
Citation: Kulyukin, V.A. On

Correspondences between

Feedforward Artificial Neural

Networks on Finite Memory

Automata and Classes of Primitive

Recursive Functions. Mathematics

2023, 11, 2620. https://doi.org/

10.3390/math11122620

Academic Editor: Shamil

Ishmukhametov

Received: 6 May 2023

Revised: 26 May 2023

Accepted: 5 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Correspondences between Feedforward Artificial Neural
Networks on Finite Memory Automata and Classes of Primitive
Recursive Functions
Vladimir A. Kulyukin

Department of Computer Science, Utah State University, Logan, UT 84322, USA; vladimir.kulyukin@usu.edu

Abstract: When realized on computational devices with finite quantities of memory, feedforward
artificial neural networks and the functions they compute cease being abstract mathematical objects
and turn into executable programs generating concrete computations. To differentiate between
feedforward artificial neural networks and their functions as abstract mathematical objects and the
realizations of these networks and functions on finite memory devices, we introduce the categories of
general and actual computabilities and show that there exist correspondences, i.e., bijections, between
functions computable by trained feedforward artificial neural networks on finite memory automata
and classes of primitive recursive functions.

Keywords: computability theory; theory of recursive functions; artificial neural networks; number
theory

MSC: 03D32

1. Introduction

An offspring of McCollough and Pitts’ research on foundations of cybernetics [1],
artificial neural networks (ANNs) entered mainstream machine learning after the discovery
of backpropagation by Rumelhart, Hinton, and Williams [2]. ANNs proved to be universal
approximators of different classes of functions when no limits are imposed on the num-
ber of artificial neurons in any layer (arbitrary width) or on the number of hidden layers
(arbitrary depth) and even with bounded widths and depths (e.g., [3–5]). ANNs cease being
abstract mathematical objects when implemented in specific programming languages on
computational devices with finite quantities of internal and external memory, to which
we interchangeably refer in our article as finite memory devices (FMDs) and finite memory
automata (FMA). To differentiate between functions computable by ANNs in principle and
functions computable by ANNs realized on FMA, we introduce the categories of general and
actual computabilities and show that there exist correspondences, i.e., bijections, between
functions computable by trained feedforward ANNs (FANNs) on FMA and classes of
primitive recursive functions.

Our article is organized as follows. In Section 2, we expound the terms, definitions,
and notational conventions for functions and predicates espoused in this article and de-
fine the term finite memory automaton. In Section 3, we explicate the categories of general
and actual computabilities and elucidate their similarities and differences. In Section 4,
we formalize FANNs in terms of recursively defined functions. In Section 5, we present
primitive recursive techniques to pack finite sets and Cartesian powers thereof into Gödel
numbers. In Section 6, we use the set packing techniques of Section 5 to show that functions
computable by trained FANNs implemented on FMA can be archived into natural numbers.
In Section 7, we show how such archives can be used to define primitive recursive functions
corresponding to functions computable by FANNs. In Section 8, we discuss theoretical
and practical reasons for separating computability into the general and actual categories

Mathematics 2023, 11, 2620. https://doi.org/10.3390/math11122620 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122620
https://doi.org/10.3390/math11122620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8778-5175
https://doi.org/10.3390/math11122620
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122620?type=check_update&version=1

Mathematics 2023, 11, 2620 2 of 25

and pursue some implications of the theorems proved in Section 7. In Section 9, we sum-
marize our conclusions. For the reader’s convenience, Appendix A gives supplementary
definitions, results, and examples that are referenced in the main text when relevant.

2. Preliminaries
2.1. Functions and Predicates

If f is a function, dom(f) and codom(f) denote the domain and the co-domain of f ,
respectively. Statements such as f : S 7→ R abbreviate the logical conjunction dom(f) =
S ∧ codom(f) = R. A function f is partial on a set S if dom(f) is a proper subset of S, i.e.,
dom(f) ⊂ S. Thus, if S = N = {0, 1, 2, . . .} and f (x) = x1/3, then f is partial on S, because
dom(f) = {i3|i ∈ N} ⊂ N. If S and R are sets, then S = R is logically equivalent to the
logical conjunction S ⊆ R ∧ R ⊆ S, i.e., S is a subset of R, and vice versa. If f is partial
on S and z ∈ S, the following statements are equivalent: (1) z ∈ dom(f); (2) f is defined
on z; (3) f (z) is defined; and (4) f (z) ↓. The following statements are also equivalent:
(1) z 6∈ dom(f); (2) f is undefined on z; (3) f (z) is undefined; and (4) f (z) ↑. If f is partial
on S and dom(f) = S, then f is total on S. Thus, f (x) = x + 1 is total on N. When f : S 7→ R
is a bijection, i.e., f is injective (one-to-one) and surjective (onto), f is a correspondence between
S and R.

If S is a set, then |S| is the cardinality of S, i.e., the number of elements in S. S
is finite if and only if (iff) |S| ∈ N. For n > 0, Sn is the n-th Cartesian power of S, i.e.,
Sn = {(s0, . . . , sn−1)|si ∈ S, 0 ≤ i ≤ n − 1} = {(s1, . . . , sn)|si ∈ S, 1 ≤ i ≤ n} Thus, if
f : R2 7→ N, dom(f) = {(x1, x2)|x1, x2 ∈ R}. The symbol ~x is a sequence of numbers,
i.e., a vector, from a set S, i.e., ~x = (x0, x1, . . . , xn−1) = (x1, x2, . . . , xn) ∈ Sn; () is the
empty sequence. If ~x ∈ Sn, its individual elements are ~x0 = x0, ~x1 = x1, . . . , ~xn−1 = xn−1
or, equivalently, ~x1 = x1, ~x2 = x2, . . . , ~xn = xn. If dom(f) ⊆ Sn and ~x ∈ Sn, f (~x) =
f ((~x0, . . . ,~xn−1)) = f (x0, . . . , xn−1) = f (x1, . . . , xn). If f : dom(f) 7→ codom(f) is a bijection,
the inverse of f is f−1 : codom(f) 7→ dom(f). When the arguments of f are evident, f or
f (·) abbreviate f (~x), f (x0, . . . , xn−1), or f (x1, . . . , xn)

A total function P : Sn 7→ {0, 1} is a predicate if, for any ~x ∈ Sn, P(~x) = 1 or P(~x) = 0,
where 1 arbitrarily designates the logical truth and 0 designates a logical falsehood. The
symbols ¬, ∧, ∨, →, respectively, refer to logical not, logical and, logical or, and logical
implication. We abbreviate P(~x) = 1 to P(~x) and P(~x) = 0 to ¬P(~x). If P and Q are
predicates, then ¬P ∨Q is logically equivalent to P→ Q, i.e., ¬P ∨Q ≡ P→ Q. For clarity,
sub-predicates of compound predicates may be included in matching pairs of {}. Thus,
if a compound predicate P consists of predicates P1, P2, P3, and P4, it can be defined as
P ≡ {{P1 → P2} ∧ {P3 ∨ P4}}. The symbols ∃ and ∀ refer to the logical existential (there
exists) and universal (for all) quantifiers, respectively. Thus, the statement (∃~x ∈ Sn)P(~x) is
logically equivalent to the statement that P(~x) holds for at least one ~x in dom(P), while the
statement (∀~x ∈ Sn)P(~x) is logically equivalent to the statement that P(~x) holds for all ~x in
dom(P).

2.2. Finite Memory Automata

A finite memory device Dj is a physical or abstract automaton with a finite quantity of
internal and external memory and an automated capability of executing programs, i.e.,
finite sequences of instructions written in a formalism, e.g., a programming language for
Dj, and stored in the finite memory of Dj. Since bijections exist between expressions over
any finite alphabet, i.e., a finite set of symbols or signs, and subsets of N [6], we call the
memory of Dj numerical memory. The numerical memory consists of registers, each of which
is a sequence of numerical unit cells, e.g., digital array cells, mechanical switches, and finite
state machine tape cells. The quantity of numerical memory is the product of the number of
registers and the number of unit cells in each register, i.e., this quantity is a natural number.

A cell holds exactly one elementary sign from a finite alphabet, e.g., { “.”, “0”, “1”, “2”,
“3”, “4”, “5”, “6”, “7”, “8”, “9” }, or is empty. The sign of the empty cell is unique and is
not an elementary sign. A number sign is a sequence of elementary signs in consecutive

Mathematics 2023, 11, 2620 3 of 25

cells of a register with no empty cells to the left of the first elementary sign and possibly
some empty cells to the right of the rightmost elementary sign. Thus, if “|” is the empty
sign on Dj, the alphabet is { “.”, “-”, “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9” }, and
each register on Dj has seven cells, then “3.1||||”, “3.14|||”, “3.141||”, “3.1415|”, and
“3.14159” are number signs conventionally interpreted as the real numbers 3.1, 3.14, 3.141,
3.1415, and 3.14159, respectively. An arbitrary number sign interpretation is fixed a priori
for a given alphabet and Dj and does not change from sign to sign. Thus, if the alphabet
is { “,”, “0”, “f0”, “ff0”, “fff0”, “ffff0”, “fffff0”, “ffffff0”, “fffffff0”, “ffffffff0”, “fffffffff0” }
and the interpretation is such that “,” is interpreted as the decimal point, “0” as 0, “f0” as
1, “ff0” as 2, “fff0” as 3, etc., “*” is the empty sign, and each sign is read left to right, then,
if each register on Dj has twenty three cells, the sign “f0,ffff0f0ffff0ff0f0***” is interpreted
as 1.41421.

A real number x is signifiable on Dj iff a register on Dj can hold its sign. Put another
way, a number is signifiable on Dj if, in a programming language L for Dj, the number’s
sign can be assigned to a variable, i.e., stored in a designated register. When x is signifiable
on Dj, we say that x is simply signifiable. A set or a sequence of numbers is signifiable if
each number in the set or sequence is signifiable.

∆j > 0 is the smallest positive signifiable real number on Dj iff for any signifiable x,
there is no signifiable y such that x < y < x + ∆j. The finite set of real numbers in the
closed interval between 0 and 1 signifiable on Dj is

Rj
0,1 ≡ {x ∈ R|x = i∆j < 1} ∪ {1}, i ∈ N. (1)

We note, in passing, a notational convention in Equation (1) to which we adhere in
our article: if Dj is an FMA, then the Latin letter j in subscripts or superscripts of symbols
is used to emphasize that they are defined with respect to Dj. Thus, if Dj and Dk are two
FMDs with different quantities of numerical memory, ∆j 6= ∆k.

Lemma 1. If z = i∆j is a maximal element of {x ∈ R|x = i∆j < 1} and y = (i + 1)∆j, then
y ≥ 1.

