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Abstract: Percolation theory is a subject that has been flourishing in recent decades. Because of its
simple expression and rich connotation, it is widely used in chemistry, ecology, physics, materials
science, infectious diseases, and complex networks. Consider an infinite-rooted N-ary tree where
each vertex is assigned an i.i.d. random variable. When the random variable follows a Bernoulli
distribution, a path is called head run if all the random variables that are assigned on the path are 1.
We obtain the weak law of large numbers for the length of the longest head run. In addition, when the
random variable follows a continuous distribution, a path is called an increasing path if the sequence
of random variables on the path is increasing. By Stein’s method and other probabilistic methods, we
prove that the length of the longest increasing path with a probability of one focuses on three points.
We also consider limiting behaviours for the longest increasing path in a special tree.
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1. Introduction and Main Results

Since Broadbent and Hammersley introduced the percolation models in [1], it has
become a cornerstone of probability theory and statistical physics, with applications ranging
from molecular dynamics to star formation. Standard percolation theory is concerned with
the loss of global connectivity in a graph when vertices or bonds are randomly removed, as
quantified by the probability for the existence of an infinite cluster of contiguous vertices.

Percolation models have applications in many fields such as the prevention of in-
fectious diseases by SIR model, network robustness and fragility, the effective electrical
resistance of a disordered mixture of materials, the prediction of securities price fluctuation
in the stock market, etc.

Because of its extensive application, percolation theory has derived a variety of evo-
lutionary percolation models, such as first-passage percolation, invasion peorcolation,
accessibility percolation, etc. (see e.g., [2–6]). Here, we consider a site percolation problem
and an accessibility percolation problem on N-ary trees.

Let T(N) be an infinite-rooted N-ary tree in which each vertex has exactly N children,
of which the root we denote by o. Each vertex σ ∈ T(N) is assigned a random variable
Xσ, called its fitness. The fitness values are independent and identically distributed (i.i.d.)
random variables. We say that the path P = σ1σ2 · · · σk+1 with length l(P) = k is a path
down the tree if P starts at any vertex and descends into children until it stops at some
node, i.e., |σ1| = |σ2| − 1 = · · · = |σk+1| − k, where |σ| is defined as the distance from o
to σ.

The accessibility percolation model is inspired by evolutionary biology. Imagine a
population of some lifeform endowed with the same genetic type. A particular genotype
gives rise to N new genotypes through mutations which either replace the original wild
genotype or disappear. Provided that the natural selection is sufficiently strong, the former
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only happens if the new genotype has larger fitness. Thus, a survival mutation path is one
with increasing fitness values.

When the fitness values are Bernoulli random variables with P(Xσ = 0) = 1 −
P(Xσ = 1) = 1− p, it is a site percolation model. We say that the path P is a head run if
Xσ1 = Xσ2 = · · · = Xσk+1 = 1. Harris [7] proved that the extinction probability is one when
the average number of offspring produced by a vertex is less than one, which means that
there does not exist a head run from the root to the leaves when p ≤ 1/N on N-ary tree. A
natural idea is to study the longest head run from any vertex. Let T(N)

n be the subgraph of
T(N) induced by the set of nodes with levels not exceeding n, and let Pn be the set of paths
down the T(N)

n ; then, the length of the longest head run from any vertex can be defined as

LN,n := max
P∈Pn

{
l(P) : P is a head run down the T(N)

n
}

.

For N = 1, LN,n has important applications in biology, reliability theory, finance,
and nonparametric statistics (see, e.g., [8,9]). One of the most important results on the
asymptotic behaviours of L1,n is the following Erdős–Rényi Law (see [10]):

L1,n

log n
a.s.−→ − 1

log p
.

In addition, the law of large numbers, the possible asymptotic distribution of L1,n
is also discussed. Goncharov [11] obtained that L1,n + log n/ log p possesses no limit
distribution. In [12], Földes derived the distribution of the longest head run and obtained
that for k ∈ Z and k ≤ n,

P(L1,n − [log n] < k) = exp{−2−(k+1−{log n})}+ o(1),

where {log n} = log n− [log n], [log n] is the integer part of log n. A more accurate result
of the limit distribution of L1,n was obtained in [13]. Later, Mao et al. [14] gave the large
deviation theorem for L1,n. In [15], an estimation of the accuracy of approximation in terms
of the total variation distance was established for the first time.

