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Abstract: John von Neumann (JvN) was one of the greatest scientists and minds of the 20th century.
His research encompassed a large variety of topics (especially from mathematics), and the results
he obtained essentially contributed to the progress of science and technology. Within this article,
one function that JvN defined long time ago, namely the cardinal sinus (sinc), was employed to
define transforms to be applied on 1D signals, either in continuous or discrete time. The main
characteristics of JvN Transforms (JvNTs) are founded on a theory described at length in the article.
Two properties are of particular interest: orthogonality and invertibility. Both are important in the
context of data compression. After building the theoretical foundation of JvNTs, the corresponding
numerical algorithms were designed, implemented and tested on artificial and real signals. The last
part of the article is devoted to simulations with such algorithms by using 1D signals. An extensive
analysis on JvNTs effectiveness is performed as well, based on simulation results. In conclusion,
JvNTs prove to be useful tools in signal processing.

Keywords: numerable bases in Lebesgue-Hilbert space; orthogonal transforms; time-frequency
dictionary; Fourier transforms; analysis and synthesis of finite energy signals
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1. Introduction

Orthogonality is an important and interesting, yet challenging, property in pure math-
ematics, as well as in some branches of applied mathematics (such as system identification [1]
or signal processing (SP) [2]). One of the oldest results regarding orthogonality is the ancient
Pythagorean theorem, which suggested that some mathematical entity (e.g., the hypotenuse
vector) can be expressed by means of other entities, which are orthogonal to each other
(e.g., the catheti unit vectors), as a linear combination of them. Moreover, thanks to orthog-
onality, the coefficients of linear combination are easily computed by simply projecting the
mathematical entity on each orthogonal entity. One refers to this operation to as analysis or
decomposing. Thus, the mathematical entity can be replaced by the coefficients, provided
that the orthogonal entities are known. From coefficients, the mathematical entity can be
either partially or fully recovered by using the linear combination. This operation stands
for synthesis or recomposing of the mathematical entity. The orthogonal entities put together
constitute a so-called transform (Often, the transform is expressed by means of an orthogo-
nal/Hermitian matrix). They also can play the role of bases in a vectorial space. It’s very
likely that Pythagoras was not using this terminology, which started to be known much
later. However, his idea generated an intense quest for orthogonal transforms or bases
and has had a huge impact in modern technology. Since Pythagoras’ times, myriads of
orthogonality results have been derived. To reveal the framework of this article, only very
few of them are cited next.

The vectorial spaces of interest for this article are the ones defined by Lebesgue, either
in continuous or discrete time, for 1D functions, also referred to as signals. (Recall that
any signal from a Lebesgue space is p-integrable or p-summable, which automatically
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involves the signal’s being bounded). It has been proven that all Lebesgue spaces are of a
Banach type, which means that norms yield computing distances between signals. Even
more interesting are the spaces for p ∈ {1, 2}, since the discussion on orthogonality can be
extended from time domain to frequency domain (p = 1) and a scalar product can serve as
important tool for testing orthogonality between signals (p = 2). (Actually, for p = 2, the
Lebesgue space also is a Hilbert space).

In pure mathematics, polynomials are comfortable mathematical entities selected to
build orthogonal bases. Among them, Chebyshev polynomials [3] are remarkable in this
respect. Nowadays, squared Krawtchouk–Chebyshev polynomials are successfully employed
in applications [4]. Another interesting development is reported in the context of the Euclidean
and Weyl–Heisenberg (uncertainty) groups [5], where Hermite functions are employed.
The Weyl–Heisenberg group belongs to the larger class of Lie groups and is particularly
interesting, as the analysis is approached not only in the time domain, but also in the
frequency domain, by using the two linear operators which are defined within this article
as well. Some unconventional orthogonal bases are proposed as well. For example, in [6],
the basis is founded on discrete spherical Bessel functions.

One of the most notorious orthogonal bases was introduced by J. Fourier more than
200 years ago and is harmonic in nature. This was an important breakthrough which led not
only to the concepts of Fourier series and Fourier transform (FT), but also to the combined time-
frequency approach. The Dirichlet-Fourier punctual convergence theorem is a fundamental
result [7] for harmonic analysis and synthesis. Nowadays, numerical algorithms of the fast
Fourier transform class [2] are employed in various fields. They implement the discrete
Fourier transform (DFT) formula in efficient manner. Nowadays, implementations benefit
from parallel computing, which has allowed reaching a milestone in terms of speed [8,9].
From this class of procedures, the discrete cosine transform (DCT) algorithm is integrated in
many standards of signal compression and coding [10].

Although the FT dominated the research for long time, some other orthogonal trans-
forms were defined, especially in recent decades. In applied mathematics, orthogonality is
associated with redundancy reduction, entropy minimization, decorrelation, denoising, and
principal components extraction. All of these are key concepts for data/signal compression
and coding, which, furthermore, are fundamental operations in modern telecommunica-
tions. Thus, the ideal orthogonal transform that can completely de-correlate a signal was
introduced in the works of Hotelling [11], Karhunen [12] and Loève [13], in context of prin-
cipal components analysis developed by Pearson [14] and the minimum description length
principle stated by Rissanen [15]. The Hotelling or Karhunen–Loeve transform (KLT) builds
a basis of orthogonal eigenvectors starting from the autocorrelation matrix of a centered
signal (obtained after subtracting its mean). (Later, the KLT was generalized by Hua and
Liu [16] with the help of the least squares method). Thus, the orthogonal basis adapts itself
to each signal. Because the ideal KLT cannot be implemented by a numerical procedure,
only approximates can be considered. This puts KLT in competition with many other
orthogonal transforms, including the FT (which also exhibits decorrelating properties).

Nowadays, the orthogonal transforms can roughly be grouped into four classes.
The first class includes harmonic transforms such as: FT, DCT, and the Hartley trans-

form [17] (or CAS (cosine and sine) Transform).
The second class is based on time-frequency representations [18,19] (in the framework

of the Weyl–Heisenberg group). The basic idea of such representation is to build the
orthogonal basis starting from a mother-signal (or window), by applying two operators:
time-shifting and frequency modulation. Typical transforms of this class are: windowed
FT [2], the Weierstrass–Gauss transform [20], the Gabor–Gauss transform [21], the Vigner–
Ville transform [19], the Gaussian Vigner–Ville transform [22], and the Morlet–Gabor
transform [23]. Note that not all the transforms of this class can be enforced to verify
the orthogonality property. For example, since the frequency representation of a Gauss
bell also is a Gauss bell, the Weierstrass–Gauss transform can only be nearly orthogonal.
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Nevertheless, the John von Neumann transforms (JvNTs) described within this article are
orthogonal and belong to this class.

The transforms based on time-scale representation and multiresolution theory constitute
the third class. In fact, such a representation can be performed in the framework of another
group, namely the affine one, which also belongs to the Lie class of groups. This time, the
mother-signal gives birth to the basis by using time-shifting and scaling operators. The most
prominent members of this class are the Wavelet transforms (WT). Thereby, the class is quite
large and can be split in three groups: one operating with smooth signals, another one
comprising fractal empirical signals and a third one including fractal generic signals.

Smooth WT were introduced, for example, by Meyer [24] and especially by Mallat [25]
(who proposed a pyramidal algorithm for signal and image processing that has rapidly
been adopted by both the scientific and the technical communities).

Because many real-life signals are not only nonstationary but also fractal, the interest
in building bases of fractal signals started very early, in the 19th century, as proven by
the works of Hadamard [26] and then by the orthogonal fractal functions of Haar [27] or
Walsh [28]. The fractal effect was empirically induced starting from the rectangular window,
by inserting ruptures at some instants. It has been proven that, actually, Hadamard and
Walsh defined the same transform, although their fractal bases are differently ordered.
Another representative of this group is referred to as slant transform [29]. This time, the
fractal effect is obtained by imposing some constraints along a slanted line in the transform
matrix. Nowadays, new transforms of this group are proposed, such as: the complex
Hadamard transform [30], the Gabor–Walsh–Fourier transform [31], and the generalized
Walsh–Hadamard Transform [32].

The most notorious basis of fractal generic signals seemingly is the one constructed by
Daubechies, with orthonormal wavelets [33]. However, there is a price to pay for orthogonality:
the lack of symmetry. Therefore, one effort tried to recover this property, but the new wavelets
only constituted biorthogonal frames of signals space [34]. (Recall that a frame is more than a
basis, i.e., it can generate the whole space, but with vectors that are not necessarily linearly
independent). After the fundamental results were proven by Meyer, Mallat and Daubechies,
the wavelets theory was developed for more than 15 years. There are too many contribu-
tions to be cited here. However, one can cite a recent article dealing with orthogonal and
biorthogonal wavelets in context of filter banks implementations, namely [35]. Nowadays,
wavelets are employed in many fields of science and technology.

The fourth class is the most complex one. It relies on combined approaches of the
classes above. More specifically, here, one can perform time–frequency–scale representations.
Putting together all three operators makes difficult the task of achieving orthogonality. The
transforms in this class usually are defined by time–frequency–scale dictionaries of waveforms
(including wavelets), which constitute frames of signals space. Here, the challenge is to find the
minimal number of waveforms (ones suitably orthogonal to each-other) from the dictionary,
in order to represent the signal with sufficient accuracy. To solve this problem, Mallat and
Zhong made a great contribution by introducing the matching pursuits algorithm [36],
which relies on the Pythagorean theorem. Thus, the circle closes, as this short overview
completes by invoking again the Greek mathematician who originated the whole endeavor
of building orthogonal transforms.

The article is structured as follows. Section 2 is devoted to theoretical background of
orthogonal JvNTs. In Section 3, two numerical algorithms to implement discrete time JvNTs
are designed. Section 4 presents simulation results obtained after running the algorithms
for one artificial stochastic signal and one speech signal recorded from a male. Additionally,
an extensive discussion on the results is performed, especially concerning the theoretical
compression capacity of JvNTs. The last section completes the article with concluding remarks.
The acronyms employed and reference lists are appended at the end.
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2. Theoretical Background
2.1. JvNTs for Continuous Time 1D Signals

John von Neumann (JvN) defined the following function [37]:

ν(t) = sinc(πt) =
sin(πt)
πt

, ∀t ∈ R, (1)

which stands for cardinal sinus and can be linked to low-pass filtering of signals. More
specifically, consider the ideal low-pass filter with the frequency response:

H(jΩ) =

{
A , Ω ∈ [−Ωc,+Ωc]

0 , Ω ∈ R\[−Ωc,+Ωc]
= Aχ[−Ωc ,+Ωc ](Ω), ∀Ω ∈ R, (2)

where A > 0 is the filter gain, Ωc > 0 is the cut-off (absolute) pulsation (in [rad/s]), while
χ[a,b] stands for the index function of interval [a, b]. Then, the impulse response of the filter
can be obtained by means of inverse FT:

h(t) =
1

2π

+∞∫
−∞

H(jΩ)ejΩtdΩ =
A
2π

+Ωc∫
−Ωc

ejΩtdΩ =
AΩc

π
sinc(Ωct) =

AΩc

π
ν

(
Ωc

π
t
)

, ∀t ∈ R. (3)

Equation (3) reveals an interesting correspondence between the JvN function (1) and
the index function (2). This means the JvN function is the impulse response of a low-pass
filter of unit gain (A = 1) and cut-off pulsation Ωc = π. This property can easily be proven
by means of FT (direct and inverse):

+∞∫
−∞

ν(t)e−jΩtdt =
+∞∫
−∞

sinc(πt)e−jΩtdt = χ[−π,+π](Ω), ∀Ω ∈ R;

+∞∫
−∞

χ[−π,+π](Ω)ejΩtdΩ = 2πsinc(πt) = 2πν(t), ∀t ∈ R.
(4)

Both functions belong to Lebesgue and Hilbert space of finite energy functions for
which the FT is well defined, denoted by L2

FT. (Recall that this space includes functions
with integrable squares of the module, although there are such functions, outside L2

FT, with
divergent FT). This is an important feature that allows using the scalar product (〈•, •〉) to
test the orthogonality. Before approaching the orthogonality property, it is useful to note
(and easy to prove) that, if f , g ∈ L2

FT, then:

〈 f , g〉 = 1
2π
〈F, G〉, (5)

where: F and G are the FT of f and g, respectively. Another interesting property of L2
FT is

its separability, i.e., the capability to admit numerable bases. This opens the way to employ
such bases in real-world applications, by using computing techniques.

