Linear Algebraic Relations among Cardinalities of Sets of Matroid Functions

Martin Kochol

Citation: Kochol, M. Linear
Algebraic Relations among Cardinalities of Sets of Matroid Functions. Mathematics 2023, 11, 2570. https://doi.org/10.3390/ math11112570

Academic Editors: David Dolžan and Christos G. Massouros

Received: 21 March 2023
Revised: 18 May 2023
Accepted: 31 May 2023
Published: 3 June 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

MU SAV, 81473 Bratislava, Slovakia; martin.kochol@mat.savba.sk

Abstract

We introduce a unifying approach for invariants of finite matroids that count mappings to a finite set. The aim of this paper is to show that if the cardinalities of mappings with fixed values on a restricted set satisfy contraction-deletion rules, then there is a relation among them that can be expressed in terms of linear algebra. In this way, we study regular chain groups, nowhere-zero flows and tensions on graphs, and acyclic and totally cyclic orientations of oriented matroids and graphs.

Keywords: matroid; graph; nowhere-zero flow; tension; orientation

MSC: 05C50; 05B35; 05C21; 05C20; 05C30

1. Introduction

A Tutte-Grothendieck invariant Φ is a mapping from a class \mathcal{M} of matroids to a commutative ring with the property that there are elements $a_{1}, b_{1}, a_{2}, b_{2}$ from the ring such that for a matroid $M \in \mathcal{M}$ on the ground set E, we have

$$
\begin{array}{ll}
\Phi(M)=1 & \text { if } E=\varnothing \\
\Phi(M)=a_{1} \Phi(M-e) & \text { if } e \text { is an isthmus o } \\
\Phi(M)=b_{1} \Phi(M-e) & \text { if } e \text { is a loop of } M, \\
\Phi(M)=a_{2} \Phi(M / e)+b_{2} \Phi(M-e) & \text { otherwise. }
\end{array}
$$

$$
\Phi(M)=a_{1} \Phi(M-e) \quad \text { if } e \text { is an isthmus of } M
$$

(Notice that $e \in E$ is an isthmus of M if it is contained in each base of M, and $e \in E$ is a loop of M if it belongs to no bases of M.) The best known Tutte-Grothendieck invariant is the Tutte polynomial:

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(M)-r_{M}(X)}(y-1)^{|X|-r_{M}(X)},
$$

which maps matroids to the ring of integral polynomials with two variables, x and y. This invariant was introduced by Tutte in [1] for graphs and encodes many properties of graphs and matroids. Applications of the Tutte polynomial in combinatorics, knot theory, statistical physics, and coding theory are surveyed in [2-5].

We consider classes of matroids whose ground sets contain a fixed subset B and study functions from the matroids to finite sets. For each of the matroids, consider the cardinality of a set of functions with fixed values on B. We show that if the cardinalities satisfy contraction-deletion rules, then there exist relations among these numbers that can be expressed in terms of linear algebra. In this way, we study numbers of regular chain groups, nowhere-zero flows and tensions on graphs, and acyclic and totally cyclic orientations of oriented matroids and graphs. These results generalize the approach that we introduced in [6,7].

2. Matroids and B-Classes

Throughout this paper, we consider finite matroids on finite sets. The ground set of a matroid M we denote by $E(M)$.

Let B be a finite set. A class of matroids \mathcal{M} is called a B-class if

$$
\begin{aligned}
& B \subseteq E(M) \text { for each } M \in \mathcal{M}, \\
& M-e, M / e \in \mathcal{M} \text { for each } M \in \mathcal{M} \text { and } e \in E(M) \backslash B .
\end{aligned}
$$

There exist only finitely many matroids on B. Thus, there exists a finite set \mathcal{M}_{B} consisting of pairwise nonisomorphic matroids on B belonging to \mathcal{M}. (For example, if \mathcal{M} is a class of matroids closed under contraction and deletion, then it is an \varnothing-class and $\mathcal{M}_{\varnothing}=\{\varnothing\}$.)

The collection of mappings from E to a finite set S is denoted by S^{E}. Assume that M is a matroid from \mathcal{M} with the ground set $E=E(M)$. By an S-function on M, we mean any function $f \in S^{E}$. Then, $f \mid B$ denotes the restriction of f to B (i.e., $f \mid B \in S^{B}$ so that $[f \mid B](x)=f(x)$ for each $x \in B)$. Let \mathcal{S} be a class of S-functions on matroids from \mathcal{M}. If $M \in \mathcal{M}$, then \mathcal{S}_{M} denotes the set of S-functions on M belonging to \mathcal{S}. For every $g \in S^{B}$ and $M \in \mathcal{M}$, let

$$
\mathcal{S}_{M, g}=\left\{f \in \mathcal{S}_{M}: f \mid B=g\right\}
$$

If $M \in \mathcal{M}_{B}$ and $\mathcal{S}_{M}=\varnothing$, then M is called \mathcal{S}-trivial; otherwise, it is called \mathcal{S}-nontrivial. In this paper, we denote by $\mathcal{M}_{B, \mathcal{S}}$ an ordered n-tuple $\left(M_{1}, \ldots, M_{n}\right)$ of all \mathcal{S}-nontrivial elements of \mathcal{M}_{B}. For each $g \in S^{B}$ and $i=1, \ldots, n$, let $\chi_{i, g}=1\left(\chi_{i, g}=0\right)$ if $g \in \mathcal{S}_{B_{i}}$, $\left(g \notin \mathcal{S}_{B_{i}}\right)$. Let $\chi_{n, g}=\left(\chi_{1, g}, \ldots, \chi_{n, g}\right)$.

Let $\mathbf{e}_{i, n}$ denote the standard basis vector of \mathbb{R}^{n} and let $\mathbf{0}_{n}$ denote the zero vector of \mathbb{R}^{n}. Vectors from \mathbb{R}^{n} are considered row vectors. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, then the dot product $\mathbf{x} \cdot \mathbf{y}$ can be expressed as a matrix multiplication $\mathbf{x y}^{T}$.

Assume that there exist rational numbers $a_{1}, b_{1}, a_{2}, b_{2}$ such that for each $M \in \mathcal{M}$, each $e \in E(M) \backslash B$, and each $g \in S^{B}$, we have

$$
\begin{array}{ll}
\left|\mathcal{S}_{M, g}\right|=a_{1}\left|\mathcal{S}_{M-e, g}\right| & \text { if } e \text { is an isthmus of } M, \\
\left|\mathcal{S}_{M, g}\right|=b_{1}\left|\mathcal{S}_{M-e, g}\right| & \text { if } e \text { is a loop of } M, \tag{1}\\
\left|\mathcal{S}_{M, g}\right|=a_{2}\left|\mathcal{S}_{M / e, g}\right|+b_{2}\left|\mathcal{S}_{M-e, g}\right| & \text { otherwise. }
\end{array}
$$

In this case, we say that \mathcal{S} is $\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$-regular. Since the cardinalities of sets are nonnegative integers, a_{1}, b_{1} must be nonnegative, but only one of a_{2}, b_{2} can be negative (but not both).

