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Abstract: Preventive maintenance is widely used in wind turbine equipment to ensure their safe
and reliable operation, and this mainly includes time-based maintenance (TBM) and condition-
based maintenance (CBM). Most wind farms only use TBM as the main maintenance strategy in
engineering practice. Although this can meet certain reliability requirements, it cannot fully utilize
the characteristics of TBM and CBM. For this, a state model based on the stochastic differential
equation (SDE) is established in this paper to describe the spatio-temporal evolution process of the
degradation behavior of wind turbine generators, in which the components’ failure is represented
by a proportional hazards model, the random fluctuation of the state is simulated by the Brownian
motion, and the SDE model is solved by a function transformation method. Based on the model, the
characteristics of TBM and CBM, and the asymptotic relationship between them, are discussed and
analyzed, the necessity and feasibility of their combination are expounded, and a joint maintenance
strategy is proposed and analyzed. The results show that the stochastic model can better reflect
the real deterioration state of the generator. Moreover, TBM has a fixed maintenance interval,
depending on global sample tracks and, only depending on the local sample track, CBM can follow
the component state. Finally, the rationality and effectiveness of the proposed model and results are
verified by a practical example.

Keywords: stochastic differential equations (SDE); degradation model; condition-based maintenance
(CBM); time-based maintenance (TBM); wind turbine

MSC: 00A06

1. Introduction

In recent years, wind power generation has been widely used due to its advantages
of clean, environment-friendly, renewable, and low operation and maintenance costs, and
given the increasing demand for energy and the significant enhancement of the awareness
of ecological environment protection [1]. Since September 2020, the Chinese government
has proposed the “carbon peaking and carbon neutrality goals” policy, has raised the
requirement for strengthening the planning and construction of a new energy supply
and consumption system, and has made a guarantee in the “Fourteenth Five Year Plan”
for the development of national wind power generation in China. This means that, in
China, the average annual increase in installed capacity of wind power generation will
be no less than 60 GW by 2025, at least 800 GW by 2030, and at least 3 TW by 2060 [2].
This indicates that the wind power industry has encountered a historical opportunity
for development, and that wind power generation is poised to play a critical role as the
primary driving force in the future energy system of China. Meanwhile, wind farms are
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typically situated in remote mountainous regions or offshore locations and are distant from
urban areas, which inevitably leads to complex and harsh operating environments for wind
turbines, due to which, furthermore, wind turbines deteriorate rapidly and fail frequently,
making maintenance very inconvenient and costly. Therefore, it is necessary to study the
degradation process and maintenance strategy of wind turbine components.

The main maintenance methods for wind turbines include corrective maintenance
(CM) and preventive maintenance (PM). CM refers to the maintenance measures taken
after the equipment failure, rather than the measures taken before that. CM can maximize
the effective life of the equipment, but it requires downtime for maintenance when an
unexpected breakdown occurs, which may conduce to greater production losses. Therefore,
CM is applicable to non-core components, of which the failure doesn’t have a significant
impact [3]. And PM is a maintenance activity carried out on equipment to ensure that it
is in an acceptable operating state before failure occurs, which is an effective strategy to
prevent the sudden occurrence of the malfunctions [4].

There are two main types of PM, TBM and CBM. TBM is a type of periodic maintenance,
i.e., maintenance of components such as generators is implemented at fixed intervals.
Therefore, TBM is an active maintenance that can be scheduled and planned in advance,
which means that maintenance resources (such as materials, spare parts and information)
and personnel arrangements and transfers can be adequately prepared in advance in
accordance with the maintenance plan [5,6]. CBM, on the other hand, is a real-time
dynamic maintenance according to components’ state, i.e., its implementation is depended
on accurately perceiving the state of components or equipment via a series of condition
monitoring and diagnosis systems, such as Supervisory Control and Data Acquisition
(SCADA) system. However, uncertainty as to the state or deterioration of components or
equipment makes CBM passive maintenance [7,8].

Sarker et al. [9–11] specially proposed a reliability analysis methodology for predicting
faults in offshore wind turbines, which incorporates condition monitoring and expert
systems. Their research focuses on the development of a detailed TBM strategy for offshore
wind turbines, emphasizing the role of reliability in the formulation of TBM intervals.
Huang [12] presented a technical research framework for the proportional hazards model
(PHM) of wind turbines, which utilizes the operational data obtained from the SCADA
system. And they studied key PHM technologies such as data fusion, state evaluation,
fault diagnosis and state trend prediction, and applied them to CBM. Tian [13] established
an optimization model of CBM for cold storage equipment based on the Markov decision
process, and analyzed the optimal CBM strategy of coupling generator state and mainte-
nance cost. Yuan, et al. [14–16] established the state degradation model of equipment under
continuous state monitoring and periodic state monitoring based on the life distribution
of train on-board equipment, and optimized the CBM strategy with the state threshold as
the core under the constraint of component availability and maintenance cost. Chen [17]
focused on the study of trouble-free time for various equipment used in urban rail transit,
obtained its probability distribution model by a trial error method, and determined the
interval of TBM by combining the relationship between reliability characteristics. Based on
reliability theory and the PHM model, Luo [18] analyzed the relationship between historical
fault data and historical monitoring data of wind turbine components including generator,
gearbox, bearing system, etc., and designed the CBM strategy for repairable components
of wind turbine. Li et al. [19–23] established a state degradation model of wind turbines
based on the Markov state transition process, discussed the relationship between the actual
and expected operation curve of wind turbines, and based on system reliability, availability,
stability and asymptotic stability as index, analyzed and designed the CBM strategy with
inspection frequency as the core and TBM strategy with inspection time as the core. It is not
difficult to see that as a traditional maintenance method, TBM has significant advantages
that its implementation is proactive and has plans and arrangements established, which
makes it still adopted by many wind farms. CBM is a real-time and dynamic process that
accurately perceives the deterioration of components such as generators and decreases the
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demand for CM, thereby reducing the overall cost of maintenance. This has led CBM to
rise from being an auxiliary or back-up to an equally important position as TBM in many
maintenance occasions, and even in some cases, TBM has become an auxiliary or back-up
to CBM.