Given the correspondence (4), which rather belongs to SP field [2], hereafter, the
JvN function will be referred to as JvN waveform (or window). (The term ‘window’ will be
explained later). Two elementary SP operators can be applied on the JvN waveform (1), in
order to generate a family from which a numerable basis of L2

FT can be extracted.

Definition 1. The time-shifting (linear) operator is defined as follows:[
q−τ : L2

FT → L2
FT

f 7→ q−τ f
,
(
q−τ f

)
(t) = f (t− τ), ∀t ∈ R, (6)

where: τ ∈ R is the specific offset as free parameter.



Mathematics 2023, 11, 2607 5 of 40

The notation q−τ is employed on purpose. If τ > 0, then the signal is delayed, whereas,
if τ < 0, then the signal is anticipated. Thus, the signs “ > ” and “ < ” visually point to the
direction of shifting. (Obviously, if τ = 0, no shifting is applied).

The Fourier operator F reacts to time-shifting as follows:

F
(
q−τ f

)
(Ω) =

+∞∫
−∞

(
q−τ f

)
(t)e−jΩtdt =

+∞∫
−∞

f (t− τ)e−jΩtdt = e−jΩτF( f )(Ω) = e−jΩτF(jΩ), ∀Ω ∈ R. (7)

Interestingly, the FT was modulated by the elementary harmonic e−jΩτ. Property (7)
suggests defining a second operator that should be able to translate the FT along the
pulsations axis.

Definition 2. The harmonic modulation (linear) operator is defined as follows:[
µω : L2

FT → L2
FT

f 7→ µω f
, (µω f )(t) = ejωt f (t), ∀t ∈ R, (8)

where: ω ∈ R+ is the specific pulsation as free parameter.

This time:

F(µω f )(Ω) =

+∞∫
−∞

(µω f )(t)e−jΩtdt =
+∞∫
−∞

f (t)e−j(Ω−ω)tdt = F( f )(Ω−ω) = F(j(Ω−ω)) = q−ωF(jΩ), ∀Ω ∈ R, (9)

which proves that the FT is translated towards +∞ with the offsetω ≥ 0.
Both operators are mapping the space L2

FT onto itself, as the energy of any input signal
f ∈ L2

FT is conserved:
E(q−τ f ) =

+∞∫
−∞
|(q−τ f )(t)|2dt =

+∞∫
−∞
| f (t− τ)|2dt = E( f ), ∀τ ∈ R;

E(µω f ) =
+∞∫
−∞
|(µω f )(t)|2dt =

+∞∫
−∞

∣∣ f (t)ejωt
∣∣2dt = E( f ), ∀ω ∈ R+.

(10)

Starting from waveform (1), a new signal of L2
FT can be generated with the help of

operators (6) and (8), as follows: first, apply a time-shifting with offset τ ∈ R, then apply a
harmonic modulation with pulsationω ∈ R+. Thus, one obtains:

ν(τ,ω)(t) =
(
µω
(
q−τ f

))
(t) = ejωtsinc(π(t− τ)) = ejωtν(t− τ), ∀t ∈ R. (11)

From (11), one can note that the time-shifting does not affect the elementary harmonic.
By varying the parameters τ ∈ R andω ∈ R+, a continuously indexed family of waveforms
is obtained:

{
ν(τ,ω)

}
τ∈R,ω∈R+

⊂ L2
FT. According to SP terminology, ν(0,0) ≡ ν is a mother-

waveform (mw) which can give birth to any child ν(τ,ω), often referred to a as time-frequency
atom (tfa), due to the nature of the two operators. As in physics, any tfa (11) can be
decomposed into a kernel (“sinc(π(t− τ))”) and some electron(s) (“ejωt”), each of each is
performing in one domain: the kernel—time and the electron(s)—frequency. (It has been
proven that the sinc kernel also serves as interpolation kernel in SP [2]).

In this context, the main problem is how to extract a numerable orthogonal basis of
L2

FT from the family of tfas. The following result holds true.

Theorem 1. A numerable family
{
ν(τ,ω)

}
τ∈T,ω∈P

is orthogonal if and only if both requirements

below are met:

a. The set T ⊂ R is numerable and τ1 − τ2 ∈ Z, ∀τ1, τ2 ∈ T;
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b. The set P ⊂ R+ is numerable andω1 −ω2 ∈ 2πZ, ∀ω1,ω2 ∈ P (where 2πZ includes all
integer multiples of 2π).

Proof. Before proving the theorem, it is useful to notice that the orthogonality can very easily be
verified by using index functions. Thus, evidently, if χ[a,b] and χ[c,d] are two arbitrarily selected
index functions with a < b and c < d, they are orthogonal if and only if the two intervals are
almost disjoint, i.e., [a, b] ∩ [c, d] ∈ {∅, a = d, b = c}. However, the orthogonality property
is not obvious when looking at tfa in the time domain. Hopefully, the correspondence
(4), together with the property (5), can be exploited to express the orthogonality in the
frequency domain, where index functions can be exploited.

Clearly, the necessary preparatory step is to derive the TF of any tfa. Thus:

F
(
ν(τ,ω)

)
(Ω) =

+∞∫
−∞

(
ν(τ,ω)

)
(t)e−jΩtdt =

+∞∫
−∞

ν(t− τ)e−j(Ω−ω)tdt =
+∞∫
−∞

ν(t)e−j(Ω−ω)(t+τ)dt = e−jτ(Ω−ω)
+∞∫
−∞

ν(t)e−j(Ω−ω)tdt =

= e−jτ(Ω−ω)χ[−π,+π](Ω−ω) = e−jτ(Ω−ω)χ[ω−π,ω+π](Ω), ∀Ω ∈ R, ∀τ ∈ R, ∀ω ∈ R+.
(12)

Now, according to (5):

〈
ν(τ1 ,ω1),ν(τ2 ,ω2)

〉
= 1

2π

〈
F
(
ν(τ1 ,ω1)

)
, F
(
ν(τ2 ,ω2)

)〉
= 1

2π

+∞∫
−∞

e−jτ1(Ω−ω1)e+jτ2(Ω−ω2)χ[ω1−π,ω1+π]
(Ω)χ[ω2−π,ω2+π]

(Ω)dΩ =

= ej(τ1ω1−τ2ω2)

2π

+∞∫
−∞

χ[ω1−π,ω1+π]
(Ω)χ[ω2−π,ω2+π]

(Ω)ejΩ(τ2−τ1)dΩ,
(13)

for any τ1, τ2 ∈ R andω1,ω2 ∈ R+.
From (13), it follows that the integral is null if and only if the intervals [ω1 − π,ω1 + π]

and [ω2 − π,ω2 + π] are almost disjoint. Since both intervals have the same length, one
equal to 2π, it results that they are disjoint if and only if the difference between the pulsa-
tions ω1 and ω2 is a non-null integer multiple of 2π. Consequently, so far, the necessary
and sufficient orthogonality condition is: ω1,ω2 ∈ P withω1 6= ω2, which does not cover
all the indexes of set P.

What ifω1 = ω2 = ω ∈ P? In this case, the scalar product (13) becomes:

〈
ν(τ1,ω),ν(τ2,ω)

〉
= ejω(τ1−τ2)

2π

+∞∫
−∞

χ2
[ω−π,ω+π] (Ω)ejΩ(τ2−τ1)dΩ = ejω(τ1−τ2)

2π

ω+π∫
ω−π

ejΩ(τ2−τ1)dΩ =

= ejω(τ1−τ2)

2π ·
(

ejΩ(τ2−τ1)

j(τ2−τ1)

)∣∣∣Ω=ω+π

Ω=ω−π
= ejω(τ1−τ2)

2π · ej(ω+π)(τ2−τ1)−ej(ω−π)(τ2−τ1)

j(τ2−τ1)
=

= ejπ(τ2−τ1)−e−jπ(τ2−τ1)

2πj(τ2−τ1)
= ν(τ2 − τ1).

(14)
Since the JvN function (1) is null in all integers, excepting for the non-null one (where

it takes the unit value), Equation (14) shows that the two tfas are orthogonal if and only if
τ1, τ2 ∈ T and τ1 6= τ2.

What if τ1 = τ2 = τ ∈ T? Obviously, in this case, the scalar product cannot be null, as
it evaluates the energy of the corresponding tfa:〈

ν(τ,ω),ν(τ,ω)
〉
= ‖ν(τ,ω)‖

2
= E

(
ν(τ,ω)

)
= ν(0) = 1 (15)

Thus, not only is the numerable family orthogonal, but it also includes the unit norm
tfas (i.e., it is an orthonormal family). �

As direct consequence of Theorem 1, a comfortable choice is to extract the following
numerable family from the set

{
ν(τ,ω)

}
τ∈R,ω∈R+

:

V =
{
ν(p,2kπ)

}
p∈Z,k∈N

(16)
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The reader can easily verify that the family V is orthonormal (according to the proof of
Theorem 1). In SP terminology, V also is referred to as dictionary of time-frequency waveforms
(or tfas). The tfas that belong to the JvN dictionary (16) are expressed as:

ν(p,2kπ)(t) = e2πktjsinc(π(t− p)), ∀t ∈ R, ∀p ∈ Z, ∀k ∈ N (17)

The next problem is to determine the requirements to meet such that the JvN dictionary
becomes a basis of L2

FT space. Obviously, thanks to the orthogonality property, V is a linearly
independent system of L2

FT. Then, it suffices to verify that V is also a generators system of
L2

FT or to determine in which conditions it can become such a system.
To solve the problem, the auxiliary result below may help.

Lemma 1. The subset of translated tfas
{
ν(p,0)

}
p∈Z
⊂ V verifies the following remarkable

property:

∑
p∈Z

[
ν(p,0)(t)

]2
= 1, ∀t ∈ R. (18)

Proof. Observe that, if t = n ∈ Z, then:

ν(p,0)(n) = sinc(π(n− p)) = δ0[n− p], ∀p ∈ Z, (19)

where δ0[·] is the unit impulse centered in origin (i.e., the Kronecker symbol). In this case,
the equality (18) is verified, evidently. If t ∈ R\Z, then:

∑
p∈Z

[
ν(p,0)(t)

]2
= ∑

p∈Z
sinc2(π(t− p)) ≤ 1

π2 ∑
p∈Z

1

(p− t)2 , ∀t ∈ R\Z, (20)

which proves that the series ∑
p∈Z

[
ν(p,0)(t)

]2
is absolutely convergent.

According to property (12), the atom ν(p,2kπ) (p ∈ Z, k ∈ N) can be recovered by
means of inverse FT:

ν(p,2kπ)(t) = e2πktjsinc(π(t− p)) =
1

2π

+∞∫
−∞

e−jp(Ω−2kπ)χ[(2k−1)π,(2k+1)π](Ω)ejΩtdΩ =
1

2π

+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Ω)ejΩ(t−p)dΩ, ∀t ∈ R. (21)

Equation (21) involves:

ν(p,0)(t) = sinc(π(t− p)) =
e−2πktj

2π

+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Ω)ejΩ(t−p)dΩ, ∀t ∈ R. (22)

Note that ν(p,0) is a real-valued function. Then, with the help of (22) and Fubini’s
theorem, one can write:

∑
p∈Z

[
ν(p,0)(t)

]2
= ∑

p∈Z
ν(p,0)(t)ν(p,0)(t) = 1

4π2 ∑
p∈Z

(
+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Ω)ejΩ(t−p)dΩ

)(
+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Φ)e−jΦ(t−p)dΦ

)
=

= 1
4π2 ∑

p∈Z

+∞∫
−∞

+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Ω)χ[(2k−1)π,(2k+1)π](Φ)ej(Ω−Φ)tej(Φ−Ω)pdΩdΦ, ∀t ∈ R.
(23)

Furthermore, since both the integrals and the infinite sum are absolutely convergent,
the computations can be made in any order. For example, in (23), one can first evaluate
the sum and then the integrals. Before that, recall the Poisson-like identity coming from
distributions theory:

∑
p∈Z

ejpαβ =
2π
α

δ0(β), ∀α,β ∈ R. (24)
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where δ0(·) is the Dirac impulse centered in origin. Then, with the help of identity (24)
(where α = 1 and β = Ω−Φ), Equation (23) becomes:

∑
p∈Z

[
ν(p,0)(t)

]2
= 1

4π2

+∞∫
−∞

+∞∫
−∞

χ[(2k−1)π,(2k+1)π](Ω)χ[(2k−1)π,(2k+1)π](Φ)ej(Ω−Φ)t

(
∑
p∈Z

ej(Φ−Ω)p

)
︸ ︷︷ ︸

2πδ0(Ω−Φ)

dΩdΦ =

= 1
2π

+∞∫
−∞

χ2
[(2k−1)π,(2k+1)π](Ω)dΩ = 1

2π

(2k+1)π∫
(2k−1)π

dΩ = 1, ∀t ∈ R.

