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Abstract: As a reasonable statistical learning model for curve clustering analysis, the two-layer
mixtures of Gaussian process functional regressions (TMGPFR) model has been developed to fit the
data of sample curves from a number of independent information sources or stochastic processes.
Since the sample curves from a certain stochastic process naturally form a curve cluster, the model
selection of TMGPFRs, i.e., the selection of the number of mixtures of Gaussian process functional
regressions (MGPFRs) in the upper layer, corresponds to the discovery of the cluster number and
structure of the curve data. In fact, this is rather challenging because the conventional model selection
criteria, such as BIC and cross-validation, cannot lead to a stable result in practice even with a heavy
burden of repetitive computation. In this paper, we improve the original TMGPFR model and propose
a Bayesian Ying-Yang (BYY) annealing learning algorithm for the parameter learning of the improved
model with automated model selection. The experimental results of both synthetic and realistic
datasets demonstrate that our proposed algorithm can make correct model selection automatically
during parameter learning of the model.

Keywords: mixture of Gaussian processes; Gaussian process functional regression; model selection;
Bayesian Ying-Yang harmony learning; curve clustering and prediction

MSC: 62M20; 62M45; 62F15

1. Introduction

As a powerful statistical learning model, the Gaussian process (GP), along with its
variants, has been widely used in various scenarios of data analysis and information
processing to capture the intrinsic features of time series in a variety of fields such as
regression analysis, pattern recognition, image processing, and computer vision [1–4].
However, there exist two major drawbacks which strongly limit the capability of the
conventional GP model. Firstly, the training iteration involves the covariance matrix
inversion, which is significantly time-consuming for a large-scale dataset [5]. Secondly,
for the convenience of parameter learning, the mean function of GP is usually assumed to
be zero, so that the learned GP is actually a stationary process. Therefore, it is rather difficult
for a GP to model the multi-mode time series, in which there are violent fluctuations [6].

In order to overcome these drawbacks, Tresp [5] adopted the mixture of Gaussian
processes (MGP) along the time or input region for multi-mode time series. It employs a
number of GPs which are located at different intervals of the time region corresponding to
the actual modes. In this case, the heavy computation of a large matrix inversion can be
greatly reduced to those of some small matrix inversions in the training iteration because
the MGP model limits the parameter learning of each component GP to a small piece of
time series. To enhance the learning ability and accommodate different task scenarios,
these kinds of MGPs have been improved from the structure and mechanism, such as the
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mixture of robust GPs [7], domain adaptation MGP [8], sequential local-based MGP [9], etc.
The corresponding learning algorithms have been developed with three methodologies:
Bayesian inference [10,11], Markov chain Monte Carlo [12,13], and EM algorithm [14,15].
Until now, theoretical research and practical applications of these GP mixtures are still
active [16–19].

Nevertheless, the above GP mixtures merely consider the diversity of time series in
the input space and try to learn a stochastic process from a given piece of time series,
i.e., only one sample curve. In practical applications, it is more important and significant
to consider the diversity of sample curves in the output space so that the curves can be
clustered and predicted [20]. To this end, we should get rid of the zero-mean assumption.
In fact, Shi et al. [6] proposed a model of Gaussian process functional regression (GPFR)
by using a linear combination of B-spline functions to learn and approximate the mean
function of the output, and then the GPFR mixture along the output space (referred to as
mix-GPFR) was established for curve clustering and prediction [21]. However, these GP
mixtures limit the curve clusters to be generated by a number of Gaussian processes, not
general stochastic processes which can be actual information sources in practice. In order to
overcome this limitation, Wu and Ma [22] established a two-layer mixture model of GPFRs
(TMGPFR). In the lower layer, there are a number of GPFRs driven by the input variables,
whereas in the upper layer, there are actually a number of mixtures of GPFRs (MGPFR)
generated by linearly mixing a certain number of GPFRs in the lower layer, which further
mix together in the output space and forms the output variables.

In the TMGPFR model, each MGPFR in the upper layer can model a general stochastic
process that acts as a general random information source to generate a kind of sample
curve as a curve cluster. Thus, the TMGPFR model can fit those curves generated from a
number of independent random information sources and further make curve clustering
and prediction after its parameters have been learned from the data of those curves. As the
number of GPFRs in the lower layer is large enough and fixed, the number of MGPFRs in
the upper layer corresponds to the number of actual clusters in the whole curve dataset.
Theoretically, it is a model selection problem to determine the number of MGPFRs in the
TMGPFR model for a given curve dataset, which has not been deeply investigated in the
previous literature. In fact, if this model selection is made correctly during parameter
learning, the true number of curve clusters as well as these actual clusters themselves
can be found correctly according to the learned TMGPFR model, leading to an effective
way of curve clustering and prediction. However, this particular model selection problem
is rather challenging because the conventional model selection criteria, such as BIC and
cross-validation, cannot yield a stable result in realistic cases. Furthermore, they are even
exposed to a heavy load of repetitive computation.

Recently, the Bayesian Ying-Yang (BYY) harmony learning [23], Dirichlet process [24]
and reversible-jump Markov chain Monte Carlo (RJMCMC) [25] have been applied to
solving the model selection problem of MGP and achieved good effects [15,26–29]. They
are referred to as automated model selection algorithms since they make model selection
automatically during parameter learning of a given dataset. That is, the parameter esti-
mation and model selection are made synchronously. However, it can be found by the
experiments that the Dirichlet process-based algorithms usually select a larger number
of components, whereas the RJMCMC-based algorithms are not very stable. In addition,
these two kinds of algorithms require an additional EM step to conduct the parameter
learning in order to yield a proper prediction, which impairs the automation of model
selection. Motivated by the fact that the BYY harmony learning shows an excellent ability
of automated model selection of Gaussian mixtures [30], we adopt it to solve this particular
model selection problem in the TMGPFR model.

In this paper, we improve the original TMGPFR model to a tight and powerful struc-
ture and propose a BYY annealing learning algorithm for the improved TMGPFR model
with automated model selection. Specifically, a fully connected structure from the lower
layer to the upper layer is integrated into the TMGPFR model, and the BYY harmony
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function is derived for this kind of TMGPFR model. Moreover, the BYY annealing learning
algorithm is designed for the parameter learning and automated model selection of the
TMGPFR model of a curve dataset.

The remainder is organized as follows. We introduce the GP, GPFR, and TMGPFR
models in Section 2. Then, we design our BYY annealing learning algorithm in Section 3.
The decision strategies of our improved TMGPFR model and learning algorithm for curve
clustering and prediction are discussed in Section 4. Section 5 presents our experimental
results and analyses. We finally make further discussions and conclusions in Section 6.

2. Mathematical Description of the TMGPFR Model
2.1. The GP Model

We begin with a brief introduction of the Gaussian process (GP) model. Suppose that
we have input variables x = {xi}N

i=1 and output (or response) variables y = {yi}N
i=1. Then

the GP model can be defined by

y ∼ N (0, K(x, x)), (1)

where K(x, x) is the kernel matrix. A common form of the kernel matrix, the radial basis
function (RBF) kernel, can be expressed by

Kθ(x, x)ij := Kθ(xi, xj) = θ2
1 exp

(
−θ2

2
||xi − xj||22

2

)
+ θ2

3δij, (2)

where δij is the Kronecker delta function, and θ = (θ1, θ2, θ3). We adopt this kernel form
throughout the paper.

2.2. The GPFR Model

Since the assumption of zero mean in the GP model is too limited, it is possible to
use a weighted sum of certain basis functions to learn and approximate the mean function
during the parameter learning. In general, a set of B-spline basis functions are adopted.
Specifically, we substitute the mean function in the GP model with

m(x) =
D

∑
d=1

φd(x)bd, (3)

where D is the number of preset B-spline basis functions such that φ(x) = (φ1(x), · · · , φD(x))
is a set of different B-spline basis functions, and b = (b1, · · · , bD) is a D-dimensional
coefficient or weight vector. Obviously, the larger D brings the higher accuracy of the
approximation but a heavier computing burden. Furthermore, the overfitting is more likely
to emerge as D increases. This is certainly a trade-off problem and D is generally selected
by experience.

In such a setting, the GP model is transformed into the so-called GPFR model [6],
which is denoted by y ∼ GPFR(x, θ, b, φ) .

2.3. The TMGPFR Model

The TMGPFR model was developed from the GPFR mixture models to fit the data
of curves from different independent random information sources or stochastic processes.
In the lower layer, there are a large number of GPFRs driven by the input variables, and in
the upper layer, a proper number of MGPFRs is employed to describe these stochastic
processes and further mixed together to form the output variables.

