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1. Introduction

A Tutte–Grothendieck invariant Φ is a mapping from a class M of matroids to a
commutative ring with the property that there are elements a1, b1, a2, b2 from the ring such
that for a matroid M ∈ M on the ground set E, we have

Φ(M) = 1 if E = ∅,
Φ(M) = a1Φ(M−e) if e is an isthmus of M,
Φ(M) = b1Φ(M−e) if e is a loop of M,
Φ(M) = a2Φ(M/e) + b2Φ(M−e) otherwise.

(Notice that e ∈ E is an isthmus of M if it is contained in each base of M, and e ∈ E is a loop
of M if it belongs to no bases of M.) The best known Tutte–Grothendieck invariant is the
Tutte polynomial:

t(M; x, y) = ∑
X⊆E

(x− 1)r(M)−rM(X)(y− 1)|X|−rM(X),

which maps matroids to the ring of integral polynomials with two variables, x and y. This
invariant was introduced by Tutte in [1] for graphs and encodes many properties of graphs
and matroids. Applications of the Tutte polynomial in combinatorics, knot theory, statistical
physics, and coding theory are surveyed in [2–5].

We consider classes of matroids whose ground sets contain a fixed subset B and
study functions from the matroids to finite sets. For each of the matroids, consider the
cardinality of a set of functions with fixed values on B. We show that if the cardinalities
satisfy contraction–deletion rules, then there exist relations among these numbers that
can be expressed in terms of linear algebra. In this way, we study numbers of regular
chain groups, nowhere-zero flows and tensions on graphs, and acyclic and totally cyclic
orientations of oriented matroids and graphs. These results generalize the approach that
we introduced in [6,7].

2. Matroids and B-Classes

Throughout this paper, we consider finite matroids on finite sets. The ground set of a
matroid M we denote by E(M).
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Let B be a finite set. A class of matroidsM is called a B-class if

B ⊆ E(M) for each M ∈ M,
M−e, M/e ∈ M for each M ∈ M and e ∈ E(M) \ B.

There exist only finitely many matroids on B. Thus, there exists a finite setMB consisting
of pairwise nonisomorphic matroids on B belonging toM. (For example, ifM is a class of
matroids closed under contraction and deletion, then it is an ∅-class andM∅ = {∅}.)

The collection of mappings from E to a finite set S is denoted by SE. Assume that M
is a matroid fromM with the ground set E = E(M). By an S-function on M, we mean
any function f ∈ SE. Then, f |B denotes the restriction of f to B (i.e., f |B ∈ SB so that
[ f |B](x) = f (x) for each x ∈ B). Let S be a class of S-functions on matroids fromM. If
M ∈ M, then SM denotes the set of S-functions on M belonging to S . For every g ∈ SB

and M ∈ M, let

SM,g = { f ∈ SM : f |B = g}.

If M ∈ MB and SM = ∅, then M is called S-trivial; otherwise, it is called S-nontrivial.
In this paper, we denote by MB,S an ordered n-tuple (M1, . . . , Mn) of all S-nontrivial
elements of MB. For each g ∈ SB and i = 1, . . . , n, let χi,g = 1 (χi,g = 0) if g ∈ SBi ,
(g /∈ SBi ). Let χn,g = (χ1,g, . . . , χn,g).

Let ei,n denote the standard basis vector of Rn and let 0n denote the zero vector of Rn.
Vectors from Rn are considered row vectors. If x, y ∈ Rn, then the dot product x · y can be
expressed as a matrix multiplication xyT .

Assume that there exist rational numbers a1, b1, a2, b2 such that for each M ∈ M, each
e ∈ E(M) \ B, and each g ∈ SB, we have

|SM,g| = a1|SM−e,g| if e is an isthmus of M,
|SM,g| = b1|SM−e,g| if e is a loop of M,
|SM,g| = a2|SM/e,g|+ b2|SM−e,g| otherwise.

(1)

In this case, we say that S is (a1, b1, a2, b2)-regular. Since the cardinalities of sets are nonneg-
ative integers, a1, b1 must be nonnegative, but only one of a2, b2 can be negative (but not
both).

