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Abstract

:

Let G and H be graphs. A mapping f from the vertices of G to the vertices of H is known as a   h o m o m o r p h i s m   from G to H if, for every pair of adjacent vertices x and y in G, the vertices   f ( x )   and   f ( y )   are adjacent in H. A rectangular grid graph is the Cartesian product of two path graphs. In this paper, we provide a formula to determine the number of homomorphisms from paths to rectangular grid graphs. This formula gives the solution to the problem concerning the number of walks in the rectangular grid graphs.
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1. Introduction


In mathematics, the image is the set of the values of a mapping at all elements in the domain. In such an image, some structures of the domain are preserved. A  mapping that preserves a structure, the one that we need to study, is usually known as a homomorphism. For graphs, a homomorphism is defined as follows.



Throughout this paper, all graphs are finite and simple, and we denote the vertex set and the edge set of a graph G by   V ( G )   and   E ( G )  , respectively. Let G and H be two graphs. A mapping f from   V ( G )   to   V ( H )   is known as a   h o m o m o r p h i s m   from G to H if   { f ( x ) , f ( y ) } ∈ E ( H )   for all   { x , y } ∈ E ( G )  . When   G = H  , f is an   e n d o m o r p h i s m   on G. The composition of homomorphisms is also known as a homomorphism. This leads to a preorder on graphs and a category [1]. We use the symbol Hom(  G , H  ) to denote the set of all homomorphisms from G to H and End(G) to denote the set of all endomorphisms on G.



In a simple graph, a   w a l k   is a sequence of consecutive adjacent vertices. A   p a t h   is a walk in which no vertex is repeated. We shall also use the word ‘path’ to denote a graph where the first and the last vertices have a degree one, and the other vertices have a degree two. Here,   P n   stands for a path of order n with   V  (  P n  )  =  { 0 , 1 , . . . , n − 1 }    and   E  (  P n  )  =  {  { i , i + 1 }  ∣ i = 0 , 1 , . . . , n − 2 }   . Let us denote the path   P n   with an edge-labeling  ϕ  by   P n ϕ  . Furthermore, refer to [1,2] for more basic definitions and results regarding graphs and algebraic graphs.



The formula for the number of endomomorphisms on   P n  , |End(  P n  )|, was introduced by Arworn [3] in 2009. This number is calculated by the summation of the numbers of shortest paths from point   ( 0 , 0 )   to any point   ( i , j )   in a square lattice and an r-ladder square lattice. Moreover, in the same year, Arworn and Wojtylak [4] proposed a formula for the number of homomorphisms from   P m   to   P n  ,   | Hom (  P m  ,  P n   )|, in terms of    |   Hom j i   (   P m  ,  P n   )|, where   Hom j i  (   P m  ,  P n   )  = { f ∈ Hom  (  P m  ,  P n  )  ∣ f  ( 0 )  = i , f  ( m − 1 )  = j }   for all   i , j ∈ { 0 , 1 , . . . , n − 1 }  . In 2012, Lina and Zeng [5] constructed another formula for   | Hom (  P m  ,  P n   )|, which was obtained by proving the conjecture in [6]. In 2014, Eggleton and Morayne [7] also gave another formula for   | Hom (  P m  ,  P n   )|. Moreover, they considered finite Laurent series to be generating functions that can move homomorphisms of a finite path into any path, finite or infinite.



In 2018, Knauer and Pipattanajinda [8] studied a generalization of path endomorphisms, namely weak path endomorphisms. The number of weak path endomorphisms is calculated by the summation of the numbers of shortest paths from point   ( 0 , 0 , 0 )   to any point   ( i , j , k )   in a cubic lattice and in an r-ladder cubic lattice. Recently, in 2022, Pomsri et al. [9] proposed a formula for the number of weak homomorphisms from   P m   to   P n   in recursive form.



The Cartesian product   G × H   of the graphs G and H is a graph with   V ( G × H ) = V ( G ) × V ( H )   and   E ( G × H ) = { { ( a , b ) , ( a , c ) } ∣ a ∈ V ( G ) , { b , c } ∈ E ( H ) } ∪ { { ( a , b ) , ( d , b ) } ∣ { a , d } ∈ E ( G ) , b ∈ V ( H ) }  . A rectangular grid graph or an   m × n   grid graph is the Cartesian product of two path graphs on m and n vertices. There is one-to-one correspondence between the set of homomorphisms   f :  P n      →  G 1  □  G 2    and the set of walks of n vertices in    G 1  □  G 2   . Thus, the number of homomorphisms from a path   P n   to a grid graph gives the number of walks of n vertices in the rectangular grid graph.