(25)

�

Theorem 2. The JvN dictionary V =
{
ν(p,2kπ)

}
p∈Z,k∈N

is an orthonormal basis of L2
FT space.

Proof. According to Theorem 1, the dictionary is an orthonormal system of L2
FT . Hence,

the tfas of V are linearly independent. Let f be any signal of L2
FT . Then, the following

projection coefficients can be computed, by using V:

F[p, k] =
〈

f ,ν(p,k)
〉
=

+∞∫
−∞

f (t)ν(p,k)(t)dt =
+∞∫
−∞

f (t)sinc(π(t− p))e−2kπtjdt, ∀p ∈ Z, ∀k ∈ N. (26)

With the decomposition coefficients (26), one can generate the following signal:

f̃ (t) = ∑
p∈Z

∑
k∈N

F[p, k]ν(p,k)(t) = ∑
p∈Z

∑
k∈N

F[p, k]sinc(π(t− p))e2kπtj, ∀t ∈ R. (27)

Two cases have to be analyzed, in order to compute the values of signal f̃ :

a. t = n ∈ Z

In this case, since the property (19) is verified, from (27), one obtains:

f̃ (n) = ∑
k∈N

F[n, k] = ∑
k∈N

+∞∫
−∞

f (t)sinc(π(t− n))e−2kπtjdt = ∑
k∈N

+∞∫
−∞

f (t)sinc(π(t− n))e−2kπ(t−n)jdt. (28)

The infinite sum and the integral are absolutely convergent. This allows the computation
of the sum first in (28), with the help of the Poisson-like formula (24) (where α = 2π and
β = n− t ). Hence:

f̃ (n) = ∑
k∈N

F[n, k] =
+∞∫
−∞

f (t)sinc(π(t− n))∑
k∈N

e2kπ(n−t)j

︸ ︷︷ ︸
δ0(n−t)

dt = f (n). (29)

b. t ∈ R\Z
By inserting (26) in (27), one obtains:

f̃ (t) = ∑
p∈Z

∑
k∈N

F[p, k]sinc(π(t− p))e2kπtj = ∑
p∈Z

∑
k∈N

 +∞∫
−∞

f (τ)sinc(π(τ− p))e−2kπτjdτ

sinc(π(t− p))e2kπtj. (30)

Since both the infinite sums and the integral are absolutely convergent, the computa-
tions can be organized as follows:

f̃ (t) = ∑
p∈Z

sinc(π(t− p))
+∞∫
−∞

f (τ)sinc(π(τ− p))

(
∑

k∈N
e−2kπ(t−τ)j

)
︸ ︷︷ ︸

δ0(t−τ)

dτ = f (t) ∑
p∈Z

sinc2(π(t− p)) = f (t) ∑
p∈Z

[
ν(p,0)(t)

]2
. (31)
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In (32), the Poisson-like formula (24) was exploited (with α = 2π and β = t− τ).
Now, Lemma 1 yields the exact recovery of signal value f (t).

In both cases, f̃ ≡ f , which proves that V is a generators system as well. �

The two theorems above can be employed to define the invertible and orthogonal JvN
Transform (JvNT) in continuous time.

Definition 3. The continuous time JvNT is defined as follows, for any signal f ∈ L2
FT:

N( f )[p, k] = F[p, k] =
〈

f ,ν(p,k)
〉
=

+∞∫
−∞

f (t)sinc(π(t− p))e−2kπtjdt, ∀p ∈ Z, ∀k ∈ N, (32)

where the notation “N” was selected in memory of JvN.

Note that the JvNT (32) is a complex-valued linear function of two integer arguments:
the time-shifting index (p) and the harmonic modulation index (k). Moreover, although
not clearly specified, one assumes that L2

FT includes real-valued signals. In this case, if
Definition 3 is extended for negative harmonic modulation indexes, then:

N( f )[p,−k] = F[p,−k] =
+∞∫
−∞

f (t)sinc(π(t− p))e+2kπtjdt = F[p, k] = N( f )[p, k], ∀p ∈ Z, ∀k ∈ N, (33)

which means the JvNT is congregate symmetric (similarly to the FT). This is the reason the
harmonic modulation index only takes non-negative values. However, if L2

FT is extended to
complex-valued signals, the symmetry is lost and the harmonic modulation index should
cover all integers, regardless of their signs.

In SP terminology, applying N on a signal f ∈ L2
FT stands for performing signal analysis

(with the transform N). Additionally, {F[p, k]}p∈Z,k∈N is the set of JvN analysis coefficients.
The inverse JvNT in continuous time can straightforwardly be expressed, thanks to

Theorem 2:

f (t) = N−1(F)(t) = ∑
p∈Z

∑
k∈N

F[p, k]sinc(π(t− p))e2kπtj, ∀t ∈ R. (34)

This time, SP practitioners say that the signal synthesis is performed (with the inverse
of transform N or by using the JvN analysis coefficients).

A final remark, before approaching the discrete-time case. From a mathematical point of
view, the recovering Equation (34) only relies on weak (punctual) convergence of functional
series. (A similar result to the well-known Dirichlet–Fourier Theorem [7] can be proven
in this aim). This means that each value f (t) can be recovered with its own (punctual)
accuracy, which can vary from one point to another (unlike the case of strong (uniform)
convergence, in which all values are computed with the same accuracy).

2.2. JvNTs for Discrete-Time 1D Signals
2.2.1. Discrete Time Signals Framework

This subsection is a natural extension of the previous one. The main operation to
apply on the tfas of orthogonal basis V is sampling with some rate. However, sampling is
not applied at random, as the goal to be achieved is triple: preserve frequency information
of any tfa; conserve the orthogonality; and do not affect the inversibility of the resulting
transform.

To reach for the first goal, the Kotelnikov–Shannon–Nyquist sampling theorems can
be applied [2]. Thus, the minimum (critical) sampling rate to avoid aliasing is two times
bigger than the cut-off frequency of JvN mw (1). Alternatively, this cut-off frequency equals
0.5 Hz, according to Equation (4) (as the cut-off pulsation equals π rad/s). It follows that
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the sampling rate must be at least equal to 1 Hz, which requires that the sampling period,
denoted by Ts, only varies in the interval (0, 1] (and is measured in seconds [s]).

Consider a sampling period Ts ∈ (0, 1] [s]. Then, the sampled version of tfa (17) is:

ν
[p,k]
Ts

[n] = ν(p,2kπ)(nTs) = e2πknTs jsinc[π(nTs − p)], ∀n, p ∈ Z, ∀k ∈ N. (35)

The dictionary V of (16) becomes:

VTs =
{
ν
[p,k]
Ts

}
p∈Z,k∈N

. (36)

The framework changes as well. The space hosting all signals is now I2 (instead of
L2

FT). This is a Lebesgue-Hilbert space as well. The signals of I2 are discrete and have finite
energy (the sum of square modules is convergent). Since I2 ⊂ I1, such signals also are stable
(absolutely summable) and thus, the FT can be computed for any of them. (Recall that, in
the continuous time case, L1 is only intersected with L2, and no space is included into the
other. Moreover, their intersection is not closed. These are the reasons the notation “L2

FT”
was used, instead of simply “L2”). In context of I2, two classes of signals are of interest:
those with infinite support length and those with finite support length. The second class
is extremely important for the SP techniques that can be applied in real-life applications.
Denote this class by I2N , where N ∈ N∗ is the support length. In fact, I2N is a subspace of I2.
Note that all tfas of family PVTs (36) have infinite length.

The property (5) of the scalar product is verified in I2, as well, but only in cases of the
FT operating with continuous pulsations. In case of signals with finite length (i.e., from
I2N), the FT is replaced by the DFT [2] (for which the pulsations’ axis is discrete) and the
property (5) is replaced by:

〈x, y〉 = 1
N
〈X, Y〉, (37)

where: X ∈ I2N and Y ∈ I2N are the DFTs of x ∈ I2N and y ∈ I2N , respectively. Similarly to L2
FT,

the space I2 is separable and the same property transfers to I2N . Moreover, in the case of I2N ,
bases with finite number of signals can be defined, which constitutes an essential property
yielding implementation of efficient SP numerical algorithms.

2.2.2. JvNT for Discrete Time Signals with Infinite Support Length

Return to the remaining goals to be achieved by sampling. Before approaching such
goals, it is useful to analyze how the correspondence (4) is affected by sampling the JvN
mw. Recall that sampling changes the definition of FT as well. In this case, the integral is
replaced by an infinite sum and, more importantly, the pulsations axis becomes relative. This
means working with relative/normalized pulsationω [rad], obtained from the absolute
pulsation Ω [rad/s] after normalization by the sampling rate: ω = ΩTs. This correlation
suggests introducing a new notation: ωc = πTs. In fact,ωc is the relative cut-off pulsation of
discretized JvN mw, as Ωc = π [rad/s] is the absolute cut-off pulsation of continuous time
JvN mw (1). Moreover, if the Shannon-Nyquist sampling rule is applied, thenωc = πTs ≤ π.
(Recall that the TF is 2π-periodic in case of signals from I2). One expects that sampling does
not affect essential correspondence between the sinc function and the rectangular (index)
function. Thus, the low-pass filter (2) corresponds to the digital filter:

H
(

ejω
)
=

{
A , ω ∈ [−ωc,+ωc]

0 , ω ∈ [−π,+π]\[−ωc,+ωc]
= Aχ[−ωc ,+ωc ](ω), ∀ω ∈ [−π,+π]. (38)

The impulse response of filter (38) can be obtained by means of inverse FT:

h[n] =
1

2π

+π∫
−π

H
(

ejω
)

ejωndω =
A
2π

+ωc∫
−ωc

ejωndω =
Aωc

π
sinc(ωcn) =

Aωc

π
ν
(ωc

π
n
)

, ∀n ∈ Z. (39)
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Equations (38) and (39) allow for the specifying of the new correspondence between
the discretized JvN Function (1) and the index function. In this case, A = 1 andωc = πTs.
Thus:

∑
n∈Z

ν(nTs)e−jωn = ∑
n∈Z

sinc(nπTs)e−jωn = ∑
n∈Z

sinc(ωcn)e−jωn = 1
Ts
χ[−ωc ,+ωc ](ω), ∀ω ∈ [−π,+π];

+π∫
−π
χ[−ωc ,+ωc ](ω)ejωndω = 2πTssinc(nπTs) = 2πTsν(nTs), ∀n ∈ Z.

(40)

The following result shows the requirement to be met such that the dictionary VTs

becomes orthogonal.

Theorem 3. The dictionary VTs =
{
ν
[p,k]
Ts

}
p∈Z,k∈N

is orthogonal if Ts ∈ 1/N∗ (i.e., the sampling

period is set to the inverse of a positive integer or, equivalently, the sampling rate is integer).

Proof. As in the case of JvN tfas in continuous time, the orthogonality can more easily be
tested by using index functions. Evaluate then the FT of any tfa ν[p,k]

Ts
(p ∈ Z, k ∈ N) from

the family VTs , by using expression (35):

F
(
ν
[p,k]
Ts

)
(ω) = ∑

n∈Z
ν
[p,k]
Ts

[n]e−jωn = ∑
n∈Z

sinc[π(nTs − p)]e−jn(ω−2kπTs) = ∑
n∈Z

sinc
[
ωc

(
n− p

Ts

)]
e−jn(ω−2kωc), ∀ω ∈ [−π,+π]. (41)

In Equation (41), the only impediment to the exploiting of the correspondence (40) is
the fact that the argument of the sinc function takes non-integer values. It suffices then to
require that the ratio p/Ts belong to Z. Since p ∈ Z, the only possibility is that Ts ∈ 1/N∗.
Consequently, instead of choosing Ts ∈ (0, 1], one can set K ∈ N∗ such that Ts = 1/K, which
involvesωc = π/K. With these specifications, the correspondence (40) can be employed in
order to continue the derivations from Equation (41):

F
(
ν
[p,k]
Ts

)
(ω) = ∑

n∈Z
sinc[ωc(n− pK)]e−jn(ω− 2kπ

K ) = ∑
n∈Z

sinc(ωcn)e−j(n+pK)(ω− 2kπ
K ) = e−jpKω ∑

n∈Z
sinc(ωcn)e−jn(ω− 2kπ

K ) =

= Ke−jpKωχ[−ωc ,+ωc ]

(
ω− 2kπ

K

)
= Ke−jpKωχ

[ (2k−1)π
K , (2k+1)π

K ]
(ω), ∀ω ∈ [−π,+π].