Proof. If y ∈ Rj
0,1, then y = 1, because 1 is the only number in Rj

0.1 greater than z. If

y 6∈ Rj
0,1, then y > 1 and z < 1 < y.

A corollary of Lemma 1 is that if a, b are signifiable, a < b, then

Rj
a,b ≡ {x ∈ R|x = a + i∆j < b} ∪ {b}, i ∈ N, (2)

is the finite set of signifiable numbers in the closed interval from a to b such that there exists
no signifiable number between any two consecutive members of Rj

a,b when the latter is
sorted in non-descending order.

Lemma 2. If a, b are signifiable and b − a ≥ ∆j, there exists a bijection ψ
j
a,b: Rj

a,b 7→ Zj
a,b =

{0, . . . , z} ⊂ N, z > 0, where a + z∆j ≥ b. If a + z∆j is signifiable, it is the smallest signifiable
number ≥ b.

Proof. Let

ψ
j
a,b(x) =


k if x = a + k∆j < b,
z if {{x = a + z∆j = b} ∨

{a + (z− 1)∆j < x = b < a + z∆j}}.
(3)

Let r ∈ Zj
a,b. If r = z, then ψ

j
a,b(x) = r, for x = a + z∆j = b or a + (z− 1)∆j < x =

b < a + z∆j. If r < z, then ψ
j
a,b(x) = r, for x = a + r∆j. Let ψ

j
a,b(x) = ψ

j
a,b(y) = r. If

r = z, then x = a + r∆j = y = b or a + (r − 1)∆j < x = b = y < a + r∆j. If r < z, then

Mathematics 2023, 11, 2620 4 of 25

x = a + r∆j = y. Let a + z∆j be signifiable. If a + z∆j = b, it is vacuously the smallest
signifiable number≥ b. If a+ z∆j > b, then, since a+(z− 1)∆j < b < a+ z∆j, the assertion
that 0 < b− (a + (z− 1)∆j) < ∆j or 0 < a + z∆j − b < ∆j leads to a contradiction.

A corollary of Lemma 2 is that ψ
j
a,b
−1

: Zj
a,b 7→ Rj

a,b is

ψ
j
a,b
−1

(k) =


x if x = a + k∆j < b,
b if {{b = a + k∆j}∨

{a + (k− 1)∆j < b < a + k∆j}}.
(4)

Lemmas 1 and 2 draw on the empirically verifiable fact manifested by division un-
derflow errors in modern programming languages: given an FMD Dj and two signifiable
real numbers a and b, with a < b, the set of signifiable real numbers in the closed interval
between a and b is a proper finite subset of the set of real numbers R. Thus, bijections are
possible between Rj

a,b and finite subsets of N. While these bijections may differ from FMA
to FMA in that they depend on the exact quantity of memory on a given FMA, they differ
only in terms of the cardinalities of their domains and co-domains: the larger the quantity
of memory, the greater the cardinality. A constructive interpretation of Lemmas 1 and 2 is
that if we take two signifiable real numbers a and b such that b− a ≥ ∆j, we can effectively

enumerate the elements of Zj
a,b by iteratively adding increasing integer multiples of ∆j to a

until we reach b, i.e., a + z∆j = b, or go slightly above it, i.e., a + (z− 1)∆j < b < a + z∆j,
for z > 0.

To map the elements of Rj
a,b to N+ = {1, 2, 3, . . .}, we define the bijection µ

j
a,b(x) :

Rj
a,b 7→ I j

a,b =
{

z + 1|z ∈ Zj
a,b

}
and its inverse µ

j
a,b(x)

−1
: I j

a,b 7→ Rj
a,b as

µ
j
a,b(x) = ψ

j
a,b(x) + 1;

µ
j
a,b
−1

(k) = ψ
j
a,b
−1

(k− 1), k > 0.
(5)

If we abbreviate µ
j
0,1, µ

j
0,1
−1

, ψ
j
0,1, ψ

j
0,1
−1

, Rj
0,1, and Zj

0,1, I j
0,1 to µ, µ−1, ψ, ψ−1, R, Z, and

I, respectively, and let ∆j = 0.2, we have the following example.

Example 1.

R = {0, 0.2, 0.4, 0.6, 0.8, 1}; Z = {0, 1, 2, 3, 4, 5}; I = {1, 2, 3, 4, 5, 6};
ψ(0) = 0, ψ(0.2) = 1, ψ(0.4) = 2, ψ(0.6) = 3, ψ(0.8) = 4, ψ(1) = 5;
ψ−1(0) = 0, ψ−1(1) = 0.2, ψ−1(2) = 0.4, ψ−1(3) = 0.6, ψ−1(4) = 0.8, ψ−1(5) = 1;
µ(0) = 1, µ(0.2) = 2, µ(0.4) = 3, µ(0.6) = 4, µ(0.8) = 5, µ(1) = 6;
µ−1(1) = 0, µ−1(2) = 0.2, µ−1(3) = 0.4, µ−1(4) = 0.6, µ−1(5) = 0.8, µ−1(6) = 1.

For ∆j = 0.3, we have another example.

Example 2.

R = {0, 0.3, 0.6, 0.9, 1}; Z = {0, 1, 2, 3, 4}; I = {1, 2, 3, 4, 5};
ψ(0) = 0, ψ(0.3) = 1, ψ(0.6) = 2, ψ(0.9) = 3, ψ(1) = 4;
ψ−1(0) = 0, ψ−1(1) = 0.3, ψ−1(2) = 0.6, ψ−1(3) = 0.9, ψ−1(4) = 1;
µ(0) = 1, µ(0.3) = 2, µ(0.6) = 3, µ(0.9) = 4, µ(1) = 5;
µ−1(1) = 0, µ−1(2) = 0.3, µ−1(3) = 0.6, µ−1(4) = 0.9, µ−1(5) = 1.

3. Computability: General vs. Actual

Computability theory lacks a uniform, commonly accepted formalism for computable,
partially computable, and primitive recursive functions. The treatment of such func-
tions in our article is based, in part, on the formalism by Davis, Sigal, and Weyuker

Mathematics 2023, 11, 2620 5 of 25

(Chapters 2 and 3 in [7]), which has, in turn, much in common with Kleene’s formalism
(Chapter 9 in [8]). Alternative treatments include [9], where primitive recursive functions
are formalized as loop programs consisting of assignment and iteration statements similar
to DO statements in FORTRAN, and [10], where λ-calculus is used. These symbolically
different treatments have one feature in common: computable, partially computable, and
primitive recursive functions operate on natural numbers and the underlying automata,
explicit or implicit, on which these functions can, in principle, be executed if implemented
as programs in some formalism, have access to infinite numerical memory. To distinguish
computability in principle from computability on finite memory automata, we introduce
the categories of general and actual computabilities.

3.1. General Computability

As our formalism in this section, we use the programming language L developed
in Chapter 2 in [7] and subsequently used in that book to define partially computable,
computable, and primitive recursive functions and to prove various properties thereof. An
L program P is a finite sequence of L instructions. The unique variable Y is designated as
the output variable where the output of P on a given input is stored. X1, X2, . . . designate
input variables, and Z1, Z2, . . . refer to internal variables, i.e., variables in P that are not
input variables. No bounds are imposed on the magnitude of natural numbers assigned
to variables. L has conditional dispatch instructions; line labels; elementary arithmetic
operations on and comparisons of natural numbers; and macros, i.e., statements expandable
into primitive L instructions.

A computation of P on some input ~x ∈ Nm, m > 0, is a finite sequence of snapshots
(s1, . . . , sk), where each snapshot s1≤i≤k, k > 0, specifies the number of the instruction
in P to be executed and the value of each variable in P . The snapshot s1 is the initial
snapshot, where the values of all input variables are set to their initial values, the program
instruction counter is set to 1, i.e., the number of the first instruction in P , and the values of
all the other variables in P are set to 0. The snapshot sk in (s1, . . . , sk) is a terminal snapshot,
where the instruction counter is set to the number of the instructions in P plus 1. Not all
snapshot sequences are computations. If (s1, s2, . . . , sk) is a computation of P on ~x ∈ Nm,
i.e., X1 = x1, X2 = x2, . . ., Xm = xm, then there is a function that, given the text of P and a
snapshot s1≤i<k in the computation, generates the next snapshot si+1 of the computation.
This function can verify if (s1, . . . , sk) constitutes the computation of P on ~x. The existence
of such functions implies that each instruction in L is interpreted unambiguously. If some
program P in L takes m inputs and the values of the input variables are X1 = x1, X2 = x2,
. . ., Xm = xm, then

Ψ(m)
P (x1, x2, . . . , xm) =

{
Y in sk if ∃ a computation (s1, . . . , sk), k ≥ 1,
↑ otherwise

(6)

denotes the value of Y in the terminal snapshot sk if there exists a computation (s1, . . . , sk)
of P on (x1, x2, . . . , xm) and is undefined otherwise.

Definition 1. A function f : Nm 7→ N, m ∈ N+, is partially computable if f is partial and there
is an L program P such that Equation (7) holds.

(∀~x ∈ Nm) f (~x) = Ψ(m)
P (~x) (7)

Equation (7) is interpreted so that f (~x) ↓ iff Ψ(m)
P (~x) ↓ and f (~x) ↑ iff Ψ(m)

P (~x) ↑.

Definition 2. A function f : Nm 7→ N, 0 < m ∈ N, is computable if it is total, i.e., (∀~x ∈
Nm) f (~x) ↓, and partially computable.

Mathematics 2023, 11, 2620 6 of 25

Let f : Nk 7→ N and gi : Nn 7→ N, 1 ≤ i ≤ k, n ∈ N+. Then, h : Nn 7→ N is obtained by
composition from f , g1, . . . , gk if

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)). (8)

Let k ∈ N, n ∈ N+, and φ : N2 7→ N, f : Nn 7→ N, g : Nn+2 7→ N be total. If h is
obtained from φ by the recurrences in (9) or from f and g by the recurrences in (10), then
h is obtained from φ or from f and g by primitive recursion or simply by recursion. The
recurrences in (10) are isomorphic to Gödel’s recurrences (Section 2, Equation (2) in [6])
where he introduces the concept of recursively defined number-theoretic function. The three
functions in (11) are the initial functions.

h(0) = k,
h(t + 1) = φ(t, h(t))

(9)

h(x1, . . . , xn, 0) = f (x1, . . . , xn),
h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn)

(10)

s(x) = x + 1;
n(x) = 0;
un

i (x1, . . . , xn) = xi, 1 ≤ i ≤ n,
(11)

Definition 3. A function is primitive recursive if it can be obtained from the initial functions by a
finite number of applications of composition and recursion in (8)–(10).