Theorem 1. LetM be a B-class of matroids, with B finite, S be an (a1, b1, a2, b2)-regular class
of S-functions on matroids fromM, with S finite, andMB,S = (M1, . . . , Mn). Then, for each
M ∈ M, there exists a vector xM = (x1, . . . , xn) such that for every g ∈ SB, |SM,g| = χn,g · xM,
i.e., |SM,g| = ∑n

i=1 χi,gxi. Furthermore, if a1, b1, a2, b2 are integers, then xM can be chosen to be
an integral vector.

Proof. We apply induction on |E(M)| ≥ |B|. Let |E(M)| = |B| and g ∈ SB. If M is S-
trivial, then |SM,g| = 0, and we can set xM = 0n . If M is S-nontrivial, then M = Mi, where
i ∈ {1, . . . , n}, and |SM,g| = χi,g. Thus, xM = ei,n satisfies the assumptions.

If |E(G)| > |B|, then there exists e ∈ E(M) \ B. By the induction hypothesis, there
are vectors xM−e and xM/e such that for every g ∈ SB, |SM−e,g| = χn,g · xM−e and
|SM/e,g| = χn,g · xM/e.

If e is an isthmus, then from the first row of (1), |SM,g| = a1|SM−e,g| = a1χn,g · xM−e,
where the vector xM = a1xM−e satisfies the assumptions.

If e is a loop, then from the second row of (1), |SM,g| = b1|SM−e,g| = b1χn,g · xM−e,
where the vector xM = b1xM−e satisfies the assumptions.

If e is neither an isthmus nor a loop, then from (1), |SM,g| = a2|SM/e,g|+ b2|SM−e,g| =
a2χn,g · xM/e + b2χn,g · xM−e = χn,g · (a2xM/e + b2xM−e), where the vector xM = a2xM/e +
b2xM−e satisfies the assumptions.
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If a1, b1, a2, b2 are integers, then all vectors xM considered in the proof are integral.
This proves the statement.

Let Z = (z1, . . . , zm), m ≤ n, be an ordered basis of the linear hull of {χn,g; g ∈ SB}.
Denote χZ,g = (t1, . . . tm) such that χn,g = ∑m

i−1 tizi. For example, if n = m, then we can
choose zi = ei,n and then χZ,g = χn,g.

Theorem 2. LetM be a B-class of matroids, with B finite, S be an (a1, b1, a2, b2)-regular class of
S-functions on matroids fromM, with S finite,MB,S = (M1, . . . , Mn), and Z = (z1, . . . , zm),
m ≤ n, be an ordered basis of the linear hull of {χn,g; g ∈ SB}. Then, for each M ∈ M, there exists
a unique vector yM = (y1, . . . , ym) such that for every g ∈ SB, |SM,g| = χZ,g · yM. Furthermore:
If E(M) = B and M is trivial, then yM = 0m;
If E(M) = B and M = Mi, i ∈ {1, . . . , n}, then yM = (y1, . . . , ym) such that yj is the i-th
coordinate of zj, j ∈ {1, . . . , m};
If E(M) 6= B, then yM satisfies the following recursive rules:

yM = a1yM−e if e is an isthmus of M,
yM = b1yM−e if e is a loop of M,
yM = a2yM/e + b2yM−e otherwise.

(2)

Finally, if a1, b1, a2, b2 are integers and z1, . . . , zm are integral vectors, then yM is an integral
vector for each M fromM.

Proof. We prove the existence of yM by induction on |E(M)| ≥ |B|. Let |E(M)| = |B| and
g ∈ SB. If M is S-trivial, then |SM,g| = 0, and we can set yM = 0m. If M is S-nontrivial and
M = Mi, i ∈ {1, . . . , n}, then from the proof of Theorem 1, |SM,g| = χn,g · ei,n. Let A be an
m× n-matrix with the j-th row equal to zj, j ∈ {1, . . . , m}. Using matrix multiplication, we
can express χn,g = χZ,g A and |SM,g| = χn,geT

i,n, where |SM,g| = (χZ,g A)eT
i,n = χZ,g(AeT

i,n).
Thus, AeT

i,n = yT
M, where yM = (y1, . . . , ym) such that yj is the i-th coordinate of zj,

j ∈ {1, . . . , m}.
If |E(G)| > |B|, then there exists e ∈ E(M) \ B. By the induction hypothesis, there

are integral vectors yM−e and yM/e such that for every g ∈ SB, |SM−e,g| = χn,g · yM−e and
|SM/e,g| = χn,g · yM/e.