(42)

Note that the pulsations band of tfa ν[p,k]
Ts

is
[
(2k−1)π

K , (2k+1)π
K

]
. Clearly if k1 6= k2, the

tfas ν[p,k1]
Ts

and ν[p,k2]
Ts

exhibit an almost-disjoint pulsations band. This property is verified
regardless of the time-shifting indices (equal or not), as the bandwidth does not depend
on them. According to property (5), it follows that they are orthogonal. The orthogonality
property needs then to be verified only in case k1 = k2 = k ∈ N. Arbitrarily choose
p1, p2 ∈ Z and k ∈ N. With the help of property (5), one can write:

〈
ν
[p1 ,k]
Ts

,ν[p2 ,k]
Ts

〉
=

1
2π

〈
F
(
ν
[p1 ,k]
Ts

)
, F
(
ν
[p2 ,k]
Ts

)〉
=

K2

2π

+π∫
−π

χ2
[ (2k−1)π

K , (2k+1)π
K ]

(ω)ejK(p2−p1)ωdω =
K2

2π

(2k+1)π
K∫

(2k−1)π
K

ejK(p2−p1)ωdω. (43)

The final integral of Equation (43) can be computed in two cases.
If p1 = p2 = p ∈ Z, then the two tfas are identical. In this case, the scalar product

returns the energy of tfa:

〈
ν
[p,k]
Ts

,ν[p,k]
Ts

〉
= ‖ν[p,k]

Ts
‖

2
= E

(
ν
[p,k]
Ts

)
=

K2

2π

(2k+1)π
K∫

(2k−1)π
K

dω = K. (44)

Thus, by difference from the continuous-time tfa, the discrete-time tfa is not necessarily
normalized, its energy being equal to the sampling rate.
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If p1 6= p2, then:

〈
ν
[p1,k]
Ts

,ν[p2,k]
Ts

〉
= K2

2π

(2k+1)π
K∫

(2k−1)π
K

ejK(p2−p1)ωdω = K
2π ·

ejK(p2−p1)ω

j(p2−p1)

∣∣∣ω= (2k+1)π
K

ω= (2k−1)π
K

= K
2π ·

ej(2k+1)(p2−p1)π−ej(2k−1)(p2−p1)π

j(p1−p2)
=

= K
2π ·

ej(p2−p1)π−e−j(p2−p1)π

j(p1−p2)
= Kν(p2 − p1) = 0.

(45)

�

Thanks to Theorem 3, the notation ν[p,k]
Ts

can be replaced by ν[p,k]
K and K ∈ N∗ is

a parameter to be set according to further requirements (which are stated later in this
article). Additionally, the notation of dictionary VTs becomes VK. Note that, according to
property (44), the dictionary VK is orthogonal, but not orthonormal.

The last goal to be achieved is the invertibility. Thanks to the specific selection of
sampling period, the expression (35) of any tfa becomes:

ν
[p,k]
K [n] = e

2πkn
K jsinc

[
π
( n

K
− p

)]
, ∀n, p ∈ Z, ∀k ∈ N. (46)

Focus on the harmonic factor in (46). Obviously, if the harmonic index is replaced by
k + lK (with l ∈ Z) then:

ν
[p,k+lK]
K [n] = e

2π(k+lK)n
K jsinc

[
π
( n

K
− p

)]
= e

2πkn
K jsinc

[
π
( n

K
− p

)]
= ν

[p,k]
K [n], ∀n, p ∈ Z, ∀k ∈ N. (47)

Interestingly, thanks to property (47), the dictionary of tfas can be enumerated by
means of a finite number of harmonic indices: VK =

{
ν
[p,k]
K

}
p∈Z,k∈0,K−1

.

In order to ease the proof of invertibility, the following result is helpful.

Lemma 2. The real-valued tfas of orthogonal dictionary VK verify the following property:

∑
p∈Z

ν
[p+m,0]
K [n]ν[p,0]

K [n] = δ0[m], ∀m, n ∈ Z. (48)

Proof. One starts by proving that the series in (48) is absolutely convergent. Two cases are
analyzed next.

If n = lK ∈ KZ, then, obviously:

∑
p∈Z

ν
[p+m,0]
K [lK]ν[p,0]

K [lK] = ∑
p∈Z

sinc(π(l − p−m))sinc(π(l − p)) = sinc(mπ) = δ0[m], ∀m ∈ Z, (49)

which proves that the identity (48) holds true.
If n ∈ Z\KZ, then:∣∣∣∣∣∑p∈Zν[p+m,0]

K [n]ν[p,0]
K [n]

∣∣∣∣∣ ≤ ∑
p∈Z

∣∣∣ν[p+m,0]
K [n]ν[p,0]

K [n]
∣∣∣ ≤ K2

π2 ∑
p∈Z

1
|(p + m)K− n||pK− n| , ∀m ∈ Z. (50)

The upper limit in (50) is convergent.
Now, the identity (48) has to be proven for n ∈ Z\KZ. The tfa ν[p,0]

K (p ∈ Z) can be
recovered by means of inverse FT (see Equation (42)):

ν
[p,0]
K [n] =

K
2π

+π∫
−π

χ[−πK ,+πK ](ω)e−jpKωejnωdω =
K
2π

+π∫
−π

χ[−πK ,+πK ](ω)ej(n−pK)ωdω, ∀n ∈ Z

(51)
Since ν[p,0]

K is real-valued for any ∀p ∈ Z, one can use (51) to write:
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∑
p∈Z

ν
[p+m,0]
K [n]ν[p,0]

K [n] = ∑
p∈Z

ν
[p+m,0]
K [n]ν[p,0]

K [n] =
(

K
2π

)2
∑

p∈Z

+π∫
−π

+π∫
−π
χ[−πK ,+πK ](ω)χ[−πK ,+πK ](φ)e

j(n−pK−mK)ωe−j(n−pK)ϕdωdφ =

=
(

K
2π

)2
∑

p∈Z

+π∫
−π

+π∫
−π
χ[−πK ,+πK ](ω)χ[−πK ,+πK ](φ)e

jn(ω−φ)e−jmKωejpK(ϕ−ω)dωdφ, ∀n ∈ Z.

(52)
The infinite sum and the two integrals in Equation (52) are absolutely convergent.

Thus, the sum can be computed first:

∑
p∈Z

ν
[p+m,0]
K [n]ν[p,0]

K [n] =
(

K
2π

)2 +π∫
−π

+π∫
−π
χ[−πK ,+πK ](ω)χ[−πK ,+πK ](φ)e

jn(ω−φ)e−jmKω ∑
p∈Z

ejpK(φ−ω)

︸ ︷︷ ︸
2π
K δ0(φ−ω)

dωdφ =

= K
2π

+π∫
−π
χ2
[−πK ,+πK ](ω)e−jmKωdω = K

2π

+πK∫
−πK

e−jmKωdω, ∀m ∈ Z.

(53)

In (53), the Poisson-like identity (24) was employed (with α = K and β = φ−ω).
If m = 0, then the final integral of (53) equals 2π/K, which means the first sum is unit.
If m 6= 0, then:

∑
p∈Z

ν
[p+m,0]
K [n]ν[p,0]

K [n] =
K
2π

+πK∫
−πK

e−jmKωdω = − 1
2π
· e−jmKω

jm

∣∣∣∣ω=+πK

ω=−πK
=

1
2π
· ejmπ − e−jmπ

jm
= 0. (54)

�

Note that, if m = 0 in Equation (48), then:

∑
p∈Z

(
ν
[p,0]
K [n]

)2
= 1, ∀n ∈ Z, (55)

which is similar to Equation (18) of Lemma 1. Thus, sampling did not affect this property.
Now, the invertibility property can be proven.

Theorem 4. The JvN dictionary VK =
{
ν
[p,k]
K

}
p∈Z,k∈0,K−1

is an orthonormal basis of I2 space.

Proof. Theorem 3 shows that the dictionary is an orthogonal system of I2 and, thus, the
various tfas are linearly independent. Arbitrarily choose a discrete signal x ∈ I2. Then, the
signal can be decomposed by using the dictionary VK. The projection coefficients are:

XK[p, k] =
〈

x,ν[p,k]
K

〉
= ∑

n∈Z
x[n]ν[p,k]

K [n] = ∑
n∈Z

x[n]sinc
[
π
( n

K
− p

)]
e−

2knπ
K j, ∀p ∈ Z, ∀k ∈ 0, K− 1. (56)

They can be employed to generate the following discrete signal:

x̃[n] = 1
K ∑

p∈Z

K−1
∑

k=0
XK[p, k]ν[p,k]

K [n] = 1
K ∑

p∈Z

K−1
∑

k=0
XK[p, k]sinc

[
π
( n

K − p
)]

e
2knπ

K j =

= 1
K ∑

p∈Z

K−1
∑

k=0
∑

m∈Z
x[m]sinc

[
π
(m

K − p
)]

sinc
[
π
( n

K − p
)]

e−
2kmπ

K je
2knπ

K j, ∀n ∈ Z.
(57)

The inner sum of (57) can be split into two terms: one for m ∈ KZ and another one
for m ∈ Z\KZ. This is a first computational trick. The second one is to permute the sums,
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such that the finite one can be computed in the first place. This is possible, as all sums are
absolutely convergent. Hence:

x̃[n] = 1
K ∑

p∈Z
∑

l∈Z
x[lK]sinc[π(l − p)]︸ ︷︷ ︸

δ0[l−p]

sinc
[
π
( n

K − p
)]K−1

∑
k=0

e
2knπ

K j+

+ 1
K ∑

p∈Z
∑

m∈Z\KZ
x[m]sinc

[
π
(m

K − p
)]

sinc
[
π
( n

K − p
)]K−1

∑
k=0

e
2k(n−m)π

K j =

= 1
K ∑

p∈Z
x[pK]sinc

[
π
( n

K − p
)]K−1

∑
k=0

e
2knπ

K j+

+ 1
K ∑

p∈Z
∑

m∈Z\KZ
x[m]sinc

[
π
(m

K − p
)]

sinc
[
π
( n

K − p
)]K−1

∑
k=0

e
2k(n−m)π

K j, ∀n ∈ Z.

(58)

The finite sums in (58) can be computed by means of the Poisson formula:

K−1

∑
k=0

e
2knπ

K j = KδKZ[n], ∀n ∈ Z, (59)

where δKZ is the periodical unit impulse (with period equal to K). (No distributions are
involved in (59), since, in fact, unlike in (24), here, one deals with finite length geometric
series). Assume first that n = lK ∈ KZ. Then, the second term in (58) is null, according to

property (59), because
K−1
∑

k=0
e

2k(n−m)π
K j =

K−1
∑

k=0
e

2k(lK−m)π
K j =

K−1
∑

k=0
e−

2kmπ
K j and m ∈ Z\KZ. In turn,

the first term becomes:

x̃[lK] =
1
K ∑

p∈Z
x[pK]sinc

[
π

(
lK
K
− p

)]K−1

∑
k=0

e
2klKπ

K j

︸ ︷︷ ︸
K

= ∑
p∈Z

x[pK]sinc[π(l − p)]︸ ︷︷ ︸
δ0[l−p]

= x[lK], ∀l ∈ Z. (60)

Second, arbitrarily set n ∈ Z\KZ. This time, the first term in (58) is null, thanks to

property (59). For the second term,
K−1
∑

k=0
e

2k(n−m)π
K j is null every time n− m ∈ Z\KZ. The

only possibility is to have n−m ∈ KZ. In this case,
K−1
∑

k=0
e

2k(n−m)π
K j = K and:

x̃[n] = ∑
p∈Z

∑
m∈Z\KZ

x[m]sinc
[
π
(m

K
− p

)]
sinc

[
π
( n

K
− p

)]
δKZ[n−m], ∀n ∈ Z. (61)

Overall, from (60) and (61), one can write:

x̃[n] = x[n]δKZ[n] + ∑
p∈Z

∑
m∈Z\KZ

x[m]sinc
[
π
(m

K
− p

)]
sinc

[
π
( n

K
− p

)]
δKZ[n−m], ∀n ∈ Z. (62)

To compute the second term in (62), the following index changing is made: m = n− lK,
with l ∈ Z. Note that, if n ∈ KZ, then δKZ[n−m] = 0 in the second term, as m ∈ Z\KZ.
Therefore, the second term has to be activated only if n /∈ KZ and, thus, m = n− lK /∈ KZ ,
as required. This results in:

x̃[n] = x[n]δKZ[n] + (1− δKZ[n]) ∑
p∈Z

∑
l∈Z

x[n− lK]sinc
[
π
( n

K
− p− l

)]
sinc

[
π
( n

K
− p

)]
, ∀n ∈ Z. (63)

As both infinite sums of (63) are absolutely convergent, they can be switched. This
algebraic manipulation allows for the exploitation of the result of Lemma 2:
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x̃[n] = x[n]δKZ[n] + (1− δKZ[n]) ∑
l∈Z

x[n− lK] ∑
p∈Z

sinc
[
π
( n

K
− p− l

)]
sinc

[
π
( n

K
− p

)]
︸ ︷︷ ︸

δ0[l]

=

= x[n]δKZ[n] + (1− δKZ[n])x[n] = x[n], ∀n ∈ Z.