For N ≥ 2, we obtain the law of large numbers for LN,n.

Theorem 1. For any N ≥ 2, 0 < p < 1, as n→ ∞,

(a) if 0 < p < 1/N, then

LN,n

n
p−→ − logp N,

where
p−→ denotes convergence in probability.

(b) if 1/N ≤ p < 1, then

LN,n

n
a.s.−→ 1.

Next, we take the fitness values to be i.i.d. continuous random variables. We say
that the path P = σ1σ2 · · · σk+1 is an increasing path if Xσ1 < Xσ2 < · · · < Xσk+1 . In [5],
Nowak and Krug called this accessibility percolation and derived an asymptotically exact
expression for the probability that there is at least one accessible path from the root to
the leaves. In the evolutionary biology literature, these increasing paths are known as
selectively accessible. The probability that there exists an increasing path from the root to
the leaves is discussed in [5,16,17].

In addition, the number of increasing paths in other graphs has been studied ex-
tensively. It has been considered in the hypercube in [18–20]. Jessica et al. [21] studied
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edge-ordered graphs. On infinite spherically symmetric trees, the increasing path has also
been studied in [22]. Arman [23] studied increasing paths in countable graphs. As for the
number of accessible vertices, Hu et al. [24] studied it in random-rooted labelled trees.

Because we are only concerned with increasing order of fitness values along the path,
changing the exact distribution will not affect the results as long as the random variable
is continuous. Without loss of generality, we assume that all the random variables are
mutually independent and uniformly distributed on [0, 1]; then, we can consider the length
of the longest increasing path, which can be defined as

L̃N,n = max
{

l(P) : P is an increasing path down the T(N)
n
}

.

It was shown in [25] that L1,n may take three to five values with a probability close
to one for large n by techniques based on the Borel–Cantelli lemma. Chryssaphinou and
Vaggelatou [26] improved the result in [25] and obtained that

lim
n→∞

P([ fn]− 1 ≤ L̃1,n ≤ [ fn] + 1) = 1,

where fn =
log n

bn
− 1

2 , and bn is the solution of the equation bnebn = e−1 log n. Later, Hu
et al. [27] proved the weak law of large numbers for L̃N,n when N ≥ 2. In this paper, we
extend it and obtain the limit distribution of L̃N,n for N ≥ 2.

Theorem 2. For any N ≥ 2,

lim
n→∞

P([ fN,n]− 1 ≤ L̃N,n ≤ [ fN,n] + 1) = 1,

where fN,n =
n log N

bN,n
− 1

2 and bN,n is the solution of the equation bN,nebN,n = e−1n log N.

Remark 1. From definition of bN,n, it is easy to see that

bN,n = log n− log log n + log log N − log log log N − 1 + o(1).

Corollary 1. Let fN,n be defined as in Theorem 2 and { fN,n} = fN,n − [ fN,n] be the fractional
part of fN,n. Assume that (nk, k ≥ 1) and (n′k, k ≥ 1) are subsequences satisfying

lim sup
k→∞

{ fN,nk} < 1, lim inf
k→∞

{ fN,n′k
} > 0.

Then, we have

lim
k→∞

P([ fN,nk ]− 1 ≤ L̃N,nk ≤ [ fN,nk ]) = 1 (1)

and

lim
k→∞

P([ fN,n′k
] ≤ L̃N,n′k

≤ [ fN,n′k
] + 1) = 1. (2)

Furthermore, if 0 < lim inf
k→∞

{ fN,n′′k
} ≤ lim sup

k→∞
{ fN,n′′k

} < 1 holds for the subsequence

(n′′k , k ≥ 1), then

lim
k→∞

P(L̃N,n′′k
= [ fN,n′′k

]) = 1. (3)

Corollary 2. Let fN,n and { fN,n} be defined as in Corollary 1. Assume that (nk, k ≥ 1) and
(n′k, k ≥ 1) are subsequences satisfying

{ fN,nk} log fN,nk → a ∈ [0, ∞], { fN,nk} → 0,
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and

(1− { fN,n′k
}) log fN,n′k

→ a ∈ [0, ∞], { fN,n′k
} → 1.

Then, we have

P(L̃N,nk = [ fN,nk ]− 1) = 1− P(L̃N,nk = [ fN,nk ]) = exp
{
− Nea
√

2π(N − 1)

}
;

P(L̃N,n′k
= [ fN,n′k

]) = 1− P(L̃N,n′k
= [ fN,n′k

] + 1) = exp
{
− Ne−a
√

2π(N − 1)

}
.