2.3.1. The Lower Layer: A Fixed Number of GPFRs for Constructing MGPFRs

We assume that there exist G GPFRs in the lower layer and G is fixed and large enough
so that the mixture of these G GPFRs can approximate any stochastic process. For each
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single sample curve {(xmn, ymn)}N
n=1, the latent indicators {zmn}N

n=1 are generated by a
multinomial distribution:

P(zmn = g) = ηg, g = 1, 2, · · · , G for n = 1, 2, · · · , N. (4)

Given the indicator zmn = g, the input xmn is subject to a Gaussian distribution:

xmn|zmn = g ∼ N (µg, σ2
g) i.i.d. for n = 1, 2, · · · , N. (5)

After specifying {zmn, xmn}N
n=1, all the input variables are divided into G sets:

{x1,s|zmn = 1}S1
s=1, · · · , {xG,s|zmn = G}SG

s=1 and {xmn}N
n=1 = {{xg,s|zmn = g}Sg

s=1}G
g=1.

Then, the input variables in xg = {xg,s}
Sg
s=1 and the corresponding output variables of

yg = {yg,s}
Sg
s=1 follow the g-th component GPFR model:

yg ∼ GPFR(xg, θg, bg, φg). (6)

In this case, {(xmn, ymn)}N
n=1 = {{(xg,s, yg,s)}

Sg
s=1}G

g=1.
Letting η = (η1, · · · , ηG) and taking the similar notations for θ, b, φ, µ, σ, we will use

y ∼ MGPFR(x, η, θ, b, φ, µ, σ) to denote a component MGPFR model in the upper layer. It
should be noted that η, µ, σ ∈ RG, θ ∈ R3×G, b ∈ RD×G, φ ∈ B-splineD×G.

2.3.2. The Upper Layer: MGPFRs for Constructing the Output Mix-MGPFR

We assume there exist K MGPFRs in the upper layer. For a datasetD = {(xm, ym)}M
m=1

where (xm, ym) = {(xmn, ymn)}Nm
n=1 denotes the m-th sample curve, latent indicators {αm}M

m=1
are also generated by a multinomial distribution:

P(αm = k) = πk, k = 1, 2, · · · , K i.i.d. for m = 1, 2, · · · , M. (7)

Given the indicator αm = k, we have

ym|αm = k ∼ MGPFR(xm, ηk, θ, b, φ, µ, σ). (8)

It should be pointed out that the above parameters θ, b, φ, µ, σ do not have their own
subscripts because all the G GPFRs in the lower layer are fully connected and contributed
to each of the MGPFRs in the upper layer just like a fully connected neural network, so they
share the same parameters θ, b, φ, µ, σ for all the MGPFRs. Certainly, the weight parameters
ηk ∈ RG, k = 1, · · · , K are bound to be different because they serve as a unique feature
to distinguish these MGPFRs. In fact, ηk reflects how these GPFRs in the lower layer
essentially contribute to the k-th MGPFR in the upper layer.

According to the above description, our assumptions for the TMGPFR model are dif-
ferent from those in Wu and Ma [22]. That is, we adopt Equation (8) instead of ym|αm = k ∼
MGPFR(xm, ηk, θk, bk, φk, µk, σk). In fact, the original TMGPFR model in Wu and Ma [22]
assumes that the k-th MGPFR model in the upper layer possesses its own Gk GPFRs in
the lower layer and ∑K

k=1 Gk = G; thus, it is a sparse structure in the lower layer and
the fully-connected structure is not actually implemented, which leads to the neglect of
possible correlations among different MGPFRs. Therefore, we improve the TMGPFR model
to a tight and powerful structure.

The TMGPFR model is actually a generative model which can describe a mixture of
multiple information sources or stochastic processes and can be directly applied to the tasks
of curve clustering and prediction of a given curve dataset D. The information flow of the
improved TMGPFR model is shown in Figure 1, whereas its structure sketch is displayed
in Figure 2.
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Figure 1. Information flow in the improved TMGPFR model, depicting how the sample curves
are generated.

Figure 2. Structure sketch of the improved TMGPFR model, depicting how the input variables are
processed and transformed to the output variables.

2.3.3. Notations

For clarity, we summarize all of the necessary notations which will be constantly used
to describe our models and algorithms in the following.

To be more convenient, we define a 0–1 indicator variable Ak
m to describe the associa-

tion between the m-th sample curve and the k-th MGPFR. That is, if the m-th sample curve
belongs to the k-th MGPFR, Ak

m = 1; otherwise, Ak
m = 0. On the other hand, we define

an analogous variable Bg|k
mn to describe the association between the n-th sample point in

the m-th sample curve and the g-th GPFR in the k-th MGPFR. That is, if the n-th sample
point in the m-th sample curve belongs to the g-th GPFR on the condition that the m-th
sample curve belongs to the k-th MGPFR, Bg|k

mn = 1; otherwise, Bg|k
mn = 0. Similarly, we

denote A = {Ak
m|m = 1, 2, · · · , M, k = 1, 2, · · · , K} and B = {Bg|k

mn, n = 1, 2, · · · , Nm, m =
1, 2, · · · , M, k = 1, 2, · · · , K, g = 1, 2, · · · , G}.

The notations of the other parameters are identical to those described in Section 2.3.2,
including the dataset D = {{(xmn, ymn)}Nm

n=1}M
m=1, latent variables, and parameters in

the model. We denote the whole parameter set as Θ = (D, K, G, π, η, θ, b, φ, µ, σ), where
D, K, G ∈ Z+, π = (π1, · · · , πK), η = (η1, · · · , ηK)

T = (ηkg)K×G. Among all the parame-
ters, D, K, G, φ are preset and remain unchangeable, whereas the others are learned by the
algorithm and will be updated during iterations.

3. BYY Annealing Learning Algorithm
3.1. BYY Harmony Function

A BYY harmony learning system describes an observation x and its inner represen-
tation α through two types of Bayesian decomposition of the joint probability: p(x, α) =
p(x)p(α|x) = q(α)q(x|α). The former is called the Yang machine, whereas the latter is
called the Ying machine. In our improved TMGPFR model, x denotes a sample curve
(x, y) and α denotes the index of the corresponding MGPFR in the upper layer. p(α|x) is
the probability (density) that x belongs to α, whereas q(x|α) is the probability (density)
that α generates x. The objective of BYY harmony learning is to maximize the following
harmony function:
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H(p||q) =
∫∫

p(x)p(α|x)logq(α)q(x|α)dxdα− rq, (9)

where rq is the regularizer. The theoretical details can be found in [23,31].
As for a specifically given dataset of the TMGPFR model, it is natural to use the

empirical density function p̂(x, y) = 1
M(N1+N2+···NM) ∑M

m=1 ∑Nm
n=1 δ(xmn ,ymn)(x, y) to esti-

mate the true density function p(x, y). Here, M denotes the total number of curves and
Xm = {(xmn, ymn) : n = 1, 2, · · · , Nm} denotes the m-th sample curve in the given dataset.
Supposing that N1 = · · · = NM = N and that N and M are large enough, we have
p̂(x, y) ≈ p(x, y). For simplicity, the regularizer is omitted. In the same way as the BYY
annealing harmony learning for Gaussian mixtures in [30], we consider the annealing
harmony function Hλ(Θ) = H(p||q) + λE(p(α|x)), where E(·) is the entropy function over
K MGPFRs:

E(p(α|x)) = −
∫∫

p(α|x)logp(α|x)p(x)dxdα, (10)

and λ is a tuning parameter dependent on the iteration time t. When λ is relatively large,
the maximization of Hλ(Θ) encourages multiple components with a soft classification.
When λ tends to be zero, it gradually shifts to a hard-cut classification with a great number
of local maximums. Thus, it is reasonable to select a large initial value λ(0) and reduce it to
zero during the iterations. In this way, the learning parameters can be ergodic to a certain
extent and escape from local maximums, thus having a higher probability of reaching the
global maximum of H(p||q), which further leads to the automated model selection during
the parameter learning [30]. That is, if the initial value Kinit is set to be greater than the true
value Ktrue, the global maximization of H(p||q) can select Ktrue MGPFRs to match the actual
components in the curve dataset and force the mixing proportions of the other (Kinit−Ktrue)
extra MGPFRs to vanish, i.e., πk = 0. Therefore, the remaining K∗ components through
the global maximization of H(p||q) are the actual components in the dataset so that the
model selection is actually made automatically. That is, the automated model selection of
the TMGPFRs can be effectively implemented by the global maximization of the annealing
harmony function.