In 2023, Keshavarz-Kohjerdi and Bagheri [10] studied a rectangular grid graph in which some rectangles are removed from its corners, namely a truncated rectangular grid graph. They provided a linear-time algorithm for finding a Hamiltonian cycle problem in a truncated rectangular grid graph. These could be extended to the lower bound for the number of homomorphisms from a cycle to a rectangular grid graph.



Our purpose is to find a formula for the number of homomorphisms from a path   P m   to another path   P n   and to a rectangular grid graph    P n  □  P k   .




2. The Number of Homomorphisms from Paths to Paths with f(0) = j


In this section, we provide the formula for finding the number of homomorphisms from paths   P m   to   P n  , which maps 0 to j. We denote the set of homomorphisms from   P m   to   P n  , which maps 0 to j, by    Hom j   (  P m  ,  P n  )   .



For   0 ≤ j ≤ n − 1  , let


   Hom j   (  P m  ,  P n  )  =  { f ∈ Hom  (  P m  ,  P n  )  ∣ f  ( 0 )  = j }  .  



(1)







By the symmetry of   P n  , we obtain the following lemma:



Lemma 1. 

Let j and n be integers such that   0 ≤ j < n  .


    |   Hom j   (  P m  ,  P n  )   | = |   Hom  ( n − j − 1 )    (  P m  ,  P n  )   | .    



(2)









Here, we transform the cardinal number of    |   Hom j   (  P m  ,  P n  )   |    to count the shortest paths on square lattices. Figure 1a–c show the possible homomorphisms from   P 4   to   P 5  , which map 0 to 0, 1, and 2, respectively. The numbers on the top are elements of the domain set   V (  P 4  )  , and the tuples on the left are elements of the image set   V (  P 5  )  . These become square lattices, as shown in Figure 2a–c after rotating   45 ∘   counterclockwise.



Each homomorphism   f ∈ Hom (  P m  ,  P n  ) |   can be visualized using the square lattice, where movement from   ( i , j )   to the next point is depicted as follows:




	
To   ( i + 1 , j )   if   f ( x + 1 ) = f ( x ) + 1  .



	
To   ( i , j + 1 )  , if   f ( x + 1 ) = f ( x ) − 1  .








For example, if the images of successive vertices of    f ∈ |   Hom 3   (  P 17  ,  P 10  )   |    are   3 , 4  ,  5 , 4 , 5 , 4 , 3 , 2 ,    1 , 0 , 1 , 2 , 3 , 2 , 3 , 4   and 5, then the homomorphism can be visualized as shown in Figure 3.



In general,    |   Hom j   (  P m  ,  P n  )   |    can be obtained from the number of shortest paths from   ( 0 , 0 )   to any point   ( i , n − i − 1 )   on the square lattice that stays between the lines   y = x + j   and   y = x − n + j + 1  , where touching is allowed.



Lemma 2 

([5]). The number of shortest paths from point   ( 0 , 0 )   to any point   ( i , n − i − 1 )   on the square lattice that stays between the lines   y = x + j   and   y = x − ( n − j − 1 )   is


   ∑  | t | ≤ ⌊ ( m + n ) / n ⌋       m − 1   i − t ( n + 1 )    −    m − 1   i + j − t ( n + 1 ) + 1     .  



(3)




where     n k   = 0   if   k > n   or   k < 0  .





Hence, we obtain the following theorem.



Theorem 1. 

Let   m , n   be positive integers and j be a non-negative integer. Let   L = max { 0 ,    ⌈   m − j − 1  2  ⌉ }   and   U = min { m − 1 ,  ⌊   m + n − j − 2  2  ⌋  }  . Then,


    |   Hom j   (  P m  ,  P n  )   | =   ∑  i = L  U   ∑  | t | ≤ ⌊   m + n  n  ⌋       m − 1   i − t ( n + 1 )    −    m − 1   i + j − t ( n + 1 ) + 1       



(4)









Example 1. 

