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Abstract: Let G and H be graphs. A mapping f from the vertices of G to the vertices of H is known as
a homomorphism from G to H if, for every pair of adjacent vertices x and y in G, the vertices f (x) and
f (y) are adjacent in H. A rectangular grid graph is the Cartesian product of two path graphs. In this
paper, we provide a formula to determine the number of homomorphisms from paths to rectangular
grid graphs. This formula gives the solution to the problem concerning the number of walks in the
rectangular grid graphs.
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1. Introduction

In mathematics, the image is the set of the values of a mapping at all elements in the
domain. In such an image, some structures of the domain are preserved. A mapping that
preserves a structure, the one that we need to study, is usually known as a homomorphism.
For graphs, a homomorphism is defined as follows.

Throughout this paper, all graphs are finite and simple, and we denote the vertex
set and the edge set of a graph G by V(G) and E(G), respectively. Let G and H be two
graphs. A mapping f from V(G) to V(H) is known as a homomorphism from G to H if
{ f (x), f (y)} ∈ E(H) for all {x, y} ∈ E(G). When G = H, f is an endomorphism on G.
The composition of homomorphisms is also known as a homomorphism. This leads to a
preorder on graphs and a category [1]. We use the symbol Hom(G, H) to denote the set of
all homomorphisms from G to H and End(G) to denote the set of all endomorphisms on G.

In a simple graph, a walk is a sequence of consecutive adjacent vertices. A path is
a walk in which no vertex is repeated. We shall also use the word ‘path’ to denote a
graph where the first and the last vertices have a degree one, and the other vertices have
a degree two. Here, Pn stands for a path of order n with V(Pn) = {0, 1, ..., n − 1} and
E(Pn) = {{i, i + 1} | i = 0, 1, ..., n− 2}. Let us denote the path Pn with an edge-labeling φ

by Pφ
n . Furthermore, refer to [1,2] for more basic definitions and results regarding graphs

and algebraic graphs.
The formula for the number of endomomorphisms on Pn, |End(Pn)|, was introduced

by Arworn [3] in 2009. This number is calculated by the summation of the numbers of
shortest paths from point (0, 0) to any point (i, j) in a square lattice and an r-ladder square
lattice. Moreover, in the same year, Arworn and Wojtylak [4] proposed a formula for the
number of homomorphisms from Pm to Pn, |Hom(Pm, Pn)|, in terms of |Homi

j(Pm, Pn)|, where

Homi
j(Pm, Pn)= { f ∈ Hom(Pm, Pn) | f (0) = i, f (m− 1) = j} for all i, j ∈ {0, 1, . . . , n− 1}.

In 2012, Lina and Zeng [5] constructed another formula for |Hom(Pm, Pn)|, which was
obtained by proving the conjecture in [6]. In 2014, Eggleton and Morayne [7] also gave
another formula for |Hom(Pm, Pn)|. Moreover, they considered finite Laurent series to be
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generating functions that can move homomorphisms of a finite path into any path, finite
or infinite.

In 2018, Knauer and Pipattanajinda [8] studied a generalization of path endomor-
phisms, namely weak path endomorphisms. The number of weak path endomorphisms
is calculated by the summation of the numbers of shortest paths from point (0, 0, 0) to
any point (i, j, k) in a cubic lattice and in an r-ladder cubic lattice. Recently, in 2022, Pom-
sri et al. [9] proposed a formula for the number of weak homomorphisms from Pm to Pn in
recursive form.

The Cartesian product G× H of the graphs G and H is a graph with V(G× H) = V(G)×
V(H) and E(G × H) = {{(a, b), (a, c)} | a ∈ V(G), {b, c} ∈ E(H)} ∪ {{(a, b), (d, b)} |
{a, d} ∈ E(G), b ∈ V(H)}. A rectangular grid graph or an m× n grid graph is the Cartesian
product of two path graphs on m and n vertices. There is one-to-one correspondence
between the set of homomorphisms f : Pn → G1�G2 and the set of walks of n vertices in
G1�G2. Thus, the number of homomorphisms from a path Pn to a grid graph gives the
number of walks of n vertices in the rectangular grid graph.