We also consider a deterministic rooted tree T(n) with arity decreasing from n to 1
in [18]: the root is connected to n first level nodes, each first level node is connected to n− 1
second level nodes, etc. Each vertex σ ∈ T(n) is assigned a random continuous variable
Yσ, and the variables are independent and identically distributed. Then, the length of the
longest increasing path in T(n) can be defined as

L′n = max
{

l(P) : P is an increasing path down T(n)
}

.

Theorem 3. When k is such that n/(k!(k− 1)!)→ 0, we have

P(n− k ≤ L′n < n)→ 1, n→ ∞.

Remark 2. When each vertex σ ∈ T(n) is assigned a Bernoulli random variable, we also consider
the longest head run in Theorem 1. By analogy, define a′′m and Var(T′′k ) in T(n); we find a′′m is more
complex than am. Finally, we cannot obtain a valid upper bound on Var(T′′k ). Interested scholars
can try to solve this problem.

In the following Sections 2–4, we prove our main results stated above.

2. The Longest Head Run in T(N)
n

In this section, N ≥ 2 is a fixed positive integer.
Let Pn,k be the set of paths down T(N)

n with length k; it is clear that

Mn,k := #Pn,k =
n−k

∑
j=0

Nk+j =
Nn+1 − Nk

N − 1
. (4)

Lemma 1. For any path P ∈ Pn,k, we denote by V(P) the vertex set of P and define

am := #{(P, P̃) : #(V(P) ∩V(P̃)) = m, P, P̃ ∈ Pn,k},

then we have

am ≤ 2Mn,k Nk−m+1, m = 1, 2, · · · , k, k + 1.

Remark 3. Here (P, P̃) is different from (P̃, P).

Proof of Lemma 1. Given a path P = σ1σ2 · · · σk+1∈ Pn,k with |σ1| = j, let B(m, j) denote
the number of the path P̃ ∈ Pn,k which intersects P in m(1 ≤ m ≤ k + 1) vertices; then, am
is the sum of B(m, j) over all P ∈ Pn,k with |σ1| = j and j ∈ [0, n− k], and hence,

am =
n−k

∑
j=0

Nk+jB(m, j). (5)



Mathematics 2023, 11, 2571 5 of 14

For m = k + 1, it is clear that B(m, j) = 1 and ak+1 = Mn,k. For 1 ≤ m ≤ k, when
k−m + 1 ≤ j ≤ n− 2k + m− 1, we have

B(m, j) = (k−m + 1)(N − 1)Nk−m + Nk−m+1 +
k−m

∑
i=1

(N − 1)Nk−m−i + 1

= (k−m + 1)(N − 1)Nk−m + Nk−m+1 + Nk−m

= (k−m)(N − 1)Nk−m + 2Nk−m+1;

when 0 ≤ j ≤ k−m,

B(m, j) = (k−m + 1)(N − 1)Nk−m + Nk−m+1 +
j

∑
i=1

(N − 1)Nk−m−i

= (k−m + 1)(N − 1)Nk−m + Nk−m+1 + Nk−m − Nk−m−j

= (k−m)(N − 1)Nk−m + 2Nk−m+1 − Nk−m−j;

similarly, when n− 2k + m ≤ j ≤ n− k,

B(m, j) = (n− k− j)(N − 1)Nk−m + Nk−m+1.

Those together with (5), imply that

am =
k−m

∑
j=0

Nk+jB(m, j) +
n−2k+m−1

∑
j=k−m+1

Nk+jB(m, j) +
n−k

∑
j=n−2k+m

Nk+jB(m, j)

:= A1 + A2 + A3 − A4,

where

A1 =
n−k

∑
j=0

N2k−m+j+1 =
Nn+k−m+2 − N2k−m+1

N − 1
,

A2 =
n−2k+m−1

∑
j=0

(
(k−m)(N − 1)N2k−m+j + N2k−m+1+j)

= (k−m)(Nn − N2k−m) +
Nn+1 − N2k−m+1

N − 1
,

A3 =
n−k

∑
j=n−2k+m

(n− k− j)(N − 1)N2k−m+j =
k−m

∑
j=0

(N − 1)jNn+k−m−j

=
Nn+k−m+1 − Nn+1

N − 1
− (k−m)Nn ,

A4 =
k−m

∑
j=0

N2k−m = (k−m + 1)N2k−m.