However, the state degradation models established in most studies are based on tradi-
tional ordinary differential equations (ODEs), of which the essence is the average result
according to the law of large numbers in probability theory [24]. Although the mainte-
nance strategy based on ODE models can basically meet the maintenance needs of most
wind turbines in practice, which is naturally the reason why TBM has always been used
extensively, the model still needs to be improved. The complex environment of wind farms,
such as those mostly located in high altitude areas, ocean areas and desert areas, where the
wind turbine units are widely distributed, results in the operating conditions of each one
have certain particularities, and thus the differences of their sample tracks should be taken
into consideration. That means, essentially, to provide a more accurate and comprehensive
representation of components’ degradation, it is essential to consider the interference of
various random factors, such as environmental impacts and operational changes, on the
state of the component generator. One method to solve this problem is to introduce a
stochastic model. Duan et al. [25,26] established a state degradation model for wind turbine
generators based on a first-order linear SDE, and analyzed the relationship between CBM,
equipment availability, and maintenance costs. Wang et al. [27–29] established the state
model of wind turbine gearboxes by a SDE, introduced the Brownian motion to describe
the disturbance of random factors to components or equipment, designed CBM and TBM
strategies based on reliability analysis, and elaborated the necessity of combining CBM
and TBM. There is no doubt that the stochastic model has a further description of the state
deterioration behavior for components of wind turbine, and however, neither linear nor
non-linear SDE models have been used in these studies to discuss the solution of SDE
in more depth. And moreover, the asymptotic relationship between TBM and CBM and
the relationship between TBM or CBM and the joint strategy of TBM and CBM are not
discussed in detail.

Regarding the above problems, this paper analyzes and describes the spatio-temporal
evolution behavior of wind turbine generators based on a non-linear SDE model, and
obtains the analytical solution of the model under certain conditions by a function trans-
formation method. Furthermore, based on the stochastic model, the advantages and
disadvantages of TBM and CBM, as well as their asymmetric relationship, are analyzed and
discussed, and the characteristics of the joint maintenance strategy, which is a maintenance
strategy that combines TBM and CBM, are demonstrated by martingale analysis and change
in probability measure theory.

Thereupon, the subsequent sections of this paper are organized as follows: Section 2
establishes the state degradation model of a component generator based on the stochastic
differential equation, and analyses the characteristics and shortcomings of TBM and CBM,
respectively; Section 3 discusses the asymptotic relationship between TBM and CBM and
the characteristics of the joint strategy of TBM and CBM based on the established model;
and Section 4 takes a component generator of a wind turbine as an example for simulation
and verification.

2. SDE Model

Prior to establishing the state degradation model of wind turbine components, includ-
ing the generator, it is necessary to provide the following definitions and presumptions:

Definition 1. X(t) ∈ R[0,1] (t ≥ 0) is a stochastic function which represents the component state
with a sample space Ω of the wind turbine at time t, reflecting its health condition, i.e., the component
is in a fault operating state when X(t) = 0, and the component is in a completely new operating state
when X(t) = 1.
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Definition 2. Define a filtered probability space (Ω,F ,R,P) where: F is the σ-algebra on Ω
generated by X(t), this consists of some subsets (also called events) of Ω, and Ft ⊆ F is the σ-
algebra on Ω generated by X(t) up to time t, which contains all the information about the stochastic
process {X(t)} up to time t; a filtration F is a family{Ft} of increasing σ-algebra on measurable space
(Ω,F ), which specifies how the information about {X(t)} is revealed in time t; and the function P:
F → R

[0,1] is the probability measure on (Ω,F ), also known as probability.

Presumption 1 ([30]). The maintenance behavior of components is reasonable and complete, i.e.,
there are no errors or failures, interruptions, incomplete, etc. On the scale of the full-life cycle of
components, maintenance is considered to be implemented and completed immediately, making the
equipment “as good as new”.

2.1. Modeling and Model Description

Based on the above definitions and hypotheses, the state degradation model of wind
turbine components is established as follows:

dX(t) = µ(t, X(t))dt + σ(t, X(t))dB(t) (1)

where µ(t,X(t)) = −λ(t,X(t))·X(t) is the drift coefficient, depending on the failure rate
function λ(t,X(t)) of the component; σ(t,X(t)) is the diffusion coefficient, characterizing the
random disturbance of the component state; and B(t) is Brownian motion.

Equation (1) satisfies the following three conditions:

1. Locally consistent Lipschitz continuity, i.e., for every T and N, there exists a constant
CN depending only on N, such that for all |x|,|y| ≤ N and all 0 ≤ t ≤ T:

|σ(t, x)− σ(t, y)|+ |µ(t, x)− µ(t, y)| ≤ CN |x− y| (2)

2. Linear growth condition, i.e., for every T, there is a constant CT depending only on T,
such that for all 0 ≤ t ≤ T:

|σ(t, x) + µ(t, x)| ≤ CT(1 + |x|) (3)

3. For initial time, t0 ≥ 0, X(t0) is independent of {B(t), t∈[t0,T]} and the mathematical
expectation of X2(t0), E[X2(t0)] < ∞ [31].