Using Theorem 1, we have


       |   Hom 0   (  P 4  ,  P 5  )   | =       ∑  i = 2  3   ∑  t = − 1  1     3  i − 6 t    −   3  i − 6 t + 1          =     ∑  i = 2  3     3  i + 6    −   3  i + 7    +   3 i   −   3  i + 1    +   3  i − 6    −   3  i − 5          =       3 2   −   3 3    +    3 3         =    3 ,      










       |   Hom 1   (  P 4  ,  P 5  )   | =       ∑  i = 1  3   ∑  t = − 1  1     3  i − 6 t    −   3  i − 6 t + 2          =     ∑  i = 1  3     3  i + 6    −   3  i + 8    +   3 i   −   3  i + 2    +   3  i − 6    −   3  i − 4          =       3 1   −   3 3    +    3 2    +    3 3         =    6 ,      








and


       |   Hom 2   (  P 4  ,  P 5  )   | =       ∑  i = 1  2   ∑  t = − 1  1     3  i − 6 t    −   3  i − 6 t + 3          =     ∑  i = 1  2     3  i + 6    −   3  i + 9    +   3 i   −   3  i + 3    +   3  i − 6    −   3  i − 3          =       3 1    +    3 2         =    6 .      








which is in line with counting directly from Figure 2. By counting the paths in Figure 2a, we have    |   Hom 0   (  P 4  ,  P 5  )   | = 3    (see Figure 4). By counting the paths in Figure 2b, we have    |   Hom 1   (  P 4  ,  P 5  )   | = 6    (see Figure 5). By counting the paths in Figure 2c, we have    |   Hom 2   (  P 4  ,  P 5  )   | = 6   . (see Figure 6).





For convenience, we compute    |   Hom j   (  P m  ,  P n  )   |    for   2 ≤ m , n ≤ 9   (Table 1).




3. The Number of Homomorphisms from Paths to Rectangular Grid Graphs


In this section, we provide the formulas for finding the number of homomorphisms from paths   P m   to rectangular grid graphs    P n  □  P k   . We denote the set of homomorphisms from   P m   to    P n  □  P k   , which maps 0 to   ( i , j )  , by    Hom  i j    (  P m  ,  P n  □  P k  )   .



For   0 ≤ i ≤ n − 1  ,   0 ≤ j ≤ k − 1  , let


   Hom  i j    (  P m  ,  P n  □  P k  )  =  { f ∈ Hom  (  P m  ,  P n  □  P k  )  ∣ f  ( 0 )  =  ( i , j )  }  .  



(5)







From the symmetry of    P n  □  P k   , we obtain the following lemma:



Lemma 3. 

Let i and n be integers such that   0 ≤ j < n  , and let   m > 2   be a positive integer.




	(1) 

	
    |   Hom  i j    (  P m  ,  P n  □  P k  )   | = |   Hom  ( n − i − 1 ) j    (  P m  ,  P n  □  P k  )   | = |   Hom  i ( k − j − 1 )    (  P m  ,  P n  □  P k  )   |    



                           = |   Hom  ( n − i − 1 ) ( k − j − 1 )    (  P m  ,  P n  □  P k  )   |   ,



for all   i ∈ { 0 , 1 , ⋯ , n − 1 }   and   j ∈ { 0 , 1 , ⋯ , k − 1 }  .




	(2) 

	
   | Hom   (  P m  ,  P  2 n   □  P  2 k   )   | = 4   ∑  i = 0   n − 1    ∑  j = 0   k − 1    |  Hom  i j    (  P m  ,  P  2 n   □  P  2 k   )  |   .




	(3) 

	
    | Hom   (  P m  ,  P  2 n + 1   □  P  2 k   )   | = 4   ∑  i = 0   n − 1    ∑  j = 0   k − 1    |  Hom  i j    (  P m  ,  P  2 n + 1   □  P  2 k   )  |    



                                  + 2  ∑  j = 0   k − 1    |  Hom  n j    (  P m  ,  P  2 n + 1   □  P  2 k   )  |   .




	(4) 

	
    | Hom   (  P m  ,  P  2 n   □  P  2 k + 1   )   | = 4   ∑  i = 0   n − 1    ∑  j = 0   k − 1    |  Hom  i j    (  P m  ,  P  2 n   □  P  2 k + 1   )  |    



                                  + 2  ∑  i = 0   n − 1    |  Hom  i k    (  P m  ,  P  2 n   □  P  2 k + 1   )  |   .




	(5) 

	
    | Hom   (  P m  ,  P  2 n + 1   □  P  2 k + 1   )   | = 4   ∑  i = 0   n − 1    ∑  j = 0   k − 1    |  Hom  i j    (  P m  ,  P  2 n + 1   □  P  2 k + 1   )  |    



                                      + 2  ∑  j = 0   k − 1    |  Hom  n j    (  P m  ,  P  2 n + 1   □  P  2 k + 1   )  |   



                                      + 2  ∑  i = 0   n − 1    |  Hom  i k    (  P m  ,  P  2 n + 1   □  P  2 k + 1   )  |   



                                       + |   Hom  n k    (  P m  ,  P  2 n + 1   □  P  2 k + 1   )   |   .











