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Abstract: Considering the worst-case scenario, the junction-tree algorithm remains the most general
solution for exact MAP inference with polynomial run-time guarantees. Unfortunately, its main
tractability assumption requires the treewidth of a corresponding MRF to be bounded, strongly
limiting the range of admissible applications. In fact, many practical problems in the area of structured
prediction require modeling global dependencies by either directly introducing global factors or
enforcing global constraints on the prediction variables. However, this always results in a fully-
connected graph, making exact inferences by means of this algorithm intractable. Previous works
focusing on the problem of loss-augmented inference have demonstrated how efficient inference can
be performed on models with specific global factors representing non-decomposable loss functions
within the training regime of SSVMs. Making the observation that the same fundamental idea can be
applied to solve a broader class of computational problems, in this paper, we adjust the framework
for an efficient exact inference to allow much finer interactions between the energy of the core model
and the sufficient statistics of the global terms. As a result, we greatly increase the range of admissible
applications and strongly improve upon the theoretical guarantees of computational efficiency. We
illustrate the applicability of our method in several use cases, including one that is not covered by
the previous problem formulation. Furthermore, we propose a new graph transformation technique
via node cloning, which ensures a polynomial run-time for solving our target problem. In particular,
the overall computational complexity of our constrained message-passing algorithm depends only
on form-independent quantities such as the treewidth of a corresponding graph (without global
connections) and image size of the sufficient statistics of the global terms.

Keywords: algorithm; optimization; dynamic programming

MSC: 68T99

1. Introduction

Many practical tasks can be effectively formulated as discrete optimization problems
within the framework of graphical models such as Markov Random Fields (MRFs) [1–3]
by representing the constraints and objective function in a factorized form. Finding the
corresponding solution refers to the task of maximum a posteriori (MAP) inference, which
is known to be NP-hard in general. Although there are plenty of existing approximation
algorithms [4–23], several problems (described below) require finding an optimal solution.
Existing exact algorithms [24–34], on the other hand, either make specific assumptions
about the energy function or do not provide polynomial run-time guarantees for the worst
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case. Assuming the worst-case scenario, the junction (or clique)-tree algorithm [1,35], there-
fore, remains the most efficient and general solution for exact MAP inference. Unfortunately,
its main tractability assumption requires the treewidth [36,37] of a corresponding MRF to be
bounded, strongly limiting the range of admissible applications by excluding models with
global interactions. Many problems in the area of structured prediction, however, require mod-
eling of global dependencies by either directly introducing global factors or enforcing global
constraints on the prediction variables. Among the most popular use cases are (a) learning us-
ing non-decomposable (or high-order) loss functions and training via slack scaling formulation
within the framework of a structural support vector machine (SSVM) [38–47], (b) evaluating
generalization bounds in structured prediction [14,15,44,48–59], and (c) performing MAP
inference on otherwise tractable models subject to global constraints [19,60,61]. The latter
covers various search problems, including the special task of (diverse) k-best MAP infer-
ence [62,63]. Learning with non-decomposable loss functions, in particular, benefits from
finding an optimal solution, as all of the theoretical guarantees of training with SSVMs
assume exact inference during optimization [39,64–68].

Previous works [45–47,69] focusing on the problem of loss-augmented inference (use
case (a)) have demonstrated how efficient computation can be performed on models
with specific global factors by leveraging a dynamic programming approach based on
constrained message passing. The proposed idea models non-decomposable functions
as a kind of multivariate cardinality potential y 7→ η(G(y)), where η : RP → R+ is some
function and G denotes the sufficient statistics of the global term. Although able to model
popular performance measures, the objective of a corresponding inference problem is
rather restricted to simple interactions between the energy of the core model F and the
sufficient statistics G according to F� η(G), where � : R×R→ R is either a summation
or a multiplication operation. Although the same framework can be applied to use case (c)
by modeling global constraints via an indicator function, it cannot handle a range of other
problems in use case (b) that introduce more subtle dependencies between F and G.

In this paper, we extend the framework for an efficient exact inference proposed
in [69] by allowing much finer interactions between the energy of the core model and the
sufficient statistics of the global terms. The extended framework covers all the previous
cases and applies to new problems, including the evaluation of generalization bounds in
structured learning, which cannot be handled by the previous approach. At the same time,
the generalization comes with no additional costs, preserving all the run-time guarantees.
In fact, the resulting performance is identical to that of the previous formulation, as the
corresponding modifications do not change the computational core idea of the previously
proposed message passing constrained via auxiliary variables but only affect the final
evaluation step (line 8 in Algorithm 1) of the resulting inference algorithm after all the
required statistics have been computed. We accordingly adjust the formal statements given
in [69] to ensure the correctness of the algorithmic procedure for the extended case.

Furthermore, we propose an additional graph transformation technique via node
cloning that greatly improves the theoretical guarantees on the asymptotic upper bound for
the computational complexity. In particular, the above-mentioned work only guarantees
polynomial run-time in the case where the core model can be represented by a tree-shaped
factor graph, excluding problems with cyclic dependencies. The corresponding complexity
estimation for clique trees (see Theorem 2 in [69]), however, requires the maximal node
degree ν to be bounded by a graph-independent constant; otherwise, it results in a term
that depends exponentially on the graph size. Here, we first provide an intuition that ν
tends to take on small values (see Proposition 2) and then present an additional graph
transformation that reduces this parameter to a constant ν = 3 (see Corollary 1). Further-
more, we analyze how the maximal number of states of auxiliary variables R, which greatly
affects the resulting run-time, grows relative to the graph size (see Theorem 2).
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The rest of the paper is organized as follows. In Section 2, we formally introduce the
class of problems we tackle in this paper, and in Section 3, we present the constrained
message-passing algorithm for finding a corresponding optimal solution based on a gen-
eral representation with clique trees. Additionally, we propose a graph transformation
technique via node cloning, which ensures an overall polynomial running time for the
computational procedure. In Section 4, we demonstrate the expressivity of our problem
formulation on several examples. For an important use case of loss-augmented inference
with SSVMs, we show in Section 5 how to represent different dissimilarity measures as
global cardinality potentials to align with our problem formulation. In order to validate the
guarantees for the computational complexity of Algorithm 1, we present the experimental
run-time measurements in Section 6. In Section 7, we provide a summary of our contribu-
tions, emphasizing the differences between our results and those in [69]. In Section 8, we
broadly discuss the previous works, which is followed by the conclusions in Section 9.

2. Problem Setting

Given an MRF [1,70] over a set of discrete variables, the goal of the maximum a
posteriori (MAP) problem is to find a joint variable assignment with the highest probability.
This problem is equivalent to minimizing the energy of the model, which describes the
corresponding (unnormalized) probability distribution over the variables. In the context of
structured prediction, it is equivalent to maximizing a score or compatibility function. To
avoid ambiguity, we now refer to the MAP problem as the maximization of an objective
function F : RM → R defined over a set of discrete variables y = (y1, . . . , yM). More
precisely, we associate each function F with an MRF, where each variable ym represents a
node in the corresponding graph. Furthermore, we assume, without loss of generality, that
the function F factorizes over maximal cliques yCt

, Ct ⊆ {1, . . . , M} of the corresponding
MRF according to

F(y) = ∑T
t=1 ft(yCt

). (1)

We now use the concept of the treewidth of a graph [36] to define the complexity of a
corresponding function with respect to the MAP inference, as follows.

Definition 1 (τ-decomposability). We say that a function F : D ⊆ RM → R is τ-decomposable
if the (unnormalized) probability exp(F(y)) factorizes over an MRF with a bounded treewidth τ.

Informally, the treewidth describes the tree-likeness of a graph, that is, how well the
graph structure resembles the form of a tree. In an MRF with no cycles going over the
individual cliques, the treewidth is equal to the maximal size of a clique minus 1, that is,
τ = maxt |Ct| − 1. Furthermore, the treewidth of a graph is considered bounded if it does
not depend on the size of the graph in the following sense. If it is possible to increase
the graph size by replicating the individual parts, the treewidth should not be affected by
the number of variables in the resulting graph. One simple example is a Markov chain.
Increasing the length of the chain does not affect the treewidth, which remains equal to the
Markov order of that chain.

The treewidth is defined as the minimum width of a graph and can be computed
algorithmically after transforming the corresponding MRF into a data structure called a
junction tree or clique tree. Although the problem of constructing a clique tree with a
minimum width is NP-hard in general, there are several efficient techniques [1] that can
achieve good results with a width close to the treewidth.

In the following, let M be the total number of nodes in an MRF over the variables
{ym}M

m=1, and let N be the maximum number of possible values each variable ym can take
on. Assuming that the maximization step dominates the time for creating a clique tree, we
obtain the following known result [71]:

Proposition 1. The computational time complexity for maximizing a τ-decomposable function is
upper bounded by O(M · Nτ+1).
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The notion of τ-decomposability for real-valued functions naturally extends to map-
pings with multivariate outputs for which we now define joint decomposability.

Definition 2 (Joint τ-decomposability). We say two mappings G : D ⊆ RM → RP and
G′ : D ⊆ RM → RP′ are jointly τ-decomposable if they factorize over a common MRF with a
bounded treewidth τ.

Definition 2 ensures the existence of a common clique tree with nodes {Ct}T
t=1 and the

corresponding potentials {gt, g′t}T
t=1, where maxt |Ct| − 1 = τ, and

G(y)=∑T
t=1 gt(yCt

), G′(y)=∑T
t=1g′t(yCt

).

Note that the individual factor functions are allowed to have fewer variables in their scope
than in a corresponding clique, that is, scope(gt), scope(g′t) ⊆ Ct.

Building on the above definitions we now formally introduce a class of problem
instances of MAP inference for which we later provide an exact message-passing algorithm.

Problem 1. For F : Y → R, G : Y → RP, H : R×RP → R with Y ⊂ RM, |Y| 6 NM and
P, M, N ∈ N+, we consider the following discrete optimization problem:

maximize
y∈Y

H(F(y), G(y)) (2)

where we assume that (1) F and G are jointly τ-decomposable, and (2) H is non-decreasing in the
first argument.

In the next section, we present multiple examples of practical problems that align with
the above-mentioned abstract formulation. As our working example, here, we consider the
problem of loss-augmented inference within the framework of SSVMs. This framework
includes two different formulations known as margin and slack scaling, both of which
require solving a combinatorial optimization problem during training. This optimization
problem is either used to compute the subgradient of a corresponding objective function or
find the configuration of prediction variables that violates the problem constraints the most.
For example, in the case of slack scaling formulation, we can define H(F(y), G(y)) = F(y) ·
η(G(y)) for some η : RP → R+, where F(y) = w>Ψ(x, y) corresponds to the compatibility
score given by the inner product between a joint feature map Ψ(x, y) and a vector of
trainable weights w (see [39] for more details), and η(G(y)) = ∆(y∗, y) describes the
corresponding loss function for a prediction y and a ground-truth output y∗. In fact, a
considerable number of popular loss functions used in structured prediction can generally
be represented in this form, that is, as a multivariate cardinality-based potential that
depends on counts of different label statistics.

3. Exact Inference for Problem 1

In this section, we derive a polynomial-time message-passing algorithm that always
finds an optimal solution for Problem 1. The corresponding results can be seen as a direct
extension of the well-known junction-tree algorithm.