Therefore, Equation (1) provides a unique solution and has integral form:

X(t) = X(t0) +
∫ t

t0

µ(s, X(s))ds +
∫ t

t0

σ(s, X(s))ds (4)

Then, we can say that X(t) is the solution of the SDE Equation (1) and, according to
the definition, X(t) is a diffusion process. Additionally, the drift coefficient and diffusion
coefficient in Equation (1) have the following probability meanings:

µ(t, x) = lim
h→0

E[X(t + h)− X(t)|X(t) = x]
h

(5)

σ2(t, x) = lim
h→0

E
[
(X(t + h)− X(t))2

∣∣∣X(t) = x
]

h
(6)

2.1.1. CBM Model

The proportional hazards model (PHM) is often used to describe components’ failure in
the CBM strategy, whether for the maintenance of repairable components or the replacement
of non-repairable components, since it can effectively combine components’ failure data
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with condition-monitoring data and fully consider the state information [32]. According to
the PHM model, we have:

λ(t, X(t)) = λ(t, Z(t)) = λ0(t)· exp{γ·Z(t)} (7)

where λ0(t) is the basic failure rate function and its form determines the type of PHM
model; Z(t) represents the real-state information of generators at time t, which consists
of p condition-monitoring data (e.g., temperature, stress, deformation, etc.) obtained
from a monitoring system such as SCADA, so it is a p-dimensional vector function, i.e.,
Z(t) = [Z1(t) Z2(t) · · · Zp(t)]T; and γ = [γ1 γ2 · · · γp] is a p-dimensional constant vector and
γi represents the weight of the corresponding i-th condition-monitoring data Zi(t), i = 1, 2,
. . . , p.

The basic failure rate function λ0(t) is determined by the specific description model of
the failure rate utilized in this research. The Weibull distribution model and the Gamma
distribution model are widely used to depict the failure rate. The actual difference be-
tween the two is that the Gamma model is generally used when the failure rate is strictly
monotonous. When the failure rate fluctuates, the Weibull model is often used. At the
same time, they are also different in mathematical treatment, parameter estimation, and
numerical simulation. In this paper, the Weibull distribution model is used to represent the
basic failure rate function, i.e., the Weibull proportional hazards model (WPHM), and then:

λ0(t) =
β

η

(
t
η

)β−1
, t ≥ 0 (8)

where β > 0 and η > 0 are the shape and scale parameters of the Weibull distribution W(β,η).
The random disturbance of a generator is independent of the operating time, but its

effect is related to the current state of the component. Therefore, the diffusion coefficient
σ(t,X(t)) = KX(t), represents the fluctuation rate of the generator state.

Then, the state model of CBM is:

dX(t) = − β

η

(
t
η

)β−1
· exp{γ·Z(t)}X(t)dt + KX(t)dB(t) (9)

And Equation (9) is a first-order nonlinear SDE model with non-homogeneous coeffi-
cients. It contains the real state information of the component generator represented by the
covariate Z(t), which is the essential feature that distinguishes the CBM strategy from other
maintenance strategies. The meaning of the state X(t) in Equation (9) is consistent with
that given at the beginning of Section 2. Due to the existence of Brownian motion B(t), the
process of components’ degradation is random. Furthermore, Equation (9) is an Itō-type
SDE, i.e., its solution X(t) is an Itō process [33,34].

2.1.2. TBM Model

TBM has a fixed maintenance interval, for which the sample track of the generator
state of TBM can be considered aptotic. Moreover, TBM is the expectation of CBM [28].
Since the mean value of the disturbance is zero, the state model of TBM degrades to an
ordinary differential equation (ODE) model, i.e.,

dX(t) = −λ∗(t)X(t)dt (10)

where λ*(t) is the average failure rate of all CBM sample tracks, describing the average
situation exhibited by many CBM sample tracks.

The state model of TBM described in Equation (10) is a first-order nonlinear ODE
model, and its sample path is fixed, which reflects the expectations of many CBM sample
paths. In addition, the time required for each sample path of the TBM state to reach the
maintenance threshold, as given in Equation (10), is approximately identical. The meaning
of the state X(t) therein is consistent with that given at the beginning of Section 2.
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2.2. Parameter Estimation
2.2.1. The Drift Coefficient

The parameter estimation of the drift coefficient is mainly to estimate the parameter of
the basic fault rate function λ0(t). A set of ordered samples of the random variable Λ of the
basic failure rate for wind turbine components, such as generators, is λ1 ≤ λ2 ≤ . . . ≤ λn,
and Λ obeys the Weibull distribution W(β,η) with unknown shape and scale parameters
β > 0, η > 0. Then, the k-th order moment of Λ is:

EΛk = Mk = ηkΓ
(

1 +
k
β

)
(11)

where Γ(·) is the Gamma function, Γ(1 + x) = xΓ(x). Additionally, the calculated sample
moment is:

Sn(λ) =


0, λ < λ1
r/n, λr ≤ λ < λr+1
1, λn ≤ λ

, r = 1, 2, . . . , n− 1 (12)

Furthermore, the function for calculating the sample observed values is:

mk =
∫ +∞

0
(1− Sn(u))du =

n−1

∑
r=0

(
1− r

n

)k
(λr+1 − λr) (13)

where λ0 = 0. According to the moment estimation theory, we have:

Mk = mk, k = 1, 2, 4 (14)

Then, the estimator β̂ of the shape parameter β can be obtained:

β̂ =
ln 2

ln(M1 −M2)− ln(M2 −M4)
(15)

and

Γ
(

1 +
1
β̂

)
η̂ = M1 (16)

Solving Equation (16), the estimator η̂ of the scale parameter η can be obtained.
The drift coefficient parameter estimation has been completed.