If e is an isthmus, then from the first row of (1), |SM,g| = a1|SM−e,g| = a1χn,g · yM−e,
where yM = a1yM−e.

If e is a loop, then from the second row of (1), |SM,g| = b1|SM−e,g| = b1χn,g · yM−e,
where yM = b1yM−e.

If e is neither an isthmus nor a loop, then from (1), |SM,g| = a2|SM/e,g|+ b2|SM−e,g| =
a2χn,g · yM/e + b2χn,g · yM−e = χn,g · (a2yM/e + b2yM−e), where the vector yM = a2yM/e +
b2yM−e satisfies the assumptions. This proves (2).

The uniqueness of yM follows from the fact that Z is a basis of the linear hull of
{χn,g; g ∈ SB}.

Furthermore, if z1, . . . , zm are integral vectors, then yM is integral for each M ∈ M
such that E(M) = B. If a1, b1, a2, b2 are also integers, then from (2), yM are integral vectors
for each M fromM.

We apply Theorem 1 for various S-functions of B-classes of matroids. Analogously,
we can apply Theorem 2.

3. Regular Chain Groups

If R is a ring, the elements of RE are considered vectors indexed by E, and we will use
the notation f + g, − f , and s f for f , g ∈ RE, and s ∈ R. A chain on E (over R, or simply an
R-chain) is f ∈ RE, and the support of f is σ( f ) = {e ∈ E; f (e) 6= 0}. The zero chain has null
support. Given X ⊆ E and f ∈ RE, define f \X ∈ RE\X such that [ f \X ](e) = f (e) for each
e ∈ E \ X.
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A matroid M on E of rank r(M) is regular if there exists an r× n (r = r(M), n = |E|)
totally unimodular matrix D (called a representative matrix of M) such that independent
sets of M correspond to independent sets of columns of D.

We recall properties of regular matroids presented in [1,8–11]). For any basis B of M,
D can be transformed to a form (Ir|U) such that Ir corresponds to B and U is totally uni-
modular. The dual of M is a regular matroid M∗ with a representative matrix (−UT |In−r)
(where In−r corresponds to E \ B).

By a regular chain group N on E (associated with D), we mean a set of chains on E
over Z that are orthogonal to each row of D (i.e., are integral combinations of rows of
a representative matrix of M∗). The set of chains orthogonal to every chain of N is a
chain group called orthogonal to N and denoted by N⊥ (clearly, N⊥ is the set of integral
combinations of rows of D). By the rank of N, we mean r(N) = n− r(M) = r∗(M). Then,
r(N⊥) = n− r(N) = r(M). We always assume that a regular chain group N is associated
with a matrix D = D(N) representing a matroid M = M(N).

For any X ⊆ E, let

N−X =
{

f \X ; f ∈ N, σ( f ) ∩ X = ∅
}

,

N/X =
{

f \X ; f ∈ N
}

.
(3)

We have M(N−X) = M− X and M(N/X) = M/X. Clearly, D(N−X) arises from D(N)
after deleting the columns corresponding to X. Furthermore, (N−X)⊥ = N⊥/X and
(N/X)⊥ = N⊥−X.

A chain f of N is elementary if there is no nonzero f ′ of N such that σ( f ′) ⊂ σ( f ). An
elementary chain f is called a primitive chain of N if the coefficients of f are restricted to
the values 0, 1, and −1. (Notice that the set of supports of primitive chains of N is the set of
circuits of M(N).) We say that a chain g conforms to a chain f if g(e) and f (e) are nonzero
and have the same sign for each e ∈ E such that g(e) 6= 0. From [1] (Section 6.1),

every chain f of N can be expressed as a sum of
primitive chains in N that conform to f .

(4)

Let A be an Abelian group with additive notation. We shall consider A as a (right)
Z-module such that the scalar multiplication a · z of a ∈ A by z ∈ Z is equal to 0 if z = 0,
∑z

1 a if z > 0, and ∑−z
1 (−a) if z < 0. Similarly, if a ∈ A and f ∈ ZE, then define a · f ∈ AE

so that (a · f )(e) = a · f (e) for each e ∈ E. If N is a regular chain group on E, define

A(N) = {∑m
i=1 ai · fi; ai ∈ A, fi ∈ N, m ≥ 1},

A[N] = { f ∈ A(N); σ( f ) = E}.