3.1. Algorithmic Core Idea for a Simple Chain Graph

We begin by providing an intuition of why efficient inference is possible for Problem 1
using our working example of loss-augmented inference for SSVMs. For margin scaling, in
the case of a linear η, the objective F(y) + η(G(y)) inherits the τ-decomposability directly
from F and G and, therefore, can be efficiently maximized according to Proposition 1.
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The main source of difficulty for slack scaling lies in the multiplication operation
between F(y) and η(G(y)), which results in a fully-connected MRF regardless of the form
of the function η. Moreover, many popular loss functions used in structured learning
require η to be non-linear, preventing efficient inference even for the margin scaling.
Nevertheless, efficient inference is possible for a considerable number of practical cases, as
shown below. Specifically, the global interactions between a jointly decomposable F and G
can be controlled by using auxiliary variables at a polynomial cost. We now illustrate this
with a simple example.

y3 y4y2y1

f1 f2 f3

⌘(G)

y4y3y2y1

f1 f2 f3

g1 g2 g3 g4

Figure 1. Factor graph representation for the margin-scaling objective, with a decomposable loss G
(on the left), and a (non-decomposable) high-order loss η(G) (on the right).

Consider a (Markov) chain of nodes with a 1-decomposable F and 0-decomposable G
(e.g., Hamming distance), that is,

F(y) =
M−1

∑
m=1

fm(ym, ym+1) and G(y) =
M

∑
m=1

gm(ym). (3)

We aim at maximizing an objective F(y)� η(G(y)), where � : R×R→ R is a placeholder
for either a summation or a multiplication operation.

The case for margin scaling with a decomposable loss η(G) = G is illustrated by the
leftmost factor graph in Figure 1. Here, the corresponding factors fm and gm can be folded
together, enabling an efficient inference according to Proposition 1. The non-linearity of η,
however, can result (in the worst case!) in a global dependency between all the variable
nodes, leading to a high-order potential η(G), as illustrated by the rightmost factor graph
in Figure 1. In slack scaling, even for a linear η, after multiplying the individual factors,
we can see that the resulting model has an edge for every pair of variables, resulting in a
fully-connected graph. Thus, for the last two cases, exact inference using the junction-tree
algorithm is generally not feasible. The key idea of our approach is to relax the dense
connections in these graphs by introducing auxiliary variables L = (l1, . . . , lM) ∈ RP×M

subject to the constraints

lm =
m

∑
k=1

gk(yk), m ∈ {1, . . . , M}. (4)

More precisely, for H(F(y), G(y)) = F(y)� η(G(y)), Problem 1 is equivalent to the fol-
lowing constrained optimization problem in the sense that both have the same optimal
value and the same set of optimal solutions with respect to y:

maximize
y,L

F(y)� η(lM)

subject to lm+1 = lm + gm+1(ym+1) ∀m ∈ {1, . . . , M− 1}
l1 = g1(y1)

(5)

where the new objective involves no global dependencies and is 1-decomposable if we
regard η(lM) as a constant. We can make the local dependency structure of the new
formulation more explicit by taking the constraints directly into the objective as follows:

Q(y, L) = F(y)� η(lM)− 1∞[l1 6= g1(y1)]−
M−1

∑
m=1

1∞[lm+1 6= lm + gm+1(ym+1)]. (6)
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Here, 1α[·] denotes the indicator function such that 1α[·] = α if the argument in [·] is true
and 1α[·] = 0 otherwise. The indicator functions rule out the configurations that do not
satisfy Equation (4) when maximization is performed. A corresponding factor graph for
margin scaling is illustrated by the leftmost graph in Figure 2. We can see that our new
augmented objective (6) shows only local dependencies and is, in fact, 2-decomposable.

Applying the same scheme for slack scaling yields a much more sparsely connected
graph (see the rightmost graph in Figure 2). This is achieved by forcing the majority of
connections to go through a single node l4, which we call a hub node. Actually, Q(y, L)
becomes 2-decomposable if we fix the value of l4, which then can be multiplied into the
corresponding factors of F. In this way, we can effectively reduce the overall treewidth at
the expense of increased polynomial computation time (compared to a chain without the
global factor), provided that the maximal number R of different states of each auxiliary
variable lm is polynomially bounded in M, which represents the number of nodes in the
original graph. In the context of training SSVMs, for example, the majority of the popular
loss functions satisfy this condition (see Table 1 in Section 5 for an overview).

l1 l2 l3 l4

y3 y4y2y1

f1 f2 f3

l1 l2 l3 l4

y3 y4y2y1

f3 · ⌘(l4)f2 · ⌘(l4)f1 · ⌘(l4)

⌘(l4)�11 �11 �11

�11 �11

�11 �11 �11

Figure 2. Factor graph representation for an augmented objective Q(y, L) for margin scaling (on the
left) and for slack scaling (on the right). The auxiliary variables L = (l1, . . . , l4) are marked in blue
(except l4 for slack scaling). l4 is the hub node.

3.2. Constrained Message-Passing Algorithm on Clique Trees

The idea presented in the previous section is intuitive and enables the reuse of existing
software. Specifically, we can use the conventional junction-tree algorithm for graphical
models by extending the original graph with nodes corresponding to the auxiliary variables.
Alternatively, instead of performing an explicit graph transformation, we can modify
the message-passing protocol, which is asymptotically at least one order of magnitude
faster. Therefore, we do not explicitly introduce auxiliary variables as graph nodes before
constructing the clique tree but rather use them to condition the message-passing rules. In
the following, we derive an algorithm for solving an instance of Problem 1 via constrained
message passing on clique trees. The resulting computational scheme can be seen as a
direct extension of the junction-tree algorithm to models with specific global factors. Note
that the form of tractable global dependencies is constrained according to the definition of
Problem 1.

First, similar to the conventional junction-tree algorithm, we need to construct a clique
tree for a given set of factors that preserves the family structure and has the running
intersection property. Note that we ignore the global term during this process. The corre-
sponding energy is given by the function F according to the definition of Problem 1. There
are two equivalent approaches for constructing the click tree [1,70]. The first is based on
variable elimination and the second is based on graph triangulation, with an upper bound
of O(M · Nτ+1). Figure 3 illustrates the intermediate steps of the corresponding construc-
tion process for a given factor graph using the triangulation approach. The resulting clique
tree example defines the starting point for our message-passing algorithm.
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<latexit sha1_base64="u5UbtByAi/A+pCAqtXr+mKBqW7M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2MwF48RzQOSJcxOZpMhs7PLTK8QlnyCFw+KePWLvPk3TpI9aLSgoajqprsrSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj+sxvP3JtRKwecJJwP6JDJULBKFrpvt73+uWKW3XnIH+Jl5MK5Gj0y5+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiUnVhmQMNa2FJK5+nMio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll/+S1pnVe+yenF3Xqnd5HEU4QiO4RQ8uIIa3EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xu+I411</latexit>

C1
<latexit sha1_base64="8vBXUwXA77/TDmIxtW0a3nO86GA=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xjMxWME84BkCbOT3mTIzOwyMyuEkF/w4kERr/6QN//G3WQPmljQUFR1090VxIIb67rfztr6xubWdmGnuLu3f3BYOjpumSjRDJssEpHuBNSg4AqblluBnVgjlYHAdjCuZ377CbXhkXq0kxh9SYeKh5xRm0n1frXYL5XdijsHWSVeTsqQo9EvffUGEUskKssENabrubH1p1RbzgTOir3EYEzZmA6xm1JFJRp/Or91Rs5TZUDCSKelLJmrvyemVBozkUHaKakdmWUvE//zuokNb/0pV3FiUbHFojARxEYke5wMuEZmxSQllGme3krYiGrKbBpPFoK3/PIqaVUr3nXl6uGyXLvL4yjAKZzBBXhwAzW4hwY0gcEInuEV3hzpvDjvzseidc3JZ07gD5zPH/SLjYo=</latexit>

C2

<latexit sha1_base64="0f4c5dIhMt41pakJCjduvfH+Gtk=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKez6PgZz8RjBPCBZwuykNxkyM7vMzAoh5Be8eFDEqz/kzb9xN9mDRgsaiqpuuruCWHBjXffLKaysrq1vFDdLW9s7u3vl/YOWiRLNsMkiEelOQA0KrrBpuRXYiTVSGQhsB+N65rcfURseqQc7idGXdKh4yBm1mVTvn5f65Ypbdecgf4mXkwrkaPTLn71BxBKJyjJBjel6bmz9KdWWM4GzUi8xGFM2pkPsplRRicafzm+dkZNUGZAw0mkpS+bqz4kplcZMZJB2SmpHZtnLxP+8bmLDG3/KVZxYVGyxKEwEsRHJHicDrpFZMUkJZZqntxI2opoym8aTheAtv/yXtM6q3lX18v6iUrvN4yjCERzDKXhwDTW4gwY0gcEInuAFXh3pPDtvzvuiteDkM4fwC87HN/YQjYs=</latexit>

C3
<latexit sha1_base64="zuNILKNqoXHAGBwqo+GxGaNqiRY=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2MwF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbd5M9aGJBQ1HVTXdXEAturOt+O4W19Y3NreJ2aWd3b/+gfHjUMlGiGTZZJCLdCahBwRU2LbcCO7FGKgOB7WBcz/z2E2rDI/VoJzH6kg4VDzmjNpPq/ctSv1xxq+4cZJV4OalAjka//NUbRCyRqCwT1Jiu58bWn1JtORM4K/USgzFlYzrEbkoVlWj86fzWGTlLlQEJI52WsmSu/p6YUmnMRAZpp6R2ZJa9TPzP6yY2vPWnXMWJRcUWi8JEEBuR7HEy4BqZFZOUUKZ5eithI6ops2k8WQje8surpHVR9a6rVw+XldpdHkcRTuAUzsGDG6jBPTSgCQxG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD3lY2M</latexit>

C4
<latexit sha1_base64="TJvrbqv6nVv9W59X2RPCGX3WzSw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqsdiLx4rWFtoQ9lsJ+3S3U3Y3Qil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dgpr6xubW8Xt0s7u3v5B+fDo0USJZthikYh0J6AGBVfYstwK7MQaqQwEtoNxI/PbT6gNj9SDncToSzpUPOSM2kxq9GulfrniVt05yCrxclKBHM1++as3iFgiUVkmqDFdz42tP6XaciZwVuolBmPKxnSI3ZQqKtH40/mtM3KWKgMSRjotZclc/T0xpdKYiQzSTkntyCx7mfif101seONPuYoTi4otFoWJIDYi2eNkwDUyKyYpoUzz9FbCRlRTZtN4shC85ZdXyeNF1buq1u4vK/XbPI4inMApnIMH11CHO2hCCxiM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gD5Go2N</latexit>

C5

<latexit sha1_base64="O7Yj94vlBGTAMumBEIBrGyktZ5w=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEq8diLx4rWFtoQ9lsJ+3S3U3Y3Qil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dgpr6xubW8Xt0s7u3v5B+fDo0USJZthikYh0J6AGBVfYstwK7MQaqQwEtoNxI/PbT6gNj9SDncToSzpUPOSM2kxq9GulfrniVt05yCrxclKBHM1++as3iFgiUVkmqDFdz42tP6XaciZwVuolBmPKxnSI3ZQqKtH40/mtM3KWKgMSRjotZclc/T0xpdKYiQzSTkntyCx7mfif101seONPuYoTi4otFoWJIDYi2eNkwDUyKyYpoUzz9FbCRlRTZtN4shC85ZdXyeNF1atVr+4vK/XbPI4inMApnIMH11CHO2hCCxiM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gD6n42O</latexit>