An implication of Definition 3 is that if f is a primitive recursive function, then there is
a sequence of functions (f1, . . . , fn = f), n > 0, where every function in the sequence is an
initial function or is obtained from the previous functions in the sequence by composition
or recursion.

A class C of total functions is primitive recursively closed (PRC) if the initial functions are
in it and any function obtained from the functions in C by composition or recursion is also
in C. It has been shown (Chapter 3 in [7]) that (1) the class of computable functions is PRC;
(2) the class of primitive recursive functions is PRC; and (3) a function is primitive recursive
iff it belongs to every PRC class. A corollary of (3) is that every primitive recursive function
is computable.

If C includes all functions of a certain type, we refer to it as the class of those functions,
e.g., the class of partially computable functions, the class of computable functions, the class
of primitive recursive functions, etc. When we say that C ′ is a class of functions of a certain
type, we mean that C ′ ⊆ C, where C is the class of functions of that type.

3.2. Actual Computability

In general, the FMA defined in Section 2.2 is different from the finite state automata
of classical computability theory, because the latter, e.g., a Turing machine (TM), do not
impose any limitations on memory. A TM becomes an FMA iff the number of cells on its
tape where it reads and writes symbols is finite. Analogously, a finite state automaton (FSA)
of classical computability is an FMA iff there is a limit, expressed as a natural number, on
the length of the input tape from which the FSA reads sign sequences over a given alphabet.

As is the case with general computability, we let Pj
L be a L program, i.e., a finite

sequence of unambiguous instructions in a programming language L for an FMD Dj. Thus,
if Dj is a physical computer with an operating system, e.g., Linux, a programming language
for Dj can be Lisp, C, Perl, Python, etc. If Dj is an abstract FMA, e.g., a TM with a finite
number of cells on its tape, then Dj is programmed with the standard quadruple formalism
(Chapter 6 in [7]). If Dj is a mechanical device, then we assume that there is a formalism
that consists of instructions such as “set switch i to position p”, “turn handle full circle
clockwise t times”, etc. A state of Dj while executing Pj

L on some input ~x includes the

Mathematics 2023, 11, 2620 7 of 25

number of the instruction in Pj
L to execute next and, depending on Dj, may include the

contents of each register, the signs on the finite input tape, or the state of each mechanical
switch. As we did with general computability, we call such a state a snapshot of Dj for Pj

L(~x)

and define a computation of Pj
L(~x) on Dj to be a finite sequence of snapshots (s1, . . . , sk),

k ≥ 1, where each subsequent snapshot is computed from the previous snapshot, the
initial snapshot s1 has the values of all the variables in Pj

L appropriately specified and the

instruction counter of Pj
L set to 1, and the terminal snapshot sk has the instruction counter

set to the number of the instructions in Pj
L plus 1. We let

Ψ(n)

Pj
L

(~x)

denote the number sign corresponding to the output of Pj
L(~x) executed on Dj. It is irrelevant

to our discussion where this number sign is stored (e.g., in a register, a section of a finite tape,
or the sequence of the positions of the mechanical switches examined left to right or right
to left, etc.) so long as it is understood that the output, whenever there is a computation, is
unambiguously interpreted as a real number according to an interpretation fixed a priori.

Definition 4. A partial function f : Rm 7→ R, m ∈ N+, is actually partially computable on Dj if
Equation (12) holds.

(∀~x ∈ Rm) f (~x) = Ψ(m)

Pj
L

(~x). (12)

Equation (12) of actual computability is interpreted so that f (~x) ↓ iff Ψ(m)
P (~x) ↓, i.e.,

f (~x) = z iff Ψ(m)
P (~x) = z, for any ~x ∈ Rm and z ∈ R signifiable on Dj, and f (~x) ↑ iff

Ψ(m)
P (~x) ↑. However, unlike Equation (7) of general computability, which is defined only

on natural numbers and every natural number is signifiable by implication, in actual
computability, we have to make provisions for non-signifiable real numbers. Toward that
end, we introduce the following inequality, which holds when a non-signifiable number is
encountered during a computation of Pj

L(~x).

(∃~x ∈ Rm) f (~x) 6= Ψ(m)

Pj
L

(~x). (13)

Inequality (13) can be illustrated with two examples. Let Dj have two cells per register,

let f : N2 7→ N be f (x1, x2) = x1 + x2, and let Pj
L(x1, x2) be a program that implements f ,

i.e., adds two number signs of x1 and x2 and puts the number sign of x1 + x2 in a designated
output register. Let number signs be interpreted in standard decimal notation. Furthermore,
if some number x is not signifiable on Dj, only the first two elementary signs of the number
sign of x are placed into a register, i.e., number signs are truncated to fit into registers, as is
common in many programming languages. Then, after “100” is truncated to “10”,

f (99, 1) = 100 6= Ψ(2)

Pj
L

(99, 1) = 10,

and

f (213, 13) = 226 6= Ψ(2)

Pj
L

(213, 13) = 34,

because 213 is not signifiable on Dj and is truncated to “21.” In both cases, f (x1, x2), as a

mathematical object, is total, and there is a computation of Pj
L(x1, x2) on x1 = 99, x2 = 1

and x1 = 213, x2 = 13, but during both computations, non-signifiable numbers, i.e., 100
and 213, are encountered.

Mathematics 2023, 11, 2620 8 of 25

Definition 5. A function f : Rm 7→ R, m ∈ N+, is actually computable on Dj if it is total, i.e.,
(∀~x ∈ Rm) f (~x) ↓, and actually partially computable.

A program Pj
L that implements an actually computable f (~x) is guaranteed to have

a computation for any signifiable ~x. However, Inequality (13) may still hold if a non-
signifiable number is produced during a computation. Functions can be defined for a
specific Dj so that they deal only with signifiable numbers, e.g., whose domains and
codomains are, respectively, finite signifiable proper subsets of Rm and R. The next defini-
tion characterizes these functions.

Definition 6. A function f : Rm 7→ R, m ∈ N+, is absolutely actually computable on Dj if it is

actually computable and Inequality (13) holds for no computation of Pj
L(~x), where ~x is signifiable

on Dj.

An implication of Definitions 4–6 is that if f : Nm 7→ N satisfies Definition 4, it is
partially computable according to Definition 1, and if it satisfies Definitions 5 or 6, it is
computable according to Definition 2, because, if no memory limitations are placed on
registers, every natural number is signifiable.

We call an FMD Dj sufficiently significant if three conditions are satisfied. First, a
programming language L for Dj exists with the same control structures as the programming
language L described in Section 3.1 such that L (1) is capable of signifying a finite subset of
R and (2) capable of specifying the following operations on numbers: addition, subtraction,
multiplication, division, assignment, i.e., setting the value of a register to a number sign,
comparison, i.e., a = b, a < b, a > b, a ≤ b, a ≥ b, on any signifiable a and b, and the
truncation of the signs of non-signifiable numbers to fit them into registers. Second, the
finite memory of Dj suffices to hold L programs of length ≤ N ∈ N+, where the length of
the program is the number of instructions in it. Third, the finite memory of Dj suffices, in
addition to holding a program of at most N instructions, to hold number signs in K ∈ N+

registers.

Lemma 3. Let an FMA Dj be sufficiently significant with K ≥ 7, a, b signifiable, b− a ≥ ∆j,

and let a + z∆j, z > 0, be the smallest signifiable number greater than or equal to b. Let µ
j
a,b: Rj

a,b

7→ I j
a,b be the bijection in (5). Let Pj

L(x), x ∈ Rj
a,b, be a program for Dj that iterates from a to

a + z∆j ≥ b in positive unit integer increments of ∆j until k or z that satisfies the conditions in (3)

is encountered, and the length of Pj
L ≤ N. Then, µ

j
a,b is absolutely actually computable.

Proof. Since a, b, and a + z∆j are signifiable, so are dom(µ
j
a,b) and codom(µ

j
a,b). The finite

memory of Dj suffices to hold Pj
L, and Pj

L needs access to five signifiable numbers to iterate

over dom(µ
j
a,b): a, b, i, ∆j, a + i∆j. Since K ≥ 7, the signs of these numbers are placed in

registers ρ1, ρ2, ρ3, ρ4, and ρ5. After x ∈ dom(µ
j
a,b) is placed in register ρ6, Pj

L sets ρ3 to 0.

If x < b, Pj
L goes into a while loop with the condition of ρ5 < ρ2, i.e., a + i∆j < b. Inside

the loop, when ρ5 = ρ6, ρ3 is incremented by 1 and placed into the output register ρ7, and
Pj

L exits. Otherwise, the loop continues with ρ3 incremented by 1. If x = b, Pj
L goes into a

while loop with the condition of ρ5 ≤ ρ2, i.e., a + i∆j ≤ b, and keeps incrementing ρ3 by
1 inside the loop. After the loop terminates, ρ3 is incremented by 1 and placed into the
output register ρ7, and Pj

L exits.

A corollary of Lemma 3 is that µ
j
a,b
−1

is absolutely actually computable.

Mathematics 2023, 11, 2620 9 of 25

4. A Recursive Formalization of Feedforward Artificial Neural Networks

A trained feedforward artificial neural network (FANN) N j
z implemented in a pro-

gramming language L on a sufficiently significant FMA Dj is a finite set of artificial neurons,
each of which is connected to a finite number of the neurons in the same set through
the synapses, i.e., directed weighted edges (See Figure 1). The neurons are organized into
k + 1 layers E0, E1, . . . , Ek, with E0 being the input layer; Ek being the output layer; and Ee,
0 < e < k, being the hidden layers. We let Ej

z denote the number of layers in N j
z and nj,e

z,i

refer to the i-th neuron in layer Ee in N j
z. We abbreviate nj,e

z,i to ne
i , because ne

i always refers

to a unique neuron in N j
z. The function nnj

z(e) : N 7→ N+ specifies the number of neurons
in layer Ee of N j

z and is abbreviated nn(e).

Figure 1. A 3-layer fully connected feedforward artificial neural network (FANN); layer 0 includes
the neurons n0

0 and n0
1; layer 1 includes the neurons n1

0, n1
1, and n1

2; layer 2 includes the neurons n2
0

and n2
1; the two arrows coming into n0

0 and n0
1 signify that layer 0 is the input layer; the two arrows

going out of n2
0 and n2

1 signify that layer 2 is the output layer; we
i,j, 0 < e < 3, is the weight of the

synapse from ne−1
i to ne

j , e.g., w1
0,0 is the weight of the synapse from n0

0 to n1
0 and w2

2,1 is the weight of

the synapse from n1
2 to n2

1.