Theorem 1. Let \mathcal{M} be a B-class of matroids, with B finite, \mathcal{S} be an $\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$-regular class of S-functions on matroids from \mathcal{M}, with S finite, and $\mathcal{M}_{B, S}=\left(M_{1}, \ldots, M_{n}\right)$. Then, for each $M \in \mathcal{M}$, there exists a vector $\mathbf{x}_{M}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $g \in S^{B},\left|\mathcal{S}_{M, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{M}$, i.e., $\left|\mathcal{S}_{M, g}\right|=\sum_{i=1}^{n} \chi_{i, g} x_{i}$. Furthermore, if $a_{1}, b_{1}, a_{2}, b_{2}$ are integers, then \mathbf{x}_{M} can be chosen to be an integral vector.

Proof. We apply induction on $|E(M)| \geq|B|$. Let $|E(M)|=|B|$ and $g \in S^{B}$. If M is \mathcal{S} trivial, then $\left|\mathcal{S}_{M, g}\right|=0$, and we can set $\mathbf{x}_{M}=\mathbf{0}_{n}$. If M is \mathcal{S}-nontrivial, then $M=M_{i}$, where $i \in\{1, \ldots, n\}$, and $\left|\mathcal{S}_{M, g}\right|=\chi_{i, g}$. Thus, $\mathbf{x}_{M}=\mathbf{e}_{i, n}$ satisfies the assumptions.

If $|E(G)|>|B|$, then there exists $e \in E(M) \backslash B$. By the induction hypothesis, there are vectors \mathbf{x}_{M-e} and $\mathbf{x}_{M / e}$ such that for every $g \in S^{B},\left|\mathcal{S}_{M-e, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{M-e}$ and $\left|\mathcal{S}_{M / e, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{M / e}$.

If e is an isthmus, then from the first row of (1), $\left|\mathcal{S}_{M, g}\right|=a_{1}\left|\mathcal{S}_{M-e, g}\right|=a_{1} \chi_{n, g} \cdot \mathbf{x}_{M-e,}$ where the vector $\mathbf{x}_{M}=a_{1} \mathbf{x}_{M-e}$ satisfies the assumptions.

If e is a loop, then from the second row of (1), $\left|\mathcal{S}_{M, g}\right|=b_{1}\left|\mathcal{S}_{M-e, g}\right|=b_{1} \chi_{n, g} \cdot \mathbf{x}_{M-e}$, where the vector $\mathbf{x}_{M}=b_{1} \mathbf{x}_{M-e}$ satisfies the assumptions.

If e is neither an isthmus nor a loop, then from (1), $\left|\mathcal{S}_{M, g}\right|=a_{2}\left|\mathcal{S}_{M / e, g}\right|+b_{2}\left|\mathcal{S}_{M-e, g}\right|=$ $a_{2} \chi_{n, g} \cdot \mathbf{x}_{M / e}+b_{2} \chi_{n, g} \cdot \mathbf{x}_{M-e}=\chi_{n, g} \cdot\left(a_{2} \mathbf{x}_{M / e}+b_{2} \mathbf{x}_{M-e}\right)$, where the vector $\mathbf{x}_{M}=a_{2} \mathbf{x}_{M / e}+$ $b_{2} \mathbf{x}_{M-e}$ satisfies the assumptions.

If $a_{1}, b_{1}, a_{2}, b_{2}$ are integers, then all vectors \mathbf{x}_{M} considered in the proof are integral. This proves the statement.

Let $Z=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right), m \leq n$, be an ordered basis of the linear hull of $\left\{\chi_{n, g} ; g \in S^{B}\right\}$. Denote $\boldsymbol{\chi}_{Z, g}=\left(t_{1}, \ldots t_{m}\right)$ such that $\chi_{n, g}=\sum_{i-1}^{m} t_{i} \mathbf{z}_{i}$. For example, if $n=m$, then we can choose $\mathbf{z}_{i}=\mathbf{e}_{i, n}$ and then $\chi_{Z, g}=\chi_{n, g}$.

Theorem 2. Let \mathcal{M} be a B-class of matroids, with B finite, \mathcal{S} be an $\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$-regular class of S-functions on matroids from \mathcal{M}, with S finite, $\mathcal{M}_{B, S}=\left(M_{1}, \ldots, M_{n}\right)$, and $Z=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right)$, $m \leq n$, be an ordered basis of the linear hull of $\left\{\chi_{n, g} ; g \in S^{B}\right\}$. Then, for each $M \in \mathcal{M}$, there exists a unique vector $\mathbf{y}_{M}=\left(y_{1}, \ldots, y_{m}\right)$ such that for every $g \in S^{B},\left|\mathcal{S}_{M, g}\right|=\chi_{Z, g} \cdot \mathbf{y}_{M}$. Furthermore: If $E(M)=B$ and M is trivial, then $\mathbf{y}_{M}=\mathbf{0}_{m}$;
If $E(M)=B$ and $M=M_{i}, i \in\{1, \ldots, n\}$, then $\mathbf{y}_{M}=\left(y_{1}, \ldots, y_{m}\right)$ such that y_{j} is the i-th coordinate of $\mathbf{z}_{j}, j \in\{1, \ldots, m\}$;
If $E(M) \neq B$, then \mathbf{y}_{M} satisfies the following recursive rules:

$$
\begin{array}{ll}
\mathbf{y}_{M}=a_{1} \mathbf{y}_{M-e} & \text { if } e \text { is an isthmus of } M, \\
\mathbf{y}_{M}=b_{1} \mathbf{y}_{M-e} & \text { if } e \text { is a loop of } M, \tag{2}\\
\mathbf{y}_{M}=a_{2} \mathbf{y}_{M / e}+b_{2} \mathbf{y}_{M-e} & \text { otherwise. }
\end{array}
$$

Finally, if $a_{1}, b_{1}, a_{2}, b_{2}$ are integers and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}$ are integral vectors, then \mathbf{y}_{M} is an integral vector for each M from \mathcal{M}.