C6

<latexit sha1_base64="9l2B+tB0injAPUN45AapNKjmVNo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw7jn9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMQdo2r</latexit>y1
<latexit sha1_base64="TeDdiitAS8S7Iwq73kqhNODJHt0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiTF17LoxmUF+4A2lMl00g6dmYSZiRBCf8GNC0Xc+kPu/BsnbRbaeuDC4Zx7ufeeIOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvcv97hNVmkXy0aQx9QUeSxYygk0upcNGZVituXV3DrRKvILUoEBrWP0ajCKSCCoN4VjrvufGxs+wMoxwOqsMEk1jTKZ4TPuWSiyo9rP5rTN0ZpURCiNlSxo0V39PZFhonYrAdgpsJnrZy8X/vH5iwhs/YzJODJVksShMODIRyh9HI6YoMTy1BBPF7K2ITLDCxNh48hC85ZdXSadR967qlw8XteZtEUcZTuAUzsGDa2jCPbSgDQQm8Ayv8OYI58V5dz4WrSWnmDmGP3A+fwBHFI3A</latexit>y2

<latexit sha1_base64="92TJtN4olB0a3CIa1+xxM1FQPOo=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0n8Pha9eKxg2kIbyma7aZduNmF3I4TQ3+DFgyJe/UHe/Ddu2hy09cHA470ZZuYFCWdKO863VVlZXVvfqG7aW9s7u3u1/YO2ilNJqEdiHstugBXlTFBPM81pN5EURwGnnWByV/idJyoVi8WjzhLqR3gkWMgI1kbyssG5bQ9qdafhzICWiVuSOpRoDWpf/WFM0ogKTThWquc6ifZzLDUjnE7tfqpogskEj2jPUIEjqvx8duwUnRhliMJYmhIazdTfEzmOlMqiwHRGWI/VoleI/3m9VIc3fs5EkmoqyHxRmHKkY1R8joZMUqJ5ZggmkplbERljiYk2+RQhuIsvL5P2WcO9alw+XNSbt2UcVTiCYzgFF66hCffQAg8IMHiGV3izhPVivVsf89aKVc4cwh9Ynz99wI3V</latexit>y3

<latexit sha1_base64="tIo7bfC+ntowHk2hTFIx+5WLkN0=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0lErceiF48VTFtoQ9lsN+3SzSbsboQQ+hu8eFDEqz/Im//GTZuDtj4YeLw3w8y8IOFMacf5tipr6xubW9Vte2d3b/+gdnjUUXEqCfVIzGPZC7CinAnqaaY57SWS4ijgtBtM7wq/+0SlYrF41FlC/QiPBQsZwdpIXjZs2vawVncazhxolbglqUOJ9rD2NRjFJI2o0IRjpfquk2g/x1IzwunMHqSKJphM8Zj2DRU4osrP58fO0JlRRiiMpSmh0Vz9PZHjSKksCkxnhPVELXuF+J/XT3V44+dMJKmmgiwWhSlHOkbF52jEJCWaZ4ZgIpm5FZEJlphok08Rgrv88irpXDTc68bVw2W9dVvGUYUTOIVzcKEJLbiHNnhAgMEzvMKbJawX6936WLRWrHLmGP7A+vwBg9iN2Q==</latexit>y7
<latexit sha1_base64="z6vy059fTwaXIylu87nesqGkb30=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0nEjx6LXjxWMG2hDWWz3bRLN5uwuxFC6G/w4kERr/4gb/4bN20O2vpg4PHeDDPzgoQzpR3n26qsrW9sblW37Z3dvf2D2uFRR8WpJNQjMY9lL8CKciaop5nmtJdIiqOA024wvSv87hOVisXiUWcJ9SM8FixkBGsjedmwadvDWt1pOHOgVeKWpA4l2sPa12AUkzSiQhOOleq7TqL9HEvNCKcze5AqmmAyxWPaN1TgiCo/nx87Q2dGGaEwlqaERnP190SOI6WyKDCdEdYTtewV4n9eP9Vh08+ZSFJNBVksClOOdIyKz9GISUo0zwzBRDJzKyITLDHRJp8iBHf55VXSuWi4142rh8t667aMowoncArn4MINtOAe2uABAQbP8ApvlrBerHfrY9FascqZY/gD6/MHhV6N2g==</latexit>y8

<latexit sha1_base64="qID892HWtCHVVb7BF9tsPJtKx60=">AAAB7XicbVBNS8NAEJ34WeNX1aOXxSJ4Kolo9Vj04rGC/YA2lM12067d7IbdjVBC/4MXD4p49f9489+4aXPQ1gcDj/dmmJkXJpxp43nfzsrq2vrGZmnL3d7Z3dsvHxy2tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPxbe63n6jSTIoHM0loEOOhYBEj2FipNenXXNftlyte1ZsBLRO/IBUo0OiXv3oDSdKYCkM41rrre4kJMqwMI5xO3V6qaYLJGA9p11KBY6qDbHbtFJ1aZYAiqWwJg2bq74kMx1pP4tB2xtiM9KKXi/953dRE10HGRJIaKsh8UZRyZCTKX0cDpigxfGIJJorZWxEZYYWJsQHlIfiLLy+T1nnVr1Uv7y8q9ZsijhIcwwmcgQ9XUIc7aEATCDzCM7zCmyOdF+fd+Zi3rjjFzBH8gfP5A7eIjew=</latexit>y6
<latexit sha1_base64="AVoD8jl/pcvWWk+hsy45BMaub6s=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiRSH8uiG5cV7APaUCbTSTt0MhlmJkII/Qg3LhRx6/e482+ctFlo64ELh3Pu5d57AsmZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8eJIrRNYh6rXoA15UzQtmGG055UFEcBp91gepf73SeqNIvFo0kl9SM8FixkBBsrddNho2IxrNbcujsHWiVeQWpQoDWsfg1GMUkiKgzhWOu+50rjZ1gZRjidVQaJphKTKR7TvqUCR1T72fzcGTqzygiFsbIlDJqrvycyHGmdRoHtjLCZ6GUvF//z+okJb/yMCZkYKshiUZhwZGKU/45GTFFieGoJJorZWxGZYIWJsQnlIXjLL6+SzkXdu6pfPjRqzdsijjKcwCmcgwfX0IR7aEEbCEzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AOm6jf4=</latexit>y4

<latexit sha1_base64="P6BO7kuSJBtIJQlHqYlAvu0tXw4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseiF48V7Ae0oWy2m3bp7ibsboQQ+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvcv97hNVmkXy0aQx9QUeSxYygo2VuumwUbEYVmtu3Z0DrRKvIDUo0BpWvwajiCSCSkM41rrvubHxM6wMI5zOKoNE0xiTKR7TvqUSC6r9bH7uDJ1ZZYTCSNmSBs3V3xMZFlqnIrCdApuJXvZy8T+vn5jwxs+YjBNDJVksChOOTITy39GIKUoMTy3BRDF7KyITrDAxNqE8BG/55VXSuah7V/XGw2WteVvEUYYTOIVz8OAamnAPLWgDgSk8wyu8ObHz4rw7H4vWklPMHMMfOJ8/60KN/w==</latexit>y5

<latexit sha1_base64="9l2B+tB0injAPUN45AapNKjmVNo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw7jn9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMQdo2r</latexit>y1
<latexit sha1_base64="TeDdiitAS8S7Iwq73kqhNODJHt0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiTF17LoxmUF+4A2lMl00g6dmYSZiRBCf8GNC0Xc+kPu/BsnbRbaeuDC4Zx7ufeeIOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvcv97hNVmkXy0aQx9QUeSxYygk0upcNGZVituXV3DrRKvILUoEBrWP0ajCKSCCoN4VjrvufGxs+wMoxwOqsMEk1jTKZ4TPuWSiyo9rP5rTN0ZpURCiNlSxo0V39PZFhonYrAdgpsJnrZy8X/vH5iwhs/YzJODJVksShMODIRyh9HI6YoMTy1BBPF7K2ITLDCxNh48hC85ZdXSadR967qlw8XteZtEUcZTuAUzsGDa2jCPbSgDQQm8Ayv8OYI58V5dz4WrSWnmDmGP3A+fwBHFI3A</latexit>y2

<latexit sha1_base64="92TJtN4olB0a3CIa1+xxM1FQPOo=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0n8Pha9eKxg2kIbyma7aZduNmF3I4TQ3+DFgyJe/UHe/Ddu2hy09cHA470ZZuYFCWdKO863VVlZXVvfqG7aW9s7u3u1/YO2ilNJqEdiHstugBXlTFBPM81pN5EURwGnnWByV/idJyoVi8WjzhLqR3gkWMgI1kbyssG5bQ9qdafhzICWiVuSOpRoDWpf/WFM0ogKTThWquc6ifZzLDUjnE7tfqpogskEj2jPUIEjqvx8duwUnRhliMJYmhIazdTfEzmOlMqiwHRGWI/VoleI/3m9VIc3fs5EkmoqyHxRmHKkY1R8joZMUqJ5ZggmkplbERljiYk2+RQhuIsvL5P2WcO9alw+XNSbt2UcVTiCYzgFF66hCffQAg8IMHiGV3izhPVivVsf89aKVc4cwh9Ynz99wI3V</latexit>y3

<latexit sha1_base64="tIo7bfC+ntowHk2hTFIx+5WLkN0=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0lErceiF48VTFtoQ9lsN+3SzSbsboQQ+hu8eFDEqz/Im//GTZuDtj4YeLw3w8y8IOFMacf5tipr6xubW9Vte2d3b/+gdnjUUXEqCfVIzGPZC7CinAnqaaY57SWS4ijgtBtM7wq/+0SlYrF41FlC/QiPBQsZwdpIXjZs2vawVncazhxolbglqUOJ9rD2NRjFJI2o0IRjpfquk2g/x1IzwunMHqSKJphM8Zj2DRU4osrP58fO0JlRRiiMpSmh0Vz9PZHjSKksCkxnhPVELXuF+J/XT3V44+dMJKmmgiwWhSlHOkbF52jEJCWaZ4ZgIpm5FZEJlphok08Rgrv88irpXDTc68bVw2W9dVvGUYUTOIVzcKEJLbiHNnhAgMEzvMKbJawX6936WLRWrHLmGP7A+vwBg9iN2Q==</latexit>y7
<latexit sha1_base64="z6vy059fTwaXIylu87nesqGkb30=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0nEjx6LXjxWMG2hDWWz3bRLN5uwuxFC6G/w4kERr/4gb/4bN20O2vpg4PHeDDPzgoQzpR3n26qsrW9sblW37Z3dvf2D2uFRR8WpJNQjMY9lL8CKciaop5nmtJdIiqOA024wvSv87hOVisXiUWcJ9SM8FixkBGsjedmwadvDWt1pOHOgVeKWpA4l2sPa12AUkzSiQhOOleq7TqL9HEvNCKcze5AqmmAyxWPaN1TgiCo/nx87Q2dGGaEwlqaERnP190SOI6WyKDCdEdYTtewV4n9eP9Vh08+ZSFJNBVksClOOdIyKz9GISUo0zwzBRDJzKyITLDHRJp8iBHf55VXSuWi4142rh8t667aMowoncArn4MINtOAe2uABAQbP8ApvlrBerHfrY9FascqZY/gD6/MHhV6N2g==</latexit>y8