2.2.2. The Diffusion Coefficient

It can be seen from Equation (6) that the diffusion coefficient is a characterization of
the conditional average second-order moment growth rate of the component state. Since
the fluctuation of state is independent of time, the K-value in the diffusion coefficient can
be estimated as follows.

In the time interval [0, T], take the step ∆t as:

∆t = sup{∆ti = ti − ti−1, i = 1, 2, . . . , N} (17)

and 0 ≤ n∆t ≤ T (n = 1,2, . . . , N). Then:

K =
1
N

N

∑
i=1

ki =
1
N

N

∑
i=1

γ·Z(ti)∆ti − γ·Z(ti−1)∆ti−1

γ·Z(ti−1)∆t
(18)

Thus, the diffusion coefficient σ(t,X(t)) = KX(t) is obtained.

2.3. Solution of the CBM State Model

In accordance with the definition of the Itō process, it is easy to know that Equation (9)
is the differential form of Itō process. Furthermore, its solution is much more complex than
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traditional ordinary differential equations. It is taken into consideration to solve this SDE
by a method of function transformation. Let:

dX(t) = − β

η

(
t
η

)β−1
· exp{γ·Z(t)}X(t)dt + KX(t)dB(t) = µ(t, X(t))dt + σ(t, X(t))dB(t) (19)

and let a stochastic integral with certainty coefficients and its differential form be:

Y(t) = Y(t0) +
∫ t

t0

µ(s)ds +
∫ t

t0

σ(s)dB(s) (20)

dY(t) = µ(t)dt + σ(t)dB(t) (21)

If there exists a transformation f (u,v) and its inverse transformation g(u,v) when u is
fixed, such that:

Y(t) = f (t, X(t)), X(t) = g(t, Y(t)) (22)

Then, when µ̂(t) and σ̂(t) are determined, Y(t) is obtained thereupon, and moreover, when f
(u,v) or g (u,v) is determined, X(t) is obtained thereupon, which is the solution to the SDE.

In addition, using the Itō formula for Y(t), we have:

dY(t) =
∂ f (t, X(t))

∂t
dt +

∂ f (t, X(t))
∂X(t)

[µ(t, X(t))dt + σ(t, X(t))dB(t)] +
1
2

∂2 f (t, X(t))
∂X2(t)

σ2(t, X(t))dt (23)

Hence, let:

µ(t) =
∂ f (t, x)

∂t
+

∂ f (t, x)
∂x

µ(t, x) +
1
2

∂2 f (t, x)
∂x2 σ2(t, x) (24)

σ(t) =
∂ f (t, x)

∂x
σ(t, x) (25)

Equations (24) and (25) are hypothesized to be valid.
From Equation (25), we have:

∂ f (t, x)
∂x

=
σ(t)

σ(t, x)
(26)

and then
∂2 f (t, x)

∂x2 = −σ(t)σ′2(t, x)
σ2(t, x)

(27)

∂2 f (t, x)
∂x∂t

=
∂2 f (t, x)

∂t∂x
=

σ′(t)σ(t, x)− σ′1(t, x)σ(t)
σ2(t, x)

(28)

and there exists a function C(u) such that:

f (u, v) = σ(u)
[∫ v

1

1
σ(u, w)

dw + C(u)
]

(29)

Since Equation (24) does not depend on x then, differentiating it with respect to x,
we have:

0 =
∂2 f (t, x)

∂t∂x
+

∂

∂x

[
∂ f (t, x)

∂x
µ(t, x) +

1
2

∂2 f (t, x)
∂x2 σ2(t, x)

]
(30)

Substituting Equations (26)–(28) into Equation (30), we have

dσ(t)/dt
σ(t)

= σ(t, x)
[

∂σ(t, x)/∂t
σ2(t, x)

− ∂

∂x

(
µ(t, x)
σ(t, x)

)
+

1
2

∂2σ(t, x)
∂x2

]
(31)
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Similarly, since Equation (25) does not depend on x, then differentiating Equation (31)
with respect to x, we have

∂

∂x

(
σ(t, x)

[
∂σ(t, x)/∂t

σ2(t, x)
− ∂

∂x

(
µ(t, x)
σ(t, x)

)
+

1
2

∂2σ(t, x)
∂x2

])
= 0 (32)

After substituting µ (·,·) and σ (·,·) in the CBM state model Equation (19) into Equation
(32) and calculating, we find its value is zero. This means that under the conditions of
Equation (19), the previous hypotheses made for Equations (24) and (25) are valid.

Thus, from Equations (24), (29) and (31), it can be obtained:
f (u, v) =

C1

K
[ln v + C(v)], g(u, v) = exp

{
K
C1

v− C(u)
}

µ(t) =
C1

K
C′(t)− C1

K
β

η

(
t
η

)β−1
· exp{γ·Z(t)} − C1K

2
, σ(t) = C1

(33)

Then according to boundary conditions, from Equations (21), (22) and (33), we have

X(t) = X(t0) exp

{
−
(

t
η

)β

exp{γ·Z(t)}+ KB(t)− K2

2
t

}
(34)

The solution to the CBM state model is Equation (34).