Proof. We prove the existence of \mathbf{y}_{M} by induction on $|E(M)| \geq|B|$. Let $|E(M)|=|B|$ and $g \in S^{B}$. If M is \mathcal{S}-trivial, then $\left|\mathcal{S}_{M, g}\right|=0$, and we can set $\mathbf{y}_{M}=\mathbf{0}_{m}$. If M is \mathcal{S}-nontrivial and $M=M_{i}, i \in\{1, \ldots, n\}$, then from the proof of Theorem $1,\left|\mathcal{S}_{M, g}\right|=\chi_{n, g} \cdot \mathbf{e}_{i, n}$. Let A be an $m \times n$-matrix with the j-th row equal to $\mathbf{z}_{j}, j \in\{1, \ldots, m\}$. Using matrix multiplication, we can express $\chi_{n, g}=\chi_{Z, g} A$ and $\left|\mathcal{S}_{M, g}\right|=\chi_{n, g} \mathbf{e}_{i, n}^{T}$, where $\left|\mathcal{S}_{M, g}\right|=\left(\chi_{Z, g} A\right) \mathbf{e}_{i, n}^{T}=\chi_{Z, g}\left(A \mathbf{e}_{i, n}^{T}\right)$. Thus, $A \mathbf{e}_{i, n}^{T}=\mathbf{y}_{M}^{T}$, where $\mathbf{y}_{M}=\left(y_{1}, \ldots, y_{m}\right)$ such that y_{j} is the i-th coordinate of \mathbf{z}_{j}, $j \in\{1, \ldots, m\}$.

If $|E(G)|>|B|$, then there exists $e \in E(M) \backslash B$. By the induction hypothesis, there are integral vectors \mathbf{y}_{M-e} and $\mathbf{y}_{M / e}$ such that for every $g \in S^{B},\left|\mathcal{S}_{M-e, g}\right|=\chi_{n, g} \cdot \mathbf{y}_{M-e}$ and $\left|\mathcal{S}_{M / e, g}\right|=\chi_{n, g} \cdot \mathbf{y}_{M / e}$.

If e is an isthmus, then from the first row of (1), $\left|\mathcal{S}_{M, g}\right|=a_{1}\left|\mathcal{S}_{M-e, g}\right|=a_{1} \chi_{n, g} \cdot \mathbf{y}_{M-e,}$ where $\mathbf{y}_{M}=a_{1} \mathbf{y}_{M-e}$.

If e is a loop, then from the second row of (1), $\left|\mathcal{S}_{M, g}\right|=b_{1}\left|\mathcal{S}_{M-e, g}\right|=b_{1} \chi_{n, g} \cdot \mathbf{y}_{M-e}$, where $\mathbf{y}_{M}=b_{1} \mathbf{y}_{M-e}$.

If e is neither an isthmus nor a loop, then from (1), $\left|\mathcal{S}_{M, g}\right|=a_{2}\left|\mathcal{S}_{M / e, g}\right|+b_{2}\left|\mathcal{S}_{M-e, g}\right|=$ $a_{2} \chi_{n, g} \cdot \mathbf{y}_{M / e}+b_{2} \chi_{n, g} \cdot \mathbf{y}_{M-e}=\chi_{n, g} \cdot\left(a_{2} \mathbf{y}_{M / e}+b_{2} \mathbf{y}_{M-e}\right)$, where the vector $\mathbf{y}_{M}=a_{2} \mathbf{y}_{M / e}+$ $b_{2} \mathbf{y}_{M-e}$ satisfies the assumptions. This proves (2).

The uniqueness of \mathbf{y}_{M} follows from the fact that Z is a basis of the linear hull of $\left\{\chi_{n, g} ; g \in S^{B}\right\}$.

Furthermore, if $\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}$ are integral vectors, then \mathbf{y}_{M} is integral for each $M \in \mathcal{M}$ such that $E(M)=B$. If $a_{1}, b_{1}, a_{2}, b_{2}$ are also integers, then from (2), \mathbf{y}_{M} are integral vectors for each M from \mathcal{M}.

We apply Theorem 1 for various S-functions of B-classes of matroids. Analogously, we can apply Theorem 2.

3. Regular Chain Groups

If R is a ring, the elements of R^{E} are considered vectors indexed by E, and we will use the notation $f+g,-f$, and $s f$ for $f, g \in R^{E}$, and $s \in R$. A chain on E (over R, or simply an R-chain) is $f \in R^{E}$, and the support of f is $\sigma(f)=\{e \in E ; f(e) \neq 0\}$. The zero chain has null support. Given $X \subseteq E$ and $f \in R^{E}$, define $f \backslash^{\backslash X} \in R^{E \backslash X}$ such that $[f \backslash X](e)=f(e)$ for each $e \in E \backslash X$.

A matroid M on E of rank $r(M)$ is regular if there exists an $r \times n(r=r(M), n=|E|)$ totally unimodular matrix D (called a representative matrix of M) such that independent sets of M correspond to independent sets of columns of D.

We recall properties of regular matroids presented in [1,8-11]). For any basis B of M, D can be transformed to a form $\left(I_{r} \mid U\right)$ such that I_{r} corresponds to B and U is totally unimodular. The dual of M is a regular matroid M^{*} with a representative matrix $\left(-U^{T} \mid I_{n-r}\right)$ (where I_{n-r} corresponds to $E \backslash B$).

By a regular chain group N on E (associated with D), we mean a set of chains on E over \mathbb{Z} that are orthogonal to each row of D (i.e., are integral combinations of rows of a representative matrix of M^{*}). The set of chains orthogonal to every chain of N is a chain group called orthogonal to N and denoted by N^{\perp} (clearly, N^{\perp} is the set of integral combinations of rows of D). By the rank of N, we mean $r(N)=n-r(M)=r^{*}(M)$. Then, $r\left(N^{\perp}\right)=n-r(N)=r(M)$. We always assume that a regular chain group N is associated with a matrix $D=D(N)$ representing a matroid $M=M(N)$.

For any $X \subseteq E$, let

$$
\begin{align*}
& N-X=\left\{f^{\backslash X} ; f \in N, \sigma(f) \cap X=\varnothing\right\} \tag{3}\\
& N / X=\left\{f^{\backslash X} ; f \in N\right\}
\end{align*}
$$

We have $M(N-X)=M-X$ and $M(N / X)=M / X$. Clearly, $D(N-X)$ arises from $D(N)$ after deleting the columns corresponding to X. Furthermore, $(N-X)^{\perp}=N^{\perp} / X$ and $(N / X)^{\perp}=N^{\perp}-X$.