<latexit sha1_base64="qID892HWtCHVVb7BF9tsPJtKx60=">AAAB7XicbVBNS8NAEJ34WeNX1aOXxSJ4Kolo9Vj04rGC/YA2lM12067d7IbdjVBC/4MXD4p49f9489+4aXPQ1gcDj/dmmJkXJpxp43nfzsrq2vrGZmnL3d7Z3dsvHxy2tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPxbe63n6jSTIoHM0loEOOhYBEj2FipNenXXNftlyte1ZsBLRO/IBUo0OiXv3oDSdKYCkM41rrre4kJMqwMI5xO3V6qaYLJGA9p11KBY6qDbHbtFJ1aZYAiqWwJg2bq74kMx1pP4tB2xtiM9KKXi/953dRE10HGRJIaKsh8UZRyZCTKX0cDpigxfGIJJorZWxEZYYWJsQHlIfiLLy+T1nnVr1Uv7y8q9ZsijhIcwwmcgQ9XUIc7aEATCDzCM7zCmyOdF+fd+Zi3rjjFzBH8gfP5A7eIjew=</latexit>y6
<latexit sha1_base64="RsDD6iSu713U7+FAkItKf1CHDqM=">AAAB7XicbVBNS8NAEJ34WeNX1aOXxSJ4KolY9Vj04rGC/YA2lM12067d7IbdjVBC/4MXD4p49f9489+4aXPQ1gcDj/dmmJkXJpxp43nfzsrq2vrGZmnL3d7Z3dsvHxy2tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPxbe63n6jSTIoHM0loEOOhYBEj2FipNenXXNftlyte1ZsBLRO/IBUo0OiXv3oDSdKYCkM41rrre4kJMqwMI5xO3V6qaYLJGA9p11KBY6qDbHbtFJ1aZYAiqWwJg2bq74kMx1pP4tB2xtiM9KKXi/953dRE10HGRJIaKsh8UZRyZCTKX0cDpigxfGIJJorZWxEZYYWJsQHlIfiLLy+T1nnVv6zW7i8q9ZsijhIcwwmcgQ9XUIc7aEATCDzCM7zCmyOdF+fd+Zi3rjjFzBH8gfP5A7YBjes=</latexit>y5

<latexit sha1_base64="AVoD8jl/pcvWWk+hsy45BMaub6s=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiRSH8uiG5cV7APaUCbTSTt0MhlmJkII/Qg3LhRx6/e482+ctFlo64ELh3Pu5d57AsmZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8eJIrRNYh6rXoA15UzQtmGG055UFEcBp91gepf73SeqNIvFo0kl9SM8FixkBBsrddNho2IxrNbcujsHWiVeQWpQoDWsfg1GMUkiKgzhWOu+50rjZ1gZRjidVQaJphKTKR7TvqUCR1T72fzcGTqzygiFsbIlDJqrvycyHGmdRoHtjLCZ6GUvF//z+okJb/yMCZkYKshiUZhwZGKU/45GTFFieGoJJorZWxGZYIWJsQnlIXjLL6+SzkXdu6pfPjRqzdsijjKcwCmcgwfX0IR7aEEbCEzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AOm6jf4=</latexit>y4
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factor graph MRF

triangulation clique tree

Figure 3. Illustration of the transformation process of a factor graph into a clique tree. The upper-left
graph represents the original factor graph, which describes how the energy of the model without the
global factor (see F in the definition of Problem 1) factorizes over the individual variables. In the first
step, the factor graph is transformed into an MRF, as shown in the upper-right graph. The lower-left
graph shows the result of triangulating the MRF from the previous step. Finally, the lower-right graph
shows the resulting cluster graph with cliques C1, . . . , C6 constructed from the triangulated MRF.
The numbers within the cluster nodes denote the variable indices belonging to the corresponding
clique (e.g., C5 refers to {y5, y6, y7}). The green edges indicate a valid spanning clique tree extracted
from the cluster graph. The dark arrows represent one possible order of message passing if clique C6

(marked blue) has been chosen as the root of the clique tree.

Assume that a clique tree with cliques C1, . . . , CK is given, where Ci denotes a set
of indices of variables contained in the i-th clique. We denote a corresponding set of
variables by yCi

. Furthermore, we use the notations { fCi}K
i=1 and {gCi

}K
i=1 to denote the

clique potentials (or factors) related to the mappings F and G in the definition of Problem 1,
respectively. Additionally, we denote by Cr a clique chosen to be the root of the clique tree.
Finally, we use the notation ne(Ci) for the indices of the neighbors of the clique Ci. We can
now compute the optimal value of the objective in Problem 1 as follows. Starting at the
leaves of the clique tree, we iteratively send messages toward the root according to the
following message-passing protocol. A clique Ci can send a message to its parent clique Cj
if it received all messages from the rest of its neighbors Ck for k ∈ ne(Ci) \ {j}. In that case,
we say that Ci is ready.

For each configuration of the variables yCi∩Cj
and parameters li ∈ RP (encoding the

state of an auxiliary variable associated with the current clique Ci), a corresponding message
from a clique Ci to a clique Cj can be computed according to the following equation:

µ
li
Ci→Cj

(yCi∩Cj
) = max

yCi\Cj
,{lk}

fCi (yCi
) + ∑

k∈ne(Ci)\{j}
µ

lk
Ck→Ci

(yCk∩Ci
) (7)

where we maximize over all configurations of the variables yCi\Cj
and over all parameters

{lk} = {lk : k ∈ ne(Ci) \ {j}} subject to the following constraint

∑
k∈ne(Ci)\{j}

lk = li − gCi
(yCi

). (8)

This means that each clique Ci is assigned exactly one (multivariate) auxiliary variable li
and the range of possible values li can take on is implicitly defined by Equation (8). After
resolving the recursion in the above equation, we can see that the variable li corresponds
to a sum of the potentials gCk

(yCk
) for each previously processed clique Ck in a subtree of



Mathematics 2023, 11, 2628 8 of 28

the graph of which Ci forms the root. We refer to Equation (4) in the previous subsection
for comparison.

Algorithm 1 Constrained Message Passing on a Clique Tree

Require: clique tree {Ci}i; Output: optimal assignment y∗

1: while root clique Cr did not receive all messages do
2: if a clique Ci is ready then
3: for all yCi∩Cj

and li do

4: send a message µli
Ci→Cj

(yCi∩Cj
) to a parent clique Cj according to Equation (7); save the

maximizing arguments λli
Ci→Cj

(yCi∩Cj
) := [y∗Ci\Cj

; {lk}∗]
5: end for
6: end if
7: end while
8: l∗ ← argmaxl H(µ(l), l), , where µ(l) is defined by Equation (9)
9: Let y∗Cr

be a maximizing argument for µ(l∗) in Equation (9); starting with values l∗ and y∗Cr
,

recursively reconstruct an optimal configuration y∗ from λ according to Equation (7).

The algorithm terminates if the designated root clique Cr received all messages from
its neighbors. We then compute the values

µ(l) = max
yCr ,{lk}

fCr (yCr
) + ∑

k∈ne(Cr)

µ
lk
Ck→Cr

(yCk∩Cr
) (9)

maximizing over all configurations of yCr
, and {lk} = {lk : k ∈ ne(Cr)} subject to the

constraint ∑k lk = l − gCr
(yCr

), which we use to obtain the optimal value p∗ of Problem 1
according to

p∗ = max
l

H(µ(l), l). (10)

The corresponding optimal solution of Problem 1 can be obtained by backtracking the
additional variables λ, saving optimal decisions in intermediate steps. The complete
algorithm is summarized in Algorithm 1. As an alternative, we provide an additional
flowchart diagram illustrating the algorithmic steps in Appendix B (see Figure A1 for
further details). We underline this important result by the following theorem, for which
we provide the proof in Appendix A. It should be noted that this theorem refers to the
more general target objective defined in Problem 1 and should replace the corresponding
statement in Theorem 2 in [69].

Theorem 1. Algorithm 1 always finds an optimal solution to Problem 1. The computational
complexity is of the order O(M · Nτ+1 · Rν−1), where R denotes an upper bound on the number of
states of each auxiliary variable, and ν is defined as the maximal number of neighbors of a node in a
corresponding clique tree.

Besides the treewidth τ, the value of the parameter ν also appears to be crucial for
the resulting running time of Algorithm 1 since the corresponding complexity is also
exponential in ν. The following proposition suggests that among all possible cluster graphs
for a given MRF, there always exists a clique tree for which ν tends to take on small values
(provided τ is small) and effectively does not depend on the size of the corresponding MRF.
We provide the proof in Appendix C.

Proposition 2. For any MRF with treewidth τ, there is a clique tree for which the maximal number
of neighbors of each node is upper bounded according to ν 6 2τ+2 − 4.

To support the above proposition, we consider the following extreme example, which
is illustrated in Figure 4. We are given an MRF with a star-like shape (on the left) with M = 7
variables and treewidth τ = 1. One valid clique tree for this MRF is shown in the middle.
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In particular, the clique containing the variables y1, y2 has ν = M− 1 neighbors. Therefore,
running Algorithm 1 on that clique tree results in a computational time exponential in the
graph size M. However, it is easy to modify that clique tree to have a small number of
neighbors for each node (shown on the right), upper bounded by ν = τ + 1 = 2.

y1

y2

y3

y4

y5

y6

y7

1, 2

1, 3

1, 41, 5

1, 6

1, 7

1

1

1

11

1, 2 1, 31

1

1, 411, 5

1 1, 71, 6

1

Figure 4. Illustration of an extreme example where ν can be linear in the graph size. The leftmost
graph represents an MRF with M = 7 variables and treewidth τ = 1. The graph in the middle shows
a valid clique tree for the MRF on the left, where the clique {y1, y2} has M− 1 neighbors, that is, ν is
linear in the graph size for that clique tree. The rightmost graph represents another clique tree that
has a chain form, where ν = τ + 1 = 2. The squared nodes denote the corresponding sepsets.

Although Proposition 2 assures the existence of a clique tree with a small ν, the actual
upper bound on ν is still very pessimistic (exponential in the treewidth). In fact, by allowing
a simple graph modification, we can always reduce the ν-parameter to a small constant
(ν = 3). Specifically, we can clone each cluster node with more than three neighbors
multiple times so that each clone only carries one of the original neighbors. We then
connect the clones by a chain that preserves the running intersection property. To ensure
that the new cluster graph describes the same set of potentials we set the potentials for each
copy of a cluster node Ci to zero: fCi (yCi

) = 0 and gCi
(yCi

) = 0. The complete modification
procedure is illustrated in Figure 5. We summarize this result in the following corollary.