(64)

Consequently, the generated signal is identical to the initial signal.
This proves that the dictionary VK is an orthogonal basis of I2. �

Thanks to the results above, the first invertible JvN orthogonal transform in discrete
time can be defined.

Definition 4. The discrete time JvNT is defined as follows, for any signal x ∈ I2:

NK(x)[p, k] = XK[p, k] =
〈

x,ν[p,k]
K

〉
= ∑

n∈Z
x[n]ν[p,k]

K [n] = ∑
n∈Z

x[n]sinc
[
π
( n

K
− p

)]
e−

2knπ
K j, ∀p ∈ Z, ∀k ∈ 0, K− 1. (65)

Like the previous JvNT, the transform (65) is a complex-valued linear function having
the same integer arguments. Unlike the JvNT (32), it works the same for real or complex-
valued discrete signals. However, if the signal to analyze is real-valued, then the congregate
symmetry is expressed inside the set 0, K− 1:

NK(x)[p, K− k] = ∑
n∈Z

x[n]sinc
[
π
( n

K − p
)]

e−
2(K−k)nπ

K j = ∑
n∈Z

x[n]sinc
[
π
( n

K − p
)]

e
2knπ

K j

= NK(x)[p, k], ∀p ∈ Z, ∀k ∈ 0, K− 1.
(66)

The property (66) allows for the computing of only about the first half of the JvN
coefficients. Set K2 = bK/2c. Then the JvN coefficients are computed for k ∈ 0, K2 by using
definition (65). It is easy to notice that all coefficients for k = 0 are real-valued and do not
contribute to other coefficients evaluation:

XK[p, 0] = ∑
n∈Z

x[n]sinc
[
π
( n

K
− p

)]
∈ R, ∀p ∈ Z. (67)

Next, the remaining JvN coefficients are determined by complex conjugating other
already computed coefficients. More specifically:

a. If K is even (K ∈ 2N∗), then the coefficients for k = K2 = K/2 are real-valued as well:

XK

[
p,

K
2

]
= ∑

n∈Z
x[n]sinc

[
π
( n

K
− p

)]
e−nπj = ∑

n∈Z
(−1)nx[n]sinc

[
π
( n

K
− p

)]
∈ R, ∀p ∈ Z (68)

and have no other contribution in further evaluations; however:

XK[p, k] = XK[p, K− k], ∀p ∈ Z, ∀k ∈ K
2
+ 1, K− 1; (69)

b. If K is odd (K ∈ 2N+ 1), then K2 = (K− 1)/2 and no coefficients such as the ones in
(68) exist; in this case:

XK[p, k] = XK[p, K− k], ∀p ∈ Z, ∀k ∈ K + 1
2

, K− 1. (70)

If the signal to analyze is complex-valued, then all JvN coefficients have to be com-
puted.

Thanks to Theorem 4, the inverse JvNT in discrete time is:
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x[n] = N−1
K (X)[n] =

1
K ∑

p∈Z

K−1

∑
k=0

XK[p, k]ν[p,k]
K [n] =

1
K ∑

p∈Z

K−1

∑
k=0

XK[p, k]sinc
[
π
( n

K
− p

)]
e

2knπ
K j, ∀n ∈ Z. (71)

In case x is real-valued, then the congregate symmetry property (66) can be exploited,
to reduce the computational burden of synthesis Equation (71):

a. If K is even (K ∈ 2N∗):

x[n] = 1
K ∑

p∈Z
XK [p, 0]sinc

[
π
( n

K − p
)]

+ 1
K ∑

p∈Z
(−1)nXK

[
p, K

2

]
[p, 0]sinc

[
π
( n

K − p
)]
+

+ 1
K ∑

p∈Z

 K
2 −1
∑

k=1
XK [p, k]e

2knπ
K j +

K−1
∑

k= K
2 +1

XK [p, k]︸ ︷︷ ︸
XK [p,K−k]

e
2knπ

K j

sinc
[
π
( n

K − p
)]

=

= 1
K ∑

p∈Z

(
XK [p, 0] + (−1)nXK

[
p, K

2

])
sinc

[
π
( n

K − p
)]
+

+ 1
K ∑

p∈Z

K
2 −1
∑

k=1

(
XK [p, k]e

2knπ
K j + XK [p, k]e

2knπ
K j
)

sinc
[
π
( n

K − p
)]

=

= 1
K ∑

p∈Z

(
XK [p, 0] + (−1)nXK

[
p, K

2

])
sinc

[
π
( n

K − p
)]
+

+ 2
K ∑

p∈Z

K
2 −1
∑

k=1
Re
(

XK [p, k]e
2knπ

K j
)

sinc
[
π
( n

K − p
)]

, ∀n ∈ Z.

(72)

b. If K is odd (K ∈ 2N+ 1):

x[n] = 1
K ∑

p∈Z
XK[p, 0]sinc

[
π
( n

K − p
)]

+ 1
K ∑

p∈Z

 K−1
2
∑

k=1
XK[p, k]e

2knπ
K j +

K−1
∑

k= K+1
2

XK[p, k]︸ ︷︷ ︸
XK [p,K−k]

e
2knπ

K j

sinc
[
π
( n

K − p
)]

=

= 1
K ∑

p∈Z
XK[p, 0]sinc

[
π
( n

K − p
)]

+ 2
K ∑

p∈Z

K−1
2
∑

k=1
Re
(

XK[p, k]e
2knπ

K j
)

sinc
[
π
( n

K − p
)]

, ∀n ∈ Z.

(73)

2.2.3. JvNT for Discrete Time Signals with Finite Support Length

Since I2N is a subspace of I2, the dictionary VK can be employed to perform analysis
and synthesis of finite length signals as well. Theoretically, the JvNT for signals of I2N
is the same as for the signals in I2. Nevertheless, in order to exploit the finite length of
signals support and to make possible the design of numerical algorithms that yield effective
computation of JvN coefficients with finite, but controlled accuracy, a slightly different
JvNT will be defined. For the new transform, the orthogonality is preserved, but the exact
invertibility is replaced by the nearly exact (approximate) invertibility.

To better understand how the new JvNT is defined, an engineering point of view is
adopted next. One starts by illustrating in Figure 1 three tfas of dictionary VK (to the left),
together with the frequency representations of each tfa, i.e., their spectra and phases, as
derived from their FT (to the right).

On top of figure, the JvN mw is depicted, here for K = 7Hz. However, the time variation
was truncated. Since the sinc envelope is a hyperbola, the function (1) can be neglected as
soon as the hyperbola becomes smaller than a truncation threshold, say ε > 0. (In Figure 1,
the threshold was set to 1%). This allows for the restriction of the JvN mw to a practical
compact support [−Nε,−Nε], where the bound Nε ∈ N∗ is determined as follows:

K
πNε

< ε⇔ Nε >
K
πε
⇒ Nε =

⌈
K
πε

⌉
. (74)

In Figure 1, Nε = d700/πe = 223, which corresponds to approximately 31.86 s on the
real time axis. The truncation introduced distortions in the frequency characteristic. Both the
spectrum and the phase are affected, as the figure reveals. Nevertheless, the characteristic
is nearly ideal (with rectangular spectrum and linear phase on pass band). The smaller the
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ε, the smaller the distortions. The normalized cut-off pulsation isωc = π/7 ∼= 0.1429π (as
seen on the figure).
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Figure 1. Three time-frequency atoms of JvN orthogonal dictionary: the mw (top), the real part of
a delayed and frequency modulated atom (middle), and the imaginary part of an anticipated and
frequency modulated atom (bottom).

In the middle of Figure 1, the variations for a tfa with p = 15 and k = 2 are drawn.
Since p > 0, the tfa is delayed with respect to the position of mw. Only the real part of the tfa is
shown to the left, as the imaginary part is similarly located. Additionally, the harmonic index
has shifted the spectrum to the right side, and over the band [(2k− 1)ωc, (2k + 1)ωc] =
[3ωc, 5ωc] ∼=∼= [0.4286π, 0.7143π] (while the phase is completely linear now), since the
previous characteristic only displayed the half-tband of the mw spectrum.

At bottom of Figure 1, the variations of the tfa with p = −10 and k = 1 can be seen. This
time, the tfa is anticipated, as p < 0. The imaginary part is drawn to the left. On the right side,
one can notice that the spectrum has migrated over the band [ωc, 3ωc] ∼= [0.1429π, 0.4286π]
(while the phase remains linear on the pass band).

As the figure clearly reveals, according to expression (46), the maximum point of real
part in the tfa ν[p,k]

K is pK. So, for any increment/decrement of time-shifting index the tfa
jumps from a pK normalized time to another. The distance between maximum points of
ν
[p,k]
K and ν[p+1,k]

K is equal to K.
Also, the spectrum of the tfa jumps from a 2ωc normalized pulsation to another, for

any increment/decrement of harmonic index. Geometrically, one can associate any tfa with
some window in time, as well as in frequency. The windows slide along the time-frequency
axes as the couple {p, k} varies. The basic window is the JvN mw, which sometimes is
referred to as ‘mother-window’.
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By convention, Supp(x) = 0, N − 1 for any x ∈ I2N . Since Suppε
(
ν
[0,0]
K

)
= −Nε, Nε

(the practical support of JvN mw), by sliding the mw along the signal, the two sup-
ports intersect with each other only for a finite number of time-shifting indices. Obvi-
ously, Suppε

(
ν
[p,0]
K

)
= pK− Nε, pK + Nε. One can consider that, if p /∈ Pmin, Pmax, then

Supp(x) ∩ Supp
(
ν
[p,0]
K

)
= ∅. In this case, all JvN coefficients computed with the direct

transform (65) are nearly null and can be neglected. To determine the two bounds, the
following restrictions are enforced:

{
(Pmin − 1)K + Nε < 0 ≤ PminK + Nε
PmaxK− Nε ≤ N − 1 < (Pmax + 1)K− Nε

⇔
{
− Nε

K ≤ Pmin < 1− Nε
K

N+Nε−1
K − 1 < Pmax ≤ N+Nε−1

K
⇒

 Pmin = −
⌊

Nε
K

⌋
< 0

Pmax =
⌊

N+Nε−1
K

⌋
> 0

. (75)

Now, the practical JvNT for finite length discrete signals can be defined.

Definition 5. Assuming the parameters K and ε are set, the bounds (75) can be computed and the
practical JvNT is defined as follows, for any signal x ∈ I2N :

NK(x)[p, k] = XK [p, k] =
〈

x,ν[p,k]
K

〉
=

N−1

∑
n=0

x[n]ν[p,k]
K [n] =

N−1

∑
n=0

x[n]sinc
[
π
( n

K
− p

)]
e−

2knπ
K j, ∀p ∈ Pmin, Pmax, ∀k ∈ 0, K− 1. (76)

By way of difference from Definition 4 in the definition above, the sum is finite and,
moreover, the time-shifting index varies along a finite set. This allows for the design of a
numerical algorithm to implement the JvNT, without losing the orthogonality property.
The algorithm can fully exploit the symmetry Equations (68)–(70).

Although the inverse JvNT relies on Equation (71), the original signal can never be
exactly recovered, because only a finite number of tfas from basis VK are employed. This
drawback enforces the defining of an approximate inverse, by assuming a synthesis error,
as in the following result.