To prove the main theorem, we define a new operation for two paths with their edge labelings.



Definition 1. 

Let    P m ϕ  ,  P n ψ    be paths    P m  ,  P n    with edge labelings ϕ and ψ. Define   P m ϕ   and   P n ψ   entwined or    P m ϕ  ≬  P n ψ    as the set of all paths   P  m + n − 1    with edge labels from ϕ and ψ that preserve the sequential order of ϕ and ψ.





Example 2. 

Consider paths   P 4   and   P 3   with injective edge labelings ϕ and ψ, as shown below.




[image: Mathematics 11 02587 i001]

This leads to the following lemma:



Lemma 4. 

Let    P m ϕ  ,  P n ψ    be paths with edge labelings. Then,


    |   P m  ≬  P n   | =     m + n − 2   m − 1    .   



(6)









Proof. 

It is easy to see that the number of ways to label   P  m + n − 1    is equal to the permutations of all   m + n − 2   edge labels with a fixed sequential order.    □





Next, we observe a simple example to visualize homomorphisms from paths to rectangular grid graphs on a square lattice.



Example 3 

(   Hom 00   (  P 4  ,  P 4  □  P 5  )  = 18  ). All possible homomorphisms   f ∈  Hom 00   (  P 4  ,  P 4  □  P 5  )    are shown in Figure 7. The numbers on the top are elements of the domain set   V (  P 4  )  , and the tuples on the left are elements of the image set   V (  P 4  □  P 5  )  . The tuples with the same second elements are represented by circles of the same color.



The mappings    f 1  ,  f 2  ∈  Hom 00   (  P 4  ,  P 4  □  P 5  )    with    f 1   ( 0 )  =  ( 0 , 0 )  ,  f 1   ( 1 )  =  ( 0 , 1 )   ,    f 1   ( 2 )  =  ( 0 , 2 )   ,    f 1   ( 3 )  =  ( 0 , 1 )    and    f 2   ( 0 )  =  ( 0 , 0 )  ,  f 2   ( 1 )  =  ( 1 , 0 )  ,  f 2   ( 2 )  =  ( 2 , 0 )  ,  f 2   ( 3 )  =  ( 1 , 0 )    are represented by the red lines on the top and the black lines (see Figure 8). We note that the normal black lines represent the increment of the first coordinate, the dashed black lines represent the decrement of the first coordinate, the normal red lines represent the increment of the second coordinate, and the red lines represent the decrement of the second coordinate.



We now divide all mappings in    Hom 00   (  P 4  ,  P 4  □  P 5  )    into groups according to the number of change occurrences in the first coordinate h and rewrite each path as entwined black and red paths.[image: Mathematics 11 02587 i002]



For each   h ∈ { 0 , 1 , 2 , 3 }  , observe that out of the 3 edges of   P 4   from    P  h + 1   ≬  P  4 − h    , there are    3 h    ways to place h edges from the black path and one way to place   3 − h   edges from the red path. Moreover, the black line   P  h + 1    is the square lattice representation of    f 1  ∈  Hom 0   (  P  h + 1   ,  P 4  )   , while the red line   P  4 − h    is the square lattice representation of    f 2  ∈  Hom 0   (  P  4 − h   ,  P 5  )   . Thus, there are     3 h    |   Hom 0   (  P  h + 1   ,  P 4  )   | |   Hom 0   (  P  4 − h   ,  P 5  )   |    possible paths in    P  h + 1   ≬  P  4 − h    . Hence,



   


       |   Hom 00   (  P 4  ,  P 4  □  P 5  )   |      =    3 0     |   Hom 0   (  P 1  ,  P 4  )   | |   Hom 0   (  P 4  ,  P 5  )   |          +    3 1     |   Hom 0   (  P 2  ,  P 4  )   | |   Hom 0   (  P 3  ,  P 5  )   |            +    3 2     |   Hom 0   (  P 3  ,  P 4  )   | |   Hom 0   (  P 2  ,  P 5  )   |          +    3 3     |   Hom 0   (  P 4  ,  P 4  )   |  Hom 0   (  P 1  ,  P 5  )  |           = 1 ( 1 ) ( 3 ) + 3 ( 1 ) ( 2 ) + 3 ( 2 ) ( 1 ) + 1 ( 3 ) ( 1 )          = 18 .      