We now derive the specific expression of the annealing harmony function of our
improved TMGPFR model of a given curve dataset. By substituting p(x, y) with p̂(x, y)
in Equations (9) and (10), we can obtain the empirical harmony and annealing harmony
functions as follows:

Ĥ(p||q) = 1
M

M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym))× log[πkq((xm, ym)|αm = k)]; (11)

Ĥλ(Θ) = Ĥ(p||q)− λ× 1
M

M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym))× log p(αm = k|(xm, ym)). (12)

According to the assumptions in our improved TMGPFR model, q((xm, ym)|αm = k)
takes the following specific form:

q((xm, ym)|αm = k) =
G

∏
g=1

{[
Nm

∏
n=1

(
ηkg pN (xmn|µg, σ2

g)
)Bg|k

mn

]
pN (y

g|k
mn|bg, θg)

}
. (13)

Here, {xg|k
mn} = {xmn, n = 1, 2, · · · , Nm|Bg|k

mn = 1} and {yg|k
mn} = {ymn, n = 1, 2, · · · ,

Nm|Bg|k
mn = 1}. ∏Nm

n=1

(
ηkg pN (xmn|µg, σ2

g)
)Bg|k

mn
, pN (y

g|k
mn|bg, θg) are the likelihoods for xm and

ym conditioned for αm = k, respectively. In the following, we will use the notation xg|k
mn or

yg|k
mn to denote the vector composed of the elements in the set {xg|k

mn} or {yg|k
mn} and define

Sm,k,g = |{xg|k
mn}|.
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3.2. Alternative Optimization Algorithm

As the empirical annealing harmony function is clear and specific with Equations (11)–(13),
we further design the parameter learning algorithm to maximize it. Actually, the maximiza-
tion of this annealing harmony function is rather difficult and cannot be solved directly.
However, it is lucky that the whole parameters and certain unknown variables can be
divided into two parts and we can effectively optimize each of them alternatively. It should
be noted that λ is the annealing factor that does not need to be optimized. In this way, we
can design an alternative optimization algorithm as follows.

We first divide the whole parameters and unknown variables into 2 sets: Θ1 ={
{p(αm = k|(xm, ym))}k,m, B

}
and Θ2 = {π, η, θ, b, µ, σ} = Θ\{D, K, G, φ}. It is clear that

Θ2 contains the common parameters of the TMGPFR model, whereas Θ1 contains the
conditional probabilities as well as the latent indicators of the curve data. After initializing
D, K, G, φ, Θ1, Θ2, we then iterate Θ1 and Θ2 in the following steps until convergence or
reaching the maximum iterations T in an alternative optimization manner:

Step 1:Fix Θ2, update Θ1 = argmaxΘ1
Ĥλ(Θ1, Θ2);

Step 2: Fix Θ1, update Θ2 = argmaxΘ2
Ĥλ(Θ1, Θ2);

Step 3: Update λ = λ(t) < λ(t−1), where t denotes the iteration time.

In Step 1, it is key to determine the values of the elements of B. In fact, only when all the
relations among the sample data points, GPFRs, and MGPFRs are known, we can compute
q((xm, ym)|αm = k) according to Equation (13) and then update p(αm = k|(xm, ym)). To
solve this problem, there are two possible methods: Markov chain Monte Carlo (MCMC)
simulation [22] and hard-cut classification [14]. Since the time complexity of the MCMC
simulation is rather high [22,32], we choose the following hard-cut rule to obtain the values
of the elements of B.

According to the Bayes formula, we first have

p(Bg|k
mn = 1|(xmn, ymn), αm = k) =

ηkg p([xmn, ymn]|Bg|k
mn = 1)

∑G
g=1 ηkg p((xmn, ymn)|Bg|k

mn = 1)
, (14)

where

p((xmn, ymn)|Bg|k
mn = 1) = pN (xmn|µg, σ2

g)× pN (ymm|φ(xmn) · bg, θ2
g1 + θ2

g3). (15)

By letting each data point belong to the component with the highest probability, we
then have the hard-cut rule:

Bg|k
mn =

{
1, if g = argmaxg p(Bg|k

mn = 1|[xmn, ymn], αm = k);

0, otherwise.
(16)

With the above update of B, we can compute q((xm, ym)|αm = k) according to
Equation (13). It should be noted that as Θ1 is updated, there exist certain restrictions,
i.e., ∑K

k=1 p(αm = k|(xm, ym)) = 1, ∀m. By using the method of Lagrange multipliers, we
can obtain the following update rule:

p(αm = k|(xm, ym)) =
[πkq((xm, ym)|αm = k]1/λ

∑K
k=1[πkq((xm, ym)|αm = k)]1/λ

. (17)

From Equation (17), the role of λ can be further understood. Actually, p(zn =
k|[xn, yn]) → 1

K (i.e., soft classification) as λ → +∞, and p(zn = k|[xn, yn]) →
δk,argmaxk p(zn=k|[xn ,yn ]) (i.e., hard classification) as λ→ 0+. This gives a theoretical expla-
nation of the action of λ in the training process.
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In Step 2, there also exist K + 1 restrictions, i.e., ∑K
k=1 πk = 1, ∑G

g=1 ηkg = 1, ∀k. In a
similar way, we can derive the update rules of π, η, µ, σ, b, θ. The details of the derivations
are given in Appendix A.

In Step 3, λ(t) plays an important role in the convergence behavior with the annealing
mechanism. It is clear that if λ(t) attenuates faster, the algorithm converges faster but the
object function is more likely to be trapped into a local maximum. Therefore, λ(t) should
be carefully designed to balance the tradeoff between the convergence speed and effect.
For this algorithm, we adopt λ(t) = [u(1− e−v(t−1)) + w]−1, given in [30].

The pseudo-code of our BYY annealing learning algorithm is given in Algorithm 1.

Algorithm 1: The BYY annealing learning algorithm of the TMGPFR model.

Input: D, D, K, G, φ, T, T′, u, v, w, ε, learning_rate
Output: π, η, θ, b, µ, σ, p(αm = k|(xm, ym)), B, K∗

1 Randomly initialize π, η, θ, b, µ, σ, p(αm = k|(xm, ym)), B;
2 Set t = 1, H0(p||q) = 0, ∆H = −∞;
3 while t ≤ T and ∆H ≥ ε do
4 Set λ = [u(1− e−v(t−1)) + w]−1;
5 Update B according to Equations (14)–(16);
6 Update p(αm = k|(xm, ym)) for all m, k according to Equation (17);
7 Compute Ht(p||q) according to Equation (11);
8 ∆H ← |(Ht(p||q)− Ht−1(p||q))/Ht−1(p||q)|;
9 Update π, η, µ, σ in turn according to Equations (A4)–(A7);

10 for t′ = 1, 2, · · · , T′ do
11 for g = 1, 2, · · · , G do
12 Update bg according to Equations (8)–(10);
13 Compute the gradient with regard to θg according to Equation (A11),

denoted by gradg;
14 θg ← θg + learning_rate× gradg;
15 end
16 end
17 t← t + 1;
18 end

4. Decision Strategies for Curve Clustering and Prediction

In this section, we further discuss the decision strategies of our improved TMGPFR
model and learning algorithm for the tasks of curve clustering and prediction of a test set

D′ = {{(x′mn, y′mn)}
N′m
n=1}M′

m=1 after the BYY annealing algorithm has been implemented in
the training dataset D with the desired parameters.

For curve clustering, the decision strategy or rule for a new curve is clear and simple.

First, we determine all the values of the elements in the set B′ = {Bg|k′
mn } for any curves inD′

according to Equations (14)–(16). Then, we compute q((x′m, y′m)|α′m = k) and use the Bayes
formula to obtain p(α′m = k|(x′m, y′m)) for all m, k. Finally, we choose k = argmaxk p(α′m =
k|(x′my′m)) to classify or label (x′m, y′m). On the whole, we can use the classification accuracy
of D′ to measure the performance of curve clustering by our algorithm.

For the curve prediction, the situation becomes complicated. Given a sample curve
(x′m, y′m) in D′, we need to predict y′mn∗ after giving a new input variable x′mn∗. Assume
that we have already finished the complete learning process required for clustering except
labeling the sample curves. Then, for any pair (k, g) ∈ {1, 2, · · · , K} × {1, 2, · · · , G}, we

can compute pkg = p(Bg|k′
mn∗ = 1|x′mn∗, αm = k) according to the following Bayes formula:

pkg =
ηkg pN (x′mn∗|µg, σ2

g)

∑G
g=1 ηkg pN (x′mn∗|µg, σ2

g)
. (18)
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Then its unique prediction y′kg(x′mn∗) is computed by

y′kg(x′mn∗) = φg(x′mn∗)bg + CkgΣ−1
kg (y

g|k′
mn −Φkgbg), (19)

where

Ckg = Kθg(x′mn∗, xg|k′
mn ) ∈ RS′m,k,g ; (20)

Σkg = Kθg(xg|k′
mn , xg|k′

mn ) ∈ RS′m,k,g×S′m,k,g ; (21)

[Φkg]ij = φgj(xg|k′
mni), Φkg ∈ RS′m,k,g×D. (22)

For any k ∈ {1, 2, · · · , K}, we can compute its unique prediction y′k(x′mn∗) by

y′k(x′mn∗) =
G

∑
g=1

pkgy′kg(x′mn∗). (23)

Finally, we fuse all the component predictions and obtain the ultimate prediction by

y′mn∗ =
K

∑
k=1

p(αm = k|(x′m, y′m))y
′
k(x′mn∗). (24)

Moreover, we can use the root mean square error (RMSE) between this prediction and
the true value to measure the prediction accuracy.