3. Preventive Maintenance Strategies Analysis Based on the State Model
3.1. CBM Strategy Analysis

The essence of the CBM is to implement maintenance activities under the guidance
of generator state information. This means that there is a preventive maintenance state
threshold Xthr, i.e., if, at time t:

X(τ) ≤ Xthr (35)

then preventive maintenance shall be scheduled and implemented, and components are
repaired “as good as new”. Furthermore, τ is defined as follows:

τ = inf{t > 0 : X(t) ≤ Xthr < 1} (36)

where τ represents the time when the process first exceeds the maintenance state threshold,
which also represents the maintenance node of CBM, and is a stopping time for process X(t).

Define the transfer density p(y,t,x,s) and the transfer distribution function P(y,t,x,s) of
process X(t), i.e.,:

P(y, t, x, s) = P{X(t) ≤ y|X(s) = x} =
∫ y

−∞
p(u, t, x, s)du (37)

In addition, the transfer density p(y,t,x,s) can be obtained from the Kolmogorov backward
equation [35], i.e.,:

∂p(y, t, x, s)
∂s

+ Ls p(y, t, x, s) = 0 (38)

where the differential operator Ls is the generator of the stochastic process, which is
defined as:

Ls =
1
2

σ2(s, x)
∂2

∂x2 + µ(s, x)
∂

∂x
(39)

Thus, the probability of stopping time τ of process X(t) can be expressed as:

P{τ > t} = 1− P{τ ≤ t} = 1− P(Xthr, t, x, s) = 1−
∫ Xthr

−∞
p(u, t, x, s)du (40)
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It can be seen that, when the CBM strategy is implemented, the sample paths for
the component state of wind turbines are diverse, which makes the maintenance time
random and difficult to directly predict. This may lead to inadequate or untimely mainte-
nance preparation such as materials and equipment transfer and personnel arrangements.
Therefore, in order to maximize the effectiveness of the CBM strategy, the maintenance
department of wind farms is required to respond quickly, arrange reasonably, and maintain
high quality in the event of a breakdown under the CBM strategy.

3.2. TBM Strategy Analysis

The interval of TBM reflects the average situation of CBM for a specific component, the
equipment, or the entire physical system of a wind turbine, i.e., the time variable concerned
by TBM is the mean or expectation of the stopping time corresponding to the critical state
of CBM [29]. Additionally, for the operation process, the expectation of the i-th stopping
time is:

E[τi|Fτi ] =
∫ +∞

0
τi pst(τi)dτi =

∫ +∞

0

(∫ τi

0
du
)

pst(τi)dτi =
∫ +∞

0

∫ +∞

u
pst(τi)dτidu =

∫ +∞

0
P{τi > t|Fτi}dt (41)

where pst(·) is the probability density of the stopping time and Fτi is the σ-algebra of the
process X(t) up to time τi, which represents all the information of the process up to time τi.

Hence, for the same component, the time interval of TBM is defined as the mean of n
stopping times of CBM, i.e.,:

TTBM = E[E[τi|Fτi ]] =
1
n

n

∑
i=1

E[τi|Fτi ] (42)

and
Fτ1 ⊆ Fτ2 ⊆ . . . ⊆ Fτn (43)

It can be seen that TBM is based on the average of almost all sample tracks of CBM,
which indicates that TBM does not simply implement maintenance based on certain time
intervals, but constantly corrects maintenance intervals from a large number of sample
tracks of CBM. The condition-monitoring technology of CBM is progressively gaining intel-
ligence with the advancement of emerging technologies, including big data and artificial
intelligence, which makes the information transmission between CBM and TBM more
accurate and timely. Then, TBM is increasingly adaptable to randomly changing operating
environments, which also indicates that TBM is gradually and asymptotically approaching
CBM.

Furthermore, the asymptotic relationship between TBM and CBM is:{
dX∗(t) = µ(t, X∗(t), Z∗(t))dt + σ(t, X∗(t), Z∗(t))dB(t) = −λ∗(t)(X∗(t) + Z∗(t))dt + KZ∗(t)dB(t)
X∗(T) = X∗

(44)

where, X*(t) is the CBM state gradually recovered by TBM; X*(T = TTBM) = X* = Xthr refers
to the terminal state Xthr at the terminal time TTBM in a CBM maintenance cycle, which is
FT-measurable; Z*(t) is a stochastic process unique to the backward process with X*(t), i.e.,
(X*(t),Z*(t)) together is the solution to Equation (44); µ(·,·,·) and σ(·,·,·) are the drift and
diffusion coefficients of the corresponding Equation (44), respectively. And Equation (44)
can be solved by non-linear Feynman-Kac formula [36].

3.3. The Maintenance Strategy Combined CBM and TBM

For the same component, equipment and even physical system, the essence of CBM is
the maintenance state variable, i.e., the monitoring of the system’s critical state or threshold
value. Meanwhile, the essence of TBM is the maintenance time variable, i.e., the planning
and arrangement of maintenance time points.
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Under the CBM strategy, therefore, the maintenance behavior can be precisely imple-
mented according to the real-time state of components such as generators. However, at
the same time, the unpredictability and randomness of system state inevitably leads to
untimely and insufficient arrangements and transfer of personnel or maintenance resources
such as materials, spare parts, information, etc. when CBM is implemented, which results
in the preventive maintenance delay and incomplete maintenance of equipment as well
as increased maintenance costs, and even results in accelerating the deterioration of the
component in disguise [27].