Theorem 5. In context of analysis Equation (76), the following signal can be synthesized:

x̃[n] =
δKN[n]χ0,N−1[n]

K

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]ν[p,k]
K [n] +

1− δKN[n]χ0,N−1[n]
K

·

Pmax
∑

p=Pmin

K−1
∑

k=0
XK [p, k]ν[p,k]

K [n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
, ∀n ∈ 0, N − 1. (77)

Then the signal x̃ exactly recovers the original signal x only in normalized instants expressed as integer multiples
of K. For the remaining normalized instants, x̃ can only approximate x and the synthesis error is:

∆x[n] = x[n]− x̃[n] =

b n
K c
∑

m=−b N−n−1
K c

m 6=0

x[n−mK]
Pmax
∑

p=Pmin

ν
[p+m,0]
K [n]ν[p,0]

K [n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
, ∀n ∈ 0, N − 1\KN. (78)

Proof. The rationale employed to prove Theorem 4 can help to complete the proof of this
theorem. For convenience, define the following signal:

y[n] =
1
K

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]ν[p,k]
K [n] =

1
K

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]sinc
[
π
( n

K
− p

)]
e

2knπ
K j, ∀n ∈ 0, N − 1. (79)

Notice how signal (77) depends on signal (79):
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x̃[n] = δKZ[n]χ0,N−1[n]y[n] +
1− δKZ[n]χ0,N−1[n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
· y[n] =

δKZ[n]χ0,N−1[n] +
1− δKZ[n]χ0,N−1[n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2

y[n], ∀n ∈ 0, N − 1. (80)

Then, according to analysis Equation (76), the signal (79) becomes:

y[n] =
1
K

Pmax

∑
p=Pmin

K−1

∑
k=0

N−1

∑
m=0

x[m]sinc
[
π
(m

K
− p

)]
sinc

[
π
( n

K
− p

)]
e−

2kmπ
K je

2knπ
K j, ∀n ∈ 0, N − 1. (81)

The values of y can be computed in two cases.

• Assume that n = lK ∈ 0, N − 1∩ KN. In this case:

y[lK] = 1
K

Pmax
∑

p=Pmin

K−1
∑

k=0

N−1
∑

m=0
x[m]sinc

[
π
(m

K − p
)]

sinc[π(l − p)]︸ ︷︷ ︸
δ0 [l−p]

e−
2kmπ

K j = 1
K

N−1
∑

m=0
x[m]sinc

[
π
(m

K − l
)]K−1

∑
k=0

e−
2kmπ

K j

︸ ︷︷ ︸
KδKZ [m]

=

=
b N−1

K c
∑

r=0
x[rK]sinc[π(r− l)]︸ ︷︷ ︸

δ0 [r−l]

= x[lK], ∀l ∈ 0,
⌊

N−1
K

⌋
.

(82)

(The Poisson formula (59) was used in the manipulations above). Property (81) actually
proves the first assertion of theorem, as Equation (80) involves x̃[lK] = y[lK]

• Assume that n ∈ 0, N − 1\KN. In this case, the finite sums can be switched, such that
the harmonic part be computed first, with the help of the Poisson formula (59). More
specifically:

y[n] =
1
K

Pmax

∑
p=Pmin

N−1

∑
m=0

x[m]sinc
[
π
(m

K
− p

)]
sinc

[
π
( n

K
− p

)]K−1

∑
k=0

e
2k(n−m)π

K j

︸ ︷︷ ︸
KδKZ [n−m]

. (83)

The Poisson formula enforces the index m to take values of the form m = n− lK, which,
moreover, must belong to the set 0, N − 1. Consequently, the new index, l, vary in the

set: −
⌊

N−n−1
K

⌋
,
⌊ n

K
⌋
. Thus, Equation (83) becomes:

y[n] =
b n

K c

∑
l=−b N−n−1

K c
x[n− lK]

Pmax

∑
p=Pmin

sinc
[
π
( n

K
− p− l

)]
︸ ︷︷ ︸

ν
[p+l,0]
K

sinc
[
π
( n

K
− p

)]
︸ ︷︷ ︸

ν
[p,0]
K

. (84)

after switching the two sums. Obviously, l = 0 is always included in the variation
range of the second sum and can be extracted as a separate term. For the remaining
term, l can be re-noted by m. Hence:

y[n] = x[n]
Pmax

∑
p=Pmin

(
ν
[p,0]
K [n]

)2
+

b n
K c

∑
m=−b N−n−1

K c
m 6=0

x[n−mK]
Pmax

∑
p=Pmin

ν
[p+m,0]
K [n]ν[p,0]

K [n]. (85)

It is easy to notice that Equation (80) involves:

x̃[n] =
y[n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
, ∀n ∈ 0, N − 1\KN. (86)
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Combining (85) and (86), one obtains:

x̃[n] = x[n] +

b n
K c
∑

m=−b N−n−1
K c

m 6=0

x[n−mK]
Pmax
∑

p=Pmin

ν
[p+m,0]
K [n]ν[p,0]

K [n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
, ∀n ∈ 0, N − 1\KN, (87)

which proves the last assertion of the theorem. �

Theorem 5 gives an insight on how the synthesis can be performed in case of finite
length discrete signals. Thus, the approximate inverse of JvNT is:

x̃[n] =
1
K



Pmax
∑

p=Pmin

K−1
∑

k=0
XK [p, k]ν[p,k]

K [mK] , n = mK ∈ 0, N − 1;

Pmax
∑

p=Pmin

K−1
∑

k=0
XK [p,k]ν[p,k]

K [n]

Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2 , n ∈ 0, N − 1\KN.
(88)

The first branch of Equation (88) can furthermore be simplified, as:

ν
[p,k]
K [mK] = e

2πkmK
K jsinc[π(m− p)] = δ0[m− p], ∀m, p ∈ Z, ∀k ∈ N, (89)

according to Equation (46). Hence:

x̃[mK] =
1
K

K−1

∑
k=0

XK [m, k] = x[mK], ∀m ∈ 0,
⌊

N − 1
K

⌋
. (90)

Equations (88) and (90) can be employed to implement the practical inverse of the JvNT
(76). For efficient implementation, symmetry properties (72) and (73) can be considered.

The only remaining problem to solve is how to set the parameters K and ε. The solution
is not as simple, as it might seem at a first sight. Apparently, they are independent parame-
ters, but, in fact, correlations between them exist. One bond is given by the imperfection of
the inverse JvNT (88). Is there a couple {K, ε} that minimizes the standard deviation (std) of
error ∆x ≡ x− x̃ (between the genuine signal and the recovered signal)? To soundly answer
this question, denote by σy the std of a signal y ∈ I2N . Then the following cost-function can
be defined:

A(K, ε) =
100

1 + 10σ∆x(K,ε)
σx

[%], ∀K ∈ N∗, ∀ε > 0, (91)

which comes from the hyperbola 1/(1 + x) that maps the infinite length interval [0,+∞) into the nor-
malized interval (0, 1]. In definition (91), the std of error ∆x (i.e., σ∆x) was normalized by the std of the
original signal (i.e., σx), to obtain the relative std of error. Since the relative std of error needs to
be minimized, the cost-function (91) has to be maximized, while varying the two parame-
ters. One can associate the cost-function to the normalized synthesis accuracy (hence, the
notation “A”).

In case of x ∈ I2N , it is reasonable to limit the variation of sampling rate K to the upper
bound of dN/2e. Additionally, the threshold ε should be set at least equal to 10−3 (as this
limit is small enough to neglect the JvN mw tails), and at most equal to 0.05. Although the
cost-function is nonlinear, its optimization can be realized through various techniques,
depending on the signal length, N. However, if N is not excessively big (for example,
N = 1000), then the optimization can be realized by exhaustive search into the rectangle
2, bN/2c ×

[
10−3, 0.05

]
, where the thresholds axis can be made discrete with step 10−4.

In Figure 2, on top, a pseudo-random discrete signal with Gaussian distribution is
depicted (on top, in blue), together with the synthesized signal (in the middle, in red) and
the reconstruction error (at bottom, in magenta).



Mathematics 2023, 11, 2607 21 of 40
Mathematics 2023, 11, x FOR PEER REVIEW 23 of 44 
 

 

 

 

 

 
Figure 2. Cost-function (relative accuracy) evaluation for a pseudo-randomly generated signal with 
Gaussian distribution. Top: original signal (top), synthesized signal (middle), and reconstruction 
error (down). Left-side bottom: cost-function surface. Right-side bottom: cost-function variation for 

0.01ε =  (depending on sampling rate, K ). 

Figure 2. Cost-function (relative accuracy) evaluation for a pseudo-randomly generated signal with
Gaussian distribution. Top: original signal (top), synthesized signal (middle), and reconstruction
error (down). Left-side bottom: cost-function surface. Right-side bottom: cost-function variation for
ε = 0.01 (depending on sampling rate, K).

The signals length is N = 1000. For this signal, the surface of the cost-function is
illustrated at bottom, on the left side of figure. On the right side, the variation of cost-
function along K axis is drawn, for ε = 0.01. The cost-function surface is quite irregular. This
fractal aspect is mainly due to the stochastic nature of the signal to be analyzed. Since the
JvN atoms are smooth, while the signal to analyze is a pseudo-random signal, the analysis
coefficients, as well as the reconstruction error, inherit the stochastic behavior, which leads
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to ruptures in the accuracy criterion. The same characteristic exhibited in the cost-function variation
for ε = 0.01. If the signal length is quite large, a metaheuristic [38] should be employed to solve the
optimization problem. The optimal point of the cost-function is

{
Kopt = 457, εopt = 0.0001

}
, for which

Amax = 99.64%. The synthesis signal and the reconstruction error have been evaluated for the optimal
point in Figure 2. Thus, the relative std of the reconstruction error is approximately 0.03584%,
which means the synthesis signal is almost identical to the original one. As one can see, the
bigger the K and the smaller the ε, the more accurate the synthesized signal. Nevertheless,
the optimal cost-function for ε = 0.01 is only slightly smaller than the one for ε = 0.001, i.e.,
Amax = 99.62% (for Kopt = 456). Or, in terms of computational burden, the difference between
the two optimal points is quite large. For ε = 0.001, one obtains Nε = d1000K/πe, whereas,
for ε = 0.01, Nε = d100K/πe (i.e., about 10 times smaller). Since the gain in terms of accuracy
is very small (99.64% versus 99.62%), the wise selection is ε = 0.01.

Focus now on Kopt. There is a correlation between this parameter and the time-
frequency representation of the JvNT, i.e., of the JvN coefficients. Since XK is a complex-
valued function of two integer variables, one can represent its magnitude and phase over
the time-frequency plane generated by the two indices: time-shifting (p) and harmonic
modulation (k). As in case of FT, |XK | is the spectrum. Unlike the case of FT, the JvN
spectrum varies in time (for each index p, a different spectrum can be obtained). The time
variation of spectrum is a characteristic of non-stationary signals (which constitute the
overwhelming majority of real-world signals). Thus, the FT spectrum only reveals the
average behavior in frequency, while the JvN spectrum is closer to reality. In SP terminology,
the surface representation of a time varying spectrum is referred to as a spectrogram.

Return to the previous example. The JvN coefficients are represented as displayed on
the left side of Figure 3 (spectrogram up and phase surface down). On the right side, one
can see the classical representation of FT applied to the Gaussian signal (spectrum up and
phase down). In both cases, the spectral power is represented in logarithmic scale or decibels
(dB), whereas the phase is measured in degrees (deg).
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Figure 3. Time-frequency representation of a signal. Left side: JvN spectrogram (up, in dB) and phase
surface (down). Right side: FT spectrum (up, in dB) and phase (down).

Since the generated signal is close to a white noise, its average spectrum exhibits no
dominant frequencies (see the right side of figure). This property is verified by the JvN
spectrogram as well (see the left side of figure). However, when closely looking at the
spectrogram, one can see that the spectral variation in time has strong decays towards
the bounds of the time-frequency plane, which is inaccurate. Practically, the main part
of the spatial spectrum and phase from the left side of figure are almost the same as the
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planar ones forming the right side of the figure. This effect is produced by the tails of tfas
(with small magnitudes) and not by their central variation. However, the real cause is that
the sampling rate was set to Kopt. This value is close to half of the signal length, which
results in the fact that the maximum point of JvN mw makes big jumps and falls into the
signal support only three times, for n ∈

{
0, Kopt, 2Kopt

}
= {0, 457, 914}. In fact, the useful part

of the JvN spectrogram is quite poor and includes only the three instantaneous spectra
corresponding to these three positions. If finer variation in the time of spectrum is wanted,
then the sampling rate K should be set to smaller values.