We assume that N j
z is trained, i.e., the synapse weights are fixed automatically or

manually, and fully connected, i.e., there is a synapse from every neuron in layer Ee−1
to every neuron in layer Ee. Each synapse has a weight, i.e., a signifiable real number,
associated with it. We let we

i,j, 0 < e < Ej
z, denote the weight of the synapse from ne−1

i to
ne

j (see Figure 1) and ~we refer to a vector of all synaptic weights between Ee−1 and Ee. We

define ~w0 = (). Thus, for the FANN N j
z in Figure 1, ~w1 =

(
w1

0,0, w1
0,1, w1

0,2, w1
1,0, w1

1,1, w1
1,2

)
and ~w2 =

(
w2

0,0, w2
0,1, w2

1,0, w2
1,1, w2

2,0, w2
2,1

)
. We assume, without loss of generality, that all

numbers in ~we are in Rj
0,1 defined in (1), because, if that is not the case, they can be so scaled,

nor is there any loss of generality associated with the assumption of full connectivity,
because partial connectivity can be defined by setting the weights of the appropriate
synapses to 0.

If Rj
0,1 is abbreviated to R0,1, each ne

i in N j
z, e > 0, computes an activation function

αe
i

(
~ae−1, ~we

)
: R0,1

nn(e−1) 7→ R0,1, (14)

Mathematics 2023, 11, 2620 10 of 25

where~ae−1 is the vector of the activations, i.e., real signifiable numbers, of the neurons in
layer Ee−1. For e = 0,

α0
i (~x, ()) = ~xi, (15)

where ~x ∈ R0,1
nn(0) and ~xi ∈ R0,1, 0 ≤ i < nn(0). Thus, if nn(0) = 3, as in Figure 1, then,

given the input ~x = (x0, x1, x2) = (0.0, 0.3, 0.6), α0
0(~x, ()) = ~x0 = x0 = 0.0, α0

1(~x, ()) = ~x1 =

x1 = 0.3, α0
2(~x, ()) = ~x2 = x2 = 0.6. Since N j

z is implemented on a sufficiently significant
Dj, all activation functions αe

i (·) are absolutely actually computable. It is irrelevant to our
discussion whether the activation functions are the same, e.g., sigmoid, for all or some
neurons, or each neuron has its own activation function.

The term feedforward means that the activations of the neurons are computed layer
by layer from the input layer to the output layer, because the activation functions of the
neurons in the next layer require only the weights of the synapses connecting the next layer
with the previous one and the activation values, i.e., the outputs of the activation functions
of the neurons in the previous layer. To define the activation vectors of individual layers, let

~a0 =
(

α0
0

(
~x, ()

)
, . . . α0

nn(0)−1

(
~x, ()

))
,

~ae =
(

αe
0

(
~ae−1, ~we

)
, . . . , αe

nn(e)−1

(
~ae−1, ~we

))
,

(16)

where 0 < e < Ej
z and ~x is an input vector. For each N j

z, we define the absolutely actually
computable function that N j

z computes as

f j
z(~x, 0) = ~x,

f j
z(~x, e + 1) =

(
αe+1

0

(
f j
z

(
~x, e
)

, ~we+1
)

, . . . , αe+1
nn(e+1)−1

(
f j
z

(
~x, e
)

, ~we+1
))

.
(17)

If e > Ej
z − 1, let f (~x, e) = (). The function f j

z in (17) computes the feedforward

activation of N j
z layer by layer, i.e., f (~x, 0) =~a0, f (~x, 1) =~a1, . . . , f (~x, Ej

z − 1) =~aEj
z−1. For

example, if ~x = (x0, x1) ∈ R0,1
2 is the input to N j

z in Figure 1,

f j
z(~x, 0) = ~a0 = ~x;

f j
z(~x, 1) =

(
α1

0

(
f j
z

(
~x, 0
)

, ~w1
)

, α1
1

(
f j
z

(
~x, 0
)

, ~w1
)

, α1
2

(
f j
z

(
~x, 0
)

, ~w1
))

=
(

α1
0

(
~a0, ~w1

)
, α1

1

(
~a0, ~w1

)
, α1

2

(
~a0, ~w1

))
= ~a1 ∈ Rj

0,1
3
;

f j
z(~x, 2) =

(
α2

0

(
f j
z

(
~x, 1
)

, ~w2
))

, α2
1

(
f j
z

(
~x, 1
)

, ~w2
))

=
(

α2
0

(
~a1, ~w2

)
, α2

1

(
~a1, ~w2

))
= ~a2 ∈ Rj

0,1
2
.

5. Finite Sets as Gödel Numbers

Our primitive recursive techniques to pack finite sets and Cartesian powers thereof
into Gödel numbers in this section rely, in part, on our previous work on primitive recursive
characteristics of chess [11], which, in turn, was based on several functions shown to be
primitive recursive in [7]. For the reader’s convenience, Appendix A.1 in Appendix A
gives the functions shown to be primitive recursive in [7] and gives the necessary auxiliary
definitions and theorems. Appendix A.2 in Appendix A gives the functions or variants
thereof shown to be primitive recursive in [11]. When we use the functions from [7,11]
in this section, we refer to their definitions in the above two sections of Appendix A
as necessary.

Mathematics 2023, 11, 2620 11 of 25

Let G be a Gödel number (G-number) as defined in (A8). The primitive recursive
predicate GP in (18) uses the bounded existential quantification of a primitive recursive
predicate defined in (A2) and the primitive recursive functions (x)i and Lt(x), respectively,
defined in (A9) and (A10).

GP(G) ≡ {Lt(G) > 0} ∧ {{Lt(G) = 1∧ Lt((G)1) > 0}∨
{(∀t)≤Lt(G){{t > 1} → {{Lt((G)t) = Lt((G)1)} ∧ {Lt((G)t) > 0}}}}} (18)

The logical structure of GP is GP1 ∧ {GP2 ∨ GP3}, where GP1, GP2, and GP3 are

GP1 ≡ {Lt(G) > 0};
GP2 ≡ {Lt(G) = 1∧ Lt((G)1) > 0};
GP3 ≡ (∀t)≤Lt(G){{t > 1} → {{Lt((G)t) = Lt((G)1)} ∧ {Lt((G)t) > 0}}}.

The predicate GP holds for G-numbers with at least one element and whose el-
ements themselves have the same length, i.e., the same number of elements, greater
than 0. Thus, GP([[1]]), GP([[1], [2], [3]]), and GP([[1, 2], [3, 4], [5, 6]]), but ¬GP([[0]]) and
¬GP([[1], [3, 4, 5], [11, 10]]).

Let G be a G-number, the predicate ∈g be as defined in (A13), the function s(t) be as
defined in (11), and the function x⊗l y be as defined in (A15), and let

τχ0(G, 0) = 1,
τχ0(G, t + 1) = [[(G)s(t)]]⊗l τχ0(G, t).

Then, the primitive recursive function

τ0(G) =

{
τχ0(G, Lt(G)) if Lt(G) > 0∧ 0 6∈g G,
0 otherwise

(19)

turns a G-number into another G-number whose elements are the elements of the original G-
number G, each of which is placed into a G-number whose length is 1. Thus, τ0([11, 13]) =
[[11], [13]]. In general, if G = [g1, . . . , gn], Lt(G) > 0, 0 6∈g G, i.e., gi 6= 0, for 1 ≤ i ≤ n, then
τ0(G) = [[g1], . . . , [gn]].

Let g ∈ N, G be a G-number, the function x⊗r y be defined in (A16), and

τχ1(g, G, 0) = 1,
τχ1(g, G, t + 1) = [[g]⊗r [(G)s(t)]]⊗l τχ1(g, G, t).

Then, the primitive recursive function

τ1(g, G) =

{
τχ1(g, G, Lt(G)) if g > 0∧ GP(G),
0 otherwise

(20)

adds g to each element of G. Thus, τ1(1, [[2], [3]]) = [[1, 2], [1, 3]] and τ1(3, [[1, 2], [4, 5]]) =
[[3, 1, 2], [3, 4, 5]].

Let G1 and G2 be two G-numbers, and let

τχ2(G1, G2, 0) = 1,
τχ2(G1, G2, t + 1) = τ1((G1)s(t), G2)⊗l τχ2(G1, G2, t).

Then, the primitive recursive function

τ2(G1, G2) =

{
τχ2(G1, G2, Lt(G1)) if 0 6∈g G1 ∧ GP(G2) ∧ Lt(G1) > 0,
0 otherwise

(21)

adds each element of G1 to each element of G2. Thus,

Mathematics 2023, 11, 2620 12 of 25

τ2([1], [[2], [3]]) = [[1, 2], [1, 3]];
τ2([1, 2], [[4, 5], [6, 7]]) = [[1, 4, 5], [1, 6, 7], [2, 4, 5], [2, 6, 7]].

Let G be a G-number, and let

τχ3(G, 0) = τ0(G),
τχ3(G, t + 1) = τ2(G, τ3(G, t)).

Then, the primitive recursive function

τ3(G, t) =

{
τχ3(G, t) if 0 6∈g G ∧ Lt(G) > 0,
0 otherwise

(22)

computes, for t ∈ N+, a Gödel number whose components are Gödel numbers representing
all sequences of t + 1 elements of G. Thus,

τ3([1, 2], 1) = [[1, 1], [1, 2], [2, 1], [2, 2]].

Let S = {a1, a2, . . . , an} ⊂ N+, S 6= ∅, and G = [a1, . . . , an]. An induction on t
shows that, for t > 0, τ3(G, t − 1) is a G-number representation of St in the sense that
(ai1 , . . . , ait) ∈ St iff [ai1 , . . . , ait] ∈g τ3(G, t− 1).

If Dj is an FMA, we let

Gj
a,b = ggn

(
1,
∣∣∣Rj

a,b

∣∣∣, 1
)

, (23)

where Rj
a,b is defined in (2) and ggn(·) is defined in (A17). If we recall from Lemma 2 and (5)

that µ
j
a,b: Rj

a,b 7→ I j
a,b = {1, . . . , z + 1}, where a + z∆j is the smallest signifiable real number

≥ b on Dj, we observe that Gj
a,b is a G-number representation of I j

a,b. Thus, if we return to

Example 2 and use the accessor function (x)i in (A9), then for Gj
0,1 = [1, 2, 3, 4, 5], we have

µ(0) = 1 =
(

Gj
0,1

)
1
;

µ(0.3) = 2 =
(

Gj
0,1

)
2
;

µ(0.6) = 3 =
(

Gj
0,1

)
3
;

µ(0.9) = 4 =
(

Gj
0,1

)
4
;

µ(1) = 5 =
(

Gj
0,1

)
5
.