5. Experimental Results
5.1. Curve Clustering Analysis
5.1.1. On the Simulation Dataset

We begin with the test of our improved TMGPFR model through the BYY annealing
learning algorithm of a simulation dataset. Typically, we generate a set of M = 50 unlabeled
curves from three MGPFR models with different weights: π1 = 0.2, π2 = 0.3, π3 = 0.5.
Each curve has 60 points, i.e., N = N1 = N2 = · · · = N50 = 60. The true values of the
parameters of three MGPFR models are given in Table 1. It should be noted that we use
some other continuous functions to be the mean functions of the GPFRs rather than the
given B-spline functions themselves, which are denoted by mi(x).

We implement our BYY annealing learning algorithm of this dataset with the initial
values of the parameters being set in a simple manner, which are specifically described
in Appendix B.1. Our experimental results are shown in Figure 3. In the experiments, we
actually set Kinit = 10. After the automated model selection during the parameter learning,
we finally obtain K∗ = 3. It can be observed from Figure 3 that even if the structures of three
curve clusters in the left subfigure are so complex and interlaced, all the sample curves are
clustered correctly and the classification accuracy of our algorithm arrives at 100%.

We also implement our algorithm of the datasets with M = 200, 500, 1000, 5000, 10,000,
and 50,000, i.e., the number of sample curves increases from 200 to 50,000 such that the
sample size changes from small to big. In this situation, we set the batch size to 200 and
slow down the annealing speed. Our experimental results of these datasets are given in
Table 2. It can be found from Table 2 that the classification accuracy of our algorithm
fluctuates as M increases, because outliers are more likely to appear due to the stronger
randomness. Furthermore, in this case, our algorithm tends to choose a larger K∗ with
some components only occupying 0.1–5.0% of the whole curves. However, it does not
necessarily mean the prediction results will worsen. We will further clarify it in Section 5.2.



Mathematics 2023, 11, 2592 10 of 25

In addition, we conduct several parallel experiments to compare our algorithm with
other model selection methods. From Figure A1, we can observe that our BYY annealing
learning algorithm performs much better. The details of the experiments and comparisons
can be found in Appendix B.1.

Table 1. True values of the parameters in three MGPFRs.

Parameters in MGPFR1 True Values

η1, η2 0.7, 0.3
θ1, θ2 (0.32, 0.4, 0.01), (0.4, 0.5, 0.01)

m1(x), m2(x) sin(x3)− 0.3 cos(x3), cos(
√
|x|)

µ1, µ2 −10, 10
σ1, σ2 5, 4

Parameters in MGPFR2 True Values

η1, η2 0.6, 0.4
θ1, θ2 (0.3, 0.9, 0.01), (0.2, 0.2, 0.01)

m1(x), m2(x) exp(−|x|), 0.01x2 − 0.1|x|+ 1
µ1, µ2 −8, 6
σ1, σ2 2, 8

Parameters in MGPFR3 True Values

η1, η2 0.5, 0.5
θ1, θ2 (0.25, 0.1, 0.01), (0.45, 0.9, 0.01)

m1(x), m2(x) sin x + cos x, 1
|x|+1 + 0.1|x| − 0.5

µ1, µ2 −4, 10
σ1, σ2 3, 5

Table 2. Average classification accuracies of our BYY annealing leaning algorithm of the simulation
datasets with different M.

M 200 500 1000 5000 10,000 50,000

Accuracy 98.2% 96.6% 91.5% 92.6% 90.3% 91.9%

K∗ 3 4 4 4 5 5

(a) (b)

Figure 3. Experimental results of the simulation dataset. The x-axis represents the input vari-
ables {{xmn}N

n=1}M
m=1 and the y-axis represents the output (or response) variables {{ymn}N

n=1}M
m=1.

(a) 50 curves of three MGPFRs without their labels (i.e., the algorithm’s input). (b) 50 curves of three
MGPFRs with the predicted labels (i.e., the algorithm’s predicted labels; the same color represents
the same label).
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5.1.2. On the City Temperature Dataset

We further implement our BYY annealing learning algorithm of a real dataset of daily
temperatures of different cities. In practice, it is very crucial to determine the type of
climate in a certain city according to its daily temperature records. In total, we choose
M = 97 unlabeled sample curves from 4 cities: Abidjan, Auckland, Shanghai, and Helsinki.
Each curve consists of 87 sample points, reflecting the change in temperatures in one
year. Specifically, each sample point is the average of city temperatures in a period of
4 adjacent days. Due to the inaccuracy of measurement, some abnormal sample points are
discarded. The experimental results are shown in Figure 4 and the details are described in
Appendix B.2. Here, Kinit = 10, and our algorithm finally yields K∗ = 4 after the automated
model selection. It is found that the classification accuracy is 100% for this particular
real-world task.

(a) (b)

Figure 4. Experimental results of the city temperature dataset. The x-axis represents the input vari-
ables {{xmn}N

n=1}M
m=1 and the y-axis represents the output (or response) variables {{ymn}N

n=1}M
m=1.

(a) 97 sample curves without the labels (i.e., the algorithm’s input). (b) 97 sample curves with the
predicted labels (i.e., the algorithm’s predicted labels, the same color represents the same label).

5.1.3. On the Effective Radiation Dataset

We finally implement our BYY annealing learning algorithm in a real dataset of daily
surface effective radiation of different cities in China. In total, we choose M = 100 unlabeled
sample curves from 20 different cities: Eji’na, Guilin, Chaoyang, Shenyang, Juxian, Tianshui,
Hengfeng, Zhongshan, Wulatezhongqi, Changchun, Dalian, Zhenghe, Leshan, Fuzhou,
Xi’an, Yichang, Luohe, Emeishan, Yanji, and Shanghai. The meanings and processing
methods of this dataset keep the same as those described in Section 5.1.2. However, due to
data missing, a sample curve in this dataset has only 75 sample points. The experimental
results are shown in Figure 5. Here Kinit = 10 and our algorithm yields K∗ = 4 after the
automated model selection. The details of the experiments are described in Appendix B.3.

Our classification criterion is the winner-take-all (WTA) principle, i.e., a certain station
is definitely classified into the category that its five daily radiation curves mostly belong to.
Therefore, despite the fact that these curves are divided into four types by our algorithm,
for cities themselves there exist only three types. As shown in Figure 5, a purple curve
forms the fourth type, possibly due to certain random noise.

According to our experimental results, all the cities are divided into three clusters:
{Eji’na, Wulatezhongqi} (pink), {Chaoyang, Shenyang, Juxian, Tianshui, Changchun, Dalian,
Xi’an, Luohe, Yanji} (blue), and {Guilin, Hengfeng, Zhongshan, Zhenghe, Leshan, Fuzhou,
Yichang, Emeishan, Shanghai} (orange). In fact, Eji’na and Wulatezhongqi lie in the deserts
of the Inner Mongolian Plateau, which explains why these two cities are exposed to the
highest solar radiation. The cities in the blue set have a higher latitude than those in the
orange set; thus, they are exposed to a longer duration of sunshine in the summer and a
lower rainfall during the whole year. These factors make them the second highest radiated.
In sum, the clustering results of our algorithm are consistent with the meteorological facts,
which demonstrate the effectiveness of our model and algorithm.
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(a) (b)

Figure 5. Experimental results of the daily radiation dataset. The x-axis represents the input vari-
ables {{xmn}N

n=1}M
m=1 and the y-axis represents the output (or response) variables {{ymn}N

n=1}M
m=1.

(a) 100 sample curves without the labels (i.e., the algorithm’s input). (b) 100 sample curves with the
predicted labels (i.e., the algorithm’s predicted labels, the same color represents the same label).

For comparison, we use two typical model selection criteria through the EM algo-
rithm to make parameter learning and model selection of this dataset. It is found by our
experiments that the AIC approach yields K∗ = 2, whereas the BIC approach even yields
K∗ = 1, which are both too rough. These two experimental results demonstrate that the
conventional model selection criteria based on the penalty of the number of authentic
parameters often fail to tackle the complicated and noisy dataset.

5.2. Curve Prediction

We now turn to test our BYY annealing learning algorithm on curve prediction. In fact,
given a piece of time series (as part of a sample curve) from the past to the present, it is
very important to predict what will probably appear in the future. A reasonable prediction
model can help us to understand the intrinsic logic of the data and make more reasonable
decisions. In this subsection, we test our algorithm on an electrical load dataset issued
by the Northwest China Grid Company. Actually, there are M = 100 training sample
curves and 50 test sample curves, each of which records the values of the electrical load
over the period of a whole day. The electrical load is detected every 15 min and then there
are altogether 96 points in one sample curve. We implement the BYY annealing learning
algorithm in the training sample curves to obtain the reasonable TMGPFR model and
then utilize it to make the curve prediction, i.e, to predict the future output of the curve
with a new given input according to Equation (24). The experimental results of the curve
clustering are shown in Figure 6.

It can be found from Figure 6 that the curve clustering results of the electrical load
dataset are quite reasonable since these clusters effectively represent different intensities of
the electrical load over a day. Moreover, the curve clustering results of the test dataset are
consistent with those of the training dataset. In fact, these reasonable clustering results lay
a solid foundation for curve prediction.