In the calculation of the above equation, we have used
n
∑

i=1
iqi = q(1−qn)

(1−q)2 −
nqn+1

1−q . Thus, we

have

am = (N − 1)−1(Nn+k−m+2 + Nn+k−m+1 − 2N2k−m+1)− (2k− 2m + 1)N2k−m

≤ 2Mn,k Nk+1−m,

the proof of Lemma 1 is completed.
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Define Tn,k to be the number of head runs in Pn,k:

Tn,k = ∑
P∈Pn,k

I (P is a head run),

where I(x) is an indicator function of x. It is clear that

E(Tn,k) = ∑
P∈Pn,k

P(P is a head run) = Mn,k pk+1 =
Nn+1 − Nk

N − 1
pk+1.

Next, we estimate Var(Tn,k).

Lemma 2. For any N ≥ 2,

Var(Tn,k) ≤


2(1− Np)−1E(Tn,k), if 0 < p < 1/N;
2(k + 1)E(Tn,k), if p = 1/N;
2Nk+1 pk+1(Np− 1)−1E(Tn,k), if 1/N < p < 1.

Proof. We say that two paths P and P̃ are vertex disjoint if V(P) ∩V(P̃) = ∅. Note that
I(P is a head run) and I(P̃ is a head run) are independent if P and P̃ are vertex disjoint.
Then, it follows from Lemma 1 that

Var(Tn,k) = ∑
P,P̃∈Pn,k

(P(P and P̃ are head runs)− P(P is a head run)2)

≤ ∑
V(P)∩V(P̃) 6=∅

P, P̃∈Pn,k

P(P and P̃ are head runs)

=
k+1

∑
m=1

∑
|V(P)∩V(P̃)|=m

P, P̃∈Pn,k

P(P and P̃ are head runs)

=
k+1

∑
m=1

am p2k+2−m ≤
k+1

∑
m=1

2Mn,k Nk−m+1 p2k+2−m,

which yields Lemma 2.

Proof of Theorem 1. When 0 < p < 1/N, for any sequence kn → ∞,

E(Tn,kn) =
Nn+1 − Nkn

N − 1
pkn+1 = exp

{
kn log p + n log N + O(1)

}
. (6)

For any ε > 0, we take kn = [(− log N
log p + ε)n] and k̃n = [(− log N

log p − ε)n]. Then, by apply-
ing (6), we have

P(LN,n ≥ kn) = P(Tn,kn ≥ 1) ≤ E(Tn,kn)→ 0, n→ ∞, (7)

and furthermore, by Lemma 2 and Chebyshev’s inequality,

P(LN,n < k̃n) = P(Tn,k̃n
= 0) ≤ P(|Tn,k̃n

−E(Tn,k̃n
)| ≥ E(Tn,k̃n

))

≤
Var(Tn,k̃n

)

(E(Tn,k̃n
))2 ≤

2
(1− Np)E(Tn,k̃n

)
→ 0, n→ ∞. (8)
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When p ≥ 1/N, let cn = [(1− ε)n] + 1, by same method, as n→ ∞, we have

P(LN,n < cn) = P(Tn,cn = 0) ≤ Var(Tn,cn)

(E(Tn,cn))
2

≤


2(cn+1)
E(Tn,cn )

, if p = 1/N;
2Ncn+1 pcn+1

(Np−1)E(Tn,cn )
, if p > 1/N.

Furthermore, we have

∞

∑
n=1

P(LN,n < cn) ≤
{

∑∞
n=1

2N2((1−ε)n+2)
Nεn < ∞, if p = 1/N;

∑∞
n=1

2N(1−ε)n+2

(Np−1)Nn < ∞, if p > 1/N.

Thus, when p ≥ 1/N, for any ε > 0, we have

∞

∑
n=1

P(
∣∣ LN,n

n
− 1
∣∣ > ε) =

∞

∑
n=1

P(LN,n < cn) < ∞. (9)

Hence, from (7)–(9), we can obtain Theorem 1.