In general, for x ∈ Rj
a,b,

µ
j
a,b

(
x
)

= t =
(

Gj
a,b

)
t
∈ I j

a,b

µ
j
a,b
−1((

Gj
a,b

)
t

)
= x.

Let, for t > 1, τ3 in (22), and x .− y in (A4),

Gt,j
a,b = τ3

(
Gj

a,b, t .− 1
)

, (24)

and, in particular, for a = 0 and b = 1, let

Gt,j
0,1 = τ3

(
Gj

0,1, t .− 1
)

. (25)

Mathematics 2023, 11, 2620 13 of 25

Then, Gt,j
0,1 is a G-number representation of I j

0,1
t
, i.e., the t-th Cartesian power of I j

0,1.

Since both τ3 and .− are primitive recursive functions, Gt,j
a,b ∈ N and Gt,j

0,1 ∈ N are primitive
recursively computable.

Example 3. Let R = {0, 0.3, 0.6, 0.9, 1}, I = {1, 2, 3, 4, 5} and t = 2. Then,

G2,j
0,1 = τ3(G2

0,1, 2 .− 1)
= τ3(ggn(1, |R|, 1), 1), 1)
= τ3([1, 2, 3, 4, 5], 1)
= [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5],

[2, 1], [2, 2], [2, 3], [2, 4], [2, 5],
[3, 1], [3, 2], [3, 3], [3, 4], [3, 5],
[4, 1], [4, 2], [4, 3], [4, 4], [4, 5],
[5, 1], [5, 2], [5, 3], [5, 4], [5, 5]].

We note that (x, y) ∈ I2 iff [x, y] ∈ G2,j
0,1.

Let ~x ∈ Rj
a,b

t
, t > 0, x̃ ∈g Gt,j

a,b, and let η
t,j
a,b : Rj

a,b
t
7→ N and ζ

t,j
a,b : N 7→ Rj

a,b
t

be
defined as

η
t,j
a,b

(
~x
)

=
[
µ

j
a,b(~x0), . . . µ

j
a,b(~xt−1)

]
= x̃;

ζ
t,j
a,b

(
x̃
)

=
(

µ
j
a,b
−1((

x̃
)

1

)
, . . . , µ

j
a,b
−1((

x̃
)

t

))
.

(26)

If Rj
a,b is signifiable, η

t,j
a,b(~x) = x̃ iff ζ

t,j
a,b(x̃) = ~x, for any ~x ∈ Rj

a,b
t
. If x̃ is not signifiable,

η
t,j
a,b and ζ

t,j
a,b are actually computable; if x̃ is signifiable, the functions are absolutely actually

computable.

Example 4. To continue with Example 3, if ~x = (0.9, 0.6) ∈ R0,1
2 and x̃ = [4, 3] ∈ G2,j

0,1, then, if
we abbreviate η2

0,1, ζ2
0,1 to η2, ζ2, we have

η2(~x) = (µ(0.9), µ(0.6)) = [4, 3];

ζ2(x̃) = (µ−1((x̃)1), µ−1((x̃2))) = (µ−1(4), µ−1(3)) = (0.9, 0.6).

6. Numbers Ω
j,e
z,i and Ω

j
z: Packing FANNs into Natural Numbers

Let us assume that µ
j
0,1 is absolutely actually computable on a sufficiently significant

FMA Dj and abbreviate µ
j
0,1 to µ, ζ

t,j
0,1 to ζt, and Gt,j

0,1 in (25) to Gt. Let 〈x, y〉 be as defined

in (A5) and Lt(x) be as defined in (A10). Then, for each input neuron n0
i in an FANN N j

z, let

Ωj,0
z,i = Ω0

i =[〈(
Gnn(0)

)
1
, µ
(

α0
i

(
ζnn(0)

((
Gnn(0)

)
1

)
, ()
))〉

,

. . . ,〈(
Gnn(0)

)
Lt
(

Gnn(0)
), µ

(
α0

i

(
ζnn(0)

((
Gnn(0)

)
Lt
(

Gnn(0)
)), ()

))〉]
.

(27)

Mathematics 2023, 11, 2620 14 of 25

We recall that Ej
z > 0 is the number of layers in N j

z. Then, for a hidden or output
neuron ne

i , 0 < e < Ej
z, let

Ωj,e
z,i = Ωe

i =[〈(
Gnn(e−1)

)
1
, µ
(

αe
i

(
ζnn(e−1)

((
Gnn(e−1)

)
1

)
, ~we
))〉

,

. . . ,〈(
Gnn(e−1)

)
Lt
(

Gnn(e−1)
), µ

(
αe

i

(
ζnn(e−1)

((
Gnn(e−1)

)
Lt
(

Gnn(e−1)
)), ~we

))〉]
.

(28)

For an FANN N j
z on Dj and E = Ej

z − 1, let

Ωj
z =

[〈
0,
[
Ω0

0, . . . , Ω0
nn(0)−1

]〉
, . . . ,

〈
E,
[
ΩE

0 , . . . , ΩE
nn(E)−1

]〉]
. (29)

An implication of the definitions of 〈x, y〉 in (A5) and the G-number in (A8) is that Ωj
z

is unique for N j
z, because the only way for another FANN N j

k on Dj to have Ωj
k = Ωj

z is

for N j
k to have the same number of layers, the same number of neurons in each layer, the

same activation function in each neuron, and the same synapse weights between the same
neurons, i.e., N j

k = N j
z. Appendix A.3 in Appendix A gives several examples of how the Ω

numbers are computed for N j
z in Figure 1.

Lemma 4. Let µ
j
0,1 be absolutely actually computable on a sufficiently significant FMA Dj and let

N j
z be an FANN implemented on Dj. Let 0 ≤ i < nn(0), 0 ≤ k < nn(e), 0 < e < Ej

z, and Gt,j
0,1

in (25) be signifiable on Dj. Then, Ωj,0
z,i = Ω0

i ∈ N and Ωj,e
z,i = Ωe

i ∈ N.

Proof. We abbreviate µ
j
0,1 to µ, ζt

0,1 to ζt, and Gt,j
0,1 to Gt, and let

z0 = µ
(

α0
i

(
ζnn(0)

((
Gnn(0)

)
t0

)
, ()
))

;

ze = µ
(

αe
k

(
ζnn(e−1)

((
Gnn(e−1)

)
te−1

)
, ~we
))

,

where 0 < t0 ≤ nn(0) and 0 < te−1 ≤ nn(e− 1). Since µ is absolutely actually computable
and Gt signifiable, ζnn(0), ζnn(1), . . . , ζnn(e−1) are absolutely actually computable. Thus,
z0, ze ∈ N. The statement of the lemma then follows from the definitions of 〈x, y〉 in (A5)
and the G-number in (A8).

7. FANNs and Primitive Recursive Functions

For 0 ≤ e < Ej
z, 0 ≤ i < nn(e), x ∈ N, let

α̃e
i (x) = r

(
asc
(

x,
(

r
(

asc
(

e, Ωj
z

)))
i+1

))
, (30)

where r(·) and asc(·) are defined in (A6) and (A19), respectively. An example of computing
α̃e

i is given at the end of Appendix A.3 in the Appendix A.

Lemma 5. Let µ
j
0,1, abbreviated as µ, be absolutely actually computable on a sufficiently significant

FMA Dj and let N j
z be an FANN implemented on Dj. Let Gt

0,1 in (25), abbreviated as Gt, be

signifiable. Let 0 ≤ e < Ez
j , η

t,j
0,1(~x) = ηt(~x) = x̃ =

[
µ
(
~ae

0

)
, . . . , µ

(
~ae

nn(e)−1

)]
∈ N, where~ae is

defined in (16). Then,

Mathematics 2023, 11, 2620 15 of 25

α̃e
i (x̃) =


µ
(

α0
i

(
ζnn(0)

((
Gnn(0)

)
t

)
, ~w0

))
if e = 0,

µ
(

αe
i

(
ζnn(e−1)

((
Gnn(e−1)

)
t

)
, ~we
))

if e > 0,

where t = asx
(

x̃, Gnn(0)
)

, for 1 ≤ t ≤ Lt
(

Gnn(0)
)

and e = 0; t = asx
(

x̃, Gnn(e−1)
)

, for

1 ≤ t ≤ Lt
(

Gnn(e−1)
)

and e > 0; and asx is as defined in (A18).

Proof. By (28)–(30) and (A18), we have

α̃e
i (x̃) = r

(
asc
(

x̃,
(

r
(

asc
(

e, Ωj
z

)))
i+1

))
= r

(
asc
(

x̃,
(

r
(〈

e,
[
Ωe

0, . . . , Ωe
nn(e)−1

]〉))
i+1

))
= r

(
asc
(

x̃,
([

Ωe
0, . . . , Ωe

nn(e)−1

])
i+1

))
= r

(
asc
(

x̃, Ωe
i

))
If e = 0, then t = asx

(
x̃, Gnn(0)

)
, for 1 ≤ t ≤ Lt

(
Gnn(0)

)
. Thus,

α̃e
i (x̃) = r

(
asc
(

x̃, Ωe
i

))
= µ

(
α0

i

(
ζnn(0)

(
x̃
))

, ()
)

.

If e > 0, then t = asx
(

x̃, Gnn(e−1)
)

, for 1 ≤ t ≤ Lt
(

Gnn(e−1)
)

. Thus,

α̃e
i (x̃) = r

(
asc
(

x̃, Ωe
i

))
= µ

(
αe

i

(
ζnn(e−1)

(
x̃
))

, ~we
)

.

If e = 0 and
(

Gnn(0)
)

t
= x̃, for 0 < t ≤ Lt

(
Gnn(0)

)
, let

ã0 =
[
α̃0

0

(
x̃
)

, . . . , α̃0
nn(0)−1

(
x̃
)]

. (31)

If 0 < e < Ej
z and

(
Gnn(e−1)

)
t
= x̃, for 0 < t ≤ Lt

(
Gnn(e−1)

)
, let

ãe =
[
α̃e

0

(
x̃
)

, . . . , α̃e
nn(e)−1

(
x̃
)]

. (32)

Theorem 1. Let N j
z be an FANN with Ej

z > 0 layers on a sufficiently significant FMA Dj, and let

f j
z(~x, e) in (17) be absolutely actually computable. Let µ

j
0,1(·) be absolutely actually computable and

Gt,j
0,1, for t ∈ {nn(e)|0 ≤ e < Ej

z}, be signifiable. Then, if x̃ =
[
µ

j
0,1

(
~x0

)
, . . . , µ

j
0,1

(
~xnn(0)−1

)]
=

ã0 = η
nn(0),j
0,1 (~x), where η

t,j
0,1 is defined in (26), there exists a primitive recursive function f̃ j

z(x̃, e)
such that

f j
z(~x, e) =~ae iff f̃ j

z(x̃, e) = ãe.