As for the curve prediction in this dataset, we assume that there are U known sample
points in the front and 96−U unknown sample points in the behind. That is, we use the
previous U sample points to predict the following 96−U sample points. It is clear that as
U becomes smaller, the prediction becomes more difficult. We make curve predictions of
the test dataset for different U and the experimental results are listed in Table 3, where the
mean and its standard deviation (SD) and the maximum of the RMSEs over 46 prediction
trials are given for certain typical values of U. It can be found that the prediction results
are rather precise and stable even if U is only 20.
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(a) (b)

(c) (d)

Figure 6. Experimental results of curve clustering on the electrical load dataset. The x-axis represents
the input variables {{xmn}N

n=1}M
m=1 and the y-axis represents the output (or response) variables

{{ymn}N
n=1}M

m=1. (a) Training sample curves without labels (i.e., the algorithm’s input). (b) Training
sample curves with the predicted labels of the clustering (i.e., the algorithm’s predicted labels,
the same color represents the same label or cluster). (c) Test sample curves without labels (i.e.,
the algorithm’s input). (d) Test sample curves with the predicted labels of the clustering (i.e., the
algorithm’s predicted labels, the same color represents the same label or cluster).

Table 3. Statistics of the RMSEs of curve predictions of our BYY annealing learning algorithm with
different U.

U 20 30 40 50 60 70

mean ± SD 3.38± 0.94 2.56± 0.38 2.14± 0.29 1.99± 0.17 1.93± 0.22 1.79± 0.14

maximum 4.43 3.28 2.68 2.41 2.51 2.07

We also test our BYY annealing learning algorithm on curve prediction for some larger
sizes of this dataset; that is, we let M = 200, 300, 400, 500, 680. Here U ≡ 50 and the batch
size is 100. The larger M is, the slower annealing rate we adopt. The prediction results are
listed in Table 4. It can be found that they are more precise, stable, and consistent, except
the possible difference of K∗.

Table 4. Statistics of the RMSEs of curve predictions of our BYY annealing learning algorithm with
different M and U ≡ 50.

M 200 300 400 500 680

mean ± SD 1.93± 0.18 1.64± 0.19 1.93± 0.22 1.84± 0.15 1.92± 0.35

maximum 2.24 1.96 2.38 2.07 2.44

K∗ 4 5 5 4 4

For comparison, we first implement three conventional model selection methods: AIC,
BIC, and k-fold cross-validation (CV), with the EM algorithm of this electrical load dataset.
The hyperparameters in the TMGPFR model keep constant and are selected by experience.
The curve clustering results are shown in Figure A3 and the curve prediction results are
listed in Table 5. Actually, the AIC and BIC approaches both yield K∗ = 3, the 5-fold
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CV approach yields K∗ = 4 and the 10-fold CV approach yields K∗ = 5. By comparing
Tables 3 and 5, we can find out that our BYY annealing learning algorithm outperforms
these conventional model selection methods of this dataset. It is clear that the prediction
results of the AIC, BIC, and 5-fold CV approaches are worse than our BYY annealing
learning algorithm. Although the prediction error of the 10-fold CV approach is relatively
smaller than ours, the difference between them is quite small. On the other hand, our
algorithm really saves plenty of time and GPU resource owing to the synchronization of
parameter learning and model selection.

Table 5. Statistics of the RMSEs of curve predictions of three conventional model selection approaches
with different U.

Method U 20 30 40 50 60 70

AIC & BIC
mean ± SD 3.30± 1.08 3.40± 0.69 3.18± 0.45 3.09± 0.43 2.74± 0.25 2.58± 0.42

maximum 4.61 4.38 3.92 4.02 3.26 3.12

5-fold CV
mean ± SD 3.42± 0.96 2.78± 0.34 2.15± 0.33 2.23± 0.25 2.22± 0.28 2.04± 0.28

maximum 4.76 3.17 2.60 2.62 2.61 2.50

10-fold CV
mean ± SD 3.42± 1.02 2.45± 0.27 1.91± 0.18 1.90± 0.16 1.96± 0.16 1.85± 0.17

maximum 5.03 2.98 2.34 2.36 2.32 2.09

We further compare our improved TMGPFR model with some state-of-the-art sta-
tistical and machine-learning models of curve prediction. The first kinds of comparative
models are several previous statistical models, such as GPFR, mix-GPFR, MGPFR, and the
original TMGPFR model proposed in Wu and Ma [22]. The EM algorithm is employed for
training the GPFR and MGPFR models, whereas the BYY annealing learning algorithm
is employed for training the mix-GPFR and the original TMGPFR models. The second
kinds of comparative models are state-of-the-art machine learning models, such as long
short-term memory (LSTM) [33], fully visible belief network (FVBN) [34,35], and generative
adversarial nets (GAN) [36,37]). The experiments are conducted under the same conditions
for U = 50 and the curve prediction results are listed in Tables 6 and 7. It can be seen
that our improved TMGPFR model achieves the best performance for the aspects of both
prediction precision and stability. Furthermore, it can be found from the experiments
that the previous statistical models are weak (see Table 6) mainly due to their simpler
assumptions, whereas LSTM and FVBN fail (see Table 7) mainly due to the accumulative
errors in the rolling or successive prediction, and GAN fails (see Table 7) mainly due to the
mode collapsing.

More analyses and supplementary experiments of this dataset are stated in Appendix B.4.

Table 6. Statistics of the RMSEs of curve predictions of the GPFR, mix-GPFR, MGPFR, original
TMGPFR, and improved TMGPFR models with different {D, G)} when U = 50.

Model G D 10 15 20 25 30

GPFR - RMSE 7.03± 1.83 7.04± 1.82 7.03± 1.82 7.03± 1.83 7.02± 1.83

mix-GPFR
(Kinit ≡ 10) -

RMSE 3.02± 0.32 2.92± 0.31 2.50± 0.21 2.49± 0.21 2.50± 0.17

K∗ 2 2 3 3 3

MGPFR

4 RMSE 7.08± 1.74 7.33± 2.27 7.54± 2.00 7.10± 1.74 7.02± 1.67

6 RMSE 7.23± 1.82 7.11± 1.78 7.00± 1.75 7.12± 1.73 7.27± 1.73

8 RMSE 7.18± 2.06 7.11± 1.76 7.05± 1.77 7.18± 1.76 7.04± 1.83

10 RMSE 7.16± 1.80 7.10± 1.77 7.03± 1.82 7.03± 1.82 7.03± 1.80

12 RMSE 7.07± 1.79 7.13± 1.73 7.04± 1.82 7.13± 1.79 7.08± 1.78
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Table 6. Cont.

Model G D 10 15 20 25 30

The original
TMGPFR [22]

(Gk ≡ 2,
Kinit ≡ G/Gk)

4
RMSE 3.16± 0.38 3.17± 0.35 3.06± 0.28 2.92± 0.32 2.92± 0.23

K∗ 2 2 2 2 2

6
RMSE 2.37± 0.33 2.83± 0.57 2.41± 0.24 2.50± 0.19 2.42± 0.22

K∗ 3 3 3 3 3

8
RMSE 2.96± 0.24 2.20± 0.38 2.50± 0.20 2.54± 0.24 2.62± 0.30

K∗ 2 3 3 3 3

10
RMSE 2.43± 0.20 2.51± 0.37 2.49± 0.17 2.63± 0.20 2.00± 0.16

K∗ 3 3 3 3 4

12
RMSE 2.87± 0.33 2.64± 0.33 2.31± 0.22 2.11± 0.20 2.42± 0.27

K∗ 2 3 4 4 4

improved TMGPFR

4
RMSE 2.79± 0.20 2.89± 0.35 2.46± 0.28 2.45± 0.32 2.30± 0.26

K∗ 2 3 3 3 3

6
RMSE 2.41± 0.23 2.49± 0.34 2.48± 0.22 2.24± 0.31 2.27± 0.35

K∗ 3 3 3 3 3

8
RMSE 2.11± 0.17 2.23± 0.20 1.94± 0.18 2.16± 0.30 2.12± 0.19

K∗ 4 4 6 5 5

10
RMSE 2.32± 0.42 2.14± 0.24 2.10± 0.32 2.00± 0.20 1.99± 0.17

K∗ 4 5 5 5 5

12
RMSE 2.20± 0.29 2.08± 0.21 1.98± 0.26 1.89± 0.16 2.04± 0.16

K∗ 4 5 6 7 7

Table 7. Statistics of the RMSEs of curve predictions of LSTM, FVBN, and GAN when U = 50.