Example 4 

(   |   Hom 11   (  P 4  ,  P 4  □  P 5  )   | = 47   ). All possible homomorphisms   f ∈  Hom 11   (  P 4  ,  P 4  □  P 5  )    are shown in Figure 9. The numbers on the top are elements of the domain set   V (  P 4  )  , and the tuples on the left are elements of the image set   V (  P 4  □  P 5  )  . The tuples with the same second elements are represented by circles of the same color.


      |   Hom 11   (  P 4  ,  P 4  □  P 5  )   |      =    3 0     |   Hom 1   (  P 1  ,  P 4  )   | |   Hom 1   (  P 4  ,  P 5  )   |          +    3 1     |   Hom 1   (  P 2  ,  P 4  )   | |   Hom 1   (  P 3  ,  P 5  )   |            +    3 2     |   Hom 1   (  P 3  ,  P 4  )   | |   Hom 1   (  P 2  ,  P 5  )   |          +    3 3     |   Hom 1   (  P 4  ,  P 4  )   |  Hom 1   (  P 1  ,  P 5  )  |           = 1 ( 1 ) ( 6 ) + 3 ( 2 ) ( 3 ) + 3 ( 3 ) ( 2 ) + 1 ( 5 ) ( 1 )          = 47 .     













Lemma 5. 

Let   m , n   and k be positive integers and let   i , j   be non-negative integers, such that   i <   n 2   − 1   and   j <   k 2   − 1  . It follows that


    |   Hom  i j    (  P m  ,  P n  □  P k  )   | =   ∑  h = 0   m − 1      m − 1  h    |   Hom i   (  P  h + 1   ,  P n  )   | |   Hom j   (  P  m − h   ,  P k  )   | .    



(7)









Proof. 

Let   f ∈  Hom  i j    (  P m  ,  P n  □  P k  )   . For each   x ∈ { 0 , 1 , m − 2 }   in the domain, either   f ( x + 1 ) = f ( x ) ± ( 1 , 0 )   or   f ( x + 1 ) = f ( x ) ± ( 0 , 1 )  . Assume changes in the first coordinate appear h times. Then, changes in the second coordinate appear   m − 1 − h   times. The sequence of changes in the first coordinate form a homomorphism    f 1  ∈ H o  m i   (  P  h + 1   ,  P n  )   . Similarly, the sequence of changes in the second coordinate form a homomorphism    f 2  ∈ H o  m i   (  P  m − 1 − h + 1   ,  P k  )   . Thus, the corresponding path graph of f can be obtained from path graphs of   f 1   and   f 2   entwined. Hence,    |   Hom  i j    (  P m  ,  P n  □  P k  )   | =   ∑  h = 0   m − 1      m − 1  h    |   Hom i   (  P  h + 1   ,  P n  )   | |   Hom j   (  P  m − h   ,  P k  )   | .       □





From Theorem 1, Lemma 3 and Lemma 5, we get the theorem below.



Theorem 2. 

Let   m , n   and k be positive integers. The cardinalities   | Hom (  P m  ,  P n  □  P k  ) |   of homomorphisms from paths   P m   to rectangular grid graphs    P n  □  P k    are



    | Hom   (  P m  ,  P n  □  P k  )   | = 4   ∑  i = 0   ⌊ n / 2 ⌋ − 1    ∑  j = 0   ⌊ k / 2 ⌋ − 1    |  Hom  i j    (  P m  ,  P n  □  P k  )  |    



                                   +  ( 1 −   ( − 1 )  n  )   ∑  j = 0   ⌊ k / 2 ⌋ − 1    |  Hom  ⌊ n / 2 ⌋ j    (  P m  ,  P n  □  P k  )  |   



                                   +  ( 1 −   ( − 1 )  k  )   ∑  i = 0   ⌊ n / 2 ⌋ − 1    |  Hom  i ⌊ k / 2 ⌋    (  P m  ,  P n  □  P k  )  |   



                                   +  ( 1 / 4 )   ( 1 −   ( − 1 )  n  )   ( 1 −   ( − 1 )  k  )   |  Hom  ⌊ n / 2 ⌋ ⌊ k / 2 ⌋    (  P m  ,  P n  □  P k  )  |   



where    |   Hom  i j    (  P m  ,  P n  □  P k  )   | =   ∑  h = 0   m − 1      m − 1  h    |   Hom i   (  P  h + 1   ,  P n  )   | |   Hom j   (  P  m − h   ,  P k  )   |    and


       |   Hom j   (  P m  ,  P n  )   | =   ∑  i = L  U   ∑  | t | ≤ ⌊   m + n  n  ⌋       m − 1   i − t ( n + 1 )    −    m − 1   i + j − t ( n + 1 ) + 1     ,      











where   L = max { 0 ,  ⌈   m − j − 1  2  ⌉  }   and   U = min { m − 1 ,  ⌊   m + n − j − 2  2  ⌋  }  .