In 2023, Keshavarz-Kohjerdi and Bagheri [10] studied a rectangular grid graph in
which some rectangles are removed from its corners, namely a truncated rectangular grid
graph. They provided a linear-time algorithm for finding a Hamiltonian cycle problem in
a truncated rectangular grid graph. These could be extended to the lower bound for the
number of homomorphisms from a cycle to a rectangular grid graph.

Our purpose is to find a formula for the number of homomorphisms from a path Pm
to another path Pn and to a rectangular grid graph Pn�Pk.

2. The Number of Homomorphisms from Paths to Paths with f (0) = j

In this section, we provide the formula for finding the number of homomorphisms
from paths Pm to Pn, which maps 0 to j. We denote the set of homomorphisms from Pm to
Pn, which maps 0 to j, by Homj(Pm, Pn).

For 0 ≤ j ≤ n− 1, let

Homj(Pm, Pn) = { f ∈ Hom(Pm, Pn) | f (0) = j}. (1)

By the symmetry of Pn, we obtain the following lemma:

Lemma 1. Let j and n be integers such that 0 ≤ j < n.

|Homj(Pm, Pn)| = |Hom(n−j−1)(Pm, Pn)|. (2)

Here, we transform the cardinal number of |Homj(Pm, Pn)| to count the shortest paths
on square lattices. Figure 1a–c show the possible homomorphisms from P4 to P5, which
map 0 to 0, 1, and 2, respectively. The numbers on the top are elements of the domain set
V(P4), and the tuples on the left are elements of the image set V(P5). These become square
lattices, as shown in Figure 2a–c after rotating 45◦ counterclockwise.

P4

P5

f (0) = 0

0 1 2 3

0
1
2
3
4

(a)

P4

P5

f (0) = 1

0 1 2 3

0
1
2
3
4

(b)

P4

P5

f (0) = 2

0 1 2 3

0
1
2
3
4

(c)
Figure 1. Graphical presentation of the domain and image of all possible homomorphisms f ∈ Hom
(P4, P5). (a) f (0) = 0. (b) f (0) = 1. (c) f (0) = 2.
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f (0) = 0 1 2 3

0 1

(a)

f (0) = 1 2 3 4

0 1 2

0

(b)

f (0) = 2 3 4

1 2 3

0 1

(c)
Figure 2. Square lattice presentations of all possible homomorphisms f ∈ Hom(P4, P5). (a) f (0) = 0.
(b) f (0) = 1. (c) f (0) = 2.

Each homomorphism f ∈ Hom(Pm, Pn)| can be visualized using the square lattice,
where movement from (i, j) to the next point is depicted as follows:

• To (i + 1, j) if f (x + 1) = f (x) + 1.
• To (i, j + 1), if f (x + 1) = f (x)− 1.

For example, if the images of successive vertices of f ∈ |Hom3(P17, P10)| are 3, 4,
5, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4 and 5, then the homomorphism can be visualized as shown in
Figure 3.

(0, 0)

(0, j)

(n− j− 1, 0)

(9, 7)

y = x + j

y = x− (n− j− 1)

(dm−j−1
2 e, bm+j−1

2 c)

(bm+n−j−2
2 c, dm−n+j

2 e)

Figure 3. The shortest path from (0, 0) to (9, 7) that stays between lines y = x + j and y = x− n+ j+ 1,
where j = 3, m = 17 and n = 10.

In general, |Homj(Pm, Pn)| can be obtained from the number of shortest paths from
(0, 0) to any point (i, n− i− 1) on the square lattice that stays between the lines y = x + j
and y = x− n + j + 1, where touching is allowed.

Lemma 2 ([5]). The number of shortest paths from point (0, 0) to any point (i, n− i− 1) on the
square lattice that stays between the lines y = x + j and y = x− (n− j− 1) is

∑
|t|≤b(m+n)/nc

((
m− 1

i− t(n + 1)

)
−
(

m− 1
i + j− t(n + 1) + 1

))
. (3)

where (n
k) = 0 if k > n or k < 0.