Model LSTM FVBN

params
layers = 15

hid dims = 16
layers = 5

hid dims = 32
layers = 32

hid dims = 3
linear

lags = 2
linear

lags = 10
linear

lags = 50

RMSE 11.73± 2.97 11.73± 2.96 11.75± 2.98 4.23± 3.52 7.07± 2.49 7.17± 3.76

model FVBN GAN (·/· : generator/discriminator params)

params
LeakyReLU NN

layers = 5
hid dims = 256

Tanh NN
layers = 4

hid dims = 1024

Sigmoid NN
layers = 6

hid dims = 128

vanilla GAN
layers = 20/3

hid dims = 512/2

WGAN
layers = 25/2

hid dims = 128/2

WGAN
layers = 40/2

hid dims = 512/2

RMSE 4.51± 1.97 4.50± 1.55 8.15± 2.38 6.59± 2.61 5.68± 2.19 5.17± 2.16

6. Discussion and Conclusions
6.1. Relation to the EM Algorithms

Interestingly, the updating rules of our BYY annealing learning algorithm take similar
forms as those of the EM algorithm and the deterministic annealing EM algorithm [38].
However, our idea is quite different from those of the EM algorithms. For the EM algorithm,
the annealing parameter λ should be fixed to 1, whereas in the deterministic annealing EM
algorithm, λ should gradually approach to 1. Their common goal is to reach the global
maximum of the likelihood function. However, in our BYY annealing algorithm, λ attenu-
ates to 0, which drives the algorithm to reach the global maximum of the harmony function.
That is exactly why our BYY annealing algorithm possesses the ability of automated model
selection but the EM algorithms usually do not. Actually, the harmony function provides
severe penalization for large K, whereas the likelihood function is bound to increase with K.
Unlike AIC, BIC, and CV, we integrate this kind of penalization into the parameter learning
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so that the model selection can be made automatically. Therefore, we do not need to train
multiple candidate models for model selection.

6.2. The Annealing Mechanism in the BYY Harmony Learning System

When training the TMGPFR model with the hard-cut EM algorithm, we find out that a
small perturbation of the initial values of the parameters might strongly impact the results,
especially in model selection. The reason is that there are a large number of local maximums
of the BYY harmony function with the hard-cut form so that the hard-cut EM algorithm
is easily trapped. On the contrary, as we apply the annealing mechanism to the hard-cut
EM algorithm, most of the components are able to attract certain samples due to a higher
posterior probability in the early iterations (see Equation (17)). Moreover, the change in
the parameters is more smooth because the annealing mechanism can prevent the abrupt
change in the sample number of each component. In this way, the BYY harmony learning
system gradually turns into a hard-cut classification form to arrive at the optimal model.
Hence, we must emphasize that without the annealing mechanism, it is rather difficult for
the hard-cut EM algorithm to reach the global maximum of the harmony function, and
therefore the automated model selection cannot be guaranteed.

6.3. Conclusions and Remarks

Conclusions. We have improved the TMGPFR model and proposed a BYY annealing
learning algorithm for its parameter learning with the automated model selection of a
given dataset. Specifically, we fixed the number of GPFRs in the lower layer and let
them be fully connected to the MGPFRs in the upper layer such that the structure of this
improved TMGPFR model becomes tight and powerful. Under the BYY harmony learning
framework, the BYY harmony function of the improved TMGPFR model is derived and the
BYY annealing learning algorithm is established with the ability to automatically find out
the number of actual clusters in a given curve dataset and further make curve clustering
and prediction. The experimental results of both simulation and real datasets have shown
the effectiveness and superiority of the improved TMGPFR model with the BYY annealing
learning algorithm.

Remarks. First, the differences between the blind source separation (BSS) techniques
and the TMGPFR modeling. In the setting of the BSS models, the original independent
sources are blind and cannot be detected individually. However, there are some sensors
that can obtain linearly mixed signals from these original sources. When the number of
mixed signals is equal to that of the sources, the independent component analysis (ICA)
algorithms can be applied to decompose these signals of the original independent sources,
whereas in the setting of our TMGPFR model, the original independent sources are also
blind. As their sample curves are accumulated together without any labels in the dataset,
our goal of the TMGPFR modeling is to discover the structure of these sources as a number
of general stochastic processes throughout the BYY harmony annealing learning of the
TMGPFR model in a set of unlabeled sample curves. Moreover, we can even find out the
true number of the original sources in the dataset with the automated model selection
mechanism. Second, the hard-cut mechanism in our BYY annealing harmony algorithm.
Although we adopt it to determine the set B to speed up the training process, it impairs the
convergence of the algorithm to a certain extent, especially when these GPFRs in the lower
layer are strongly overlapped [22]. Fortunately, the annealing mechanism can mitigate
these negative effects. The MCMC method (e.g., Gibbs sampler) can play the same role with
the expense of a slower convergence rate. Third, the influences of D, G in our TMGPFR
model. We only care about how to select K in the TMGPFR model, regardless of D, G.
When D or G becomes larger (smaller), overfitting (underfitting) is more likely to emerge.
It should be pointed out that our core goal is to find out the actual number of curve clusters
in a dataset under the assumption that D, G are large enough so that the TMGPFR model
can describe a mixture of general stochastic processes. However, it is still a problem to
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choose the optimal D, G for a given dataset. In our experiments, we apply certain heuristic
methods to select D, G, which will be described in Appendix C.
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Appendix A. BYY Annealing Learning Algorithm

In Step 2 of our alternative optimization algorithm, we aim to obtain the updating rules
of Θ2 = {π, η, µ, σ, b, θ} with Θ1 = {{p(αm = k|(xm, ym)}k,m, B} fixed. Since the empirical
entropy function Ê(p(α|x)) := −∑M

m=1 ∑K
k=1 p(αm = k|(xm, ym))× log p(αm = k|(xm, ym))

is now a constant in this situation, we can consider the following optimization problem:

π.η, µ, σ, b, θ = argmaxΘ2
Ĥλ(Θ1, Θ2)

= argmaxπ,η,µ,σ,b,θ
1
M

M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym)) log(πkq((xm, ym)|αm = k))
(A1)

Note that there exist K + 1 restrictions, i.e.,

K

∑
k=1

πk = 1,
G

∑
g=1

ηkg = 1, ∀k = 1, 2, · · · , K (A2)

Thus, we introduce K + 1 Lagrange multipliers and obtain the Lagrangian function:

L (Θ2, γ) = Ĥ(p||q) + γ0(
K

∑
k=1

πk − 1) +
K

∑
k=1

γk(
G

∑
g=1

ηkg − 1) (A3)

By setting ∂L
∂πk

= ∂L
∂ηkg

= ∂L
∂µg

= ∂L
∂σ2

g
= ∂L

∂γi
= 0 for all k, g ∈ {1, 2, · · · , K} ×

{1, 2, · · · , G} and i = 0, 1, · · · , K, we obtain

πk =
1
M

M

∑
m=1

p(αm = k|(xm, ym)) (A4)

ηkg =
∑M

m=1

(
p(αm = k|(xm, ym))∑Nm

n=1 Bg|k
mn

)
∑M

m=1 p(αm = k|(xm, ym))Nm
(A5)

µg =
∑M

m=1 ∑K
k=1

(
p(αm = k|(xm, ym))∑Nm

n=1 Bg|k
mnxmn

)
∑M

m=1 ∑K
k=1

(
p(αm = k|(xm, ym))∑Nm

n=1 Bg|k
mn

) (A6)

σ2
g =

∑M
m=1 ∑K

k=1

(
p(αm = k|(xm, ym))∑Nm

n=1 Bg|k
mn(xmn − µg)2

)
∑M

m=1 ∑K
k=1

(
p(αm = k|(xm, ym))∑Nm

n=1 Bg|k
mn

) (A7)
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However, the parameters b, θ do not have closed-form solutions when their gradients
are equal to zero. Therefore, we have to implement a subalternative optimization algorithm.

For every m, k, g, we define Sm,k,g = |{xg|k
mn}| and {xg|k

mn} = {x
g|k
mni}

Sm,k,g
i=1 . Fixing θg, we have

a closed-form solution of bg to maximize H(p||q):

bg =

(
M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym)ΦT
m,k,gΣ−1

m,k,gΦm,k,g

)−1

×
(

M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym))ΦT
m,k,gΣ−1

m,k,gyg|k
mn

)
(A8)

where

[Φm,k,g]ij = φgj(xg|k
mni), Φm,k,g ∈ RSm,k,g×D (A9)

Σm,k,g = Kθg(xg|k
mn, xg|k

mn) ∈ RSm,k,g×Sm,k,g (A10)

Fixing bg, we can update θg based on its gradient:

∂H(p||q)
∂θg

=
1

2M

M

∑
m=1

K

∑
k=1

p(αm = k|(xm, ym))

×
(
(yg|k

mn −Φm,k,gbg)
TΣ−1

m,k,g
∂Σm,k,g

∂θg
Σ−1

m,k,g(y
g|k
mn −Φm,k,gbg)− tr(Σ−1

m,k,g
∂Σm,k,g

∂θg
)

) (A11)

Appendix B. Experimental Details

A specific description of how we choose the hyperparameters and the initialization
methods for the common parameters is presented in Appendix C. In this section, we mainly
focus on the experimental details. The codes of our BYY annealing learning algorithm can
be downloaded at https://github.com/WQgcx/Automated-model-selection-of-TMGPFR
(accessed on 1 June 2023). Our experiments are conducted with AMD Ryzen 5 4600U with
Radeon Graphics, 2.10 GHz.