A chain f of N is elementary if there is no nonzero f^{\prime} of N such that $\sigma\left(f^{\prime}\right) \subset \sigma(f)$. An elementary chain f is called a primitive chain of N if the coefficients of f are restricted to the values 0,1 , and -1 . (Notice that the set of supports of primitive chains of N is the set of circuits of $M(N)$.) We say that a chain g conforms to a chain f if $g(e)$ and $f(e)$ are nonzero and have the same sign for each $e \in E$ such that $g(e) \neq 0$. From [1] (Section 6.1),

$$
\begin{equation*}
\text { every chain } f \text { of } N \text { can be expressed as a sum of } \tag{4}
\end{equation*}
$$ primitive chains in N that conform to f.

Let A be an Abelian group with additive notation. We shall consider A as a (right) \mathbb{Z}-module such that the scalar multiplication $a \cdot z$ of $a \in A$ by $z \in \mathbb{Z}$ is equal to 0 if $z=0$, $\sum_{1}^{z} a$ if $z>0$, and $\sum_{1}^{-z}(-a)$ if $z<0$. Similarly, if $a \in A$ and $f \in \mathbb{Z}^{E}$, then define $a \cdot f \in A^{E}$ so that $(a \cdot f)(e)=a \cdot f(e)$ for each $e \in E$. If N is a regular chain group on E, define

$$
\begin{aligned}
& A(N)=\left\{\sum_{i=1}^{m} a_{i} \cdot f_{i} ; a_{i} \in A, f_{i} \in N, m \geq 1\right\} \\
& A[N]=\{f \in A(N) ; \sigma(f)=E\}
\end{aligned}
$$

Notice that $A(N)=N$ if $A=\mathbb{Z}$. From [8] (Proposition 1),

$$
\begin{align*}
& g \in A^{E} \text { is from } A(N) \text { if and only if for each } f \in N^{\perp}, \\
& \sum_{e \in E} g(e) f(e)=0 . \tag{5}
\end{align*}
$$

Suppose that \mathcal{M} is a B-class of regular matroids, with B finite. Denote by \mathcal{R} the class of $A-\{0\}$-functions on matroids from \mathcal{M} such that $A[N]=\mathcal{R}_{M(N)}$ for each $M(N) \in \mathcal{M}$. In other words, \mathcal{R} is the class of $A[N]$ where $M(N) \in \mathcal{M}$. We claim that \mathcal{R} is $(0, k-1,1,-1)$-regular.

Lemma 1. For each $M \in \mathcal{M}, e \in E(M) \backslash B$, and $g: B \rightarrow A-\{0\}$, we have

$$
\begin{array}{ll}
\left|\mathcal{R}_{M, g}\right|=0\left|\mathcal{R}_{M-e, g}\right| & \text { if } e \text { is an isthmus of } M, \\
\left|\mathcal{R}_{M, g}\right|=(k-1)\left|\mathcal{R}_{M-e, g}\right| & \text { ife } \text { is a loop of } M, \tag{6}\\
\left|\mathcal{R}_{M, g}\right|=\left|\mathcal{R}_{M / e, g}\right|-\left|\mathcal{R}_{M-e, g}\right| & \text { otherwise. }
\end{array}
$$

Proof. Notice that e is a loop (isthmus) of $M=M(N) e$ if $\chi_{e} \in N\left(\chi_{e} \in N^{\perp}\right)$. Thus, if e is an isthmus of M, then from (5), each $f \in \mathcal{R}_{M, g}$ satisfies $f(e)=0$, where $\left|\mathcal{R}_{M, g}\right|=0$.

Given $f \in A^{E \backslash e}$ and $x \in A$, let $f_{x} \in A^{E}$ be defined so that $f_{x}^{\backslash e}=f$ and $f_{x}(e)=x$.
If e is a loop of M, then from (5), for each $f \in \mathcal{R}_{M-e, g}$ and $x \in A-\{0\}, f_{x} \in \mathcal{R}_{M, g}$. Similarly, if $f \in \mathcal{R}_{M, g}$, then $f{ }^{\backslash e} \in \mathcal{R}_{M-e, g}$. Thus, $\left|\mathcal{R}_{M, g}\right|=(k-1)\left|\mathcal{R}_{M-e, g}\right|$.

If e is neither an isthmus nor a loop of $M=M(N)$, then there exists $\tilde{f} \in N^{\perp}$ such that $\tilde{f}(e) \neq 0$ and $\tilde{f} \neq \chi_{e}$. From (3), for any $f \in A[N / e]$, there exists $a \in A$ such that $f_{a} \in A(N)$. From (5), f_{a} must be orthogonal to \tilde{f}, where a is unique. Furthermore, if $a=0$ (resp. $a \neq 0$), then from (3), $f \in A[N-e]$ (resp. $f_{a} \in A[N]$); i.e., $f \mapsto f_{a}$ is a bijection from $\mathcal{R}_{M / e, g}$ to the disjoint union of $\mathcal{R}_{M, g}$ and $\mathcal{R}_{M-e, g}$. This implies the last row of (6).

Corollary 1. Suppose that \mathcal{M} is a B-class of regular matroids, with B finite, and let \mathcal{R} be the class of $A[N]$ where $M(N) \in \mathcal{M}$. Assume that $\mathcal{M}_{B, \mathcal{R}}=\left(M_{1}, \ldots, M_{n}\right)$. Then, for each $M \in \mathcal{M}$, there exists an integral vector $\mathbf{x}_{M}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $g: B \rightarrow A-\{0\}$, $\left|\mathcal{R}_{M, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{M}$.

Proof. It follows from (6) and Theorem 1.

4. Nowhere-Zero Flows and Tensions on Graphs

We deal with finite undirected graphs with multiple edges and loops. If G is a graph, then $V(G)$ and $E(G)$ denote its vertex and edge sets, respectively. Every edge e of G determines two opposite arcs arising from it after endowing e with two distinct orientations. All arcs obtained in this way are called arcs of G, and the set of them is called the arc set of G and denoted by $D(G)$. Clearly, $|D(G)|=2|E(G)|$. If x is an arc of G, then denote by x^{-1} the second arc arising from the same edge. Clearly, $\left(x^{-1}\right)^{-1}=x$ and $x \neq x^{-1}$ for every arc x of G. If $X \subseteq D(G)$, then let X^{-1} denote $\left\{x \in D(G) ; x^{-1} \in X\right\}$. For any vertex v of G, denote by $\omega_{G}^{+}(v)$ the set of arcs from $D(G)$ directed out of v. If A is an Abelian group, then a nowhere-zero A-chain in G is a mapping $\varphi: D(G) \rightarrow A-\{0\}$ such that $\varphi\left(x^{-1}\right)=-\varphi(x)$ for every $x \in D(G)$.