For convenience, we compute   | Hom (  P m  ,  P n  □  P k  ) |   for   2 ≤ m , n , k ≤ 8  . The results are presented in Table 2.




4. The Algorithm


In this section, we provide algorithms used to calculate    |   Hom i   (  P m  ,  P n  )   |   ,



   |   Hom  i j    (  P m  ,  P n  □  P k  )   |    and   | Hom (  P m  ,  P n  □  P k  ) |   with the aforementioned theorems.



Algorithms 1–3 are implementations of Theorem 1, Lemma 5 and Theorem 2, respectively.






	Algorithm 1LocalPath2Path: Number of Homomorphisms from   P m   to   P n   with   f ( 0 ) = j  



	Input:



	- m: the size of the domain



	- n: the size of the range



	- Fixed value j where   f ( 0 ) = j   (with   0 ≤ j ≤ n − 1  )



	Output: number of homomorphisms from   P m   to   P n   with   f ( 0 ) = j  

	
  L ← max { 0 ,    m − j − 1  2   }  



	
  U ← min { m − 1 ,    m + n − j − 2  2   }  



	
if  L > U  then



	
    return 0



	
end if



	
  h o m j ← 0  



	
for  i = L   to  U  do



	
    for   t = −    m + n  n     to     m + n  n    do



	
          h o m j ← h o m j +     m − 1   i − t ( n + 1 )     −     m − 1   i + j − t ( n + 1 ) + 1      



	
    end for



	
end for



	
return    h o m j  


















	Algorithm 2LocalPath2Grid: Number of Homomorphisms from   P m   to    P n  □  P k    with   f ( 0 ) = ( i , j )  



	Input:



	- m: the size of the domain



	-   n , k  : the dimensions of the grid representing the range



	- Fixed value   i , j   where   f ( 0 ) = ( i , j )   (with   0 ≤ i ≤ n − 1   and   0 ≤ j ≤ k − 1  )



	Output: number of homomorphisms from   P m   to    P n  □  P k    with   f ( 0 ) = ( i , j )  

	
  h o m i j ← 0  



	
for  h = 0   to   m − 1   do



	
       c i  ← L o c a l P a t h 2 P a t h  ( h + 1 , n , i )   



	
       c j  ← L o c a l P a t h 2 P a t h  ( m − h , k , j )   



	
      h o m i j ← h o m i j +    m − 1  h    c i   c j   



	
end for



	
return homij
















	Algorithm 3Path2Grid: Number of Homomorphisms from   P m   to    P n  □  P k   



	Input:



	- m: the size of the domain



	-   n , k  : the dimensions of the grid representing the range



	Output: number of homomorphisms from   P m   to    P n  □  P k   

	
  h o m g r i d ← 0  



	
  s u m ← 0  



	
for  i = 0   to    n / 2  − 1   do



	
    for   j = 0   to    k / 2  − 1   do



	
          s u m ← s u m + L o c a l P a t h 2 G r i d ( m , n , k , i , j )  



	
    end for



	
end for



	
  h o m g r i d ← h o m g r i d + s u m ∗ 4  



	
  s u m ← 0  



	
for  j = 0   to    k / 2  − 1   do



	
      s u m ← s u m + L o c a l P a t h 2 G r i d ( m , n , k ,  n / 2  , j )  



	
end for



	
  h o m g r i d ← h o m g r i d + ( 1 −   ( − 1 )  n  ) ∗ s u m  



	
  s u m ← 0  



	
for  i = 0   to    n / 2  − 1   do



	
      s u m ← s u m + L o c a l P a t h 2 G r i d ( m , n , k , i ,  k / 2  )  



	
end for



	
  h o m g r i d ← h o m g r i d + ( 1 −   ( − 1 )  k  ) ∗ s u m  



	
  h o m g r i d ← h o m g r i d +  1 4   ( 1 −   ( − 1 )  n  )   ( 1 −   ( − 1 )  k  )  L o c a l P a t h 2 G r i d  ( m , n , k ,  n / 2  ,  k / 2  )   



	
return   h o m g r i d  











Lemma 6. 

Algorithm   P a t h 2 G r i d   has time-complexity   O ( n · m · k · max ( n , m , k ) )  .





Proof. 