3. The Longest Increasing Path in T(N)
n

Lemma 3. Let X1, · · · , Xn indicator variables with P(Xi = 1) = pi, W = ∑n
i=1 Xi, and

λ = EW = ∑i pi. For each i, let Ni ⊆ {1, · · · , n} be such that Xi is independent of {Xj : j /∈ Ni}.
If pij := E[XiXj], then

dTV(W, Po(λ)) ≤ min{1, λ−1}

 n

∑
i=1

∑
j∈Ni

pi pj +
n

∑
i=1

∑
j∈Ni/{i}

pij

,

where Po(λ) denotes a random variable having a Poisson distribution of parameter λ.

Proof. See Theorem 4.7 in [28].

Lemma 4. Let x ∈ R and fN,n =
n log N

bN,n
− 1

2 , where bN,n is the solution of the equation

bN,nebN,n = e−1n log N. Then,

lim
n→+∞

Nn

Γ( fN,n + x + 1)
= lim

n→+∞

1√
2π

e−x log ( fN,n+x) =

{
+∞, x < 0,
0, x > 0,

where Γ(y) =
∫ ∞

0 e−tty−1 dt denotes the Gamma function at the point y.

Proof. Stirling’s formula shows

Γ( fN,n + x + 1) ∼
√

2π( fN,n + x) fN,n+x+1/2

e fN,n+x .

Hence, it suffices to show that

lim
n→∞

Nne fN,n+x
√

2π( fN,n + x) fN,n+x+1/2
=

{
+∞, x < 0,
0, x > 0.

We have

Nne fN,n+x
√

2π( fN,n + x) fN,n+x+1/2
=

Nn exp(− fN,n{log( fN,n + x)− 1})√
2π( fN,n + x)

e−x{log( fN,n+x)−1}.
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By the proof of Lemma 1 in [26], we have

lim
n→∞

Nn exp(− fN,n{log( fN,n + x)− 1})√
2π( fN,n + x)

=
e−x
√

2π
.

Since log( fN,n + x)→ +∞, as n→ ∞, we obtain

lim
n→∞

Nne fN,n+x
√

2π( fN,n + x) fN,n+x+1/2
=

{
+∞, x < 0,
0, x > 0.

Then, the proof is completed.

Similarly with the proof of Theorem 1, we define T̃n,k to be the number of increasing
paths in Pn,k:

T̃n,k = ∑
P∈Pn,k

I (P is increasing).

With Mn,k defined as in (4), it is clear that

E(T̃n,k) = ∑
P∈Pn,k

P(P is increasing) =
Mn,k

(k + 1)!
. (10)

Lemma 5. Let λ1 = E(T̃n,k). Then, for any N ≥ 2 and q = 8N/(2k + 3) ∈ (0, 1), we have

dTV(T̃n,k, Po(λ1)) ≤
k + 2

(k + 1)!
Nk +

4N
(k + 2)(1− q)

.

Proof. For each path P ∈ Pn,k, define NP = {P′ : P′ ∈ Pn,k, P′ depends on P}. Then, by
applying Lemma 3, we have

dTV(T̃n,k, Po(λ1)) ≤ min{1, λ−1
1 }(H1 + H2), (11)

where

H1 = ∑
P∈Pn,k

∑
P′∈NP

1
((k + 1)!)2 , H2 = ∑

P∈Pn,k

∑
P′∈NP/{P}

P(P and P̃ are increasing).

For H1, for 1 ≤ m ≤ k, recalling that by the proof of Lemma 1,

max
j

B(m, j) = (k + 1−m)(N − 1)Nk−m + Nk−m+1 + Nk−m,

which together with B(k + 1, j) = 1, implies that

max
P∈Pn,k

|NP| = max
j

k+1

∑
m=1

B(m, j) ≤
k+1

∑
m=1

max
j

B(m, j)

≤
k

∑
m=1

(
(k−m)(N − 1)Nk−m + 2Nk−m+1

)
+ 1

= kNk +
k−1

∑
i=1

Ni ≤ (k + 2)Nk.

Together with (10), yields

H1 ≤
Mn,k

((k + 1)!)2 max
P∈P̃n,k

|NP| ≤
(k + 2)λNk

(k + 1)!
. (12)
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To bound H2, notice that for any two paths P = x1 · · · xk+1, P̃ = x̃1 · · · x̃k+1 ∈ Pn,k
with |x1| ≤ |x̃1|, if P and P̃ are not vertex-disjoint, then there exist integers s, t such that
1 ≤ s ≤ t ≤ k + 1 and xt−s+i = x̃i if and only if 1 ≤ i ≤ s. By Lemma 3.1 in [27], under the

condition of x1 = x, P(P and P̃ are increasing) = (1−x)2k−s+1(2k+2−s−t)!
(2k−s+1)!(k+1−s)!(k+1−t)! . Then we have

P(P and P̃ are increasing) =
∫ 1

0

(1− x)2k−s+1(2k + 2− s− t)!
(2k− s + 1)!(k + 1− s)!(k + 1− t)!

dx

=
(2k + 2− s− t)!