Under the TBM strategy, the implementation time of the maintenance behavior is fixed,
and the relevant hardware resources and human resources can be reasonably arranged to
each TBM time point in strict accordance with the maintenance plan, which can ensure
the sufficiency and completeness of the maintenance behavior. However, meanwhile, at
each maintenance time point of TBM, on the one hand, the state of the component may
not reach the maintenance threshold, and the maintenance behavior at this time would
inevitably lead to the waste or excessive redundancy of maintenance resources, resulting
in “over-maintenance” behavior. On the other hand, the state of the component may be
much lower than the maintenance threshold, and the untimely maintenance may make the
component deteriorate more, which would increase the difficulty and cost of maintenance,
resulting in “under-maintenance” behavior.

Hence, in order to improve, alleviate or even eliminate the above problems, it is
necessary to combine the TBM and CBM strategy.

To simplify the writing, Equations (9) and (10) are expressed as

dXC(t) = µ1(t)XC(t)dt + σ(t)XC(t)dB(t) (45)

dXT(t) = µ2(t)XT(t)dt (46)

where XC(t) and XT(t) are the generator state under the CBM and TBM strategy, respectively.
Then, the generator state Xcom(t) under the joint maintenance strategy satisfies:

dXcom(t) = aC(t)dXC(t) + aT(t)dXT(t)
= aC(t)XC(t)[(µ1(t)− µ2(t))dt + σ(t)dB(t)] + Xcom(t)µ2(t)dt

(47)

where {aC(t), aT(t)} is the joint maintenance strategy. The combination of the TBM strategy
and the CBM strategy means that, firstly, through a large number of CBM state data in one
maintenance cycle, the maintenance time of TBM is modified, such that the state of the
component generator, corresponding to the maintenance time node TTBM·i of TBM, is close
to the state threshold of CBM. Secondly, according to the reliability requirements of the
component generator, a time threshold Tthr is set for the stopping time τi, corresponding
to the state threshold of CBM, and τi is also the maintenance time node of CBM, such
that TBM is implemented instead of CBM when |τi − TTBM·i| < Tthr, otherwise CBM
is continued.

Let θ(τ) = [µ1(τ) − µ2(τ)]/σ(τ) for the mathematical expectation with respect to
probability measure P:

EP

[
exp

{
1
2

∫ t

0
θ2(u)du

}]
< ∞ (48)

There thus exists a unique probability measure Q equivalent to the original probability
measure P, which satisfies the change in measure:

dQ
dP

∣∣∣∣Ft = exp
{
−1

2

∫ T

0
θ2(u)du−

∫ T

0
θ(u)dB(u)

}
(49)
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Then, according to the Girsanov theorem, under the probability measure Q:

BQ(t) = B(t) +
∫ t

0
θ(u)du (50)

is the normal Brownian motion in the filtered probability space (Ω,Ft,F,P). Hence:

dXcom(t) = aC(t)XC(t)σ(t)[θ(t)dt + dB(t)] + Xcom(t)µ2(t)dt
= aC(t)XC(t)σ(t)dBQ(t) + Xcom(t)µ2(t)dt

(51)

XQ
com(t) = Xcom(t) exp

{
−
∫ t

0
µ2(u)du

}
(52)

Then:
dXQ

com(t) = aC(t)XC(t)σ(t)dBQ(t) (53)

In accordance with Equation (53) and the definition of martingales, XQ
com(t) is a martingale

with respect to probability measure Q, and we have

XQ
com(t) = EQ

[
XQ

com(T)
∣∣∣Ft

]
(54)

From Equation (52), then, under the joint maintenance strategy, the generator state Xcom(t) satisfies

Xcom(t) = EQ

[
exp

{
−
∫ T

t
µ2(u)du

}
Xcom(T)

∣∣∣∣Ft

]
(55)

The maintenance strategy combining TBM and CBM aims to implement TBM and
CBM together, such that near the time point of TBM, the degradation state of the component
is also near the maintenance threshold of CBM. This is an ideal situation. More practically,
on the one hand, at the time point of TBM, the implementation of the maintenance behavior
for TBM is determined by the CBM sensing whether the component state is close to the
maintenance threshold. On the other hand, when the component state under CBM is close
to or reaches the maintenance threshold, the maintenance should be arranged as far as
possible from the nearest time point of TBM, provided that the time difference permits it.
The flow chart of the joint maintenance strategy is shown in Figure 1.
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4. Example Analysis

The validity and applicability of the model are verified by employing the component
generator of wind turbines as a case study. Part of the life distribution data of generators
from 50 wind turbines in a wind farm are shown in Table 1. For the original data of
the condition monitoring of generator 1, mainly from the SCADA system, including its
main bearing temperature (MBT), main shaft amplitude (MSA), and maximum winding
temperature (MWT), 100 data were taken in equal steps, as shown in Table 2. Specifically,
the life data in Table 1 are extracted from the historical operation data of the same type of
wind turbines in one wind farm. The data in Table 2 are extracted from the historical data
of several monitoring indicators of the SCADA system (an operation condition-monitoring
and evaluating system) of the same type of wind turbines. These data are all from a wind
farm located in Northwest China that cooperated with our Foundation Project.

Table 1. Sample data for life distribution of part generators.

Number 1 2 3 4 5 6 . . . 48 49 50

Life(h) 7080 8208 7488 11064 5824 5030 . . . 7756 9331 8065

Table 2. Part of the condition-monitoring data of generator 1.