In SP terminology, the sampling rate is associated to the resolution of the time-
frequency representation. The essential question is this: where to locate the coefficient
XK [p, k] over the time-frequency plane? Since both the signal and the set of analysis coeffi-
cients are discrete, a grid covers this plane, as illustrated in Figure 4.
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The grid density is determined by the value of K along the time axis and the value
of 2/K along the frequency axis. Thus, the elementary grid mesh is a rectangle with sides
of length K and 2/K. Therefore, its area is constant (and equal to 2), regardless of the
value of K. Although the coefficient XK [p, k] can be located at the coordinates

(
pK, 2k+1

K

)
,

in reality, it could lie anywhere on the mesh centered in these coordinates. In fact, this
is a manifestation of the Gabor–Heisenberg uncertainty principle [2]. According to this
principle, the product of the representation resolutions in time and in frequency is constant.
In case of the grid from Figure 4, the time resolution can conventionally be set to 1/K and the
frequency resolution to K. Increasing the resolution in one domain automatically decreases
the resolution in the dual domain, as their product is unitary. Localization of JvN coefficient
is uncertain inside the mesh. If one tries to increase the localization accuracy along one
time-frequency axis (i.e., to increase the corresponding resolution), the localization along
the other axis becomes more uncertain. Thus, a trade-off should be found.

In the example above, the resolutions game is strongly unbalanced, as the cost-function
(91) focused too much on frequency axis, to the detriment of the time axis. The JvNT leads to
excellent localization in frequency, but poor (uncertain) localization in time. A good trade-
off should keep both resolutions in balance. For example, if K =

⌊√
2N + 0.5

⌋
(the nearest

integer to
√

2N), then the maximum point of JvN mw jumps in about K/2 normalized
instants inside the signal support. This means the grid has about K/2 important meshes
(where the signal spectrum is accurately determined) along the time axis. In turn, along the
frequency axis, since the discretization step is 2/K, about K/2 meshes exist as well. Thus,
approximately the same number of important meshes is obtained along both axes.

For the Gaussian signal in Figure 2, the following trade-off was adopted: K =⌊√
2000 + 0.5

⌋
= 45 and ε = 0.01. The results obtained after applying the JvNT to the signal

are displayed in Figure 5. This time, the cost-function decreased to A(45, 0.01) = 87.24% and
the relative std of error increased to 1.46% (i.e., it was about 41 times bigger than in the case
of the optimal point). However, the synthesized signal still is accurate, as the top of figure
exhibits. The time-frequency analysis led to the spectrogram in the left side of figure at
bottom and the phase surface on the right side.
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Figure 5. Analysis-synthesis of a pseudo-generated signal with Gaussian distribution, by using the
JvNT for K = 45 and ε = 0.01. Top: original signal (up), synthesized signal (middle), and reconstruc-
tion error (down). Left side, bottom: JvN spectrogram. Right side, bottom: JvN phase surface.
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When making comparisons to the JvN spectrogram for the optimal point of the cost-
function (see the middle of Figure 3 again), one can easily observe the time variation of the
signal spectrum, although its resolution in frequency is poorer. Instead of three significant
instantaneous spectra, in the figure above, one can see about 45 such significant spectra.
The same effect can be noticed for the phase surface. Figures 3 and 5 reveal that, in fact,
the Gaussian signal is almost stationary (its spectrum is almost constant in time), due to
the number of generated samples, N, which is rather small (1000). In Section 4, a 10 times
longer Gaussian signal is tested, such that the non-stationary characteristic can be noticed.

To conclude this subsection, one can say that the JvNT of discrete signals with finite
length support is an engineering tool working under the constraint of the uncertainty prin-
ciple. Its performance depends on the balance between the two representation resolutions,
both in time and in frequency.

3. Numerical Algorithms to Implement JvNTs

Two algorithms were designed and implemented, based on the previous section. The
direct JvNT for 1D signals can be computed in two cases: when the signal is real-valued
(and, thus, the symmetry property can be considered) and when the signal is complex-
valued. Similarly, the inverse JvNT for 1D signals requires two approaches, depending
on the nature of signals. Although the algorithms described next are easier to implement
within the MATLAB™ programming environment, any other environment can be selected
as well.

Note that, in MATLAB™ programming language, the congregate symmetrical block
of matrix C can be added after completing the main loop, by concatenation (with no
need to access every element of the block). Additionally, it is easy to see that the first
column of matrix C only takes real values, since it was computed for a null harmonic index.
Moreover, if K is even, the column Ksym is real-valued as well. Although the numerical
procedure above did not consider such properties, they can help to increase the efficiency
of Algorithm 1. The efficiency refers here to the computational burden and, ultimately,
concerns the running time. For example, one procedure is more efficient than another if the
result is provided by making a smaller number of arithmetic operations and/or obtained
more quickly. In case of Algorithm 1, the there are two key parameters for efficiency: the
signal length N and the accuracy threshold ε. The configuring parameters K, Nε, Pmin and
Pmax, all depend on N and ε. The efficiency of Algorithm 1 (as well as that of Algorithm 2
which follows) depends on the number of atoms in dictionary to operate with. The larger
the N and the smaller the ε, the larger the number of such atoms and, thus, the slower
the procedure. The symmetry properties allow for the increase of efficiency by decreasing
the computational burden, as identical arithmetic operations are prevented from being
performed twice.
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Algorithm 1 Direct JvNT for 1D signals
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max max

min min

21 1 j[ , ]

0 0

[ , ] [ ] [ , ]sinc e
P P k nK K

p k K
K K K

p P k p P k

nX p k n X p k p
K

π− −

= = = =

  ν = π −  
  

   , 0, 1 \n N K∀ ∈ −   (92) 

For the following algorithm, the inverse JvNT (88) was expressed in matrix form.
As already proven, all samples x̃[mK] (m ∈ 0, b(N − 1)/Kc) can simply be computed by
averaging several rows of the coefficients matrix, regardless of whether they are real-valued
or complex-valuated (see Equation (90)). For the remaining samples, focus on the main
term in Equation (88), namely:

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]ν[p,k]
K [n] =

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]sinc
[
π
( n

K
− p

)]
e

2knπ
K j, ∀n ∈ 0, N − 1\KN (92)
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Since the sinc kernel and the electrons of harmonic part use independent indices, they
can be packed into two different vectors: s[n] =

[
sinc

[
π
( n

K − Pmin
)]

sinc
[
π
( n

K − Pmin − 1
)]
· · · sinc

[
π
( n

K − Pmax
)] ]T

∈ RP;

e[n] =
[

1 e
2nπ

K j · · · e
2(K−1)nπ

K j
]T
∈ CK .

(93)

(In the first definition of (93), P = Pmax − Pmax + 1). Then, if XK ∈ CP×K denotes the
matrix of all analysis coefficients, Equation (92) becomes:

Pmax

∑
p=Pmin

K−1

∑
k=0

XK [p, k]ν[p,k]
K [n] = sT [n]XKe[n], ∀n ∈ 0, N − 1\KN. (94)

Consequently, the second branch of transform (88) is straightforwardly expressed in
compact form below:

x̃[n] =

Pmax
∑

p=Pmin

K−1
∑

k=0
XK [p, k]ν[p,k]

K [n]

K
Pmax
∑

p=Pmin

(
ν
[p,0]
K [n]

)2
=

sT [n]XKe[n]
KsT [n]s[n]

=
sT [n]XKe[n]

K‖s[n]‖2 , ∀n ∈ 0, N − 1\KN. (95)

Algorithm 2 Inverse JvNT for 1D signals
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 Algorithm 2 Inverse JvNT for 1D signals 

 Inputs: 
• The length of signal to synthesize: N ; 
• The matrix of JvN analysis coefficients: P K×∈C   (complex-valued); 
• The time-shifting bounds of dictionary: minP  and maxP ; 
• The signal type: { },st∈    (real or complex-valued; by default, st = ). 

 Initialization: 
1. Determine the sampling rate K  by counting the columns of matrix C . 
2. Extract the first column of the coefficients matrix: [ ]1 1,

,1
p P

c p
∈

 =  c  (real-valued 

if st = ). 
3. if st = , then:  

3.1. Set the parity index of sampling rate: pi %2K K= . 

3.2. Set the harmonic index to exploit symmetry: max pi
2 K
KK  = +  

. 

else 
3.3. Set the harmonic index to full range: maxK K= . 

end 
 Main loop: 

for 1:n N=  
1. if ( 1)% 0n K− = , then  

1.1. min
1

1[ ] 1,
K

k

nx n c P k
K=

− = − +  
  

1.2. if st =  , then ( )[ ] [ ]x n x n=ℜ   (take the real part only, to avoid
roundoff errors in imaginary part, which should be null) end 

else 
1.3. Build the harmonic column vector: 
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The symmetry property (included in Algorithm 2) can sensibly reduce the runtime, in
case of real-valued signals.

4. Simulation Results and Discussion

After implementing the algorithms from Section 3 within the MATLAB™ program-
ming environment, several tests were performed upon one artificial and one real-life
signal. Both of them were real-valued. The JvN dictionaries were configured with the
accuracy threshold ε = 0.01. Two types of sampling rates are employed for comparison:
K1 =

⌊√
N + 0.5

⌋
and K2 =

⌊√
2N + 0.5

⌋
, where N is the signal length.

4.1. Gaussian Pseudo-Randomly Generated 1D Signal

The signal was generated by means of function randn from the MATLAB™ library. Its
length is N = 10, 000. Consequently, the two JvNTs are defined by K1 = 100 and K2 = 141,
respectively. In Figure 6, the generated signal is displayed on top, while its frequency
representation is shown below. The spectrum (in the middle) is drawn in dB (as usual) and
the phase (at bottom)—in deg.
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Figure 6. A Gaussian pseudo-random signal (on top), together with its FT spectrum (in the middle)
and phase (at bottom).

The signal looks like a realization of white noise (which is non autocorrelated and
unpredictable), its spectrum having almost constant envelope. Real-world signals such
as this are, for instance, the seismic ones. Such signals are difficult to compress or predict.
Therefore, as the FT spectrum reveals, the coefficients of JvNT are expected to have an
almost plane envelope. The phase is linear, as the signal is similar to all pass filters impulse
response. Why Gaussian? The most stochastic signals in nature are Gaussian, as direct
consequence of the central limit theorem. Thus, the artificial signal is intended to be as
close as possible to real-life stochastic white noises.

In the next figures, the results of JvNT are displayed on two columns: for K1 = 100
on the first column and for K2 = 141 on the second column. In Figure 7, the JvN analysis
coefficients are represented as spectrogram and phase surface. The spectrogram is shown
in two representations: linear (on the top row) and in dB (in the middle row). The phase is
measured in deg, as for the FT.

By way of difference from the signals of Figures 3 and 5, the signal of Figure 6 is non-
stationary, as revealed by the spectrograms in Figure 7 (especially by the ones drawn on
the top row). The non-stationary behavior is slightly better-decoded in case of the smaller
sampling rate (see the linear spectrograms). Nevertheless, the initial energy of signal
seems to be almost equally divided between the JvN coefficients, in both cases, because no
dominant frequencies exist in the signal spectrum (see the logarithmic spectrograms in the
middle).



Mathematics 2023, 11, 2607 30 of 40Mathematics 2023, 11, x FOR PEER REVIEW 33 of 44 
 

 

 

 

 
Figure 7. Results of JvN analysis on a Gaussian pseudo-random signal. Top row: spectrograms in 
linear scale. Middle row: spectrograms in dB. Bottom row: phase surfaces in deg. Figure 7. Results of JvN analysis on a Gaussian pseudo-random signal. Top row: spectrograms in

linear scale. Middle row: spectrograms in dB. Bottom row: phase surfaces in deg.



Mathematics 2023, 11, 2607 31 of 40

After applying the inverse JvNT, the synthesized signals on the top row of Figure 8
were obtained. The difference from the original signal cannot be visually detected at the
usual graphical resolution. However, the reconstruction error is non-null, as displayed
on the bottom row of Figure 8. The variations of reconstruction error are particularly
interesting, as, against expectations, the original signal is more accurately recovered for the
smaller sampling rate.
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Figure 8. Results of JvN synthesis from the analysis coefficients of Gaussian pseudo-random signal.
Top row: synthesized signals. Bottom row: reconstruction errors.

Both variations were drawn at the same scale on purpose, so that the difference
between their amplitudes might become observable. Recall that, according to the discussion
in Section 2, the accuracy of reconstruction should be higher when the sampling rate is
bigger. However, the cost-function surface (see Figure 2 again) is irregular, which opens the
possibility of obtaining increasingly accurate synthesized signals for some smaller sampling
rates. Thus, it seems that, in the case of Gaussian signal, K1 =

⌊√
N + 0.5

⌋
is the winner.

