Z, φY)φX + g(X, φZ)φY + 2g(X, φY)φZ}

− n
2
{g(HZ, Y)HX + g(HX, Z)HY + 2g(HX, Y)HZ− g(HZ, φY)φHX

− g(HX, φZ)φHY− 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y− η(Y)H2X

+ 2n{η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ − 5
2

g(HY, HZ)X +
5
2

g(HX, HZ)Y.

(102)

Now, by putting Y = Z ∈ Γ(D) into (102) and considering X ∈ Γ(D) such that
g(X, Y) = 0, we have

2ng(P(X, Y)Y, Y) =
5
2

g(HX, HY)g(Y, Y). (103)

Since M is locally projectively flat, then (103) vanishes; that is,

0 = g(HX, HY)g(Y, Y), ∀X ∈ Γ(D).

This implies that H2Y = 0, as g(Y, Y) 6= 0, ∀Y ∈ Γ(D). Since Hξ = 0, thus H2 = 0 for
M, which is a contradiction, as M is non-Sasakian. This completes the proof.
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