Hence, we obtain the following theorem.
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Theorem 1. Let m, n be positive integers and j be a non-negative integer. Let L = max{0,
dm−j−1

2 e} and U = min{m− 1, bm+n−j−2
2 c}. Then,

|Homj(Pm, Pn)| =
U
∑
i=L

∑
|t|≤bm+n

n c

((
m− 1

i− t(n + 1)

)
−
(

m− 1
i + j− t(n + 1) + 1

))
(4)

Example 1. Using Theorem 1, we have

|Hom0(P4, P5)| =
3

∑
i=2

1

∑
t=−1

((
3

i− 6t

)
−
(

3
i− 6t + 1

))

=
3

∑
i=2

((
3

i + 6

)
−
(

3
i + 7

)
+

(
3
i

)
−
(

3
i + 1

)
+

(
3

i− 6

)
−
(

3
i− 5

))
=

((
3
2

)
−
(

3
3

))
+

((
3
3

))
=3,

|Hom1(P4, P5)| =
3

∑
i=1

1

∑
t=−1

((
3

i− 6t

)
−
(

3
i− 6t + 2

))

=
3

∑
i=1

((
3

i + 6

)
−
(

3
i + 8

)
+

(
3
i

)
−
(

3
i + 2

)
+

(
3

i− 6

)
−
(

3
i− 4

))
=

((
3
1

)
−
(

3
3

))
+

((
3
2

))
+

((
3
3

))
=6,

and

|Hom2(P4, P5)| =
2

∑
i=1

1

∑
t=−1

((
3

i− 6t

)
−
(

3
i− 6t + 3

))

=
2

∑
i=1

((
3

i + 6

)
−
(

3
i + 9

)
+

(
3
i

)
−
(

3
i + 3

)
+

(
3

i− 6

)
−
(

3
i− 3

))
=

((
3
1

))
+

((
3
2

))
=6.

which is in line with counting directly from Figure 2. By counting the paths in Figure 2a, we have
|Hom0(P4, P5)| = 3 (see Figure 4). By counting the paths in Figure 2b, we have |Hom1(P4, P5)| = 6
(see Figure 5). By counting the paths in Figure 2c, we have |Hom2(P4, P5)| = 6. (see Figure 6).

f (0) = 0 1 2 3

0 1

f (0) = 0 1 2 3

0 1

f (0) = 0 1 2 3

0 1

Figure 4. All possible presentations of homomorphisms f ∈ Hom0(P4, P5) on a square lattice.
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f (0) = 1 2 3 4

0 1 2

0

f (0) = 1 2 3 4

0 1 2

0

f (0) = 1 2 3 4

0 1 2

0

f (0) = 1 2 3 4

0 1 2

0

f (0) = 1 2 3 4

0 1 2

0

f (0) = 1 2 3 4

0 1 2

0

Figure 5. All possible presentations of homomorphisms f ∈ Hom1(P4, P5) on a square lattice.

f (0) = 2 3 4

1 2 3

0 1

f (0) = 2 3 4

1 2 3

0 1

f (0) = 2 3 4

1 2 3

0 1

f (0) = 2 3 4

1 2 3

0 1

f (0) = 2 3 4

1 2 3

0 1

f (0) = 2 3 4

1 2 3

0 1

Figure 6. All possible presentations of homomorphisms f ∈ Hom2(P4, P5) on a square lattice.

For convenience, we compute |Homj(Pm, Pn)| for 2 ≤ m, n ≤ 9 (Table 1).

Table 1. Numbers of homomorphisms f ∈ Homj(Pm, Pn) for 2 ≤ m, n ≤ 9.

n

m j 2 3 4 5 6 7 8

2

0 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2

2 0 1 2 2 2 2 2

3 0 0 1 2 2 2 2

3

0 1 2 2 2 2 2 2

1 1 2 3 3 3 3 3

2 0 2 3 4 4 4 4

3 0 0 2 3 4 4 4

4

0 1 2 3 3 3 3 3

1 1 2 5 6 6 6 6

2 0 2 5 6 7 7 7

3 0 0 3 6 7 8 8
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Table 1. Cont.

n

m j 2 3 4 5 6 7 8

5

0 1 4 5 6 6 6 6

1 1 4 8 9 10 10 10

2 0 4 8 12 13 14 14

3 0 0 5 9 13 14 15

6

0 1 4 8 9 10 10 10

1 1 8 13 18 19 20 20

2 0 4 13 18 23 24 25

3 0 0 8 18 23 28 29

7

0 1 8 13 18 19 20 20

1 1 8 21 27 33 34 35

2 0 8 21 36 42 48 49

3 0 0 13 27 42 48 54

8

0 1 8 21 27 33 34 35

1 1 16 34 54 61 68 69

2 0 8 34 54 75 82 89

3 0 0 21 54 75 96 103

3. The Number of Homomorphisms from Paths to Rectangular Grid Graphs

In this section, we provide the formulas for finding the number of homomorphisms
from paths Pm to rectangular grid graphs Pn�Pk. We denote the set of homomorphisms
from Pm to Pn�Pk, which maps 0 to (i, j), by Homij(Pm, Pn�Pk).