In Table 1, the performance of JvNTs is summarized, for the Gaussian signal above.

Table 1. Performance parameters of JvNTs in the case of a Gaussian pseudo-random signal.

Signal
Length

N

Sampling
Rate

K

Relative
std of Error

[%]

Accuracy
[%]

Analysis
Runtime [s]

Synthesis
Runtime [s]

1000
100 1.37 87.96 3.93 0.61
141 1.83 84.55 4.32 0.62

The relative std of error is computed as in definition of accuracy (91). Both the relative
std of error and the accuracy confirm that the first JvNT performs better. The analysis-
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synthesis algorithms have been implemented and run within the MATLAB™ environment,
on a regular computer of an octa-core type. The runtimes in the table show that the
synthesis procedure performs at least six times faster than the analysis procedure.

4.2. Speech Signal

A male was recorded saying the following sentence: “The Fourier transform of a
real-valued signal is congregate symmetric.” (which is a true assertion). The speech signal
is represented in the left-side window of Figure 9 and counts 110,033 samples acquired at a
22.05 kHz sampling rate (CD quality). The sentence took approximately 5 s to be said. The
FT of the speech signal is represented to the right in the figure.
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Figure 9. A speech signal (left side) together with its FT spectrum (right side up) and phase (right
side down).

Unlike the previous Gaussian signal, the speech signal under consideration is not only
11 times longer, but also highly autocorrelated. On the spectral envelope, four formants
can be seen. (The speech signals can exhibit up to five formants). This involves the FT
spectrum exhibits dominant frequencies, although not clearly revealed. Basically, each
central frequency of a formant is a dominant frequency. Yet, the localization of such a
frequency with the help of the FT spectrum is very uncertain, as they can lie anywhere
in the formants’ sub-bands, which are quite large. Beneath the spectrum, the phase is
nonlinear, which is an indication of non-stationary behavior. The two selected sampling
rates are: K1 = 332 and K2 = 469.
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The JvN analysis led to the results in Figure 10 (with similar structure as Figure 7).
The linear spectrograms on the top row of the figure reveal that the information the speech
signal encodes is allocated to a reduced number of JvN coefficients, especially at a low
frequency. This is a characteristic of many signals from real-life. In the middle of the figure,
where the spectrograms in dB are drawn, the spectrum variation in time proves that the
speech is a nonstationary signal.
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One can see how the formants change their shape in time. In fact, only few of the 332
(to the left) or 235 (to the right) spectra have more than two formants, while all of them
exhibit the main formant at low frequency. If a frequency index is selected, one can see how
the corresponding frequency varies in time. This is the reason such a frequency is called
instantaneous for a given time moment, in SP terminology. The phase depicted at the bottom
of figure varies in time as well. The variation is more dynamic in case of the first (smaller)
sampling rate than in the case of the second sampling rate, due to the fact that the time
resolution is bigger.

Beside the time variation of JvN coefficients, the spectrograms in Figure 10 suggest
that the speech signal can be compressed by selecting the JvN coefficients with the highest
spectral power values (at the dominant instantaneous frequencies) to be sent for signal
reconstruction. Note that the total number of coefficients is 131,140 for K1 = 332 and 139,762
for K2 = 469. Both numbers are comparable to the signal length. To assess the theoretical
compression capacity of JvNT, the matrices were made linear and the coefficients were
sorted in descending order of magnitude. In Figure 11, two variations are drawn—one for
each sampling rate. Any variation shows how many coefficients would be necessary to
obtain some relative energy threshold.
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Mathematics 2023, 11, 2607 35 of 40

More specifically, assume that the energy of all coefficients is E(C) and the linearized
array of coefficients is the vector c, after being sorted in descending order of coefficients’
magnitude. Set the threshold at η ∈ [0, 1] of relative energy.

The number of necessary coefficients from c to accumulate at most the energy ηE(C)

can be denoted by Nη ∈ N. Then, the variations in Figure 11 correspond to inequality:

E
(
cNη

)
=

Nη

∑
n=1
|cn|2 ≤ ηE(C), (96)

where the partial vector cNη includes the first Nη coefficients of vector c. Thus, the relative
energy thresholds 100η (in percents) are put into correspondence with the numbers Nη.
Intuitively, one assumes that the most energy (and image information) is concentrated in a
reduced number of coefficients, especially ones located at low frequencies. The variations
above prove that the relative energy increases rapidly when a very small number of
coefficients are selected. For example, if η = 0.95, then N0.95 ∈ {3, 888; 3, 994}. This means the
most part of the image energy (i.e., approximately 95%) is concentrated in a small number
of coefficients (i.e., no more than 0.04% of the coefficients’ total number). Even comparing
to the total number of samples in the speech (i.e., 110,033), the number N0.95 is quite small.
Nevertheless, to be fair, it should be outlined that the JvN coefficients are complex valued,
which means that N0.95 must be multiplied by two. Therefore, the number 2N0.95 is no more
than 0.073% from the total number of samples in the speech (in both cases).

To better assess the compression capacity of JvNT, one can compute the average angle
of the first derivative in origin for the mapping of Nη − η. Obviously, for any couple {Nη,η},
this angle can be approximated by:

αη = arctan
100η
Nη

(97)

The bigger the η, the rougher the approximation and the higher the slope of the
derivative estimation. Nevertheless, one can notice in the variations of Figure 11 that the
most approximations are obtained from the left side, which are more accurate than the
few ones from the right side. In Figure 11, the interval [0, 1] was sampled with the step
0.01, such that 101 thresholds of relative energy were considered (including both the null
and the unit ones). By averaging all estimations (97) over the last 100 points (the first
one being evidently removed), one obtains the desired average angle, which can serve
as a theoretical measure of compression capacity. The total number of JvN coefficients
contributes to the average angle as well, thanks to the last point from the considered 100.
Thus, the bigger the average angle, the better the compression capacity. The average angles
and corresponding derivatives are depicted in both panels of Figure 11. One can see that
the right-side approximations (although very poor) affected the derivatives very little, as
they were very close to the real derivative in origin.

In Table 2, the two angles, along with some samples of variations in Figure 11 are
listed.

Table 2. Relative energy η[%] versus JvN coefficients number Nη for a speech signal.

K ↓ η→ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Angle

332 Nη → 30 48 74 107 149 204 268 340 424 521 642 799 1028 1426 2169 3888 17.60◦
469 Nη → 26 43 65 92 124 162 210 268 336 422 531 686 926 1339 2110 3994 20.37◦

Clearly, the second JvNT (adjusted for higher sampling rate) has better compres-
sion capacity than the first one, although the difference between them is not statistically
significant.

Figure 12 displays the JvN synthesis results.
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Figure 12. Results of JvN synthesis from the analysis coefficients of speech signal. Top row: synthe-
sized signals. Bottom row: reconstruction errors.

All analysis coefficients were employed, regardless of their spectral powers. The syn-
thesized signals on the top row of figure seem to be identical between them and with the
original signal in Figure 9. However, reconstruction errors exist, as proven by the bottom
row of Figure 12. As in the case of previous signal, the speech is better recovered for smaller
sampling rates than for larger sampling rates. In turn, given the spectrogram variations
in Figure 10 and according to previous discussion, better compression factor could be
obtained for the second (higher) sampling rate, as the formants’ variation points to lesser
dominant instantaneous frequencies and the phase has large almost flat zones.

The performance of JvNTs applied to speech is summarized in Table 3.

Table 3. Performance parameters of JvNTs in the case of a speech signal.

Signal
Length

N

Sampling
Rate

K

Relative
std of Error

[%]

Accuracy
[%]

Analysis
Runtime [s]

Synthesis
Runtime [s]

110,033
332 1.31 88.45 342.68 56.27
469 1.75 85.13 370.27 57.24

As one can easily notice, in both cases, the synthesis runtime is approximately six times
smaller than the analysis runtime. Compared to the Gaussian signal, the analysis-synthesis
algorithms were more than 85 times slower, because the speech signal was 11 times longer.
This suggests the advantages of segmenting the speech signal into 11 frames that can be
processed separately. Thus, the runtime would be only 11 times larger, but at the expense
of higher reconstruction error (as each synthesized frame would have its own errors).

The previous remarks and the performance parameters listed in the table above
suggest that there is a balance between the two JvNTs. On one hand, the first JvNT (for
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smaller sampling rate) seems more accurate and faster. On the other hand, the second
JvNT seemingly has better compression capacity. At the bottom of Figure 13, one can see
the fitness variation depending on the number of the strongest JvN coefficients selected to
perform the synthesis (the other coefficients being enforced to null values). The first JvNT
(for smaller sampling rate) has a slightly better performance, as proven by the curve in blue
above the curve in red (higher fitness at some number Nη for the first JvNT than for the
second one). 
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Figure 13. Results on lossy synthesis of speech signal. Fitness variations at bottom. Synthesized
signals and recovering errors for η = 0.95 on top left side and for η = 0.999 on top right side. On top
both sides: for K1 = 332 up and for K2 = 469 down.

At the right-side end of the fitness variations, the fitness was computed for all JvN
coefficients, which led to the signals in Figure 12. Two other points were focused on each
fitness characteristic, to illustrate to what extent the final signal can be degraded by the
removal of some of the JvN coefficients.

On top left side of Figure 13, the synthesized signals correspond to relative energy
threshold η = 0.95. Thus, according to Table 2, the number of strongest coefficients (nsc) is 3888
for K1 = 332 and 3994 for K2 = 469. Although the cumulative energy of those coefficients
is quite high, their number is very small, which led to low values of fitness: 30.76% for
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K1 = 332 and 30.66% for K2 = 469. This time, the two signals and the recovering errors
are not so different. Moreover, the synthesized signals do not seem so different from the
original signal. Nevertheless, compared to the signals in Figure 12, the recovering errors
are more than 22 times bigger, as the relative std of error is 22.56% for K1 = 332 and 22.62%
for K2 = 469.

Increase the nsc to approximately 28% of the JvN coefficients’ total number, i.e., to
36,879 for K1 = 332 and 39,644 for K2 = 469. This choice corresponds to the energy threshold
η = 0.999. The synthesized signal and the recovering errors are shown on the top right side
of Figure 13. Fitness increased to 74.27% for K1 = 332 and 73.33% for K2 = 469, while the
relative std of error decreased to 3.47% for K1 = 332 and 3.64% for K2 = 469. In this case too,
there is not much difference between the two JvNTs in terms of accuracy and compression
capacity.

Despite what may appear to be the case, in the right side of the figure, the errors
are drawn at a different scale from the one in the left side of figure. In fact, they are
approximately 6.5 times smaller.

5. Concluding Remarks

In the manner of some of the scientists who studied John von Neumann’s work, one
can say that his function, as simple as it is, has its own magic. Translating this function
by an integer offset results in a new function, one which is orthogonal to the basic one.
By simply looking at the variations of the two functions, the orthogonality property is
undetectable. It is only clearly revealed when working in the frequency domain instead of
the time domain.

Orthogonality and the compression capacity of a transform are strongly correlated, as
fully proven by the JvNTs (and, in fact, by the most orthogonal transforms). This is one
reason the orthogonality is a very important feature in SP, especially in modern telecom-
munications, where signal compression plays the leading role. Both material and financial
resources can be saved by wisely selecting the orthogonal transform for integration in
signal compression technology. From this perspective, the JvNTs seemingly are useful
tools, with good compression capacity. This characteristic mainly is due to the property of
JvN’s function of approximating the impulse response of ideal low-pass filters, either in
continuous or in discrete time, which yields easier achievement of orthogonality.

As for future research and development, the definitions of JvNTs will be extended to
the case of 2D signals (i.e., images in real-life), where achieving the orthogonality remains
the main challenge.
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Acronyms

{1,2}D {One,two} dimension(s)
DCT Discrete cosine transform
DFT(s) Discrete Fourier transform(s)
FT Fourier transform(s)
JvN John von Neumann
JvNT(s) John von Neumann transform(s)
KLT Karhunen-Loeve transform
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RGB Red-Green-Blue (image digital system)
SP Signal processing
TDR Theorem of division with remainder
dB Decibels (logarithmic scale)
deg Degrees (for angles)
fp Floating point (representation)
mw Mother waveform/window
nsc Number of strongest coefficients
std Standard deviation
tfa(s) Time-frequency atom(s)
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