Number Operation Time/h MBT/°C MSA/mm MWT/°C

1 60 30.3 0.322 39.2
2 135 30.2 0.321 39.2
3 222 30.3 0.324 39.3
4 290 30.5 0.325 39.3
5 360 30.7 0.328 39.4
6 441 30.9 0.327 39.6
7 495 31.4 0.331 40.3
8 571 31.9 0.330 40.8

. . . . . . . . . . . . . . .
97 6801 54.5 2.531 63.0
98 6944 55.2 2.657 64.8
99 7009 56.1 2.864 66.7
100 7080 57.4 3.111 68.8

4.1. Model Analysis of the Example

Based on the parameter estimation method in Section 2.2, using the data in Table 1,
we can obtain β = 5.81, η = 6825, and K = 0.015. Kolmogorov–Smirnov (K-S) test method, as
a classical method of goodness-of-fit test, is used to test whether the data in Table 1 obey
Weibull distribution [37,38]. The samples with sample size n = 50 in Table 1 are sequenced
as x1, x2, . . . , xn, and the empirical distribution function (EDF) is:

Fn(x) =


0, x < x1
i/n, xi ≤ x < xi+1
1, x ≥ xn

(56)

Then, we have:

D = max
1≤k≤n

{|Fn(xk−1)− FW(xk)|, |Fn(xk)− FW(xk)|} (57)

FW(x) = 1− exp
{
−(x/η)β

}
(58)

Dm = D·
[√

n− (0.021/α)− 0.661
]

(59)



Mathematics 2023, 11, 2608 13 of 20

where D is the test statistic, representing the maximum deviation between the EDF and the
hypothetical distribution function; Fn(x0) = 0; FW(x) is the Weibull distribution function;
α is the significance level; and Dm is the modified test statistic. Furthermore, according
to Equations (56)–(59), Dm = 0.810 with α = 0.01 is obtained, i.e., at the significance level
of 0.01, and it can be considered that the overall distribution of the given data is Weibull
distribution with shape and scale parameters β = 5.81, η = 6825 [39].

We use the entropy method to calculate the weight of the state vector from the data in
Table 2 in order to avoid the state evaluation of the component generator being too complex.
The calculation method is shown in Equation (60) [40]:

wij = Zij/
N
∑

i=1
Zij

ej =
1

ln N

N
∑

i=1
wij log wij

γj =
(
1− ej

)/ p
∑

j=1

(
1− ej

) (60)

where Zij is the j-th condition-monitoring index at time ti; wij is the weight of the j-th
condition-monitoring index at time ti in this index; and ej is the entropy value of the j-th
monitoring index. Thus, we have:

γ =
[
γ1 γ2 γ3

]
=
[
0.4428 0.3147 0.2425

]
(61)

γ·Z(t) =
[
γ1 γ2 γ3

]
·
[
Z1(t) Z2(t) Z3(t)

]T
=

3

∑
i=1

γiZi(t) (62)

where Zi(t) (i = 1, 2, 3) are the state-monitoring values of the main bearing temperature, the
main shaft amplitude, and the maximum winding temperature at time t.

Therefore, the failure rate function is:

λ(t, Z(t)) =
β

η

(
t
η

)β−1
· exp{γ·Z(t)} = 5.81

6825

(
t

6825

)4.81
· exp

{
3

∑
i=1

γiZi(t)

}
(63)

Then, the state model under CBM is:

dX(t) = − 5.81
6825

(
t

6825

)4.81
· exp

{
3

∑
i=1

γiZi(t)

}
X(t)dt + 0.015X(t)dB(t) (64)

From the data in Table 1, and the average of sample tracks for CBM state, the state model
under TBM is obtained as:

dX(t) = − 6.47
8102

(
t

8102

)5.47
X(t)dt (65)

The results of the state model of CBM and TBM in this example can be obtained by
using the Euler–Maruyama algorithm to numerically solve the above model, as shown in
Figure 2, where the real state is reflected by the condition-monitoring covariates measured
from the SCADA system. The meaning of the state X(t) in Figure 2 (similarly hereinafter)
is consistent with that determined at the beginning of Section 2, i.e., the state reflects the
health condition of the component generator throughout the deterioration process under
different maintenance models implemented; when X(t) = 0, this means the component is
in a fault-operating state, and when X(t) = 1, this means the component is in a completely
new operating state.
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Additionally, the curve of the CBM state is not completely smooth, which is caused by the 
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Figure 2. State model of generator 1.

It can be seen from the analysis in Figure 2 that the CBM state has a high degree
of fit with the real state of the generator, which means that the description of generator
failures based on the PHM model is reasonable, and, furthermore, that it confirms the
characteristics of CBM, i.e., it can accurately perceive the state of components such as
generators in real time, which enables the CBM model to better predict the component
state. Additionally, the curve of the CBM state is not completely smooth, which is caused
by the external random disturbance of the generators’ state. The ability to characterize this
random disturbance is the most essential and distinctive difference between the state model
based on the stochastic differential equation and that based on the ordinary differential
equation, which is also the advantage of the stochastic model. The CBM state in Figure 2 is
only one randomly selected from many sample tracks, while Figure 3 shows the multiple
sample tracks of the TBM and CBM states. Therefore, it can be seen that there must be a
deviation between the TBM state and a single sample track of the CBM state, and that the
TBM state is the average of multiple CBM states.
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4.2. Maintenance Strategy Analysis of the Example

The generator deterioration shown in Figure 2 is in a single maintenance cycle. Based
on the conditions at the beginning of Section 2 and the data in Section 4.1, we can obtain
the full-life-cycle state of the generator under multiple maintenance cycles.