Proof. Let us abbreviate f j
z to f , µ

j
0,1 to µ, µ

j
0,1
−1

to µ−1, η
t,j
0,1 to ηt, ζ

t,j
0,1 to ζt, and Gt,j

0,1 to Gt.
Since Gt is signifiable, ζt and ηt are absolutely actually computable. Let

f̃ j
z(x̃, 0) = x̃,

f̃ j
z(x̃, e + 1) =

[
α̃e+1

0

(
f̃ j
z

(
x̃, e
))

, . . . , α̃e+1
nn(e+1)−1

(
f̃ j
z

(
x̃, e
))]

.

Let us abbreviate f̃ j
z to f̃ , and let e = 0. Then f (~x, 0) = ~a0 = ~x and f̃ (x̃, 0) = x̃. We

observe that

Mathematics 2023, 11, 2620 16 of 25

x̃ =
[
µ
(
~x0

)
, . . . , µ

(
~xnn(0)−1

)]
=

[
µ
(

α0
0

(
~x,
()))

, . . . , µ
(

α0
nn(0)−1

(
~x,
()))]

= ηnn(0)(~x).

Since µ is an absolutely actually computable bijection,

~x =
(

µ−1
(

µ
(
~x0

))
, . . . , µ−1

(
µ
(
~xnn(0)−1

))
=

(
µ−1

((
x̃
)

1

)
, . . . , µ−1

((
x̃
)

nn(0)

))
= ζnn(0)(x̃).

By (26), ηnn(0)(~x) = x̃ iff ζnn(0)(x̃) = ~x. Thus, f (~x, 0) =~a0 iff f̃ (x̃, 0) = x̃.
Let e = 1. Then,

f (~x, 1) = ~a1

=
(

α1
0

(
~a0, ~w1

)
, . . . , α1

nn(1)−1

(
~a0, ~w1

))
=

(
α1

0

(
~x, ~w1

)
, . . . , α1

nn(1)−1

(
~x, ~w1

))
.

By Lemma 5,

f̃ (x̃, 1) =
[
α̃1

0

(
f̃
(

x̃, 0
))

, . . . , α̃1
nn(1)−1

(
f̃
(

x̃, 0
))]

=
[
α̃1

0

(
x̃
)

, . . . , α̃1
nn(1)−1

(
x̃
)]

=
[
µ
(

α1
0

(
~x, ~w1

))
, . . . , µ

(
α1

nn(1)−1

(
~x, ~w1

))]
=

[
µ
(

α1
0

(
~a0, ~w1

))
, . . . , µ

(
α1

nn(1)−1

(
~a0, ~w1

))]
=

[
µ
(
~a1

0,
)

, . . . , µ
(
~a1

nn(1)−1

)]
= ã1 = ηnn(1)(~a1).

Since µ is an absolutely actually computable bijection,

~a1 =
(

µ−1
(

µ
((

ã1
)

1

))
, . . . , µ−1

(
µ
((

ã1
)

nn(1)

)))
,

whence, since ζnn(1)(ã1) =~a1 iff ηnn(1)(~a1) = ã1, f (~x, 1) =~a1 iff f̃ (x̃, 1) = ã1.
Let us assume f (~x, e) =~ae iff f̃ (x̃, e) = ãe for e ≥ 1. Then,

f (~x, e + 1) = ~ae+1

=
(

αe+1
0

(
f
(
~x, e
)

, ~we+1
)

, . . . , αe+1
nn(e+1)−1

(
f
(
~x, e
)

, ~we+1
)

=
(

αe+1
0

(
~ae, ~we+1

)
, . . . , αe+1

nn(e+1)−1

(
~ae, ~we+1

))
,

and

f̃ (x̃, e + 1) =
[
α̃e+1

0

(
f̃
(

x̃, e
))

, . . . , α̃e+1
nn(e+1)−1

(
f̃
(

x̃, e
))]

=
[
α̃e+1

0

(
ãe
)

, . . . , α̃e+1
nn(e+1)−1

(
ãe
)]

=
[
µ
(

αe+1
0

(
~ae, ~we+1

))
, . . . , µ

(
αe+1

nn(e+1)−1

(
~ae, ~we+1

))]
= ηnn(e+1)(~ae+1).

Then,

~ae+1 =
(

µ−1
(

µ
((

ãe+1
)

1

))
, . . . , µ−1

(
µ
((

ãe+1
)

nn(e+1)

)))
,

Mathematics 2023, 11, 2620 17 of 25

whence, by induction, since ζnn(e+1)(ãe+1) = ~ae+1 iff ηnn(e+1)(~ae+1) = ãe+1, f (~x, e + 1) =
~ae+1 iff f̃ (x̃, e + 1) = ãe+1.

Let, for ~x ∈ Rj
0,1

nn(0)
and Ej

z > 0,

Aj
z(~x) = f j

z(~x, Ej
z − 1), (33)

and, for x̃ = ηnn(0)(~x), let

Ãj
z(~x) = f̃ j

z(x̃, Ej
z

.− 1). (34)

Then, Aj
z(~x) is the absolutely actually computable function computed by N j

z and, by
Theorem 1, Ãj

z is primitive recursive. We are now in a position to prove the final theorem
of this article.

Theorem 2. Let

Nj =
{

N j
1, N j

2, . . . , N j
k

}
, k ∈ N+, (35)

be the set of FANNs implemented on a sufficiently significant FMA Dj, and let

Aj =
{

Aj
1, Aj

2, . . . , Aj
k

}
, k ∈ N+, (36)

be the set of corresponding absolutely actually computable functions of the FANNs in Nj, as defined
in (33). There exists a bijection between Nj and a class of primitive recursive functions.

Proof. Let
Oj =

{
Ωj

1, Ωj
2, . . . , Ωj

k

}
, k ∈ N+, (37)

be the set of the numbers Ωj
z defined in (28), each of which uniquely corresponds to N j

z ∈ Nj.
Let

Fj =
{

Ãj
1, Ãj

2, . . . , Ãj
k

}
, k ∈ N+, (38)

be a class of primitive recursive functions, one function per each Ωj
z ∈ Oz, as defined in (34).

We observe that ∣∣∣Nj

∣∣∣ = ∣∣∣Aj

∣∣∣ = ∣∣∣Oj

∣∣∣ = ∣∣∣Fj

∣∣∣ = k.

Let λ1 : Nj 7→ Aj, λ2 : Aj 7→ Oj, and λ3 : Oj 7→ Fj be defined as

λ
j
1(Nj) = Aj

z;
λ

j
2(Aj

z) = Ωj
z;

λ
j
3(Ω

j
z) = Ãj

z.

Then, λj : Nj 7→ Fj, defined as

λj(N j
z) = λ

j
3

(
λ

j
2

(
λ

j
1

(
N j

z

)))
, (39)

is a bijection.

8. Discussion

The definition of the finite memory device or automation (FMD or FMA) in Section 2.2
has four main implications. First, a physical or abstract automaton is an FMD when its
memory amount is quantifiable as a natural number. Second, characters and strings are
not necessary, because bijections exist between any finite alphabet of symbols and natural
numbers and, through Gödel numbering, between any strings over a finite alphabet and

Mathematics 2023, 11, 2620 18 of 25

natural numbers, hence the term numerical memory used in the article. Third, an FSA of
classical computability becomes an FMA when the quantity of its internal and external
memory is finite, i.e., there is an upper bound in the form of a natural number on the
quantity of the machine’s memory. It is irrelevant for the scope of this investigation
whether the input tape of an FSA, the input and output tapes of such FSA modifications as
the Mealy and Moore machines (Chapter 2 in [12]) or the finite state transducers (Chapter 3
in [13]), and the input tape and the stack of a pushdown automaton (PDA) (Chapter 5
in [12]) are considered internal or external memory. Fourth, a universal Turing machine
(UTM) (Chapter 6 in [7]) is an FMA when the number of its tape cells is bounded by a
natural number, which a fortiori makes any physical computer an FMA. Thus, only one
type of universal computer is needed to define all FMA it can simulate.

Consider a universal computer UC capable of executing the universal L program
U1 constructed to prove the Universality Theorem (Theorem 3.1, Chapter 3 in [7]). The
computer UC, equivalent to a UTM, takes an arbitrary L program P, an input to that
program in the form of a natural number stored in its input register X1, which can be a
Gödel number encoding an array of numbers, executes P on X1 by encoding the memory of
P as another Gödel number and returns the output of P as a natural number, which can also
be a Gödel number encoding a sequence of natural numbers, saved in its output register Y.
Since characters and character sequences can be bijectively mapped to natural numbers, UC
can simulate any FSA or a modification thereof, e.g., a Mealy machine, a Moore machine,
a finite state transducer, or a PDA. Technically speaking, there is no need to distinguish
between the Mealy and Moore machines, because they are equivalent (Theorems 2.6, 2.7,
Chapter 2 in [12]). When a limit is placed on the numerical memory of UC by way of the
number of registers it can use and the size of the numbers signifiable in them, the input and
output registers included, UC immediately becomes an FMD and so a fortiori any device
that UC is capable of simulating.

The separation of computability into the two overlapping categories, general and
actual, is necessary for theoretical and practical reasons. A theoretical reason, generally
accepted in classical computability theory, is that it is of no advantage to put any memory
limitations on automata or on the a priori counts of unit time steps that automata may take
to execute programs that implement functions in order to show that those functions are
computable. Were it not the case, we would not be able to investigate what is computable
in principle. Rogers [10] succinctly expresses this point of view:

"[w]e thus require that a computation
terminate after some finite number
of steps; we do not insist on an a
priori ability to estimate this number."

An implication of the above assumption is that an automaton, explicit or implicit, on
which the said computation is executed has access to, literally, astronomical quantities
of numerical memory. For a thought experiment, consider an automaton programmable
in L of Chapter 2 of [7] that we used in Section 3.1, and let a program Pj

L(n), n ∈ N+,

compute the G-number of the sequence (1, . . . , n), i.e., the function computed by Pj
L is

f (n) = [1, . . . , n], as defined in (A8). Then, f (n) is a primitive recursive function and, hence,
computable in the general sense of Definition 2. Thus, f (n) is signifiable for any n ∈ N+ on
the automaton. In particular, if n is the Eddington number, i.e., n = 1080 ∈ N+, estimating
the number of hydrogen atoms in the observable universe [14], there is a computation and,
by implication, a variable in Pj

L to which the G-number of (1, 2, . . . , 1080) can be assigned.
The foregoing paragraph brings us to a practical reason for separating computability

into the general and actual categories: it is of little use for an applied scientist who wants to
implement a number-theoretic function f in a programming language L for an FMA Dj to
know that f is generally computable and the L program can, therefore, compute, in principle,
some characteristic of arbitrarily large natural numbers, e.g., the Eddington number. If
no natural number greater than some n ∈ N is signifiable on Dj, the scientist must make

Mathematics 2023, 11, 2620 19 of 25

provisions in the program for the non-signifiable numbers in order to achieve feasible
results with absolutely actually computable functions.