Corollary 1. Provided a given clique tree is modified according to the presented procedure for
reducing the number of neighbors for each cluster node, the overall computational complexity of
running Algorithm 1 (including time for graph modification) is of the order O(M · Nτ+1 · R2).
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Figure 5. Illustration of a modification procedure to reduce the maximal number of neighbors ν for
each cluster node in a given clique tree. The graph on the left represents an original clique tree. The
only node with more than three neighbors is marked in red. We clone this cluster node multiple times
so that each clone only carries one of the original neighbors. The clones are connected by a chain
that preserves the running intersection property. The arrow in the left graph indicates the (arbitrarily
chosen) order of processing the neighbor nodes. The graph resulting from this transformation is
shown on the right. The clones in the new graph are marked in gray. To ensure that the new cluster
graph describes the same set of potentials, we set the potentials for the copies of each cloned cluster
node Ci to zero: fCi (yCi

) = 0 and gCi
(yCi

) = 0. This procedure reduces the ν-parameter to a constant
(ν = 3), significantly reducing the computational cost.
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Note that in the case where the corresponding clique tree is a chain, the resulting
complexity reduces to O(M · Nτ+1 · R). At this point, we would like to provide an alter-
native perspective of the computational complexity in this case (with τ = 1, R ∼ M2),
which shows the connection to the conventional junction-tree algorithm. Specifically, the
constrained message-passing algorithm (Algorithm 1) can be seen as conventional message
passing on a clique tree (for the mapping F in Problem 1) without auxiliary variables,
but with an increased size of the state space for each variable yi, from N to N ·M. Then,
Proposition 1 guarantees an exact inference in time of the order O(M · (N ·M)τ+1). The
summation constraints with respect to the auxiliary variables can be ensured by extending
the corresponding potential functions fCi to take on −∞, forbidding inconsistent state
transitions between individual variables. The same observation holds for message passing
on factor graphs. To summarize, by introducing auxiliary variables, we can remove the
global dependencies imposed by the mapping H in Problem 1, thereby reducing the overall
treewidth. However, this comes at the cost of the label space becoming a function of the
graph size (R is usually dependent on M).

We conclude our discussion by analyzing the relation between the maximal number
of states (of the auxiliary variables) R and the number of variables M in the original MRF.
In the worst case, R can grow exponentially with the graph size M. This happens, for
example, when the values that the individual factors gCk

can take on are scattered across
a very large range that grows much faster relative to the graph size. For practical cases,
however, we can assume that the individual factor functions gCk

take values in an integer
interval, which is either fixed or grows polynomially with the graph size. In that case, R is
always a polynomial in M, rendering the overall complexity of Algorithm 1 a polynomial
in the graph size, as we demonstrate with several examples in Section 6. We summarize
this in the following theorem. The corresponding proof is given in Appendix D.

Theorem 2. Consider an instance of Problem 1 given by a clique tree with M variables. Let T ∈ N
be a number that grows polynomially with M. Provided each factor gCk

in a decomposition of G
assumes values from a discrete set of integers [−T, T] ∩Z, the number R grows polynomially with
M according to R ∼ T ·M.

4. Application Use Cases

In this section, we demonstrate the expressivity of Problem 1 by showcasing the
diversity of existing (and potentially new) applications that align with our target objective.
In particular, practitioners can gain insight into specific examples to verify whether a given
task is an instance of Problem 1. The research conducted within the scope of this paper has
been motivated by the following use cases:

• Learning with High-Order Loss Functions
SSVM enables building complex and accurate models for structured prediction by
directly integrating the desired performance measure into the training objective. How-
ever, its applicability relies on the availability of efficient inference algorithms. In
the state-of-the-art training algorithms, such as cutting planes [64,65], bundle meth-
ods [67,68], subgradient methods [18], and Frank–Wolfe optimization [66], inference
is repeatedly performed either to compute a subgradient or find the most violating
configuration. In the literature, the corresponding computational task is generally
referred to as the loss-augmented inference, which is the main computational bottleneck
during training.

• Enabling Training of Slack Scaling Formulation for SSVMs
The maximum-margin framework of SSVMs includes two loss-sensitive formulations
known as margin scaling and slack scaling. Since the original paper on SSVMs [39], there
has been much speculation about the differences in training using either of these two
formulations. In particular, training via slack scaling has been conjectured to be more
accurate and beneficial than margin scaling. Nevertheless, it has rarely been used in
practice due to the lack of known efficient inference algorithms.
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• Evaluating Generalization Bounds for Structured Prediction
The purpose of generalization bounds is to provide useful theoretical insights into
the behavior and stability of a learning algorithm by upper bounding the expected
loss or the risk of a prediction function. Evaluating such a bound could provide
certain guarantees on how a system trained on some finite data will perform in the
future on unseen examples. Unlike in standard regression or classification tasks with
univariate real-valued outputs, in structured prediction, evaluating generalization
bounds requires solving a combinatorial optimization problem, thereby limiting its
use in practice [48].

• Globally Constrained MAP Inference
In many cases, evaluating a prediction function with structured outputs technically
corresponds to performing MAP inference on a discrete graphical model, including
Markov random fields (MRFs) [1], probabilistic context-free grammars (PCFGs) [72–74],
hidden Markov models (HMMs) [75], conditional random fields (CRFs) [3], proba-
bilistic relational models (PRMs) [76,77], and Markov logic networks (MLNs) [78]. In
practice, we might want to modify the prediction function by imposing additional
(global) constraints on its output. For example, we could perform a corresponding
MAP inference subject to the constraints on the label counts specifying the size of
the output or the distribution of the resulting labels, which is a common approach
in applications such as sequence tagging and image segmentation. Alternatively, we
might want to generate the best output with a score from a specific range that can
provide deeper insights into the energy function of a corresponding model. Finally,
we might want to restrict the set of possible outputs directly by excluding specific
label configurations. The latter is closely related to the computational task known as
(diverse) k-best MAP inference [62,63].

In the following, we provide technical details about how the generic tasks listed above
can be addressed using our framework.

4.1. Loss-Augmented Inference with High-Order Loss Functions

As already mentioned, Problem 1 covers as a special case the task of loss-augmented
inference (for margin and slack scaling) within the framework of SSVM [39,46]. In order
to match the generic representation given in (2), we can define F(y) = w>Ψ(x, y) + const,
and η(G(y)) = ∆(y∗, y) for suitable G : Y → RP and η : RP → R+. Here, Ψ : X × Y →
Rd, d ∈ N denotes a joint feature map on an input–output pair (x, y), w ∈ Rd is a trainable
weight vector, and ∆ : Y × Y → R is a dissimilarity measure between a prediction y and a
true output y∗. Given this notation, our target objective can be written as follows:

H(F(y), G(y)) = F(y)� η(G(y)), � ∈ {+, ·}. (11)

We note that a considerable number of non-decomposable (or high-order) loss functions
in structured prediction can be represented as multivariate cardinality-based potentials
y 7→ η(G(y)), where the mapping G encodes the label statistics, e.g., the number of true
or false positives with respect to the ground truth. Furthermore, the maximal number of
states R for the corresponding auxiliary variables related to G is polynomially bounded
in the number of variables M (see Table 1 in Section 5 for an overview of existing loss
functions and the resulting values for R). For the specific case of a chain graph with Fβ-loss,
for example, the resulting complexity O(M3 · N2) of Algorithm 1 is cubic in the graph size.
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4.2. Evaluating Generalization Bounds in Structured Prediction

In the following, we demonstrate how our algorithmic idea can be used to evaluate the
PAC-Bayesian generalization bounds for max-margin structured prediction. As a working
example, we consider the following generalization theorem, as stated in [48]:

Theorem 3. Assume that 0 6 ∆(y∗, y) 6 1. With a probability of at least 1− δ over the draw of
the training set S = {(x1, y1), . . . , (x1, yn)} of size n ∈ N, the following holds simultaneously for
all weight vectors w:

E(x,y)∼ρ[∆(y, hw(x))] 6
‖w‖2

n
+

√√√√‖w‖2 ln( 2dn
‖w‖2 ) + ln( n

δ )

2(n− 1)

+
1
n

n

∑
i=1

max
ŷ

11

[
w>(Ψ(xi, yi)−Ψ(xi, ŷ)) 6 ∆HD(yi, ŷ)

]
· ∆(yi, ŷ)

(12)

where hw(x) = argmax
ŷ

w>Ψ(x, ŷ) denotes the corresponding prediction function.

Evaluating the second term on the right-hand side of the inequality in (12) involves a
maximization over y ∈ Y for each data point (x, y∗) according to

max
y∈Y

11

[
w>(Ψ(x, y∗)−Ψ(x, y)) 6 ∆HD(y∗, y)

]
· ∆(y∗, y).

We now show that this maximization term is an instance of Problem 1. More precisely,
we consider an example with τ > 1 and an F1-loss (see Table 1). Next, we define F(y) =
w>Ψ(x, y), η(G(y)) = ∆F1(y

∗, y), and set

H(F(y), G(y)) = 11

[
w>Ψ(x, y∗)− F(y) 6 |y∗| − G1(y) + G2(y)

]
· η(G(y))

where we use ∆HD(y∗, y) = FP + FN, FN = |y∗| − TP, which removes the need for addi-
tional auxiliary variables for the Hamming distance, reducing the resulting computational
cost. Here, TP, FP, and FN denote the numbers of true positives, false positives, and false
negatives, respectively. |y∗| denotes the size of the output y∗. Both |y∗| and w>Ψ(x, y∗)
are constant with respect to the maximization over y. Note also that H is non-decreasing
in F(y). Furthermore, the number of states of the auxiliary variables is upper bounded
by R = M2 (see Table 1). Therefore, here, the computational complexity of Algorithm 1
(according to Corollary 1) is given by O(M5 · Nτ+1).

As a final remark, we note that training an SSVM corresponds to solving a convex
problem but is not consistent. It fails to converge to the optimal predictor even in the
limit of infinite training data (see [60] for more details). However, minimizing the (non-
convex) generalization bound is consistent. Algorithm 1 provides an effective evaluation
tool that could potentially be used for the development of new training algorithms based
on the direct minimization of such bounds. We leave the corresponding investigation for
future work.

4.3. Globally-Constrained MAP Inference

Another common use case is performing MAP inference on graphical models (such as
MRFs) subject to additional constraints on the variables or the range of the corresponding
objective including various tasks such as image segmentation in computer vision, sequence
tagging in computational biology or natural language processing, and signal denoising in
information theory. We note that an important tractability assumption in the definition of
Problem 1 is the τ-decomposability of F and G with a reasonably small treewidth τ. In
areas such as computer vision, we usually encounter models (e.g., Ising grid model) where
the treewidth is a function of the graph size given by τ =

√
M. In this case, we can use
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Algorithm 1 by leveraging the technique of dual decomposition [5,16,79]. More precisely,
we decompose the original graph in (multiple) trees, where the global factor is attached to
exactly one of the trees in our decomposition. We also note that from a technical perspective,
the problem of MAP inference subject to some global constraints on the statistics G(y)
is equivalent to the MAP problem augmented with a global cardinality-based potential
η(G(y)). Specifically, we can define η as an indicator function 1−∞[·], which returns −∞
if the corresponding constraint on G(y) is violated. Furthermore, the form of η does not
affect the message passing of the presented algorithm. We can always check the validity of
a corresponding constraint after all the necessary statistics have been computed.

4.3.1. Constraints on Label Counts

As a simple example, consider the binary-sequence tagging experiment, that is, every
output y ∈ Y is a sequence, and each site in the sequence can be either 0 or 1. Given some
prior information on the number b of positive labels, we can improve the quality of the
results by imposing a corresponding constraint on the outputs:

maximize
y∈Y

w>Ψ(x, y)

subject to
M

∑
i=1

yi = b
(13)

We can write this as an instance of Problem 1 by setting

H(F(y), G(y)) = F(y) + 1−∞[G(y) 6= b], (14)

where F(y) = w>Ψ(x, y), and G(y) = ∑M
i=1 yi. Since all the variables in y are binary, the

number of states R of the corresponding auxiliary variables lm = ∑m
i=1 yi is upper bounded

by M. In addition, because the output graph is a sequence, we have τ = 1, ν = 2. Therefore,
here, the computational complexity of Algorithm 1 is of the order O(M2 · N2).