It is easy to see that the complexity of the algorithm depends on the first loop, which is also nested with   O ( n · k )   rounds. Each round consists of an execution of LOCALPATH2GRID, which is essentially a loop with   O ( m )   rounds. Each of these deeper rounds calls LOCALPATH2PATH twice.



To see the runtime for LOCALPATH2PATH given parameters m and n, we first see the complexity of the outer loop:


     O ( U − L )     = O  min  m − 1 , m − 1 −    m − j − 1  2   ,    m + n − j − 2  2    ,                 m + n − j − 2  2   −    m − j − 1  2              ≤ O  min  m , m + n , n   = O  ( min  { m , n }  )      



(8)







Then, we consider the following scenarios:




	
  m < n  : In this case    ( m + n ) / n  = 1  ; hence, the inner loop has fixed rounds. Therefore, the complexity is at most   O ( min { m , n } )  .



	
  m > = n  : In this case, the complexity of the inner loop is   O ( ⌊ ( m + n ) / n ⌋ )  . Together, we have the overall complexity:


     O ( min { m , n } ) O ( ⌊ ( m + n ) / n ⌋ )     = O ( n ) O ( ⌊ ( m + n ) / n ⌋ )          ≤ O ( n ) O ( m / n )          ≤ O ( m )     



(9)












Therefore, the overall complexity of LOCALPATH2PATH is   O ( min { m , n } )  . Since each round of LOCALPATH2GRID calls LOCALPATH2PATH twice, respectively with parameters   ( h + 1 , n )   and   ( m − h , k )  , we have its complexity as:


        O ( min { h + 1 , n } ) + O ( min { m − h , k } )          ≤ O ( min { m , n } ) + O ( min { m , k } )          ≤ O ( max { m , n } ) + O ( max { m , k } )          ≤ O ( max { m , n , k } )     



(10)







Together, the total complexity of PATH2GRID is   O ( m · n · k · max { m , n , k } )  . □
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Figure 1. Graphical presentation of the domain and image of all possible homomorphisms   f ∈ Hom    (  P 4  ,  P 5  )  . (a)   f ( 0 ) = 0  . (b)   f ( 0 ) = 1  . (c)   f ( 0 ) = 2  . 
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Figure 2. Square lattice presentations of all possible homomorphisms   f ∈ Hom (  P 4  ,  P 5  )  . (a)   f ( 0 ) = 0  . (b)   f ( 0 ) = 1  . (c)   f ( 0 ) = 2  . 
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Figure 3. The shortest path from (0, 0) to (9, 7) that stays between lines   y = x + j   and   y = x − n + j + 1  , where   j = 3  ,   m = 17   and   n = 10  . 
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Figure 4. All possible presentations of homomorphisms   f ∈  Hom 0   (  P 4  ,  P 5  )    on a square lattice. 
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Figure 5. All possible presentations of homomorphisms   f ∈  Hom 1   (  P 4  ,  P 5  )    on a square lattice. 
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Figure 6. All possible presentations of homomorphisms   f ∈  Hom 2   (  P 4  ,  P 5  )    on a square lattice. 
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Figure 7. Graphical presentation of the domain and image of all possible homomorphisms   f ∈  Hom 00     (  P 4  ,  P 4  □  P 5  )  . 
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Figure 8. Square lattice presentation of   f 1   and   f 2  . 
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Figure 9. Graphical presentation of the domain and image of all possible homomorphisms   f ∈  Hom 11     (  P 4  ,  P 4  □  P 5  )  . 
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Table 1. Numbers of homomorphisms   f ∈  Hom j   (  P m  ,  P n  )    for   2 ≤ m , n ≤ 9 .  
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n






	
  m  

	
  j  

	
2

	
3

	
4

	
5

	
6

	
7

	
8




	
2

	
0

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	

	
1

	
1

	
2

	
2

	
2

	
2

	
2

	
2




	

	
2

	
0

	
1

	
2

	
2

	
2

	
2

	
2




	

	
3

	
0

	
0

	
1

	
2

	
2

	
2

	
2




	
3

	
0

	
1

	
2

	
2

	
2

	
2

	
2

	
2




	

	
1

	
1

	
2

	
3

	
3

	
3

	
3

	
3




	

	
2

	
0

	
2

	
3

	
4

	
4

	
4

	
4




	

	
3

	
0

	
0

	
2

	
3

	
4

	
4

	
4




	
4

	
0

	
1

	
2

	
3

	
3

	
3

	
3

	
3




	