Theorem 1 shows that the computation of a trained FANN on a finite memory device
can be packed into a unique natural number. Once packed, the natural number can be
used as an archive, after a fashion, to look up natural numbers that correspond, in the
bijective sense of the term, to the real vectors computed by the function Az

z of an FANN
N j

z implemented on the device. The correspondence is such that for any signifiable ~x,
the output of N j

z, i.e., Aj
z(~x) = ~a, corresponds to the natural number ã computed by the

primitive recursive function Ãj
z, i.e., Ãj

z(x̃) = ã, and the input ~x corresponds to the natural
number x̃. Thus, Aj

z(~x) =~a iff Ãj
z(x̃) = ã. Furthermore, the function Ãj

z is computable in
the general sense and is absolutely actually computable on any FMA where the natural
number Ωj

z is signifiable.
A correspondence established in Theorem 2 should be construed so that the uniqueness

of Ωj
z does not imply the uniqueness of Aj

z because the same function can be computed
by different FANNs. What it implies is that, for any two different FANNs N j

n and N j
m,

n 6= m (e.g., different numbers of layers or different numbers of nodes in a layer or different
activation functions or different weights), implemented on the same FMA Dj, Ωj

n 6= Ωj
m.

However, it may be the case that Aj
m(~x) = Aj

n(~x) for any signifiable ~x, and consequently,
Ãj

m(x̃) = Ãj
n(x̃).

9. Conclusions

To differentiate between feedforward artificial neural networks and their functions as
abstract mathematical objects and the realizations of these networks and functions on finite
memory devices, we introduced the categories of general and actual computability. We
showed that correspondences are possible between trained feedforward artificial neural
networks on finite memory devices and classes of primitive recursive functions. We argued
that there are theoretical and practical reasons why computability should be separated into
these categories. The categories are overlapping in the sense that some functions belong in
both categories.

Funding: This research received no external funding.

Data Availability Statement: No additional data are provided for this article.

Conflicts of Interest: The author declares no conflict of interest with himself.

Abbreviations

The following abbreviations are used in this article:

ANN Artificial Neural Network
FANN Feedforward Artificial Neural Network
FMA Finite Memory Automaton or Automata
FMD Finite Memory Device
G-number Gödel Number
TM Turing Machine
UTM Universal Turing Machine
FSA Finite State Automaton or Automata
PDA Pushdown Automaton or Automata

Appendix A

Appendix A.1. Primitive Recursive Functions and Predicates

In this section, we define several functions shown to be primitive recursive in [7]. All
smallcase variables in this section, e.g, x, y, z, t, n, and m, with and without subscripts, refer
to natural numbers and the term number is synonymous with the term natural number.

Mathematics 2023, 11, 2620 20 of 25

The expression

(∃t)≤zP(t, x1, . . . , xn) (A1)

is called the bounded existential quantification of the predicate P and holds iff P(t, x1, . . . , xn) =
1 for at least one t such that 0 ≤ t ≤ z. The expression

(∀t)≤zP(t, x1, . . . , xn) (A2)

is called a bounded universal quantification of P and holds iff P(t, x1, . . . , xn) = 1 for every t
such that 0 ≤ t ≤ z. If P(t, x1, . . . , xn) is a predicate and z is a number, then

x = min
t≤z
{P(t, x1, . . . , xn)} (A3)

is called the bounded minimalization of P and defines the smallest number t for which P
holds or 0 if there is no such number. It is shown in [7] that (1) the predicates x = y, x 6= y,
x < y, x > y, x ≤ y, x ≥ y, and x|y, i.e., x divides y, are primitive recursive; (2) a finite
logical combination of primitive recursive predicates is primitive recursive; and (3) if a
predicate P(·) is primitive recursive, then so are its negation, its bounded minimalization,
and its bounded universal and existential quantifications.

Let

x .− y =

{
x− y if x ≥ 0,
0 if x < y.

(A4)

The pairing function of natural numbers x and y, 〈x, y〉 : N→ N, is

〈x, y〉 = z, (A5)

where

z = 2x(2y + 1) .− 1;

γ(d) ≡ {2d|(z + 1) ∧ (∀c)≤z+1{2c - (z + 1) ∨ c ≤ d}};

x = min
d≤z+1

γ(d);

y = 1
2

(
z+1
2x

.− 1
)

.

For any number z, there are unique x and y such that 〈x, y〉 = z. For example, if z = 27,
then

x = min
d≤28

γ(d) = 2;

y = 1
2

(
28
22

.− 1
)
= 3;

〈2, 3〉 = 22(2 · 3 + 1) .− 1 = 27.

The functions l(z) and r(z)

l(z) = min
x≤z
{(∃y)≤z{z = 〈x, y〉}}

r(z) = min
y≤z
{(∃x)≤z{z = 〈x, y〉}}

(A6)

Mathematics 2023, 11, 2620 21 of 25

return the left and right components of any number z so that 〈l(z), r(z)〉 = z. Thus, if
z = 27 = 〈2, 3〉, then l(z) = 2, r(z) = 3.

The symbol pn refers to the n-th prime, i.e., p1 = 2, p2 = 3, p3 = 5, etc., and p0 = 0, by
definition. The primes are computed by the following primitive recursive function.

π(i) = pi. (A7)

Thus, π(0) = 0, π(1) = 2, π(2) = 3, π(3) = 5, π(4) = 7, π(5) = 11, etc. If (a1, . . . , an)
is a sequence of numbers, the function

[a1, . . . , an] =
n

∏
i=1

π(i)ai (A8)

computes the Gödel number (G-number) of this sequence. The G-number of the empty
number sequence () is 1. Thus, the G-number of (3, 101, 7891, 1, 43) is [3, 101, 7891, 1, 43] =
23 · 3101 · 57891 · 71 · 1143.

If x = [a1, . . . , an], the accessor function

(x)i = min
t≤x
{¬{π(i)t+1|x}} (A9)

returns the i-th element of x. Thus, if x = [1, 7, 13], then (x)1 = 1, (x)2 = 7, (x)3 = 13, and
(x)j = 0 for j = 0 or j > 3.

The length of a Gödel number x is the position of the last non-zero prime power in x.
Specifically, if x = [a1, a2, . . . , an], its length is computed by the function Lt(·) defined as

Lt(x) = min
i≤x
{(x)i 6= 0∧ (∀j)≤x{{j > i} → {(x)j = 0}}}. (A10)

Thus, Lt(540) = Lt([2, 3, 1]) = 3. Lt([a1, . . . , an]) = n iff an 6= 0, [(x)1, . . . , (x)n] = x
when Lt(x) = n, and Lt(0) = Lt(1) = 0. Lt([x1, x2, . . . , xn]) = Lt([x1, x2, . . . , xn, 0, . . . , 0]),
where xn 6= 0.

The function bx/yc returns the integer part of the quotient x/y. Thus, b7/2c = 3,
b2/5c = 0, b8/5c = 1, and bx/0c = 0 for any number x.

Appendix A.2. Gödel Number Operators

The functions in this section or variants thereof were shown to be primitive recursive
in [11]. The function

set(b, i, v) =


⌊

b
π(i)(b)i

⌋
· π(i)v if 1 ≤ i ≤ Lt(b) ∧ b > 1∧ v > 0,

0 otherwise

(A11)

assigns the value of the i-th element of the G-number b to v. Thus, if b = [1, 2] = 2132 = 18,
i = 1, and v = 3, then

set([1, 2], 1, 3) =
⌊

b
π(1)(b)1

⌋
· π(1)3 =

⌊
[1, 2]

2([1,2])1

⌋
· 23 =

⌊
21 · 32

21

⌋
· 23 = [3, 2] = 72.

The function cnt(·) in (A12), where s(t) = t + 1 is one of the three initial functions
defined in (11) and (x)i is defined in (A9), returns the count of occurrences of x in y. Thus,
if y = [1, 2, 1, 3], then cnt(1, y) = 2. A convention in (A12) and other equations in this
section is that the name of auxiliary functions end in “x”.

cnt(x, y) =

{
cntx(x, y, Lt(y)) if y > 1,
0 otherwise.

(A12)

Mathematics 2023, 11, 2620 22 of 25

cntx(x, y, 0) = 0,
cntx(x, y, t + 1) = cntxx(x, y, t, cntx(x, y, t)).

cntxx(x, y, t, c) =

{
1 + c if (y)s(t) = x,
c otherwise.

If y is a G-number, then the predicate

x ∈g y ≡ cnt(x, y) 6= 0 (A13)

holds if x is an element of y. Thus, 1 ∈g [3, 4, 1, 5], but 1 6∈g [3, 4, 2, 5]. The function

rap(x, y) =

{
y · {π(Lt(y) + 1)}x if x > 0∧ y > 1∧ 0 6∈g y,
0 otherwise

(A14)

appends x to the right of the rightmost element of y. Thus,

rap(1, [1]) = [1] · {π(Lt([1]) + 1)}1 = [1] · {π(2)}1

= 21 · 31 = [1, 1];
rap(8, [2, 3, 5]) = [2, 3, 5] · {π(4)}8

= [2, 3, 5, 8];
rap(5, set([10, 3], 1, 2)) = rap(5, [2, 3])

= [2, 3, 5].

Let

lc(x1, x2, 0) = x2,
lc(x1, x2, t + 1) = rap((x1)s(t), lc(x1, x2, t)).

Then, the function

x⊗l y =


lc(x, y, Lt(x)) if x > 1∧ y > 1∧ 0 6∈g x ∧ 0 6∈g y,
x if x > 1∧ y = 1∧ 0 6∈g x,
0 otherwise

(A15)

places all numbers in y, in order, to the left of the first number in x, while the function

x⊗r y =


y⊗l x if x > 1∧ y > 1∧ 0 6∈g x ∧ 0 6∈g y,
x if x > 1∧ y = 1∧ 0 6∈g x,
0 otherwise

(A16)

places all numbers of y, in order, to the right of the rightmost number in x. We refer to
the function in (A15) as left concatenation and to the function in (A16) as right concatenation.
Thus, [3, 5] ⊗l [7, 11] = [7, 11, 3, 5]; [3, 5] ⊗r [7, 11] = [3, 5, 7, 11]; [2, 3] ⊗l [1] = [1, 2, 3];
[2, 3]⊗r [1] = [2, 3, 1].