By an orientation of G, we mean any $X \subseteq D(G)$ such that $X \cup X^{-1}=D(G)$ and $X \cap X^{-1}=\varnothing$. In other words, an orientation of G can be considered a directed graph arising from G after endowing each edge with an orientation.

Let A be an Abelian group with additive notation. A nowhere-zero A-chain φ in G is called a nowhere-zero A-flow if $\sum_{x \in \omega_{G}^{+}(v)} \varphi(x)=0$ for every vertex v of G. Considering φ as a mapping on an arbitrary but fixed orientation of G, we obtain the usual definition of nowhere-zero A-flows. Such nowhere-zero A-flows on G coincide with $A[N]$, where N is the regular chain group associated with $M(N)$, the cycle matroid of G (edge sets of subforests of G forming independent sets of $M(N)$).

By a B-class of graphs, we mean a class \mathcal{G} such that for each $G \in \mathcal{G}, B \subseteq E(G)$, and for each $e \in E(G) \backslash B, G-e, G / e \in \mathcal{G}$. Then, the class of cycle matroids of graphs from \mathcal{G} is a B-class of matroids \mathcal{M}. Denote by \mathcal{F} the class of nowhere-zero A-flows on a graph from \mathcal{G}. Clearly, \mathcal{F} coincides with the class \mathcal{R} associated with \mathcal{M} described in the previous section. Analogously, we write $\mathcal{G}_{B, \mathcal{F}}=\left(G_{1}, \ldots, G_{n}\right)$ instead of $\mathcal{M}_{B, \mathcal{R}}=\left(M_{1}, \ldots, M_{n}\right)$, where M_{i} is the cycle matroid of G_{i} for $i=1, \ldots, n$.

Lemma 2. For each $G \in \mathcal{G}, e \in E(G) \backslash B$, and $g: B \rightarrow A-\{0\}$, we have

$$
\begin{array}{ll}
\left|\mathcal{F}_{G, g}\right|=0\left|\mathcal{F}_{G-e, g}\right| & \text { if } e \text { is an isthmus of } M, \\
\left|\mathcal{F}_{G, g}\right|=(k-1)\left|\mathcal{F}_{G-e, g}\right| & \text { if } e \text { is a loop of } M, \\
\left|\mathcal{F}_{G, g}\right|=\left|\mathcal{F}_{G / e, g}\right|-\left|\mathcal{F}_{G-e, g}\right| & \text { otherwise. }
\end{array}
$$

Proof. Apply Lemma 1 for a class \mathcal{M} of cycle matroids of graphs from \mathcal{G}.

Corollary 2. Suppose that \mathcal{G} is a B-class of graphs, with B finite, and let \mathcal{F} be the class of nowhere-zero A-flows on graphs from \mathcal{G}. Assume that $\mathcal{G}_{B, \mathcal{F}}=\left(G_{1}, \ldots, G_{n}\right)$. Then, for each $G \in \mathcal{G}$, there exists an integral vector $\mathbf{x}_{G}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $g: B \rightarrow A-\{0\}$, $\left|\mathcal{F}_{G, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{G}$.

Proof. Apply Corollary 1 for a class \mathcal{M} of cycle matroids of graphs from \mathcal{G}.
We applied the idea of Corollary 2 in $[6,7,12,13]$ and proved that the smallest counterexample to the 5 -flow conjecture of Tutte (that every bridgeless graph has a nowhere-zero 5 -flow) must be cyclically 6-edge-connected and has a girth of at least 11.

A circuit C of G is a connected 2-regular subgraph of G (notice that the loop is a circuit of order 1). By a directed circuit of G, we mean an orientation X of C such that $\left|X \cap \omega_{G}^{+}(v)\right|=1$ for each vertex v of C.

A nowhere-zero A-chain φ in G is called a nowhere-zero A-tension if $\sum_{x \in X} \varphi(x)=0$ for every directed circuit X of G. Considering φ as a mapping on an arbitrary but fixed orientation of G, we obtain nowhere-zero A-tensions on G that coincide with $A[N]$ such that $M(N)$ is the bond matroid of G (dual of the cycle matroid of G). Denote by \mathcal{T} the class of nowhere-zero A-tensions on graphs from \mathcal{G}. Clearly, \mathcal{T} coincides with the class \mathcal{R} associated with the class of bond matroids of graphs from \mathcal{G}. Therefore, \mathcal{T} is $(k-1,0,-1,1)-$ regular.

Lemma 3. For each $G \in \mathcal{G}, e \in E(G) \backslash B$, and $g: B \rightarrow A-\{0\}$, we have

$$
\begin{array}{ll}
\left|\mathcal{T}_{G, g}\right|=(k-1)\left|\mathcal{T}_{G-e, g}\right| & \text { if e is an isthmus of } M, \\
\left|\mathcal{T}_{G, g}\right|=0\left|\mathcal{T}_{G-e, g}\right| & \text { if e is a loop of } M, \\
\left|\mathcal{T}_{G, g}\right|=\left|\mathcal{T}_{G-e, g}\right|-\left|\mathcal{T}_{G / e, g}\right| & \text { otherwise. }
\end{array}
$$

Proof. Apply Lemma 1 for the class of bond matroids of graphs from \mathcal{G}.
Corollary 3. Suppose that \mathcal{G} is a B-class of graphs, with B finite, and let \mathcal{T} be the class of nowhere-zero A-tensions on graphs from \mathcal{G}. Assume that $\mathcal{G}_{B, \mathcal{T}}=\left(G_{1}, \ldots, G_{n}\right)$. Then, for each $G \in \mathcal{G}$, there exists an integral vector $\mathbf{x}_{G}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $g: B \rightarrow A-\{0\}$, $\left|\mathcal{T}_{G, g}\right|=\chi_{n, g} \cdot \mathbf{x}_{G}$.

Proof. Apply Corollary 1 for the class of bond matroids of graphs from \mathcal{G}.

5. Orientations in Oriented Matroids

In this section, we use notation and results from [14,15] (see also [9,16,17]). We define a signed set X to be a set \underline{X}, called the set underlying X, and the mapping $\operatorname{sg}_{X}(x): \underline{X} \rightarrow$ $\{1,-1\}$, called the signature of X. Let X be a signed set. Then, \underline{X} is partitioned into two distinguished subsets: $X^{+}=\left\{x \in \underline{X} ; \operatorname{sg}_{X}(x)=1\right\}$ and $X^{-}=\left\{x \in \underline{X} ; \operatorname{sg}_{X}(x)=-1\right\}$. The opposite $-X$ of X is defined by $(-X)^{+}=X^{-}$and $(-X)^{-}=X^{+}$. If \underline{X} is a subset of E, then X will be called a signed subset of E, and if $\underline{X}=\varnothing$, then we write $X=\varnothing$.