	
1

	
1

	
2

	
5

	
6

	
6

	
6

	
6




	

	
2

	
0

	
2

	
5

	
6

	
7

	
7

	
7




	

	
3

	
0

	
0

	
3

	
6

	
7

	
8

	
8




	
5

	
0

	
1

	
4

	
5

	
6

	
6

	
6

	
6




	

	
1

	
1

	
4

	
8

	
9

	
10

	
10

	
10




	

	
2

	
0

	
4

	
8

	
12

	
13

	
14

	
14




	

	
3

	
0

	
0

	
5

	
9

	
13

	
14

	
15




	
6

	
0

	
1

	
4

	
8

	
9

	
10

	
10

	
10




	

	
1

	
1

	
8

	
13

	
18

	
19

	
20

	
20




	

	
2

	
0

	
4

	
13

	
18

	
23

	
24

	
25




	

	
3

	
0

	
0

	
8

	
18

	
23

	
28

	
29




	
7

	
0

	
1

	
8

	
13

	
18

	
19

	
20

	
20




	

	
1

	
1

	
8

	
21

	
27

	
33

	
34

	
35




	

	
2

	
0

	
8

	
21

	
36

	
42

	
48

	
49




	

	
3

	
0

	
0

	
13

	
27

	
42

	
48

	
54




	
8

	
0

	
1

	
8

	
21

	
27

	
33

	
34

	
35




	

	
1

	
1

	
16

	
34

	
54

	
61

	
68

	
69




	

	
2

	
0

	
8

	
34

	
54

	
75

	
82

	
89




	

	
3

	
0

	
0

	
21

	
54

	
75

	
96

	
103
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Table 2. Numbers of homomorphisms   f ∈ (  P m  ,  P n  □  P k  )   for   2 ≤ m ≤ n , k ≤ 8 .  
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k






	
  m  

	
  n  

	
2

	
3

	
4

	
5

	
6

	
7

	
8




	
2

	
2

	
8

	
14

	
20

	
26

	
32

	
38

	
44




	

	
3

	
14

	
24

	
34

	
44

	
54

	
64

	
74




	

	
4

	
20

	
34

	
48

	
62

	
76

	
90

	
104




	

	
5

	
26

	
44

	
62

	
80

	
98

	
116

	
134




	

	
6

	
32

	
54

	
76

	
98

	
120

	
142

	
164




	

	
7

	
38

	
64

	
90

	
116

	
142

	
168

	
194




	

	
8

	
44

	
74

	
104

	
134

	
164

	
194

	
224




	
3

	
3

	
34

	
68

	
102

	
136

	
170

	
204

	
238




	

	
4

	
52

	
102

	
152

	
202

	
252

	
302

	
352




	

	
5

	
70

	
136

	
202

	
268

	
334

	
400

	
466




	

	
6

	
88

	
170

	
252

	
334

	
416

	
498

	
580




	

	
7

	
106

	
204

	
302

	
400

	
498

	
596

	
694




	

	
8

	
124

	
238

	
352

	
466

	
580

	
694

	
808




	
4

	
4

	
136

	
308

	
488

	
668

	
848

	
1028

	
1208




	

	
5

	
190

	
424

	
668

	
912

	
1156

	
1400

	
1644




	

	
6

	
244

	
540

	
848

	
1156

	
1464

	
1772

	
2080




	

	
7

	
298

	
656

	
1028

	
1400

	
1772

	
2144

	
2516




	

	
8

	
352

	
772

	
1208

	
1644

	
2080

	
2516

	
2952




	
5

	
5

	
518

	
1330

	
2226

	
3132

	
4038

	
4944

	
5850




	

	
6

	
680

	
1726

	
2876

	
4038

	
5200

	
6362

	
7524




	

	
7

	
842

	
2122

	
3526

	
4944

	
6362

	
7780

	
9198




	

	
8

	
1004

	
2518

	
4176

	
5850

	
7524

	
9198

	
10872




	
6

	
6

	
1900

	
5528

	
9788

	
14172

	
18568

	
22964

	
27360




	

	
7

	
2386

	
6880

	
12138

	
17544

	
22964

	
28384

	
33804




	

	
8

	
2872

	
8232

	
14488

	
20916

	
27360

	
33804

	
40248




	
7

	
7

	
6774

	
22360

	
41884

	
62454

	
83196

	
103952

	
124708




	

	
8

	
8232

	
26976

	
50384

	
75020

	
99856

	
124708

	
149560




	
8

	
8

	
23628

	
88496

	
175476

	
269596

	
365328

	
461288

	
557264
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