Let

gnx(l, u, k, 0) = [l],
gnx(l, u, k, t + 1) = gnxx(l, u, k, gnx(l, u, k, t), t);

gnxx(l, u, k, z, t) =

{
z⊗r [l + s(t)k] if l + s(t)k ≤ u,
z otherwise.

Then, for l > 0 and u > 0, the function

Mathematics 2023, 11, 2620 23 of 25

ggn(l, u, k) =

{
gnx(l, u, k, s(u .− l)) if k > 0∧ (∃t)≤u{l + tk = u ∧ t > 0},
0 otherwise.

(A17)

generates a G-number whose numbers start at l and go to u in positive integer increments
of k. Thus, ggn(1, 2, 1) = [1, 2]; ggn(1, 2, 2) = 0; ggn(1, 3, 1) = [1, 2, 3]; ggn(1, 3, 2) = [1, 3];
ggn(1, 3, 3) = 0. The abbreviation ggn stands for generator of Gödel numbers.

The function

asx(x, y) = min
t≤Lt(y)

{t > 0∧ x = l((y)t)} (A18)

returns the smallest index t of 〈i, j〉 ∈ y such that x = i. Thus, if

y = [〈10, 100〉, 〈20, 200〉, 〈30, 300〉],

then asx(10, y) = 1, asx(20, y) = 2, asx(30, y) = 3. The function

asc(x, y) = (y)asx(x,y) (A19)

returns the pair from y at the index t returned by asx(·). Thus, if

y = [〈10, 100〉, 〈20, 200〉, 〈30, 300〉],

then

asc(10, y) = (y)asx(10,y) = (y)1 = 〈10, 100〉;
asc(20, y) = (y)asx(20,y) = (y)2 = 〈20, 200〉;
asc(30, y) = (y)asx(30,y) = (y)3 = 〈30, 200〉;
asc(13, y) = (y)asx(13,y) = (y)0 = 0.

Appendix A.3. Examples of Ω Numbers

Let us abbreviate Gt,j
0,1 in (25) to Gt and consider the FANN in Figure 1. Let us assume

that, as in Example 3, R = {0, 0.3, 0.6, 0.9, 1}, I = {1, 2, 3, 4, 5} and t = 2, and

G2,j
0,1 = G2

= [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5],
[2, 1], [2, 2], [2, 3], [2, 4], [2, 5],
[3, 1], [3, 2], [3, 3], [3, 4], [3, 5],
[4, 1], [4, 2], [4, 3], [4, 4], [4, 5],
[5, 1], [5, 2], [5, 3], [5, 4], [5, 5]].

In other words, G2 is a G-number such that [x1, x2] ∈g G2 iff (x1, x2) ∈ I2. G3,
whose definition we omit for space reasons, is a G-number whose length is 125 such that
[x1, x2, x3] ∈g G3 iff (x1, x2, x3) ∈ I3, e.g., [1, 2, 3] ∈g G3 iff (1, 2, 3) ∈ I3. We can compute

Ωe
i for the FANN N j

z in Figure 1 as follows.

Mathematics 2023, 11, 2620 24 of 25

Ω0
0 =

[〈(
G2
)

1
, µ
(

α0
0

(
ζ2
((

G2
)

1

)
, ()
))〉

, . . . ,
〈(

G2
)

25
, µ
(

α0
0

(
ζ2
((

G2
)

25

)
, ()
))〉]

;

Ω0
1 =

[〈(
G2
)

1
, µ
(

α0
1

(
ζ2
((

G2
)

1

)
, ()
))〉

, . . . ,
〈(

G2
)

25
, µ
(

α0
1

(
ζ2
((

G2
)

25

)
, ()
))〉]

;

Ω1
0 =

[〈(
G2
)

1
, µ
(

α1
0

(
ζ2
((

G2
)

1

)
, ~w1

))〉
, . . . ,

〈(
G2
)

25
, µ
(

α1
0

(
ζ2
((

G2
)

25

)
, ~w1

))〉]
;

Ω1
1 =

[〈(
G2
)

1
, µ
(

α1
1

(
ζ2
((

G2
)

1

)
, ~w1

))〉
, . . . ,

〈(
G2
)

25
, µ
(

α1
1

(
ζ2
((

G2
)

25

)
, ~w1

))〉]
;

Ω1
2 =

[〈(
G2
)

1
, µ
(

α1
2

(
ζ2
((

G2
)

1

)
, ~w1

))〉
, . . . ,

〈(
G2
)

25
, µ
(

α1
2

(
ζ2
((

G2
)

25

)
, ~w1

))〉]
;

Ω2
0 =

[〈(
G3
)

1
, µ
(

α2
0

(
ζ3
((

G3
)

1

)
, ~w2

))〉
, . . . ,

〈(
G3
)

125
, µ
(

α2
0

(
ζ3
((

G3
)

125

)
, ~w2

))〉]
;

Ω2
1 =

[〈(
G3
)

1
, µ
(

α2
1

(
ζ3
((

G3
)

1

)
, ~w2

))〉
, . . . ,

〈(
G3
)

125
, µ
(

α2
1

(
ζ3
((

G3
)

125

)
, ~w2

))〉]
.

We can compute individual elements of Ωe
i . For example, since (G2)17 = [4, 2],(

Ω0
0

)
17

=
〈(

G2
)

17
, µ
(

α0
0

(
ζ2
((

G2
)

17

)
, ()
))〉

=
〈
[4, 2], µ

(
α0

0

(
ζ2
(
[4, 2]

)
, ()
))〉

=
〈
[4, 2], µ

(
α0

0

(
(0.9, 0.3), ()

))〉
=

〈
[4, 2], µ

(
0.9
)〉

=
〈
[4, 2], 4

〉
∈ N.

Since (G2)12 = [3, 2],(
Ω1

0

)
12

=
〈(

G2
)

12
, µ
(

α1
0

(
ζ2
((

G2
)

12

)
, ~w1

))〉
=

〈
[3, 2], µ

(
α1

0

(
ζ2
(
[3, 2]

)
, ~w1

))〉
=

〈
[3, 2], µ

(
α1

0

(
(0.6, 0.3), ~w1

))〉
=

〈
[3, 2], z

〉
∈ N,

where z = µ
(

α1
0

(
(0.6, 0.3), ~w1

))
∈ I. We know that [2, 3, 4] ∈g G3 because (2, 3, 4) ∈ I3.

Thus, (G3)t = [2, 3, 4], for 1 ≤ t ≤ 125. Let us therefore assume, for the sake of this example,
that (G3)35 = [2, 3, 4]. Then,(

Ω2
1

)
35

=
〈(

G3
)

35
, µ
(

α2
1

(
ζ3
((

G3
)

35

)
, ~w2

))〉
=

〈
[2, 3, 4], µ

(
α2

1

(
ζ3
(
[2, 3, 4]

)
, ~w2

))〉
=

〈
[2, 3, 4], µ

(
α2

1

(
(0.3, 0.6, 0.9), ~w2

))〉
=

〈
[2, 3, 4], µ

(
α2

1

(
(0.3, 0.6, 0.9), ~w2

))〉
=

〈
[2, 3, 4], z

〉
∈ N,

where z = µ
(

α2
1

(
(0.3, 0.6, 0.9), ~w2

))
∈ I.

Using (29), we can compute Ωj
z for the FANN N j

z in Figure 1 with the Ω numbers as

Ωj
z =

[〈
0,
[
Ω0

0, Ω0
1

]〉
,
〈

1,
[
Ω1

0, Ω1
1, Ω1

2

]〉
,
〈

2,
[
Ω2

0, Ω2
1

]〉]
.

From Ωj
z above, we can compute all α̃e

i defined in (30) for N j
z in Figure 1. For example,

since (G2)12 = [3, 2],

Mathematics 2023, 11, 2620 25 of 25

α̃1
1([3, 2]) = r

(
asc
(

x,
(

r
(

asc
(

1, Ωj
z

)))
2

))
= r

(
asc
(
[3, 2], Ω1

1

))
= r

(〈(
G2
)

12
, µ
(

α1
1

(
ζ2
((

G2
)

12

)
, ~w1

))〉)
= µ

(
α1

1

(
ζ2
((

G2
)

12

)
, ~w1

))
= µ

(
α1

1

(
ζ2
(
[3, 2]

)
, ~w1

))
= µ

(
α1

1

((
0.6, 0.3

)
, ~w1

))
∈ I.

References
1. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
2. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
3. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
4. Gripenberg, G. Approximation by neural networks with a bounded number of nodes at each level. J. Approx. Theory 2003, 122,

260–266. [CrossRef]
5. Guliyev, N.; Ismailov, V. On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural

Netw. 2019, 98, 296–304. [CrossRef] [PubMed]
6. Gödel, K. On formally undecidable propositions of Principia Mathematica and related systems I. In Kurt Gödel Collected Works

Volume I Publications 1929–1936; Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., Eds.;
Oxford University Press: Oxford, UK, 1986.

7. Davis, M.; Sigal, R.; Weyuker, E. Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, 2nd ed.;
Harcourt, Brace & Company: Boston, MA, USA, 1994.

8. Kleene, S.C. Introduction to Metamathematics; D. Van Nostrand: New York, NY, USA, 1952.
9. Meyer, M.; Ritchie, D. The complexity of loop programs. In Proceedings of the ACM National Meeting, Washington, DC, USA,

14–16 November 1967; pp. 465–469.
10. Rogers, H., Jr. Theory of Recursive Functions and Effective Computability; The MIT Press: Cambridge, MA, USA, 1988.
11. Kulyukin, V. On primitive recursive characteristics of chess. Mathematics 2022, 10, 1016. [CrossRef]
12. Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation; Narosa Publishing Hourse: New Delhi,

India, 2002.
13. Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2000.
14. Eddington, A.S. The constants of nature. In The World of Mathematics; Newman, J.R., Ed.; Simon and Schuster: New York, NY,

USA, 1956; Volume 2, pp. 1074–1093.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/S0021-9045(03)00078-9
http://dx.doi.org/10.1016/j.neunet.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29301110
http://dx.doi.org/10.3390/math10071016

	Introduction
	Preliminaries
	Functions and Predicates
	Finite Memory Automata

	Computability: General vs. Actual
	General Computability
	Actual Computability

	A Recursive Formalization of Feedforward Artificial Neural Networks
	Finite Sets as Gödel Numbers
	Numbers j,ez,i and jz: Packing FANNs into Natural Numbers
	FANNs and Primitive Recursive Functions
	Discussion
	Conclusions
	Appendix A
	Primitive Recursive Functions and Predicates
	Gödel Number Operators
	Examples of Numbers

	References