4.3.2. Constraints on Objective Value

We continue with the binary-sequence tagging example (with pairwise interactions).
To force constraints on the score to be in a specific range, as in

maximize
y∈Y

w>Ψ(x, y)

subject to a 6 w>Ψ(x, y) 6 b
(15)

we first rewrite the prediction function in terms of its sufficient statistics according to

w>Ψ(x, y) = ∑
o,s

wo,s

M

∑
t=1

11[xt = o ∧ yt = s]︸ ︷︷ ︸
=:Go,s(y)

+ ∑
s1,s2

ws1,s2

M

∑
t=2

11[yt−1 = s1 ∧ yt = s2]︸ ︷︷ ︸
=:Gs1,s2 (y)

, (16)

w = (. . . , wo,s, . . . , ws1,s2 , ...), G = (. . . , Go,s, . . . , Gs1,s2 , ...), and define

H(F(y), G(y)) = F(y) + 1−∞[w>G(y) /∈ [a, b]]. (17)

Note that G contains all the sufficient statistics of F such that F(y) = w>G(y). Here, we
could replace a 6 w>Ψ(y) 6 b with any (non-linear) constraint on the sufficient statistics
of the joint feature map Ψ(y).
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The corresponding computational complexity can be derived by considering an urn
problem: one with D · N and one with N2 distinguishable urns and M indistinguishable
balls. Here, D denotes the size of the dictionary for the observations xt in the input sequence
x. Note that the dictionary of the input symbols can be large compared to other problem
parameters. However, we can reduce D to the size of the vocabulary only occurring
in the current input x. The first urn problem corresponds to the unary observation-state
statistics Go,s(y), and the second corresponds to the pairwise statistics for the state transition
Gs1,s2(y). The resulting number of possible distributions of balls over the urns is given by(

M + D · N − 1
M

)
︸ ︷︷ ︸

6MD·N

·
(

M + N2 − 1
M

)
︸ ︷︷ ︸

6MN2

6 MD·N+N2︸ ︷︷ ︸
=R

. (18)

Although the resulting complexity (due to ν = 2) being O(MD·N+N2+1 · N2) is still a
polynomial in the number of variables M, the degree is quite high, making it suitable
for only short sequences. For practical use, we recommend the efficient approximation
framework of Lagrangian relaxation and Dual Decomposition [5,16,79].

4.3.3. Constraints on Search Space

The constraints on the search space can be different from the constraints we can impose
on the label counts. For example, we might want to exclude a set of K complete outputs
{y1, . . . , yK} from the feasible set Y by using an exclusion potential 1−∞[y ∈ {y1, . . . , yK}].

For simplicity, we again consider a sequence-tagging example with pairwise dependen-
cies. Given a set of K patterns to exclude, we can introduce auxiliary variables lm ∈ {0, 1}K,
where for each pattern yk, we have a constraint (lm)k = max{11[yk

m 6= ym], (lm−1)k}. More
precisely, we modify the message computation in (7) with respect to the auxiliary variables
by replacing the corresponding constraints (lm)k = (lm−1)k + 11[yk

m 6= ym] in the maxi-
mization over {lm} with the constraints (lm)k = max{11[yk

m 6= ym], (lm−1)k}. Therefore,
the maximal number of states for lm is given by R = 2K. The resulting complexity for
finding an optimal solution over y ∈ Y \ {y1, . . . , yK} is of the order O(2K ·M · N2).

A related problem is finding a diverse k-best solution. Here, the goal is to produce
the best solutions that are sufficiently different from each other according to a diversity
function, e.g., a loss function such as the Hamming distance ∆HD. More precisely, after
computing the MAP solution y1, we compute the second-best (diverse) output y2 with
∆HD(y1, y2) > m1. For the third-best solution, we then require ∆HD(y1, y3) > m2 and
∆HD(y2, y3) > m2, and so on. In other words, we search for an optimal output yK such that
∆HD(yk, yK) > mK−1, mk ∈ N for all k ∈ {1, . . . , K− 1}.

For this purpose, we define auxiliary variables lm ∈ {0, . . . , M}K−1, where for each
pattern yk, we have a constraint (lm)k = (lm−1)k + 11[yk

m 6= ym], which computes the
Hamming distance of a solution y with respect to the pattern yk. Therefore, we can define

H(F(y), G(y)) = F(y) + 1−∞[∃k ∈ {1, . . . , K− 1} : Gk(y) < mk] (19)

where G = (G1, . . . , GK−1), and at the final stage (due to G(y) = lM), we have all the
necessary information to evaluate the constraints with respect to the diversity function
(here Hamming distance). The maximal number of states R for the auxiliary variables is
upper bounded by MK−1. Therefore, the resulting running time for finding the K-th diverse
output sequence is of the order O(MK · Nτ+1).

Finally, we note that the concept of diverse K-best solutions can also be used during the
training of SSVMs to speed up the convergence of a corresponding algorithm by generating
diverse cutting planes or subgradients, as described in [63]. An appealing property of
Algorithm 1 is that we obtain some of the necessary information for free as a side effect of
the message passing.
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5. Compact Representation of Loss Functions

We now further advance the task of loss-augmented inference (see Section 4.1) by
presenting a list of popular dissimilarity measures that our algorithm can handle, which
are summarized in Table 1. The measures are given in a compact representation ∆(y∗, y) =
η(G(y)) based on the corresponding sufficient statistics encoded as a mapping G. Columns
2 and 3 show the form of G(·) and η, respectively. Column 4 provides an upper bound R
on the number of possible values of auxiliary variables that affect the resulting running
time of Algorithm 1 (see Corollary 1).

Table 1. Compact representation of popular dissimilarity measures based on the corresponding
sufficient statistics G(·). The upper (and lower!) bounds on the number of states of the auxiliary
variables R for the presented loss functions are shown in the last column.

Loss G(y) η(G(·)) R

∆0/1 (TP,11[FP > 0]) 11[max{M− G1, G2} > 0] M2

∆HD ∑M
t=1 11[y∗t 6= yt] G M

∆HL ∑M
t=1 11[y∗t 6= yt] G/M M

∆WHD {#(s1, s2)}s1,s2∈{1,...,N} ∑s1,s2
weight(s1, s2) · Gs1,s2 MN2

∆#FP FP G M

∆R TP 1− G/|y∗| M

∆P (TP, FP) 1− G1
G1+G2

M2

∆Fβ
(TP, FP) 1− (1+β2)·G1

β2·|y∗ |+G1+G2
M2

∆∩/∪ (TP, FP) 1− G1
|y∗ |+G2

M2

∆LC ∑M
t=1 yt

∣∣∣G−∑M
t=1 y∗t

∣∣∣ M

∆#CB #CB G M

∆CBR (#CB, |y|) G1/G2 M2

∆BLEU (TP1, FP1, . . . , TPK , FPK) 1− BP(·) · exp
(

1
K ∑K

k=1 log pk

)
M2K

∆ROUGE-K {count(k, X)}k∈grams(Re f ) 1− ∑S∈Re f ∑k∈grams(S) min{count(k,S),Gk}
∑S∈Re f ∑k∈grams(S) count(k,S) MD

∆ROUGE-LCS {LCS(X, S)}S∈Re f 1− 1
|Re f | ∑S∈Re f

(1+β2)P(GS)·R(GS)
β2P(GS)+R(GS)

M2|Re f |

Here, |y| = M denotes the number of nodes in the output y. TP, FP, and FN are the
numbers of true positives, false positives, and false negatives, respectively. The number of
true positives for a prediction y and a true output y∗ is defined as the number of common
nodes with the same label. The number of false positives is determined by the number of
nodes that are present in the output y but missing (or with another label) in the true output
y∗. Similarly, the number of false negatives corresponds to the number of nodes present in
y∗ but missing (or with another label) in y. In particular, it holds that |y∗| = TP + FN.

We can see in Table 1 that each element of G(·) is a sum of binary variables, which
significantly reduces the image size of mapping G(·). This occurs despite the exponential
variety of the output space Y . As a result, the image size grows only polynomially with the
size of the outputs y ∈ Y , and the number R provides an upper bound on the image size of
G(·).

Zero-One Loss (∆0/1)
This loss function takes on binary values {0, 1} and is the most uninformative since

it requires a prediction to match the ground truth to 100% and provides no partial quan-
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tification of the prediction quality in the opposite case. Technically, this measure is not
decomposable since it requires the numbers of FP and FN to be evaluated via

∆0/1(y
∗, y) = 11[max{FP, FN} > 0]. (20)

Sometimes, we cannot compute the FN (unlike FP) from the individual nodes of a prediction.
Instead, we can count the TP and compute the FN using the relationship |y∗| = TP + FN.
For example, if the outputs y ∈ Y are set with no ordering indication of the individual set
elements, we need to know the whole set y in order to be able to compute the FN. Therefore,
computing FN from a partially constructed output is not possible. We note, however, that
in the case of the zero-one loss function, there is a faster inference approach, which involves
modifying the prediction algorithm to also compute the second-best output and selecting
the best result based on the value of the objective function.

Hamming Distance/Hamming Loss (∆HD, ∆HL)
In the context of sequence learning, given a true output y∗ and a prediction y of

the same length, the Hamming distance measures the number of states on which the two
sequences disagree:

∆HD(y∗, y) =
M

∑
t=1

11[y∗t 6= yt]. (21)

By normalizing this value, we obtain the Hamming loss, which does not depend on the
length of the sequences. Both measures are decomposable.

Weighted Hamming Distance (∆WHD)
For a given matrix weight ∈ RN×N , the weighted Hamming distance is defined as

∆WHD(y∗, y) = ∑M
t=1 weight(y∗t , yt). However, keeping track of the accumulated sum of

the weights until the current position t in a sequence, unlike for the Hamming distance,
can be intractable. We can, however, use the following observation. It is sufficient to count
the occurrences (y∗t , yt) for each pair of states y∗t , yt ∈ {1, . . . , N} according to

M

∑
t=1

weight(y∗t , yt) = ∑
s1,s2

weight(s1, s2)
M

∑
t=1

11[y∗t = s1 ∧ yt = s2]. (22)

In other words, each dimension of G (denoted as Gs1,s2 ) corresponds to

Gs1,s2(y; y∗) =
M

∑
t=1

11[y∗t = s1 ∧ yt = s2]. (23)

Here, we can upper bound the image size of G(·) by considering an urn problem with N2

distinguishable urns and M indistinguishable balls. The number of possible distributions
of the balls over the urns is given by (M+N2−1

M ) 6 MN2
.

False Positives/Precision/Recall (∆#FP, ∆P, ∆R)
False positives measure the discrepancy between outputs by counting the number of

false positives in a prediction y with respect to the true output y∗. This metric is often
used in learning tasks such as natural language parsing due to its simplicity. Precision and
recall are popular measures used in information retrieval. By subtracting the corresponding
values from one, we can easily convert them to a loss function. Unlike precision given by
TP/(TP + FP), recall effectively depends on only one parameter. Although it is originally
parameterized by two parameters given as TP/(TP + FN), we can exploit the fact that the
value |y∗| = TP + FN is always known in advance during the inference, rendering recall a
decomposable measure.
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Fβ-Loss (∆Fβ
)

The Fβ=1-score is often used to evaluate performance in various natural language
processing applications and is also suitable for many structured prediction tasks. It is
originally defined as the harmonic mean of precision and recall

F1 =
2TP

2TP + FP + FN
. (24)

However, since the value |y∗| = TP+ FN is always known in advance during the inference,
the Fβ-score effectively depends on only two parameters (TP, FP). The corresponding loss
function is defined as ∆Fβ

= 1− Fβ.