For 0 ≤ i ≤ n− 1, 0 ≤ j ≤ k− 1, let

Homij(Pm, Pn�Pk) = { f ∈ Hom(Pm, Pn�Pk) | f (0) = (i, j)}. (5)

From the symmetry of Pn�Pk, we obtain the following lemma:

Lemma 3. Let i and n be integers such that 0 ≤ j < n, and let m > 2 be a positive integer.

(1) |Homij(Pm, Pn�Pk)| = |Hom(n−i−1)j(Pm, Pn�Pk)| = |Homi(k−j−1)(Pm, Pn�Pk)|
= |Hom(n−i−1)(k−j−1)(Pm, Pn�Pk)|,

for all i ∈ {0, 1, . . . , n− 1} and j ∈ {0, 1, . . . , k− 1}.
(2) |Hom(Pm, P2n�P2k)| = 4 ∑n−1

i=0 ∑k−1
j=0 |Homij(Pm, P2n�P2k)|.

(3) |Hom(Pm, P2n+1�P2k)| = 4 ∑n−1
i=0 ∑k−1

j=0 |Homij(Pm, P2n+1�P2k)|
+2 ∑k−1

j=0 |Homnj(Pm, P2n+1�P2k)|.
(4) |Hom(Pm, P2n�P2k+1)| = 4 ∑n−1

i=0 ∑k−1
j=0 |Homij(Pm, P2n�P2k+1)|

+2 ∑n−1
i=0 |Homik(Pm, P2n�P2k+1)|.

(5) |Hom(Pm, P2n+1�P2k+1)| = 4 ∑n−1
i=0 ∑k−1

j=0 |Homij(Pm, P2n+1�P2k+1)|
+2 ∑k−1

j=0 |Homnj(Pm, P2n+1�P2k+1)|
+2 ∑n−1

i=0 |Homik(Pm, P2n+1�P2k+1)|
+|Homnk(Pm, P2n+1�P2k+1)|.

To prove the main theorem, we define a new operation for two paths with their
edge labelings.
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Definition 1. Let Pφ
m, Pψ

n be paths Pm, Pn with edge labelings φ and ψ. Define Pφ
m and Pψ

n en-
twined or Pφ

m G Pψ
n as the set of all paths Pm+n−1 with edge labels from φ and ψ that preserve the

sequential order of φ and ψ.

Example 2. Consider paths P4 and P3 with injective edge labelings φ and ψ, as shown below.

a b c

Pφ
4

0 1

Pψ
3

We have Pφ
4 G Pψ

3 = {

}

, , ,

, , ,

, , ,

a b c 0 1 a b 0 c 1 a b 0 1 c

a 0 b c 1 a 0 b 1 c a 0 1 b c

0 a b c 1 0 a b 1 c 0 a 1 b c

0 1 a b c

This leads to the following lemma:

Lemma 4. Let Pφ
m, Pψ

n be paths with edge labelings. Then,

|Pm G Pn| =
(

m + n− 2
m− 1

)
. (6)

Proof. It is easy to see that the number of ways to label Pm+n−1 is equal to the permutations
of all m + n− 2 edge labels with a fixed sequential order.

Next, we observe a simple example to visualize homomorphisms from paths to
rectangular grid graphs on a square lattice.

Example 3 (Hom00(P4, P4�P5) = 18). All possible homomorphisms f ∈ Hom00(P4, P4�P5)
are shown in Figure 7. The numbers on the top are elements of the domain set V(P4), and the tuples
on the left are elements of the image set V(P4�P5). The tuples with the same second elements are
represented by circles of the same color.