Notice that A(N) = N if A = Z. From [8] (Proposition 1),

g ∈ AE is from A(N) if and only if for each f ∈ N⊥,
∑e∈E g(e) f (e) = 0.

(5)

Suppose thatM is a B-class of regular matroids, with B finite. Denote by R the class
of A−{0}-functions on matroids fromM such that A[N] = RM(N) for each M(N) ∈ M. In
other words,R is the class of A[N]where M(N) ∈ M. We claim thatR is (0, k−1, 1,−1)-regular.

Lemma 1. For each M ∈ M, e ∈ E(M) \ B, and g : B→ A− {0}, we have

|RM,g| = 0|RM−e,g| if e is an isthmus of M,
|RM,g| = (k− 1)|RM−e,g| if e is a loop of M,
|RM,g| = |RM/e,g| − |RM−e,g| otherwise.

(6)
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Proof. Notice that e is a loop (isthmus) of M = M(N) e if χe ∈ N (χe ∈ N⊥). Thus, if e is
an isthmus of M, then from (5), each f ∈ RM,g satisfies f (e) = 0, where |RM,g| = 0.

Given f ∈ AE\e and x ∈ A, let fx ∈ AE be defined so that f \ex = f and fx(e) = x.
If e is a loop of M, then from (5), for each f ∈ RM−e,g and x ∈ A−{0}, fx ∈ RM,g.

Similarly, if f ∈ RM,g, then f \e ∈ RM−e,g. Thus, |RM,g| = (k− 1)|RM−e,g|.
If e is neither an isthmus nor a loop of M = M(N), then there exists f̃ ∈ N⊥ such that

f̃ (e) 6= 0 and f̃ 6= χe. From (3), for any f ∈ A[N/e], there exists a ∈ A such that fa ∈ A(N).
From (5), fa must be orthogonal to f̃ , where a is unique. Furthermore, if a = 0 (resp. a 6= 0),
then from (3), f ∈ A[N−e] (resp. fa ∈ A[N]); i.e., f 7→ fa is a bijection fromRM/e,g to the
disjoint union ofRM,g andRM−e,g. This implies the last row of (6).

Corollary 1. Suppose that M is a B-class of regular matroids, with B finite, and let R be
the class of A[N] where M(N) ∈ M. Assume that MB,R = (M1, . . . , Mn). Then, for each
M ∈ M, there exists an integral vector xM = (x1, . . . , xn) such that for every g : B→ A−{0},
|RM,g| = χn,g · xM.

Proof. It follows from (6) and Theorem 1.

4. Nowhere-Zero Flows and Tensions on Graphs

We deal with finite undirected graphs with multiple edges and loops. If G is a
graph, then V(G) and E(G) denote its vertex and edge sets, respectively. Every edge e of G
determines two opposite arcs arising from it after endowing e with two distinct orientations.
All arcs obtained in this way are called arcs of G, and the set of them is called the arc set
of G and denoted by D(G). Clearly, |D(G)| = 2|E(G)|. If x is an arc of G, then denote by
x−1 the second arc arising from the same edge. Clearly, (x−1)−1 = x and x 6= x−1 for every
arc x of G. If X ⊆ D(G), then let X−1 denote {x ∈ D(G); x−1 ∈ X}. For any vertex v of G,
denote by ω+

G (v) the set of arcs from D(G) directed out of v. If A is an Abelian group, then
a nowhere-zero A-chain in G is a mapping ϕ : D(G)→ A− {0} such that ϕ(x−1) = −ϕ(x)
for every x ∈ D(G).

By an orientation of G, we mean any X ⊆ D(G) such that X ∪ X−1 = D(G) and
X ∩ X−1 = ∅. In other words, an orientation of G can be considered a directed graph
arising from G after endowing each edge with an orientation.

Let A be an Abelian group with additive notation. A nowhere-zero A-chain ϕ in G
is called a nowhere-zero A-flow if ∑x∈ω+

G (v) ϕ(x) = 0 for every vertex v of G. Considering
ϕ as a mapping on an arbitrary but fixed orientation of G, we obtain the usual definition
of nowhere-zero A-flows. Such nowhere-zero A-flows on G coincide with A[N], where
N is the regular chain group associated with M(N), the cycle matroid of G (edge sets of
subforests of G forming independent sets of M(N)).