Intersection Over Union (∆∩/∪)
The Intersection-Over-Union loss is mostly used in image processing tasks such as

image segmentation and object recognition and was used as a performance measure in the
Pascal Visual Object Classes Challenge [80]. It is defined as 1− area(y∗ ∩ y)/area(y∗ ∪ y).
We can easily interpret this value in cases where the outputs y∗, y describe the bounding
boxes of pixels. The more the overlap of two boxes, the smaller the loss value. We note that
in the case of binary image segmentation, for example, we have a different interpretation of
true and false positives. In particular, it holds that TP + FN = P, where P is the number of
positive entries in y∗. In terms of the contingency table, this yields

∆∩/∪ = 1− TP
(TP + FP + FN)

. (25)

Since |y∗| = TP + FN, the value ∆∩/∪ effectively depends on only two parameters (instead
of three). Moreover, unlike Fβ-loss, ∆∩/∪ defines a proper distance metric on sets.

Label-Count Loss (∆LC)
The Label-Count loss is a performance measure used for the task of binary image

segmentation in computer vision and is given by

∆(y∗, y) =
1
M

∣∣∣∣∣ M

∑
i=1

yi −
M

∑
i=1

y∗i

∣∣∣∣∣. (26)

This loss function prevents assigning low energy to segmentation labelings with substan-
tially different areas compared to the ground truth.

Number/Rate of Crossing Brackets (∆#CB, ∆CBR)
The number of Crossing Brackets (#CB) is a measure used to evaluate performance in

natural language parsing. It computes the average of how many constituents in one tree y
cross over constituent boundaries in the other tree y∗. The normalized version (by |y|) of
this measure is called the Crossing Brackets (Recall) Rate. Since the value |y| is not known in
advance, the evaluation requires a further parameter for the size of y.

Bilingual Evaluation Understudy (∆BLEU)
Bilingual Evaluation Understudy, or BLEU for short [81], is a measure used to evaluate

the quality of machine translations. It computes the geometric mean of the precision pk =
TPk/(TPk + FPk) of k-grams of various lengths (for k = 1, . . . , K) between a hypothesis
and a set of reference translations, multiplied by a factor BP(·) to penalize short sentences
according to

∆BLEU(y∗, y) = 1− BP(y) · exp

(
1
K

K

∑
k=1

log pk

)
. (27)

Note that K is a constant, rendering the term M2K a polynomial in M.
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Recall-Oriented Understudy for Gisting Evaluation (∆ROUGE-K, ∆ROUGE-LCS)
The Recall-Oriented Understudy for Gisting Evaluation, or ROUGE for short [82], is a

measure used to evaluate the quality of a summary by comparing it to other summaries
created by humans. More precisely, for a given set of reference summaries Re f and a
summary candidate X, ROUGE-K computes the percentage of k-grams from Re f that
appear in X according to

ROUGE-K(X, Re f ) =
∑S∈Re f ∑k∈k-grams(S) min{count(k, X), count(k, S)}

∑S∈Re f ∑k∈k-grams(S) count(k, S)
(28)

where count(k, S) provides the number of occurrences of a k-gram k in a summary S. We
can estimate an upper bound R on the image size of G(·) similarly to the derivation for
the weighted Hamming distance above as MD, where D := |grams(Ref)| is the dimension-
ality of G(·). This represents the number of unique k-grams occurring in the reference
summaries. Note that we do not need to count grams that do not occur in the references.

Another version, ROUGE-LCS, is based on the concept of the longest common subse-
quence (LCS). More precisely, for two summaries X and Y, we first compute LCS(X, Y),
which is the length of the LCS. We then use this value to define precision and recall mea-
sures given by LCS(X, Y)/|X| and LCS(X, Y)/|Y|, respectively. These measures are used
to evaluate the corresponding F-measure:

∆ROUGE-LCS = 1− 1
|Re f | ∑

S∈Re f

(1 + β2)PLCS(X,S) · RLCS(X,S)

β2PLCS(X,S) + RLCS(X,S)
. (29)

In other words, each dimension in G(·) is indexed by an S ∈ Re f . ROUGE-LCS (unlike
ROUGE-K) is non-decomposable.

6. Validation of Theoretical Time Complexity

To demonstrate feasibility, we evaluate the performance of our algorithm on several
application tasks: part-of-speech tagging [83], base-NP chunking [84], and constituency pars-
ing [39,46]. More precisely, we consider the task of loss-augmented inference (see Section 4.1)
for margin and slack scaling with different loss functions. The run-times for the task of
diverse k-best MAP inference (Section 4.3) and for evaluating the structured generalization
bounds (see Section 4.2) are identical to the run-time for the loss-augmented inference with
slack scaling. We omit the corresponding plots due to redundancy. In all the experiments,
we used Penn English Treebank-3 [85] as a benchmark data set, which provides a large
corpus of annotated sentences from the Wall Street Journal. For better visualization, we
restrict our experiments to sentences containing at most 40 words. The resulting time
performance is shown in Figure 6. We can see that different loss functions result in different
computation costs, as indicated by the number of values for the auxiliary variables shown
in the last column of Table 1. In particular, the shapes of the curves are consistent with
the upper bound provided in Theorem 1, which reflects the polynomial degree of the
overall dependency with respect to the graph size M. The difference between margin
and slack scaling is due to the fact that in the case of a decomposable loss function G, the
corresponding loss terms can be folded into the factors of the compatibility function F,
allowing for the use of conventional message passing.
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Figure 6. Empirical evaluation of the run-time performance of loss-augmented inference for part-of-
speech tagging, base-NP chunking, and constituency-parsing tasks.

7. Summary of Contributions

In this paper, we provided a set of formal contributions by generalizing the idea
of constrained message passing introduced in [69]. Our improved framework, which is
presented in this paper, includes the following key elements:

• Abstract definition of the target problem (see Problem 1);
• Constrained message-passing algorithm on clique trees (see Algorithm 1);
• Formal statements to ensure theoretical properties such as correctness and efficiency

(see Theorem 1, Proposition 2, Corollary 1, Theorem 2).

We emphasize that the idea of using auxiliary variables to constrain message passing
is not novel per se and was originally proposed in [69]. Our first contribution concerns the
difference in the definition of the target problem, which broadens the range of admissible
applications. More precisely, the target objective H in the previous publication relates the
energy of the model F and the vector-valued mapping G, which describes the sufficient
statistics of the global terms in a rather restricted form according to

H(F(·), G(·)) := F(·)� η(G(·)), � ∈ {+, ·}

where η is a non-negative function on G. Although this is sufficient for the purposes of [69],
there are other computational problems that could benefit from the same message-passing
idea but cannot be addressed by it in the above form. Therefore, we relax the form of the
function H in our target problem (Problem 1) to allow much finer interactions between
F and G. Specifically, we allow H to be any function on the arguments (F, G), which is
restricted only by the requirement that it is non-decreasing in the first argument. Without
this assumption, the proposed algorithm (Algorithm 1) is not guaranteed to provide an
optimal solution. Therefore, all related theorems, algorithms, and the corresponding proofs
in [69] must be adjusted accordingly. Conceptually, we can reuse the computational core
idea, including the introduction of auxiliary variables, without any changes. The only
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difference in the new version of the algorithm is how the statistics gathered during message
passing are evaluated at the end to ensure the optimality of the solution according to the
new requirement on the function H (see line 8 in Algorithm 1). In order to motivate the
significance and practical usability of this extension, we demonstrated that mappings F and
G can interact by means of the function H in a highly non-trivial way, thereby exceeding
the range of problem formulations in [69]. In particular, we showed how the generalization
bounds in structured prediction can be evaluated using our approach (see Section 4.2). To
the best of our knowledge, there are no existing methods for finding an optimal solution
for this task.

Our second contribution involves a new graph transformation technique via node
cloning (illustrated in Figure 5), which significantly enhances the asymptotic bounds on
the computational complexity of Algorithm 1. Previously, in [69], the polynomial running
time was guaranteed only if the maximal node degree ν in a corresponding cluster graph
was bounded by a (small) constant. The proposed transformation effectively removes this
limitation and ensures polynomial running time regardless of the graph structure. We
emphasize this result in Corollary 1. Note that the term Rν−1 in Theorem 1 in [69] has been
replaced with R2 in Corollary 1 of the current paper, thereby reducing the computational
complexity of the resulting message-passing algorithm. This reduction is significant, as ν
can be dependent on the graph size in the worst case (see Figure 4).

As our third contribution, we investigate the important question of how the parameter
R, which describes the maximum number of states for auxiliary variables, grows with the
size of the graph, as measured by the total number of variables M in the corresponding MRF.
As a result, we identify a sufficient condition on G that guarantees the overall polynomial
run-time of Algorithm 1 in relation to the graph size in our target problem (Problem 1; see
Theorem 2).

8. Related Works

Several previous works have addressed the problem of exact MAP inference with
global factors in the context of SSVMs when optimizing for non-decomposable loss func-
tions. Joachims [86] proposed an algorithm for a set of multivariate losses, including the
Fβ-loss. However, the presented idea applies only to a simple case, where the corresponding
mapping F in (2) decomposes into non-overlapping components (e.g., unary potentials).

Similar ideas based on the introduction of auxiliary variables have been proposed [87,88]
to modify the belief propagation algorithm according to a special form of high-order
potentials. Specifically, for the case of binary-valued variables yi ∈ {0, 1}, the authors
focus on the univariate cardinality potentials η(G(y)) = η(∑i yi). For the tasks of sequence
tagging and constituency parsing, ref. [45,46] propose an exact inference algorithm for
the slack scaling formulation that focuses on the univariate dissimilarity measures G(y) =
∑t 11[y∗t 6= yt] and G(y) = #FP(y) (see Table 1 for details). In [69] the authors extrapolate
this idea and provide a unified strategy to tackle multivariate and non-decomposable
loss functions.

In the current paper, we build on the results in [69] and generalize the target problem
(Problem 1) by increasing the range of admissible applications. More precisely, we replace
the binary operation� : R×R→ R corresponding to either a summation or multiplication
in the previous objective F(y)� η(G(y)) with a function H : R×RP → R, thereby allowing
for more subtle interactions between the energy of the core model F and the sufficient
statistics G according to H(F(y), G(y)). The increased flexibility, however, must be further
restricted in order for a corresponding solution to be optimal. We have found that it is
sufficient to impose a requirement on H to be non-decreasing in the first argument. Note
that for the special case of the objective in [69], this requirement automatically holds.

Furthermore, the previous works could only guarantee polynomial run-time in cases
where (a) the core model can be represented by a tree-shaped factor graph, and (b) the
maximal degree of a variable node in the factor graph is bounded by a constant. The former
excludes problems with cyclic dependencies and the latter rejects graphs with star-like
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shapes. The corresponding idea for clique trees can handle cycles but suffers from a similar
restriction on the maximal node degree being bounded. Here, we solve this problem
by applying the graph transformation proposed in Section 3.2, effectively reducing the
maximal node degree to ν = 3. We note that a similar idea can be applied to factor graphs
by replicating variable nodes and introducing constant factors. As a result, we improve
the guarantee on the computational complexity by reducing the potentially unbounded
parameter ν in the upper bound O(M · Nτ+1 · Rν−1) to ν 6 3.