(2k + 2− s)!(k + 1− s)!(k + 1− t)!
. (13)

Because (2k+2−s−t)!
(2k+2−s)!(k+1−s)!(k+1−t)! (1 ≤ s ≤ k + 1) is nonincreasing with respect to t, we

obtain that

(2k + 2− s− t)!
(2k + 2− s)!(k + 1− s)!(k + 1− t)!

≤ (2k + 2− 2s)!
(2k + 2− s)!(k + 1− s)!(k + 1− s)!

(14)

holds for every t ∈ [s, k + 1]. Thus, it follows from Lemma 1 and (14) that

H2 = ∑
P∈Pn,k

∑
P′∈NP/{P}

P(P and P̃ are increasing)

≤
k

∑
s=1

as
(2k + 2− 2s)!

(2k + 2− s)!(k + 1− s)!(k + 1− s)!

= 2λ
k

∑
s=1

(2k + 2− 2s)!(k + 1)!Nk+1−s

(2k + 2− s)!(k + 1− s)!(k + 1− s)!

:= 2λ
k

∑
s=1

bs.

Notice that
bs−1

bs
=

(4k− 4s + 6)N
(k− s + 2)(2k− s + 3)

,

which attains its maximum when s = 2k+3−
√

2k+3
2 . Hence,

bs−1

bs
≤ 8

√
2k + 3N

(1 +
√

2k + 3)(2k + 3 +
√

2k + 3)
≤ q.

Then,

H2 ≤ 2λ
k−1

∑
i=0

qibk ≤
4Nλ

(k + 2)(1− q)
,

which together with (11) and (12), completes the proof.

Proof of Theorem 2. For simplicity, we write D(N, k) = (k + 2)Nk/(k + 1)! + 4N/(k +
2)(1− q). It is obvious that

P(L̃N,n < k) = P(T̃n,k = 0).

Thus, using Lemma 5, we can derive upper and lower bounds for the distribution of
L̃N,n:

e−λ − D(N, k) ≤ P(L̃N,n < k) ≤ e−λ + D(N, k). (15)
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Notice that

P([ fN,n]− 1 ≤ L̃N,n ≤ [ fN,n] + 1) = P(L̃N,n < [ fN,n] + 2)− P(L̃N,n < [ fN,n]− 1),

then by the definition of fN,n, we can determine that the condition of Lemma 5 is satisfied
for k = [ fN,n] + 2 and k = [ fN,n]− 1. Combined with (15), we can obtain∣∣∣∣∣P(L̃N,n < [ fN,n] + 2)− exp

(
− Nn+1 − N[ fN,n ]+1

(N − 1)([ fN,n] + 2)!

)∣∣∣∣∣ ≤ D(N, [ fN,n] + 2);∣∣∣∣∣P(L̃N,n < [ fN,n]− 1)− exp

(
− Nn+1 − N[ fN,n ]−2

(N − 1)([ fN,n]− 1)!

)∣∣∣∣∣ ≤ D(N, [ fN,n]− 1). (16)

Because fN,n → +∞, the bounds D(N, [ fN,n] + 2) and D(N, [ fN,n]− 1) tend to 0 as
n→ ∞. By Lemma 4, we can verify that

lim
n→∞

Nn+1 − N[ fN,n ]+1

(N − 1)([ fN,n] + 2)!
=

N
N − 1

lim
n→∞

Nn

([ fN,n] + 2)!
=

N
N − 1

lim
n→∞

Nn

Γ([ fN,n] + 3)
= 0

and

lim
n→∞

Nn+1 − N[ fN,n ]−2

(N − 1)([ fN,n]− 1)!
=

N
N − 1

lim
n→∞

Nn

([ fN,n]− 1)!
=

N
N − 1

lim
n→∞

Nn

Γ([ fN,n])
= +∞,

which, together with (16), finally completes the proof of the theorem.