The mappings f1, f2 ∈ Hom00(P4, P4�P5)with f1(0) = (0, 0), f1(1) = (0, 1), f1(2) = (0, 2),
f1(3) = (0, 1) and f2(0) = (0, 0), f2(1) = (1, 0), f2(2) = (2, 0), f2(3) = (1, 0) are represented
by the red lines on the top and the black lines (see Figure 8). We note that the normal black lines
represent the increment of the first coordinate, the dashed black lines represent the decrement of the
first coordinate, the normal red lines represent the increment of the second coordinate, and the red
lines represent the decrement of the second coordinate.

P4

P4�P5

(0,4)
(0,3)

(0,2)
(0,1)

(0,0)

(1,0)

(2,0)

(3,0)

0 1 2 3

Figure 7. Graphical presentation of the domain and image of all possible homomorphisms f ∈ Hom00

(P4, P4�P5) .
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P4

P4�P5

f1

f2

(0,4)
(0,3)

(0,2)
(0,1)

(0,0)

(1,0)

(2,0)

(3,0)

0 1 2 3

Figure 8. Square lattice presentation of f1 and f2.

We now divide all mappings in Hom00(P4, P4�P5) into groups according to the number of
change occurrences in the first coordinate h and rewrite each path as entwined black and red paths.

h f ∈ Hom00(P4, P4�P5)
with changes in the first co-
ordinate h times

Paths represent each
f ∈ Hom00(P4, P4�P5)
(Expanded Diagram)

Ph+1 G P4−h

0

P4

P4�P5

0 1 2 3

G

G

G

1

P4

P4�P5

0 1 2 3

G

G

2

P4

P4�P5

0 1 2 3

G

G

3

P4

P4�P5

0 1 2 3

G

G

G

For each h ∈ {0, 1, 2, 3}, observe that out of the 3 edges of P4 from Ph+1 G P4−h, there are
(3

h) ways to place h edges from the black path and one way to place 3− h edges from the red path.
Moreover, the black line Ph+1 is the square lattice representation of f1 ∈ Hom0(Ph+1, P4), while
the red line P4−h is the square lattice representation of f2 ∈ Hom0(P4−h, P5). Thus, there are
(3

h)|Hom0(Ph+1, P4)||Hom0(P4−h, P5)| possible paths in Ph+1 G P4−h. Hence,
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|Hom00(P4, P4�P5)| =
(

3
0

)
|Hom0(P1, P4)||Hom0(P4, P5)|

+

(
3
1

)
|Hom0(P2, P4)||Hom0(P3, P5)|

+

(
3
2

)
|Hom0(P3, P4)||Hom0(P2, P5)|

+

(
3
3

)
|Hom0(P4, P4)|Hom0(P1, P5)|

= 1(1)(3) + 3(1)(2) + 3(2)(1) + 1(3)(1)

= 18.

Example 4 (|Hom11(P4, P4�P5)| = 47 ). All possible homomorphisms f ∈ Hom11(P4, P4�P5)
are shown in Figure 9. The numbers on the top are elements of the domain set V(P4), and the tuples
on the left are elements of the image set V(P4�P5). The tuples with the same second elements are
represented by circles of the same color.

P4

P4�P5

(0,4)
(0,3)

(0,2)
(0,1)

(0,0)

(1,0)

(2,0)

(3,0)

0 1 2 3

Figure 9. Graphical presentation of the domain and image of all possible homomorphisms f ∈ Hom11

(P4, P4�P5).

|Hom11(P4, P4�P5)| =
(

3
0

)
|Hom1(P1, P4)||Hom1(P4, P5)|

+

(
3
1

)
|Hom1(P2, P4)||Hom1(P3, P5)|

+

(
3
2

)
|Hom1(P3, P4)||Hom1(P2, P5)|

+

(
3
3

)
|Hom1(P4, P4)|Hom1(P1, P5)|

= 1(1)(6) + 3(2)(3) + 3(3)(2) + 1(5)(1)

= 47.