Appendix B.1. On the Simulation Dataset

The parameters of the generator with three different MGPFRs briefly mentioned in
Section 5.1.1 are listed in Table 1. Recall that there are M = 50 unlabeled sample curves in
total and in each curve there are 60 sample points.

Then, the initial values of the parameters in our BYY annealing learning algorithm are set
in the following way: Kinit = 10, π1 = · · · = πKinit =

1
Kinit

, G = 10, ηk ∼ Dirichlet(1, · · · , 1)
i.i.d. for k = 1, · · · , Kinit, θg ≡ (0.5, 1.0, 0.1), µg ∼ Uniform({−20,−19, · · · , 20}) i.i.d. for
g = 1, 2, · · · , G, σg ≡ 2, D = 20, bg ∼ Uniform(0, 2

D ) i.i.d. for g = 1, 2, · · · , G. When
selecting the B-spline functions, for simplicity, we assume φ1 = φ2 = · · · = φG and the
interpolation points {(x̄d, ȳd)}D

d=1 = {{(x̄di, ȳdi)}n
i=1}D

d=1 are determined by the follow-
ing steps:

Step 1: Set n = N + 2 and select a sufficiently small W1 and a sufficiently large W2 such
that the interval [W1, W2] can cover all the inputs x;

Step 2: Randomly select D different sample curves from the training dataset, being denoted
by {(x̂d, ŷd)}D

d=1 = {{(x̂di, ŷdi)}N
i=1}D

d=1;
Step 3: Set (x̄d1, ȳd1) = (W1, 0), (x̄d2, ȳd2) = (x̂d1, ŷd1), (x̄d3, ȳd3) = (x̂d2, ŷd2), · · · ,

(x̄d(n−1), ȳd(n−1)) = (x̂dN , ŷdN), (x̄dn, ȳdn) = (W2, 0).

In general, this mechanism is reasonable and suitable for datasets where sample curves
are not too closely interlaced. It is also data-driven and self-adaptive. However, for the
extremely noisy datasets, we have to use another sampling mechanism for interpolation
points, which will be described in Appendix B.3. In this simulation dataset, n = 62 and
we set W1 = −35, W2 = 35. The learning rate with respect to Equation (A11) is 0.001
and we repeat Equations (A8)–(A11) for T′ = 10 times to update b, θ in each iteration.
The annealing parameter λ = λ(t) = (10× (1− e−0.1(t−1)) + 0.1)−1. The convergence or
stopping criterion for iteration is set by ∆H < 1e−6. We find out that our algorithm has

https://github.com/WQgcx/Automated-model-selection-of-TMGPFR
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converged after about 20 iterations, so we set T = 30 for simplicity. The total training time
is 1422.6 s.

We change the random seed and hyperparameters to conduct multiple parallel ex-
periments to validate the robustness of our algorithm. Since the data suffer very violent
fluctuations, our algorithm sometimes yields K∗ = 2 or 4. In these cases, we find out that
the harmony function is trapped in a local maximum. However, by adjusting the learning
rate and slowing down the annealing speed, we can still drive the harmony function to
reach the global maximum such that K∗ = 3.

As a supplement, aiming to demonstrate how the classification accuracy of our algo-
rithm changes as these curves from different clusters become “similar”, we conduct some
extra experiments for this simulation dataset. We adopt the J-divergence as the criterion of
measuring the similarity of two clusters (i.e., the corresponding probability distributions),
which is given by

DJ(p||q) =
∫

p(x) log
p(x)
q(x)

dx +
∫

q(x) log
q(x)
p(x)

dx. (A12)

We regulate the J-divergence between two clusters by changing the values of the
parameters of their MGPFR models (refer to Table 1). The experimental results are shown in
Figure A1. When the J-divergence is relatively small, all of the three methods unsurprisingly
lead to the same conclusion that there exists only one cluster. However, as it becomes larger,
our BYY annealing learning algorithm gradually acquires the capability of automated
model selection at a faster speed and obtains higher classification accuracy. On the other
hand, when it is large enough, all three methods can distinguish different clusters, with the
classification accuracy approaching 100%.

Figure A1. Comparative results of the classification accuracies of the BYY annealing learning, and
BIC and AIC methods with the change in the J-divergence between the two clusters.

Appendix B.2. On the City Temperature Dataset

One can download this dataset from the University of Dayton—Environmental Protec-
tion Agency Average Daily Temperature Archive: http://academic.udayton.edu/kissock/
http/Weather/default.htm (accessed on 1 June 2023). It records the daily average tempera-
ture in 324 cities from 1995 to 2020. For simplicity, we selected four cities from them for
our experiments.

In this particular dataset, there are M = 97 unlabeled curves in total and there are
87 sample points in each curve, i.e., N = N1 = · · · = N97 = 87. The initial values
of the parameters are set in the following way: Kinit = 10, π1 = π2 = · · · = πKinit =

1
Kinit

, G = 10, ηk ∼ Dirichlet(1, 1, · · · , 1) i.i.d. for k = 1, 2, · · · , Kinit, θg ≡ (1, 3, 3), µg ∼
Uniform({20, 21, · · · , 68}) i.i.d. for g = 1, 2, · · · , G, σg ≡ 10, D = 10, bg ∼ Uniform(0, 2

D )
i.i.d. for g = 1, 2, · · · , G. When selecting the B-spline functions, we use the same method de-

http://academic.udayton.edu/kissock/http/Weather/default.htm
http://academic.udayton.edu/kissock/http/Weather/default.htm
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scribed in Appendix B.1. However, we delete two interpolation points, (x̄d1, ȳd1), (x̄dn, ȳdn),
because all the sample curves have the identical inputs. The learning rate with respect
to Equation (A11) is 0.01 and we repeat Equations (A8)–(A11) for T′ = 10 times to update
b, θ in each iteration. The annealing parameter λ = λ(t) = (20× (1− e−0.1(t−1)) + 0.1)−1.
The stopping criterion for iteration is ∆H < 1e−6. It was found by our experiments that the
algorithm converged after about 25 iterations; thus, we set T = 30 for simplicity. Actually,
the total training time of our algorithm is 2013.9 s.

Likewise, we also change the random seed and hyperparameters and conduct mul-
tiple parallel experiments to validate the robustness of our algorithm. Since the noise in
this dataset is relatively small, the classification accuracy of our algorithm is generally
greater than 96.90% and the average value is 98.97%. Figure 4 shows the experimental
results in which the harmony function converges to a greater value than those in the other
parallel experiments.

Appendix B.3. On the Effective Radiation Dataset

This dataset was downloaded from the Digital Journal of Global Change Data Reposi-
tory, https://doi.org/10.3974/geodb.2018.03.02.V1 (accessed on 1 June 2023). It records the
daily average surface effective radiation at 130 radiation stations from 1971 to 2014. We
selected 20 stations from them located in different cities in China for our experiments.

There are M = 100 unlabeled curves in total and in each curve, there are 75 sam-
ple points, i.e., N = N1 = · · · = N100 = 75. The initial values of the parameters in
our algorithm are set in the following way: Kinit = 10, π1 = π2 = · · · = πKinit =

1
Kinit

, G = 10, ηk ∼ Dirichlet(1, 1, · · · , 1) i.i.d. for k = 1, 2, · · · , Kinit, θg ≡ (1, 5, 2), µg ∼
Uniform({20, 21, · · · , 55}) i.i.d. for g = 1, 2, · · · , G, σg ≡ 10, D = 15, bg ∼ Uniform(0, 2

D )
i.i.d. for g = 1, 2, · · · , G. For selecting the B-spline functions, for simplicity, we assume
φ1 = φ2 = · · · = φG. Since this dataset is very noisy, we use an alternative mechanism to
select the interpolation points {(x̄d, ȳd)}D

d=1 = {{(x̄di, ȳdi)}n
i=1}D

d=1:

Step 1: Select a sufficiently small W1 and a sufficiently large W2 such that the interval
[W1, W2] can cover all inputs x;

Step 2: Compute ȳ = 1
M ∑M

m=1 Nm
∑M

m=1 ∑Nm
n=1 ymn;

Step 3: Divide the interval [W1, W2] into R − 1 subintervals with equal lengths and for
i = 1, · · · , R and d = 1, · · · , D, set x̄di = W1 + (W2 −W1)(i− 1)/(R− 1);

Step 4: Sample ȳdi ∼ Uniform(0, 2ȳ) i.i.d. for i = 1, · · · , R and d = 1, · · · , D.

For this dataset, W1 = 0, W2 = 74, and R = 75. The learning rate with respect to
Equation (A11) is 0.01 and we repeat Equations (A8)–(A11) for T′ = 10 times to update
b, θ in each iteration. The annealing parameter λ = λ(t) = (10× (1− e−0.1(t−1)) + 0.1)−1.
The stopping criterion for iteration is ∆H < 1e−6. We find out that our algorithm has
converged after about 25 iterations and set T = 30 for simplicity. Actually, the total training
time of our algorithm is 2104.4 s.