An oriented matroid M on E is a couple (E, \mathcal{O}), where \mathcal{O} is a collection of signed sets satisfying

$$
\begin{gather*}
X \in \mathcal{O} \text { implies } X \neq \varnothing \text { and }-X \in \mathcal{O} ; \tag{7}\\
X_{1}, X_{2} \in \mathcal{O} \text { and } \underline{X}_{1} \subseteq \underline{X}_{2} \text { imply } X_{1}=X_{2} \text { or } X_{1}=-X_{2} ; \tag{8}
\end{gather*}
$$

for all $X_{1}, X_{2} \in \mathcal{O}, x \in X_{1}^{+} \cap X_{2}^{-}$and $y \in X_{1}^{+} \backslash X_{2}^{-}$there exists $X_{3} \in \mathcal{O}$ such that $y \in X_{3}, X_{3}^{+} \subseteq\left(X_{1}^{+} \cup X_{2}^{+}\right) \backslash\{x\}$ and $X_{3}^{-} \subseteq\left(X_{1}^{-} \cup X_{2}^{-}\right) \backslash\{x\}$.

Signet sets from \mathcal{O} are called signed circuits of M. Let $\underline{\mathcal{O}}=\{\underline{X} ; X \in \mathcal{O}\}$. Then, $\underline{\mathcal{O}}$ is a collection of circuits of a matroid \underline{M} on E. The circuits of the dual matroid \underline{M}^{*} (i.e., the cocircuits of \underline{M}) can be oriented in a unique way such that the \mathcal{O}^{*} of signed cocircuits of M satisfies the orthogonality property: for all $X \in \mathcal{O}$ and $Y \in \mathcal{O}^{*}$ such that $|\underline{X} \cap \underline{Y}|=2$, both $\left(X^{+} \cap Y^{+}\right) \cup\left(X^{-} \cap Y^{-}\right)$and $\left(X^{+} \cap Y^{-}\right) \cup\left(X^{-} \cap Y^{+}\right)$are non-empty. Then, \mathcal{O}^{*} satisfies (7)-(9) and defines an oriented matroid M^{*}, the dual of M. The orthogonality property holds for all $X \in \mathcal{O}$ and $Y \in \mathcal{O}^{*}$ such that $\underline{X} \cap \underline{Y} \neq \varnothing$. We have $\left(M^{*}\right)^{*}=M$. Thus, the class of oriented matroids is a minor and dual closed class of matroids.

A circuit $X \in \mathcal{O}$ is positive if $X^{-}=\varnothing$. We say that \mathcal{O} is totally cyclic if each $e \in E$ is contained in a positive circuit $X \in \mathcal{O}$ and that \mathcal{O} is acyclic if no $X \in \mathcal{O}$ is positive. From [14] (Theorem 2.2),
\mathcal{O} is acyclic if and only if \mathcal{O}^{*} is totally cyclic.
For any $Z \subseteq E$, denote by ${ }_{Z} M$ the oriented matroid obtained from M by reversing signs on Z, i.e., $\bar{Z}_{Z} M=\left(E, \bar{Z}^{\mathcal{O}}\right)$, where ${ }_{\bar{Z}} \mathcal{O}=\left\{\bar{Z}_{Z} X ; X \in \mathcal{O}\right\}$, supposing that ${ }_{Z} X$ satisfies $\left(\bar{Z}^{X}\right)^{+}=\left(X^{+} \backslash Z\right) \cup\left(X^{-} \cap Z\right)$ and $\left(\bar{Z}^{X}\right)^{-}=\left(X^{-} \backslash Z\right) \cup\left(X^{+} \cap Z\right)$. Set $\chi_{Z, E}: E \rightarrow\{1,-1\}$ such that $\chi_{Z, E}(x)=-1$ if $x \in Z$ and $\chi_{Z, E}(x)=1$ if $x \in E \backslash Z$. If X is a directed circuit of \mathcal{O} with the signature sg_{X}, then the signature of ${ }_{Z} X\left(\in_{Z} \mathcal{O}\right)$ satisfies $\operatorname{sg}_{\bar{Z} X}(x)=\operatorname{sg}_{X}(x) \chi_{Z, E}(x)$ for each $x \in \underline{X}$. Thus, $\chi_{Z, E}$ uniquely determines $\bar{Z}_{Z} M$.

Let M be an oriented matroid on E and $e \in E$. From [15] (Lemma 3.1.1),

$$
\begin{equation*}
\text { if both } M \text { and }{ }_{\bar{e}} M \text { are acyclic, then both } M-e \text { and } M / e \text { are acyclic; } \tag{11}
\end{equation*}
$$

if M is acyclic and ${ }_{\bar{e}} M$ is not acyclic, then $M-e$ is acyclic and M / e is not acyclic;
if e is not a loop of M and both M and ${ }_{\bar{e}} M$ are not acyclic, then both $M-e$ and M / e are not acyclic.
Suppose that \mathcal{M} is a B-class of oriented matroids. For any $M \in \mathcal{M}$ and $Y \subseteq B$, denote by $\mathcal{A}_{M, Y}$ the set of subsets Z of $E \backslash B$ such that ${ }_{Z \cup Y} M$ is acyclic. Since $\overline{Z U Y} M$ is uniquely determined by $\chi_{Z \cup Y, E(M)}, \mathcal{A}_{M, Y}$ can be considered a set of $\{1,-1\}$-functions $\chi_{Z \cup Y, E(M)}$ corresponding to acyclic orientations. Denote by \mathcal{A} the union of $\mathcal{A}_{M, \gamma}$, where M runs through \mathcal{M} and Y runs through the subsets of B. We claim that \mathcal{A} is (2,0,1,1)-regular.