By a B-class of graphs, we mean a class G such that for each G ∈ G, B ⊆ E(G), and for
each e ∈ E(G) \ B, G−e, G/e ∈ G. Then, the class of cycle matroids of graphs from G is a
B-class of matroidsM. Denote by F the class of nowhere-zero A-flows on a graph from G.
Clearly, F coincides with the classR associated withM described in the previous section.
Analogously, we write GB,F = (G1, . . . , Gn) instead ofMB,R = (M1, . . . , Mn), where Mi is
the cycle matroid of Gi for i = 1, . . . , n.

Lemma 2. For each G ∈ G, e ∈ E(G) \ B, and g : B→ A− {0}, we have

|FG,g| = 0|FG−e,g| if e is an isthmus of M,
|FG,g| = (k− 1)|FG−e,g| if e is a loop of M,
|FG,g| = |FG/e,g| − |FG−e,g| otherwise.

Proof. Apply Lemma 1 for a classM of cycle matroids of graphs from G.
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Corollary 2. Suppose that G is a B-class of graphs, with B finite, and let F be the class of
nowhere-zero A-flows on graphs from G. Assume that GB,F = (G1, . . . , Gn). Then, for each
G ∈ G, there exists an integral vector xG = (x1, . . . , xn) such that for every g : B → A−{0},
|FG,g| = χn,g · xG.

Proof. Apply Corollary 1 for a classM of cycle matroids of graphs from G.

We applied the idea of Corollary 2 in [6,7,12,13] and proved that the smallest coun-
terexample to the 5-flow conjecture of Tutte (that every bridgeless graph has a nowhere-zero
5-flow) must be cyclically 6-edge-connected and has a girth of at least 11.

A circuit C of G is a connected 2-regular subgraph of G (notice that the loop is a
circuit of order 1). By a directed circuit of G, we mean an orientation X of C such that
|X ∩ω+

G (v)| = 1 for each vertex v of C.
A nowhere-zero A-chain ϕ in G is called a nowhere-zero A-tension if ∑x∈X ϕ(x) = 0

for every directed circuit X of G. Considering ϕ as a mapping on an arbitrary but fixed
orientation of G, we obtain nowhere-zero A-tensions on G that coincide with A[N] such
that M(N) is the bond matroid of G (dual of the cycle matroid of G). Denote by T the
class of nowhere-zero A-tensions on graphs from G. Clearly, T coincides with the classR
associated with the class of bond matroids of graphs from G. Therefore, T is (k−1, 0,−1, 1)-
regular.

Lemma 3. For each G ∈ G, e ∈ E(G) \ B, and g : B→ A− {0}, we have

|TG,g| = (k− 1)|TG−e,g| if e is an isthmus of M,
|TG,g| = 0|TG−e,g| if e is a loop of M,
|TG,g| = |TG−e,g| − |TG/e,g| otherwise.

Proof. Apply Lemma 1 for the class of bond matroids of graphs from G.

Corollary 3. Suppose that G is a B-class of graphs, with B finite, and let T be the class of
nowhere-zero A-tensions on graphs from G. Assume that GB,T = (G1, . . . , Gn). Then, for each
G ∈ G, there exists an integral vector xG = (x1, . . . , xn) such that for every g : B → A−{0},
|TG,g| = χn,g · xG.

Proof. Apply Corollary 1 for the class of bond matroids of graphs from G.

5. Orientations in Oriented Matroids

In this section, we use notation and results from [14,15] (see also [9,16,17]). We define
a signed set X to be a set X , called the set underlying X, and the mapping sgX(x) : X →
{1,−1}, called the signature of X. Let X be a signed set. Then, X is partitioned into two
distinguished subsets: X+ = {x ∈ X; sgX(x) = 1} and X− = {x ∈ X; sgX(x) = −1}. The
opposite −X of X is defined by (−X)+ = X− and (−X)− = X+. If X is a subset of E, then
X will be called a signed subset of E, and if X = ∅, then we write X = ∅.