Proof of Corollary 1. We only prove (1). The proof of the (2) is along the same lines. The
assertion (3) is an immediate consequence of (1) and (2). Using (15), we get∣∣∣∣∣P(L̃N,nk < [ fN,nk ] + 1)− exp

(
− Nnk+1 − N[ fN,nk

]

(N − 1)([ fN,nk ] + 1)!

)∣∣∣∣∣ ≤ D(N, [ fN,nk ] + 1). (17)

Because (nk, k ≥ 1) is a strictly increasing sequence such that lim supk→∞{ fN,nk} < 1,
we have

lim
k→∞

Nnk+1 − N[ fN,nk
]

(N − 1)([ fN,nk ] + 1)!
=

N
N − 1

lim
k→∞

Nnk

([ fN,nk ] + 1)!
=

N
N − 1

lim
k→∞

Nnk

Γ([ fN,nk ] + 2)
= 0,

which, combined with Theorem 2 and (17), finally completes the proof of the Corol-
lary 1.

Proof of Corollary 2. If { fN,nk} log fN,nk → a ∈ [0, ∞], then

lim
k→∞

Nnk+1 − N[ fN,nk
]−1

(N − 1)([ fN,nk ])!
=

N
N − 1

lim
k→∞

Nnk

([ fN,nk ])!

=
N

N − 1
lim
k→∞

Nnk

Γ([ fN,nk ] + 1)
=

N√
2π(N − 1)

ea.

From (15), we have∣∣∣∣∣P(L̃N,nk < [ fN,nk ])− exp

(
−Nnk+1 − N[ fN,nk

]−1

(N − 1)([ fN,nk ])!

)∣∣∣∣∣ ≤ D(N, [ fN,nk ]),

which means

lim
k→∞

P(L̃N,nk < [ fN,nk ]) = exp
{
− Nea
√

2π(N − 1)

}
,
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and hence, (1) implies that

lim
k→∞

P(L̃N,nk = [ fN,nk ]− 1) = 1− lim
k→∞

P(L̃N,nk = [ fN,nk ]) = exp
{
− Nea
√

2π(N − 1)

}
.

If (1− { fN,n′k
}) log fN,n′k

→ a ∈ [0, ∞], then

lim
k→∞

Nn′k+1 − N
[ fN,n′k

]

(N − 1)([ fN,n′k
] + 1)!

=
N

N − 1
lim
k→∞

Nn′k

([ fN,n′k
] + 1)!

=
N

N − 1
lim
k→∞

Nn′k

Γ([ fN,n′k
] + 2)

=
N√

2π(N − 1)
e−a,

and from (17), we have

lim
k→∞

P(L̃N,n′k
< [ fN,n′k

] + 1) = exp
{
− Ne−a
√

2π(N − 1)

}
.

Hence, (2) implies that

lim
k→∞

P(L̃N,n′k
= [ fN,n′k

]) = 1− lim
k→∞

P(L̃N,n′k
= [ fN,n′k

] + 1) = exp
{
− Ne−a
√

2π(N − 1)

}
.

The proof of Corollary 2 is completed.

4. The Longest Increasing Path in T(n)

Proof of Theorem 3. By Stirling’s formula,

n
k!(k− 1)!

∼ ne2k−1

2πkk(k− 1)k = exp
{

log n + 2k− k log k− k log(k− 1) + O(1)
}

.

When k = log n, we have

lim
n→∞

n
k!(k− 1)!

→ 0.

Thus, it suffices to show that Theorem 3 is true for k ≤ log n and n/(k!(k− 1)!)→ 0.
In the following proof, k ≤ log n.
Let P ′k be the set of paths down T(n) with length k, then

M′n,k := #P ′k =
n−k

∑
j=0

n!
(n− k− j)!

=
n−k

∑
j=0

n!
j!

,

because ∑∞
j=0

1
j! = e, we obtain M′n,k = O(n!).