Lemma 4. For any $M \in \mathcal{M}, e \in E \backslash B$, and $Y \subseteq B$,

$$
\begin{array}{ll}
\left|\mathcal{A}_{M, Y}\right|=2\left|\mathcal{A}_{M-e, Y}\right| & \text { if e is an isthmus of } M, \\
\left|\mathcal{A}_{M, Y}\right|=0\left|\mathcal{A}_{M-e, Y}\right| & \text { ife is a loop of } M, \\
\left|\mathcal{A}_{M, Y}\right|=\left|\mathcal{A}_{M-e, Y}\right|+\left|\mathcal{A}_{M-e, Y}\right| & \text { otherwise. }
\end{array}
$$

Proof. The statement is obvious if e is an isthmus or a loop of M. Let $e \in E$ be neither an isthmus nor a loop of M. For a subset Z of $E \backslash B$, set $f(M ; Z)=0$ if $\overline{Z U Y} M$ is not acyclic and $f(M ; Z)=1$ if $\overline{Z \cup Y} M$ is acyclic. We have

$$
\left|\mathcal{A}_{M, Y}\right|=\sum_{Z \subseteq(E \backslash B)} f(M ; Z) .
$$

If $e \in E \backslash B$ is not a loop of M and Z is a subset of $(E \backslash B) \backslash\{e\}$, then from (11)-(13), we have

$$
f(M ; Z)+f(\bar{e} M ; Z)=f(M-e ; Z)+f(M / e ; Z) .
$$

Now, $f(\bar{e} M ; Z)=f(M ; Z \cup\{e\})$. Summing up for all subsets Z of $(E \backslash B) \backslash\{e\}$, we obtain $\left|\mathcal{A}_{M, Y}\right|=\left|\mathcal{A}_{M-e, Y}\right|+\left|\mathcal{A}_{M-e, Y}\right|$ as required.

Considering \mathcal{A} as the class of $\{1,-1\}$-functions on matroids from \mathcal{M} corresponding to acyclic orientations, any $g: B \rightarrow\{1,-1\}$ coincides with $Y \subseteq B$ such that $g=\chi_{Y, B}$. Thus,
we can write $\mathcal{A}_{M, Y}$ and $\chi_{n, Y}$ instead of $\mathcal{A}_{M, g}$ and $\chi_{n, g}$, respectively. We apply this notation in the following corollary of Theorem 1.

Corollary 4. Suppose that \mathcal{M} is a B-class of oriented matroids, with B finite, and let \mathcal{A} be the class of acyclic orientations of oriented matroids from \mathcal{M}. Assume that $\mathcal{M}_{B, \mathcal{A}}=\left(M_{1}, \ldots, M_{n}\right)$. Then, for each $M \in \mathcal{M}$, there exists an integral vector $\mathbf{x}_{M}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $Y \subseteq B$, $\left|\mathcal{A}_{M, Y}\right|=\chi_{n, Y} \cdot \mathbf{x}_{M}$.

Proof. It follows from Lemma 4 and Theorem 1.
For any $Y \subseteq B$, denote by $\mathcal{C}_{M, Y}$ the set of subsets Z of $E \backslash B$ such that $\overline{Z U Y} M$ is totally cyclic. Since $\frac{\overline{Z \cup Y}}{} M$ is uniquely determined by $\chi_{Z \cup Y, E(M)}, \mathcal{C}_{M, Y}$ can also be considered set of $\{1,-1\}$-functions $\chi_{Z \cup Y, E(M)}$ corresponding to totally cyclic orientations. Denote by \mathcal{C} the union of $\mathcal{C}_{M, Y}$, where M runs through \mathcal{M} and Y runs through the subsets of B. We claim that \mathcal{C} is $(0,2,1,1)$-regular.

Lemma 5. For any $M \in \mathcal{M}, e \in E \backslash B$, and $Y \subseteq B$,

$$
\begin{array}{ll}
\left|\mathcal{C}_{M, Y}\right|=0\left|\mathcal{C}_{M-e, Y}\right| & \text { if e is an isthmus of } M, \\
\left|\mathcal{C}_{M, Y}\right|=2\left|\mathcal{C}_{M-e, Y}\right| & \text { if } \text { is a loop of } M, \\
\left|\mathcal{C}_{M, Y}\right|=\left|\mathcal{C}_{M-e, Y}\right|+\left|\mathcal{C}_{M-e, Y}\right| & \text { otherwise. }
\end{array}
$$

Proof. It follows from Lemma 4 and (10).
Similar to the above, \mathcal{C} can be considered the class of $\{1,-1\}$-functions on matroids from \mathcal{M} corresponding to totally cyclic orientations. Any $g: B \rightarrow\{1,-1\}$ coincides with $Y \subseteq B$ such that $g=\chi_{Y, B}$, and we can write $\mathcal{C}_{M, Y}$ and $\chi_{n, Y}$ instead of $\mathcal{C}_{M, g}$ and $\chi_{n, g^{\prime}}$ respectively.

Corollary 5. Suppose that \mathcal{M} is a B-class of oriented matroids, with B finite, and let \mathcal{C} be the class of totally cyclic orientations of oriented matroids from \mathcal{M}. Assume that $\mathcal{M}_{B, \mathcal{C}}=\left(M_{1}, \ldots, M_{n}\right)$. Then, for each $M \in \mathcal{M}$, there exists an integral vector $\mathbf{x}_{M}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $Y \subseteq B,\left|\mathcal{C}_{M, Y}\right|=\chi_{n, Y} \cdot \mathbf{x}_{M}$.

Proof. It follows from Corollaries 4 and (10).
Let M be a regular matroid on E associated with a totally unimodular matrix D and N be the regular chain group associated with D. The set of circuits of M coincides with the set of supports of primitive chains of N. If fact, each circuit $C \subseteq E$ of M corresponds to exactly one primitive function f_{C} of N such that $\sigma\left(f_{C}\right)=C$. The set of primitive functions forms a set of oriented circuits of an oriented matroid (see [15]). Thus, we can apply Lemmas 4 and 5 and Corollaries 4 and 5 for any B-class of regular matroids.

6. Orientations of Graphs

Consider a fixed orientation D of a graph G. Each circuit C in G indicates two directed circuits; we denote one of them by Q and the other one by Q^{-1}. The edges of C and Q indicate a signed set X such that $\underline{X}=E(C), X^{+}$consists of the edges having the same orientation in D and Q, and X^{-}consists of the edges having different orientations in D and Q. Then, Q^{-1} indicates $-X$ in an analogous way. Applying this process for each circuit of G, we generate a set \mathcal{O} such that $(E(G), \mathcal{O})$ is an oriented matroid M on $E(G)$, and the underlying matroid \underline{M} is the cycle matroid of G; i.e., $\underline{\mathcal{O}}$ is the set of circuits of G.

If $Z \subseteq E(G)$, then denote by ${ }_{Z} D$ the orientation of G arising from D after changing the orientation of edges from Z. Clearly, $\bar{Z}_{Z} D$ corresponds to $\bar{Z}_{Z} M$. Analogously, an orientation D of G is totally cyclic if each edge of G is covered by a directed circuit and is acyclic if no edge of G is covered by a directed circuit.