Lemma 5. Let m, n and k be positive integers and let i, j be non-negative integers, such that

i <
n
2
− 1 and j <

k
2
− 1. It follows that

|Homij(Pm, Pn�Pk)| =
m−1

∑
h=0

(
m− 1

h

)
|Homi(Ph+1, Pn)||Homj(Pm−h, Pk)|. (7)

Proof. Let f ∈ Homij(Pm, Pn�Pk). For each x ∈ {0, 1, m − 2} in the domain, either
f (x + 1) = f (x) ± (1, 0) or f (x + 1) = f (x) ± (0, 1). Assume changes in the first co-
ordinate appear h times. Then, changes in the second coordinate appear m − 1 − h
times. The sequence of changes in the first coordinate form a homomorphism f1 ∈
Homi(Ph+1, Pn). Similarly, the sequence of changes in the second coordinate form a
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homomorphism f2 ∈ Homi(Pm−1−h+1, Pk). Thus, the corresponding path graph of f
can be obtained from path graphs of f1 and f2 entwined. Hence, |Homij(Pm, Pn�Pk)| =
∑m−1

h=0 (m−1
h )|Homi(Ph+1, Pn)||Homj(Pm−h, Pk)|.

From Theorem 1, Lemma 3 and Lemma 5, we get the theorem below.

Theorem 2. Let m, n and k be positive integers. The cardinalities |Hom(Pm, Pn�Pk)| of homo-
morphisms from paths Pm to rectangular grid graphs Pn�Pk are

|Hom(Pm, Pn�Pk)| = 4 ∑
bn/2c−1
i=0 ∑

bk/2c−1
j=0 |Homij(Pm, Pn�Pk)|

+(1− (−1)n)∑
bk/2c−1
j=0 |Hombn/2cj(Pm, Pn�Pk)|

+(1− (−1)k)∑
bn/2c−1
i=0 |Homibk/2c(Pm, Pn�Pk)|

+(1/4)(1− (−1)n)(1− (−1)k)|Hombn/2cbk/2c(Pm, Pn�Pk)|

where |Homij(Pm, Pn�Pk)| = ∑m−1
h=0 (m−1

h )|Homi(Ph+1, Pn)||Homj(Pm−h, Pk)| and

|Homj(Pm, Pn)| =
U
∑
i=L

∑
|t|≤bm+n

n c

((
m− 1

i− t(n + 1)

)
−
(

m− 1
i + j− t(n + 1) + 1

))
,

where L = max{0, dm−j−1
2 e} and U = min{m− 1, bm+n−j−2

2 c}.

For convenience, we compute |Hom(Pm, Pn�Pk)| for 2 ≤ m, n, k ≤ 8. The results are
presented in Table 2.

Table 2. Numbers of homomorphisms f ∈ (Pm, Pn�Pk) for 2 ≤ m ≤ n, k ≤ 8.

k

m n 2 3 4 5 6 7 8

2

2 8 14 20 26 32 38 44

3 14 24 34 44 54 64 74

4 20 34 48 62 76 90 104

5 26 44 62 80 98 116 134

6 32 54 76 98 120 142 164

7 38 64 90 116 142 168 194

8 44 74 104 134 164 194 224

3

3 34 68 102 136 170 204 238

4 52 102 152 202 252 302 352

5 70 136 202 268 334 400 466

6 88 170 252 334 416 498 580

7 106 204 302 400 498 596 694

8 124 238 352 466 580 694 808

4

4 136 308 488 668 848 1028 1208

5 190 424 668 912 1156 1400 1644

6 244 540 848 1156 1464 1772 2080

7 298 656 1028 1400 1772 2144 2516

8 352 772 1208 1644 2080 2516 2952
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Table 2. Cont.

k

m n 2 3 4 5 6 7 8

5

5 518 1330 2226 3132 4038 4944 5850

6 680 1726 2876 4038 5200 6362 7524

7 842 2122 3526 4944 6362 7780 9198

8 1004 2518 4176 5850 7524 9198 10872

6

6 1900 5528 9788 14172 18568 22964 27360

7 2386 6880 12138 17544 22964 28384 33804

8 2872 8232 14488 20916 27360 33804 40248

7
7 6774 22360 41884 62454 83196 103952 124708

8 8232 26976 50384 75020 99856 124708 149560

8 8 23628 88496 175476 269596 365328 461288 557264

4. The Algorithm

In this section, we provide algorithms used to calculate |Homi(Pm, Pn)|,
|Homij(Pm, Pn�Pk)| and |Hom(Pm, Pn�Pk)| with the aforementioned theorems.

Algorithms 1–3 are implementations of Theorem 1, Lemma 5 and Theorem 2, respectively.