Defining T′k to be the number of increasing paths in P ′k:

T′k = ∑
P∈P ′k

I(P is increasing),

it is easy to obtain

E(T′k) = ∑
P∈P ′k

P(P is increasing) =
M′n,k

(k + 1)!
,

which yields that

P(L
′
n ≥ n) = P(T′n ≥ 1) ≤ E(T′n)→ 0, n→ ∞.
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Next, we estimate Var(T′n−k).
Let A represent the sum of P(P and P̃ are increasing) over P and P̃ under the condition

that P̃ ∈ P ′n−k, V(P̃) ∩V(P) 6= ∅, and P̃ is not above P, then

Var(T′n−k) = ∑
P,P̃∈P ′n−k

(P(P and P̃ are increasing)− P2(P is increasing))

= ∑
V(P)∩V(P̃) 6=∅

P, P̃∈P′n−k

(P(P and P̃ are increasing)− P2(P is increasing))

≤ 2 ∑
P∈P ′n−k

∑
P̃ is not above P

P̃∈P′N−k ,V(P̃)∩V(P) 6=∅

P(P and P̃ are increasing)

= 2A

:= 2(A(n, 0) + A(n, 1) + · · ·+ A(n, k)),

where A(n, i) (0 ≤ i ≤ k) denotes A under the condition of |σs(P)| = i, σs(P) is the starting
point of P. Let Aj(n, i) denote A(n, i) under the condition that the starting point of P̃ is j
below the starting point of P, then

A(n, 0) = A0(n, 0) + A1(n, 0) + · · ·+ Ak(n, 0). (18)

For A0(n, 0), there are n/k! Ps that satisfy P ∈ P ′n−k and |σf (P)| = 0. Given P ∈ P ′n−k
with |σf (P)| = 0, there are (n− s)(n− s)!/k! P̃’s that satisfy P̃ ∈ P ′n−k, σf (P) = σf (P̃) and
V(P) ∩V(P̃) = s(1 ≤ s ≤ n− k). Then, combined with (13), we have

A0(n, 0) =
n!
k!

[ n−k

∑
s=1

(2n− 2k + 2− 2s)!(n− s)(n− s)!
(2n− 2k + 2− s)!(n− k + 1− s)!(n− k + 1− s)!k!

+
1

(n− k + 1)!

]
=

n!
k!

[ 1
(n− k + 1)!

+
n−k

∑
s=1

(2s)!(k + s− 1)(k + s− 1)!
(n− k + 1 + s)!s!s!k!

]
≤ n!

k!

[ 1
(n− k + 1)!

+
(n

k)

(n− k + 1)!

n−k

∑
s=1

(2s
s )(

k+s
k )

(n−k+1+s
s )(n

k)

]
≤

Cn!(n
k)

k!(n− k + 1)!
,

where C is a constant which may have different values in different formulas. In the
second equation, we replace s with n − k + 1− s. The last inequality uses the fact that

lim
n−k→∞

∑n−k
s=1

(2s
s )(

k+s
k )

(n−k+1+s
s )(n

k)
exists and is finite. Similarly, we can obtain

Ai(n, 0) ≤
Cn!(n

k)

k!(n− k + 1)!
,

which together with (18), yields

A(n, 0) ≤
Cn!(n

k)

(k− 1)!(n− k + 1)!
.

By the same way, we can prove that

A(n, m) ≤
Cn!( n

k−m)

(k− 1)!(n− k + 1)!
(0 ≤ m ≤ k),
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implying that

Var(T′n−k) ≤
Cn!

(
(n

0) + · · ·+ (n
k)
)

(k− 1)!(n− k + 1)!
≤

Cn!(n
k)(1 +

k(k−1)
n−k+1 )

(k− 1)!(n− k + 1)!
≤

Cn!(n
k)

(k− 1)!(n− k + 1)!
,

where the last inequality uses k ≤ log n. Furthermore, by the Chebyshev inequality,

P(L′n < n− k) = P(T′n−k = 0) ≤
Var(T′n−k)

(E(T′n−k))
2 ≤

C(n− k + 1)
k!(k− 1)!

→ 0, n→ ∞.

Thus, we obtain Theorem 3.

5. Conclusions

Two percolation models are considered on N-ary trees in this paper. For the site
percolation model, this paper shows the law of large numbers for the longest head run and
this result can also be interpreted by the Galton–Watson branching processes as following:
when the average number of offspring produced by each individual is greater than one, the
process will survive. Otherwise, it will die out. However, this paper does not obtain the
limiting distribution of LN,n because of the complexity between head runs. Researchers
might make use of Stein’s method for the sum of dependent random variables to prove
further results in the future. For the accessibility percolation model, L̃1,Nn and L̃N,n take the
same three values with a probability of one asymptotically, which means there may be a
connection between these two random variables. In addition, related asymptotic properties
of the hypercube could be derived by applying its connection to the deterministic tree T(n)
so that researchers may utilize our results of T(n) to prove its asymptotic behaviours.
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