Recall that a B-class of graphs is a class \mathcal{G} such that for each $G \in \mathcal{G}, B \subseteq E(G)$, and for each $e \in E(G) \backslash B, G-e, G / e \in \mathcal{G}$. The class \mathcal{A} (resp. \mathcal{C}) of acyclic (resp. totally cyclic) orientations of digraphs from \mathcal{G} is the class of acyclic (resp. totally cyclic) orientations of matroids from the class of cyclic matroids of graphs from \mathcal{G}. Similarly, we write $\mathcal{A}_{G, Y}$ (resp. $\mathcal{C}_{G, Y}$) instead of $\mathcal{A}_{M, Y}$ (resp. $\mathcal{C}_{M, Y}$), supposing that M denotes the cyclic matroid of G. Analogously, we write $\mathcal{G}_{B, \mathcal{A}}=\left(G_{1}, \ldots, G_{n}\right)$ instead of $\mathcal{M}_{B, \mathcal{A}}=\left(M_{1}, \ldots, M_{n}\right)$, where M_{i} is the cycle matroid of G_{i} for $i=1, \ldots, n$.

Lemma 6. For each $G \in \mathcal{M}, e \in E(G) \backslash B$, and $Y \subseteq B$,

$$
\begin{array}{ll}
\left|\mathcal{A}_{G, Y}\right|=2\left|\mathcal{A}_{G-e, Y}\right| & \text { if e is an isthmus of } G, \\
\left|\mathcal{A}_{G, Y}\right|=0\left|\mathcal{A}_{G-, Y}\right| & \text { if e is a loop of } G, \tag{14}\\
\left|\mathcal{A}_{G, Y}\right|=\left|\mathcal{A}_{G / e, Y}\right|+\left|\mathcal{A}_{G-e, Y}\right| & \text { otherwise. }
\end{array}
$$

Proof. It follows from Lemma 4.

Corollary 6. Suppose that \mathcal{B} is a B-class of graphs, with B finite, and let \mathcal{A} be the class of acyclic orientations of graphs from \mathcal{G}. Assume that $\mathcal{G}_{B, \mathcal{A}}=\left(G_{1}, \ldots, G_{n}\right)$. Then, for each $G \in \mathcal{G}$, there exists an integral vector $\mathbf{x}_{G}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $Y \subseteq B,\left|\mathcal{A}_{G, Y}\right|=\chi_{n, Y} \cdot \mathbf{x}_{G}$.

Proof. It follows from Corollary 4.
Lemma 7. For each $G \in \mathcal{M}, e \in E(G) \backslash B$, and $Y \subseteq B$,

$$
\begin{array}{ll}
\mid \mathcal{C}_{G}, Y & =0\left|\mathcal{C}_{G-e, Y}\right| \\
\mid \mathcal{C}_{G}, Y & \text { if } e \text { is an isthmus of } G, \tag{15}\\
\left|\mathcal{C}_{G-e, Y}\right| & \text { if } e \text { is a loop of } G, \\
\left|\mathcal{C}_{G, Y}\right|=\left|\mathcal{C}_{G / e, Y}\right|+\left|\mathcal{C}_{G-e, Y}\right| & \text { otherwise. }
\end{array}
$$

Proof. It follows from Lemma 5.
Corollary 7. Suppose that \mathcal{B} is a B-class of graphs, with B finite, and let \mathcal{C} be the class of totally cyclic orientations of graphs from \mathcal{G}. Assume that $\mathcal{G}_{B, \mathcal{C}}=\left(G_{1}, \ldots, G_{n}\right)$. Then, for each $G \in \mathcal{G}$, there exists an integral vector $\mathbf{x}_{G}=\left(x_{1}, \ldots, x_{n}\right)$ such that for every $Y \subseteq B,\left|\mathcal{C}_{G, Y}\right|=\chi_{n, Y} \cdot \mathbf{x}_{G}$.

Proof. It follows from Corollary 5.

Funding: Partially supported by grant VEGA 2/0042/22.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest

References

1. Tutte, W.T. A class of Abelian groups. Canad. J. Math. 1956, 8, 13-28. [CrossRef]
2. Brylawski, T.; Oxley, J. The Tutte polynomial and its applications. In Matroid Applications; White, N., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 123-225.
3. Ellis-Monaghan, J.; Moffatt, I. (Eds.) Handbook of the Tutte Polynomial and Related Topics; CRC Press: Boca Raton, FL, USA, 2022.
4. Garijo, D.; Goodall, A.; Nešetřil, J. Flows and colorings. In Handbook of the Tutte Polynomial and Related Topics; Ellis-Monaghan, J.A., Moffatt, I., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 252-265.
5. Goodall, A.; Krajewski, T.; Regts, G.; Vena, L. A Tutte polynomial for maps. Combin. Probab. Comput. 2018, 27, 913-945. [CrossRef]
6. Kochol, M. Reduction of the 5-flow conjecture to cyclically 6-edge-connected snarks. J. Combin. Theory Ser. B 2004, 90, 139-145. [CrossRef]
7. Kochol, M. Restrictions on smallest counterexamples to the 5-flow conecture. Combinatorica 2006, 26, 83-89. [CrossRef]
8. Arrowsmith, D.K.; Jaeger, F. On the enumeration of chains in regular chain-groups. J. Combin. Theory Ser. B 1982, 32, 75-89. [CrossRef]
9. Oxley, J.G. Matroid Theory; Oxford University Press: Oxford, UK, 1992.
10. Kochol, M. Bounds of characteristic polynomials of regular matroids. Contrib. Discrete Math. 2020, 15, 98-107.
11. Tutte, W.T. Lectures on matroids. J. Res. Natl. Bur. Stand. 1965, 69, 1-47. [CrossRef]
12. Kochol, M. Smallest counterexample to the 5-flow conjecture has girth at least eleven. J. Combin. Theory Ser. B 2010, 100, 381-389. [CrossRef]
13. Kochol, M. Quantitative methods for nowhere-zero flows and edge colorings. In Quantitative Graph Theory: Theoretical Foundations and Applications; Dehmer, M., Emmert-Streib, F., Eds.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2015; pp. 141-180.
14. Bland, R.G.; Las Vergnas, M. Orientability of matroids. J. Combin. Theory Ser. B 1978, 24, 94-123. [CrossRef]
15. Las Vergnas, M. Convexity in oriented matroids. J. Combin. Theory Ser. B 1980, 29, 231-243. [CrossRef]
16. Björner, A.; Las Vergnas, M.; Sturmfels, B.; White, N.; Ziegler, G.M. Oriented Matroids, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009.
17. Gioan, E. The Tutte polynomial of oriented matroids. In Handbook of the Tutte Polynomial and Related Topics; Ellis-Monaghan, J.A., Moffatt, I., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 565-589.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