Algorithm 1 LOCALPATH2PATH: Number of Homomorphisms from Pm to Pn with f (0) = j
Input:
- m: the size of the domain
- n: the size of the range
- Fixed value j where f (0) = j (with 0 ≤ j ≤ n− 1)
Output: number of homomorphisms from Pm to Pn with f (0) = j

L ← max{0,
⌈

m−j−1
2

⌉
}

U ← min{m− 1,
⌊

m+n−j−2
2

⌋
}

if L > U then
return 0

end if
homj← 0
for i = L to U do

for t = −
⌊m+n

n
⌋

to
⌊m+n

n
⌋

do

homj← homj +
(

m− 1
i− t(n + 1)

)
−
(

m− 1
i + j− t(n + 1) + 1

)
end for

end for
return homj
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Algorithm 2 LOCALPATH2GRID: Number of Homomorphisms from Pm to Pn�Pk with
f (0) = (i, j)
Input:
- m: the size of the domain
- n, k: the dimensions of the grid representing the range
- Fixed value i, j where f (0) = (i, j) (with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ k− 1)
Output: number of homomorphisms from Pm to Pn�Pk with f (0) = (i, j)

homij← 0
for h = 0 to m− 1 do

ci ← LOCALPATH2PATH(h + 1, n, i)
cj ← LOCALPATH2PATH(m− h, k, j)
homij← homij + (m−1

h )cicj
end for
return homij

Algorithm 3 PATH2GRID: Number of Homomorphisms from Pm to Pn�Pk
Input:
- m: the size of the domain
- n, k: the dimensions of the grid representing the range
Output: number of homomorphisms from Pm to Pn�Pk

homgrid← 0
sum← 0
for i = 0 to bn/2c − 1 do

for j = 0 to bk/2c − 1 do
sum← sum + LOCALPATH2GRID(m, n, k, i, j)

end for
end for
homgrid← homgrid + sum ∗ 4
sum← 0
for j = 0 to bk/2c − 1 do

sum← sum + LOCALPATH2GRID(m, n, k, bn/2c, j)
end for
homgrid← homgrid + (1− (−1)n) ∗ sum
sum← 0
for i = 0 to bn/2c − 1 do

sum← sum + LOCALPATH2GRID(m, n, k, i, bk/2c)
end for
homgrid← homgrid + (1− (−1)k) ∗ sum
homgrid← homgrid+ 1

4 (1− (−1)n)(1− (−1)k)LOCALPATH2GRID(m, n, k, bn/2c, bk/2c)
return homgrid

Lemma 6. Algorithm PATH2GRID has time-complexity O(n ·m · k ·max(n, m, k)).

Proof. It is easy to see that the complexity of the algorithm depends on the first loop,
which is also nested with O(n · k) rounds. Each round consists of an execution of
LOCALPATH2GRID, which is essentially a loop with O(m) rounds. Each of these deeper
rounds calls LOCALPATH2PATH twice.

To see the runtime for LOCALPATH2PATH given parameters m and n, we first see the
complexity of the outer loop:
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O(U − L) = O
(

min
{

m− 1, m− 1−
⌈

m− j− 1
2

⌉
,
⌊

m + n− j− 2
2

⌋
,⌊

m + n− j− 2
2

⌋
−
⌈

m− j− 1
2

⌉})
≤ O(min{m, m + n, n}) = O(min{m, n})

(8)

Then, we consider the following scenarios:

1. m < n: In this case b(m + n)/nc = 1; hence, the inner loop has fixed rounds. There-
fore, the complexity is at most O(min{m, n}).

2. m >= n: In this case, the complexity of the inner loop is O(b(m + n)/nc). Together,
we have the overall complexity:

O(min{m, n})O(b(m + n)/nc) = O(n)O(b(m + n)/nc)
≤ O(n)O(m/n)

≤ O(m)

(9)

Therefore, the overall complexity of LOCALPATH2PATH is O(min{m, n}). Since each
round of LOCALPATH2GRID calls LOCALPATH2PATH twice, respectively with parameters
(h + 1, n) and (m− h, k), we have its complexity as:

O(min{h + 1, n}) + O(min{m− h, k})
≤ O(min{m, n}) + O(min{m, k})
≤ O(max{m, n}) + O(max{m, k})
≤ O(max{m, n, k})

(10)

Together, the total complexity of PATH2GRID is O(m · n · k ·max{m, n, k}).
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