The random seed and hyperparameters are changed several times to conduct parallel
experiments for validating the robustness of our algorithm. It is found by the experimental
results that the middle-latitude cities Xi’an and Luohe and the mountain city Hengfeng
sometimes have different labels. The other cities keep the same classification results. This
phenomenon is probably because the middle-latitude cities have hybrid features of high-
latitude cities and low-latitude cities, and the mountain cities lie in a high-altitude area,
which exposes them to more severe solar radiation. As these training curves are rather
difficult to distinguish from our eyes, we can conclude that our algorithm is very powerful
and robust in curve clustering.

Appendix B.4. On the Electrical Load Dataset

This dataset was issued by the Northwest China Grid Company. It records daily
variation in electrical load in 2009 and 2010. We randomly select 100 curves for training

https://doi.org/10.3974/geodb.2018.03.02.V1
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and 50 curves for test. There are no labels for these curves. In each curve there are
96 sample points.

The initial values of the parameters in our BYY annealing learning algorithm are set
in the following simple way: Kinit = 10, π1 = π2 = · · · = πKinit = 1

Kinit
, G = 10, ηk ∼

Dirichlet(1, 1, · · · , 1) i.i.d. for k = 1, 2, · · · , Kinit, θg ≡ (1, 0.1, 1), µg ∼ Uniform({1, 2, · · · , 94})
i.i.d. for g = 1, 2, · · · , G, σg ≡ 10, D = 30, bg ∼ Uniform(0, 2

D ) i.i.d. for g = 1, 2, · · · , G.
For selecting the B-spline functions, we use the same method described in Appendix B.2.
The learning rate with respect to Equation (A11) is 0.003 and we repeat Equations (A8)–(A11)
for T′ = 10 times to update b, θ in each iteration. The annealing parameter λ = λ(t) =
(20× (1− e−0.1(t−1)) + 0.1)−1. The stopping criterion for iteration is ∆H < 1e−6. As we
find out that our algorithm has converged after about 20 iterations, we simply set T = 30.
We spend 2808.4s on training the model. The clustering results are shown in Figure 6.

As for curve prediction, our strategy is rolling or successive prediction, i.e., when
our algorithm has already predicted y∗mn for a new input x∗mn and we need to predict y∗∗mn
for an another new input x∗∗mn, we regard (x∗mn, y∗mn) as known and use its values along
with the previous data together to predict the next step output y∗∗mn and so on. The overall
prediction results are listed in Table 3. We can find out that the RMSE decreases at a
much slower rate when U ≥ 40. According to the bias–variance decomposition of MSE,
E[(y − f̂ (x))2|x] = σ2 + bias2 + variance, most of the error can be interpreted as the
intrinsic noise in this dataset.

The total times of the prediction over 50 test curves with different U are listed in
Table A1.

Table A1. Total times of the prediction of 96−U sample points over 50 test curves with different U.

U 20 30 40 50 60 70

T 338.46 s 298.47 s 262.24 s 217.99 s 175.34 s 127.48 s

In particular, we compute the RMSEs of the first point prediction for different U,
which are listed in Table A2. Clearly, the first point is the unique one that the rolling
prediction method is not actually applied to. We can find out that the RMSE of the
first point prediction is remarkably less than the corresponding mean error of the rolling
prediction for all U. Specifically, when U ∈ [40, 70], the RMSE of the first point prediction
is relatively high, mainly because the electrical load suffers the greater noise at the peak of
power consumption and smaller noise at the trough.

Table A2. RMSEs of the first point prediction with different U.

U 20 30 40 50 60 70

RMSE 0.9212 1.0749 1.5601 1.9240 1.7066 1.7500

We further plot nine prediction curves with the corresponding 95% confidence inter-
vals when U = 50, which are shown in Figure A2. Black curves are the real sample curves,
red curves are the prediction curves, and blue domains represent the confidence intervals.
Although there exists certain divergence, our algorithm still yields excellent prediction
results, which further demonstrates that our algorithm is effective for curve prediction.

To investigate the sensitivity of the tuning parameter λ(t) on the performance of
curve clustering and prediction, we conduct several experiments of our BYY annealing
learning algorithm with the hyperparameters u and v in λ(t) taking different values.
The experimental results are listed in Tables A3 and A4. It can be found that although
the clustering results might change slightly, the prediction results are relatively stable
and robust.
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Figure A2. Nine prediction curves and their corresponding 95% confidence intervals of the electrical
load dataset when U = 50.

(a) (b)

(c) (d)

(e) (f)

Figure A3. Clustering results of AIC, BIC, and k-fold CV for the electrical load dataset. (a) Clustering
result of AIC and BIC on the training set. (b) Clustering result of AIC and BIC on the test set.
(c) Clustering result of 5-fold CV on the training and validation sets. (d) Clustering result of 5-fold CV
on the test set. (e) Clustering result of 10-fold CV on the training and validation sets. (f) Clustering
result of 10-fold CV on the test set.
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Table A3. Curve clustering results of our BYY annealing learning algorithm with different values of
the hyperparameters in λ(t) = 1

u(1−e−v(t−1))+0.1 when D = 30, G = 10.

v

K∗ u

5 10 15 20 25

0.05 6 6 6 6 6

0.1 6 6 5 5 5

0.5 5 5 5 5 5

1.0 5 5 5 5 5

5.0 5 5 5 5 5

Table A4. Curve prediction results of our BYY annealing learning algorithm with different values of
the hyperparameters in λ(t) = 1

u(1−e−v(t−1))+0.1 when D = 30, G = 10. When v is too small, the RMSE
becomes relatively large mainly due to a lower convergence rate.

v

RMSE u

5 10 15 20 25

0.05 2.01± 0.25 2.20± 0.23 2.02± 0.21 1.87± 0.17 1.99± 0.18

0.1 1.97± 0.18 1.96± 0.17 2.01± 0.18 1.99± 0.17 1.80± 0.19

0.5 1.95± 0.18 1.79± 0.18 1.81± 0.20 1.80± 0.19 1.79± 0.18

1.0 1.81± 0.20 1.81± 0.20 1.80± 0.19 1.78± 0.16 1.79± 0.16

5.0 1.81± 0.19 1.80± 0.19 2.18± 0.25 1.79± 0.16 1.79± 0.16

Appendix C. Further Discussion of the Parameters

In this final part, we discuss the selection of the hyperparameters and the initialization
of the common parameters. As is well-known, they both play an important role in searching
for the global maximum of the BYY harmony function.

Appendix C.1. The Hyperparameters

In our model and algorithm, the hyperparameters are K, G, D, φ and u, v, w. First, K
should be set to be larger than the true number of actual curve clusters in the dataset so
that the automated model selection can be made. As for G, it should be adaptive to the
number of sample points in the training curves. According to our further experiments, G
can be selected from the interval [ N̄

10 , N̄
6 ] where N̄ := 1

M ∑M
m=1 Nm. Furthermore, a larger

G results in a more careful and precise classifier, but at the same time it tends to split
the input space into more subspaces, which is likely to reduce the correlation among
different subspaces and worsen the ability of prediction in time series. As for D, in order
to distinguish these GPFRs in the lower layer, it is necessary to set D ≥ G. In addition,
we suggest D ≤ min(3G, M

3 ) to avoid the overfitting. For φ, we have already proposed
two methods as described in Appendices B.1 and B.3. The former is feasible for the normal
datasets and the latter suits the noisy ones.

The hyperparameters u, v, w control the speed of annealing. We have already discussed
how they effect the performance of curve clustering and prediction in Sections 3.2 and 6.2.

Appendix C.2. The Other Learnable Parameters

The other parameters are, respectively, π, η, θ, b, µ, σ, which are learned by the BYY
annealing learning algorithm from the training data. Actually, the initialization of these
parameters is also important for the good convergence of the algorithm. In fact, we have
already described their initialization methods. Here, we further discuss them regarding
certain aspects.
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As for π, η, setting πk,init =
1
K for all k = 1, 2, · · · , K and ηk,init ∼ Dirichlet(1, 1, · · · , 1)

i.i.d. for k = 1, 2, · · · , K is very natural. As for θ, θ2 describes the strength of association
among the inputs, and θ1, θ3 describes the strength of the noise. For those sample curves that
have a strong correlation between the past and the future, the smaller θ2,init is recommended.
For the noisier datasets, θ1, θ3 should be initialized with the larger values. As for b, we set
binit ∼ Uniform(0, 2

D ), with the goal of letting E
(

∑D
d=1 φd(x)bd

)
approximate the spatial

scale of the given data. Furthermore, for µ, σ, their initial values can be determined by
the range of the input variables of the sample curves. µinit is randomly sampled from
the integers in this range and selecting a larger σinit can make the algorithm more robust
to outliers.
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