The CBM state of the component generator 1 in the full-life cycle is shown in Figure 4,
in which the maintenance threshold is Xthr = 0.9 and the time interval for each component
state to reach the maintenance threshold is ∆t1 = 2528 h, ∆t2 = 3161 h, ∆t3 = 2880 h, and
∆t4 = 2901 h. It again shows that the maintenance behavior under CBM can be based on
and guided by the real-time state of the generator, such that the maintenance can more
accurately follow the state, and the real deterioration state of the generator can be perceived.
At the same time, the implementation of CBM has great randomness and unpredictability,
which inevitably makes maintenance material resources and personnel arrangements and
transfer untimely and insufficient.
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Figure 4. The CBM state for full-life cycle.

The TBM state of generator 1 in the full-life cycle is shown in Figure 5, where TTBM·i
(i = 1, 2, 3, 4) is the time point of the TBM implementation, the implementation interval
∆TTBM = 3679 h, and X(TTBM·1) = 0.97, X(TTBM·2) = 0.84, X(TTBM·3) = 0.91, and X(TTBM·4)
= 0.94. It is indicated in Figure 5 that the maintenance time of TBM is fixed, which
enables the operation and maintenance department of the wind farm to arrange various
hardware resources and human resources to each maintenance time point in a reasonable
way according to the plan, thus ensuring the sufficiency and completeness of maintenance
and reducing the costs to a certain extent. However, from the generator state X(TTBM·i)
corresponding to each maintenance time TTBM·i, it is not difficult to see that there exists,
indeed, an “over-maintenance” in TBM, i.e., the state at the maintenance time point is too
high in comparison to the maintenance threshold, which results in a waste of maintenance
resources. Alternatively, there exists an “under-maintenance” in TBM, i.e., the state at the
maintenance time point is too low in comparison to the maintenance threshold, which
results in exacerbating the generator deterioration and reducing the life.
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Moreover, under the joint strategy, the generator state is shown in Figure 6, where
the absolute difference ∆Ti = |TTBM·i − τi|, between the stopping time τi when the state
arrives at the maintenance threshold and the TBM time point, is ∆T1 = 182 h, ∆T2 = 218 h,
∆T3 = 832 h, ∆T4 = 489 h, ∆T5 = 166 h, and i = 1, 2, 3, 4, 5. The analysis shows that, in the
i-th (i = 1, 2, 5) cycle, TBM is implemented when the absolute difference ∆Ti between the
CBM stopping time ti, i.e., the moment when the generator state reaches the maintenance
threshold, and the adjacent TBM time TTBM·I, is very small. Furthermore, sup{|X(TTBM·i)
− Xthr|} = 0.025 means that the degree of “over-maintenance” or “under-maintenance” at
this time is very small. In the i-th (i = 3, 4) maintenance cycle, CBM is implemented, since
∆Ti = |TTBM·i − τi| is large and the deterioration will be exacerbated if the component is
still waiting for TBM implementation.
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In Figure 7, a comparative analysis of the time information and state information of
the generator maintenance behavior under the guidance of three maintenance strategies is
shown. It can be seen that the implementation time of TBM is accurate, but the correspond-
ing state is uncertain, CBM can track component state, but maintenance time is random,
and the maintenance time of the joint strategy revolves around the time point of the TBM
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plan, supplemented by the CBM when the state is below the maintenance threshold. This
fully demonstrates the characteristics of the joint strategy: to overcome the respective
shortcomings of the TBM and CBM strategies and bring their advantages into play. The
joint strategy takes into account both the characteristics of the TBM and CBM strategies,
such that the maintenance is implemented according to the TBM strategy, when the degree
of inappropriate maintenance such as “under-maintenance” and “over-maintenance” is
acceptable, and also according to CBM strategy, when the state reaches the state threshold
outside of the TBM plans and arrangements.
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The maintenance cost is the main part of the operating expenses (OPEX) of wind
turbines, and the maintenance strategy to guide the maintenance behavior shall affect
the cost of the component’s maintenance. Figure 8 shows the analysis of the generators’
maintenance costs and reliability under the implementation of three strategies. Overall, the
CBM strategy can maintain high reliability with high costs, while the TBM strategy has a
low cost with low reliability, and the joint strategy is between the two. This is because CBM
can track the component state to effectively improve reliability, while TBM can prearrange
maintenance resources to reduce maintenance costs. For wind farms, maintenance strategies
need to be selected according to the specific requirements of relevant indicators such as
costs and reliability.
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5. Conclusions

In this paper, a degradation model based on the SDE is established to describe the
spatio-temporal evolution behavior of wind turbine generators. In the stochastic model,
the failure rate function of the component is represented by Weibull proportional hazards
model, the random disturbance is simulated by Brownian motion, and, furthermore, the
SDE model is solved by the method of constructing a function transformation. According to
the stochastic model established, the strategy of TBM and CBM is compared and analyzed,
then the maintenance strategy of combined TBM and CBM is proposed, and the character-
istics of the joint strategy are expounded and analyzed by martingale method and change
in measure theory. Finally, the model and analysis results are verified by an example of a
wind turbine component generator. In the example, the proposed strategies are verified
and quantitatively evaluated through an analysis of maintenance time, state evolution,
maintenance costs, and the component’s reliability. We find that the joint strategy of TBM
and CBM is necessary in cases where individual TBM or CBM cannot meet the maintenance
requirements of the components. This is mainly based on TBM implementation, which is
easy to arrange and plan, but at very random maintenance time points, such as at the time
point away from TBM or the time when the state is too far below the maintenance threshold,
CBM can well satisfy the maintenance requirements. For the further development of the
model, the generalized SDE could be considered to establish a spatio-temporal evolution
model that can remember the historical information of components, and, based on this,
the corresponding maintenance strategies could be proposed. This could provide some
thoughts for the engineering practice of the component maintenance of wind turbines.
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