In future work, we will consider applying our framework to the explanation task
based on the technique of layer-wise relevance propagation [89] in graph neural networks,
following in the spirit of [90,91].

9. Conclusions

Despite the high diversity in the range of existing applications, a considerable number
of the underlying MAP problems share the unifying property that the information on the
global variable interactions imposed by either a global factor or a global constraint can be
locally propagated through the network by means of dynamic programming. By extending
previous works, we presented a theoretical framework for efficient exact inference on
models involving global factors with decomposable internal structures. At the heart of
the presented framework is a constrained message-passing algorithm that always finds an
optimal solution for our target problem in polynomial time. In particular, the performance
of our approach does not explicitly depend on the graph form but rather on intrinsic
properties such as the treewidth and the number of states of the auxiliary variables defined
by the sufficient statistics of global interactions. The overall computational procedure is
provably exact, and it has lower asymptotic bounds on the computational time complexity
compared to previous works.

Author Contributions: Conceptualization, A.B.; Methodology, A.B.; Software, A.B.; Validation, A.B.;
Formal analysis, A.B. and S.N.; Investigation, A.B.; Writing—original draft, A.B.; Writing—review &
editing, A.B., S.N. and K.-R.M.; Funding acquisition, K.-R.M. All authors have read and agreed to the
published version of the manuscript.

Funding: A.B. acknowledges support by the BASLEARN—TU Berlin/BASF Joint Lab for Machine
Learning, cofinanced by TU Berlin and BASF SE. S.N. and K.-R.M. acknowledge support by the
German Federal Ministry of Education and Research (BMBF) for BIFOLD under grants 01IS18025A
and 01IS18037A. K.-R.M. was partly supported by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) grants funded by the Korea government(MSIT) (no.
2019-0-00079, Artificial Intelligence Graduate School Program, Korea University and no. 2022-0-00984,
Development of Artificial Intelligence Technology for Personalized Plug-and-Play Explanation and
Verification of Explanation) and by the German Federal Ministry for Education and Research (BMBF)
under grants 01IS14013B-E and 01GQ1115.

Data Availability Statement: The data used in the experimental part of this paper is available at
https://catalog.ldc.upenn.edu.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

LCS Longest Common Subsequence
MAP Maximum A Posteriori
MRF Markov Random Field
SSVM Structural Support Vector Machine

https://catalog.ldc.upenn.edu


Mathematics 2023, 11, 2628 22 of 28

Appendix A. Proof of Theorem 1

Proof. We now show the correctness of the presented computations. For this purpose,
we first provide a semantic interpretation of messages as follows. Let Ci − Cj be an edge
in a clique tree. We denote by F≺(i−j) the set of clique factors fCk of the mapping F on
the Ci-th side of the tree, and by G≺(i−j) the corresponding set of clique factors of the
mapping G. Furthermore, we denote by V≺(i−j) the set of all variables appearing on the Ci-

th side but not in the sepset Ci ∩ Cj. Intuitively, a message µ
li
Ci→Cj

(yCi∩Cj
) sent from clique

Ci to Cj corresponds to the sum of all factors contained in F≺(i−j), which is maximized
(for fixed values of yCi∩Cj

and li) over the variables in V≺(i−j) subject to the constraint
li = ∑gCk

∈G≺(i−j)
gCk

(yCk
). In other words, we define the following induction hypothesis:

µ
li
Ci→Cj

(yCi∩Cj
) = max

V≺(i−j) : li=∑gCk
∈G≺(i−j)

gCk
(yCk

)
∑

fCk
∈F≺(i−j)

fCk (yCk
). (A1)

Now, consider an edge (Ci − Cj) such that Ci is not a leaf. Let i1, . . . , im be the neighboring
cliques of Ci other than Cj. It follows from the running intersection property that V≺(i−j)
is a disjoint union of V≺(ik−i) for k = 1, . . . , m and the variables yCi\Cj

eliminated at Ci

itself. Similarly, F≺(i−j) is the disjoint union of the F≺(ik−i) and { fCi}. Finally, G≺(i−j)
is the disjoint union of the G≺(ik−i) and {gCi

}. In the following, we abbreviate the term
V≺(ik−i) : lik = ∑g∈G≺(ik−i)

g describing a range of variables in V≺(ik−i) subject to the corre-
sponding equality constraint with respect to lik by V≺(ik−i) : lik . Thus, the right-hand side
of Equation (A1) is equal to

max
yCi\Cj

max
{lik
}m

k=1

max
V≺(i1−i) : li1

· · · max
V≺(im−i) : lim

 ∑
f∈F≺(i1−i)

f

+ · · ·+
 ∑

f∈F≺(im−i)

f

+ fCi (A2)

where in the second max, we maximize over all configurations of {lik}m
k=1 subject to the

constraint ∑m
k=1 lik = li − gCi

(yCi
). Since all the corresponding sets are disjoint, the term

(A2) is equal to

max
yCi\Cj

,{lik
}m

k=1

fCi + max
V≺(i1−i) : li1

 ∑
f∈F≺(i1−i)

f


︸ ︷︷ ︸

µ
li1
Ci1
→Ci

(yCi1
∩Ci

)

+ · · ·+ max
V≺(im−i) : lim

 ∑
f∈F≺(im−i)

f


︸ ︷︷ ︸

µ
lim
Cim→Ci

(yCim∩Ci
)

(A3)

where, again, the maximization over {lik}m
k=1 is subject to the constraint ∑m

k=1 lik = li −
gCi

(yCi ). Using the induction hypothesis in the last expression, we obtain the right-hand
side of Equation (7), thereby proving the claim in Equation (A1).

Now, look at Equation (9). By using Equation (A1) and considering that all the sets of
variables and factors involved in different messages are disjoint, we can conclude that the
computed values µ(l) correspond to the sum of all factors f for the mapping F over the
variables in y, which is maximized subject to the constraint G(y) = l. Note that up until
now, the proof is equivalent to that provided for Theorem 2 in the previous publication [69]
because the message-passing step constrained via auxiliary variables is identical. Now, we
use an additional requirement on H to ensure the optimality of the corresponding solution.
Because H is non-decreasing in the first argument, by performing maximization over all
values l according to Equation (10), we obtain the optimal value of Problem 1.

By inspecting the formula for the message passing in Equation (7), we can conclude
that the corresponding operations can be performed in O(M · Nτ+1 · Rν−1) time, where
ν denotes the maximal number of neighbors of any clique node Ci. First, the summation
in Equation (7) involves |ne(Ci)| terms, resulting in |ne(Ci)| − 1 summation operations.
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Second, a maximization is performed first over |Ci \ Cj| variables with a cost N|Ci\Cj |. This,
however, is carried out for each configuration of yCi∩Cj

, where |Ci \ Cj|+ |Ci ∩ Cj| = |Ci| 6
τ + 1, resulting in Nτ+1. Then, a maximization over {lk} costs an additional R|ne(Ci)|−2.
Together with the possible values for l, it yields Rν−1, where we upper bound |ne(Ci)|
by ν. Therefore, sending a message for all possible configurations of (yCi∩Cj

; l) on the

edge Ci − Cj costs O(Nτ+1 · (|ne(Ci)| − 1) · Rν−1) time. Finally, we need to carry out
these operations for each edge (i, j) ∈ E in the clique tree. The resulting cost can be
estimated as follows: ∑(i,j)∈E Nτ+1 · Rν−1 · (|ne(Ci)| − 1) = Nτ+1 · Rν−1 ∑(i,j)∈E(|ne(Ci)| −
1) 6 Nτ+1 · Rν−1 · |E| = Nτ+1 · Rν−1 · (|V| − 1) 6 Nτ+1 · Rν−1 ·M, where V denotes the
set of clique nodes in the clique tree. Therefore, the total complexity is upper bounded by
O(M · Nτ+1 · Rν−1).

Appendix B. Flowchart Diagram of Algorithm 1

We present a flowchart diagram for Algorithm 1 in Figure A1.
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y⇤

Properties:
- based on dynamic programming
- guaranteed to always find an optimal 
  solution
- computational copmplexity is upper 
  bounded according to
  where:
             is the number of variables 

is the number of variable states
is the treewidth of the clique tree

             is the maximal number of states 
of the auxiliary variables.
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R

Figure A1. Flowchart diagram for Algorithm 1 for implementing a constrained message-passing
scheme on clique trees. Algorithm 1 is guaranteed to always find an optimal solution in polynomial
time. Its computational complexity is upper bounded according to O(M · Nτ+1 · R2).
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Appendix C. Proof of Proposition 2

Proof. Assume we are given a clique tree with treewidth τ. This means that every node in
the clique tree has at most τ + 1 variables. Therefore, the number of all possible sepsets
for a clique, which refers to the number of all variable combinations shared between two
neighbors, is given by 2τ+1 − 2, where we exclude the empty set and the set containing all
the variables in the corresponding clique.

Furthermore, we can deal with sepset duplicates by iteratively rearranging the edges
in the clique tree such that for every sepset from the 2τ+1 − 2 possibilities, there is at most
one duplicate providing an upper bound of 2τ+2 − 4 on the number of edges for each node.
More precisely, we first choose a node with more than 2τ+2 − 4 neighbors as the root and
then reshape the clique tree by propagating some of the duplicate edges (together with the
corresponding subtrees) toward the leaves, as illustrated in Figure A2. The duplicate edges
of nodes connected to the leaves of the clique tree can be reattached in a sequential manner
similar to the example shown in Figure 4. Due to this procedure, the maximal number of
duplicates for every sepset is upper bounded by 2. Multiplied by the maximal number of
possible sepsets for each node, we obtain an upper bound on the number of neighbors in
the reshaped clique tree given by ν 6 2τ+2 − 4.

a b

Cr

C1 C2 C3

a b

Cr

C1 C2 C3

a

a

Figure A2. Illustration of the reshaping procedure for a clique tree in the case where the condition
ν 6 2τ+2 − 4 is violated. Cr is the root clique where a sepset a occurs at least two times. The number
of neighbors of Cr can be reduced by removing the edge between C1 and Cr and attaching C1 to
C2. In this way, we can ensure that every node has at most one duplicate for every possible sepset.
Furthermore, this procedure preserves the running intersection property.

Appendix D. Proof of Theorem 2

Proof. We provide the proof by induction. Let C1, . . . , CK be the cliques of a corresponding
instance of Problem 1. We now consider an arbitrary but fixed order of Ck for k ∈ {1, . . . , K}.
We denote by Ri the number of states of a variable li, that is, R is given by maxi Ri. As
previously mentioned (see Equation (8)), an auxiliary variable li corresponds to the sum
of potentials gCk

(yCk
) over all Ck in a subtree of which Ci is the root. This means that

the number Ri is upper bounded by the image size of the corresponding sum function
according to

Ri 6

∣∣∣∣∣ i

∑
k=1

gCk
(·)
∣∣∣∣∣︸ ︷︷ ︸

∈[−i·T,i·T]∩Z

6 2 · i · T (A4)

where the corresponding values are in the set [−i · T, i · T] ∩ Z, defining our induction
hypothesis. Using the induction hypothesis and the assumption gCk

∈ [−T, T], it directly
follows that the values for Ri+1 are all in the set [−(i + 1) · T, (i + 1) · T] ∩Z. The base case
for R1 holds due to the assumption of the theorem. Because K 6 M always holds and the
order of the considered cliques is arbitrary, we can conclude that R is upper bounded by
2 ·M · T, which is a polynomial in M.
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