An oriented matroid M on E is a couple (E,O), where O is a collection of signed
sets satisfying

X ∈ O implies X 6= ∅ and −X ∈ O; (7)

X1, X2 ∈ O and X1 ⊆ X2 imply X1 = X2 or X1 = −X2; (8)

for all X1, X2 ∈ O, x ∈ X+
1 ∩ X−2 and y ∈ X+

1 \ X−2 there exists X3 ∈ O
such that y ∈ X3, X+

3 ⊆ (X+
1 ∪ X+

2 ) \ {x} and X−3 ⊆ (X−1 ∪ X−2 ) \ {x}. (9)
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Signet sets from O are called signed circuits of M. Let O = {X; X ∈ O}. Then, O is a
collection of circuits of a matroid M on E. The circuits of the dual matroid M∗ (i.e., the
cocircuits of M) can be oriented in a unique way such that the O∗ of signed cocircuits of M
satisfies the orthogonality property: for all X ∈ O and Y ∈ O∗ such that |X ∩ Y| = 2, both
(X+ ∩ Y+) ∪ (X− ∩ Y−) and (X+ ∩ Y−) ∪ (X− ∩ Y+) are non-empty. Then, O∗ satisfies
(7)–(9) and defines an oriented matroid M∗, the dual of M. The orthogonality property
holds for all X ∈ O and Y ∈ O∗ such that X ∩ Y 6= ∅. We have (M∗)∗ = M. Thus, the
class of oriented matroids is a minor and dual closed class of matroids.

A circuit X ∈ O is positive if X− = ∅. We say that O is totally cyclic if each e ∈ E is
contained in a positive circuit X ∈ O and that O is acyclic if no X ∈ O is positive. From
[14] (Theorem 2.2),

O is acyclic if and only if O∗ is totally cyclic. (10)

For any Z ⊆ E, denote by Z M the oriented matroid obtained from M by reversing
signs on Z, i.e., Z M = (E, ZO), where ZO = {ZX; X ∈ O}, supposing that ZX satisfies
(ZX)+ = (X+ \ Z)∪ (X− ∩ Z) and (ZX)− = (X− \ Z)∪ (X+ ∩ Z). Set χZ,E : E→ {1,−1}
such that χZ,E(x) = −1 if x ∈ Z and χZ,E(x) = 1 if x ∈ E \ Z. If X is a directed circuit of O
with the signature sgX , then the signature of ZX (∈ ZO) satisfies sg

ZX(x) = sgX(x)χZ,E(x)
for each x ∈ X. Thus, χZ,E uniquely determines Z M.

Let M be an oriented matroid on E and e ∈ E. From [15] (Lemma 3.1.1),

if both M and e M are acyclic, then both M−e and M/e are acyclic; (11)

if M is acyclic and e M is not acyclic, then M−e is acyclic and M/e is not acyclic; (12)

if e is not a loop of M and both M and e M are not acyclic, then both M−e and M/e are not acyclic. (13)

Suppose thatM is a B-class of oriented matroids. For any M ∈ M and Y ⊆ B, denote
by AM,Y the set of subsets Z of E \ B such that Z∪Y M is acyclic. Since Z∪Y M is uniquely
determined by χZ∪Y,E(M), AM,Y can be considered a set of {1,−1}-functions χZ∪Y,E(M)

corresponding to acyclic orientations. Denote by A the union of AM,Y, where M runs
throughM and Y runs through the subsets of B. We claim that A is (2, 0, 1, 1)-regular.

Lemma 4. For any M ∈ M, e ∈ E\B, and Y ⊆ B,

|AM,Y| = 2|AM−e,Y| if e is an isthmus of M,
|AM,Y| = 0|AM−e,Y| if e is a loop of M,
|AM,Y| = |AM−e,Y|+ |AM−e,Y| otherwise.

Proof. The statement is obvious if e is an isthmus or a loop of M. Let e ∈ E be neither an
isthmus nor a loop of M. For a subset Z of E \ B, set f (M; Z) = 0 if Z∪Y M is not acyclic
and f (M; Z) = 1 if Z∪Y M is acyclic. We have

|AM,Y| = ∑
Z⊆(E\B)

f (M; Z).

If e ∈ E \ B is not a loop of M and Z is a subset of (E \ B) \ {e}, then from (11)–(13), we
have

f (M; Z) + f (e M; Z) = f (M− e; Z) + f (M/e; Z).

Now, f (e M; Z) = f (M; Z ∪ {e}). Summing up for all subsets Z of (E \ B) \ {e}, we obtain
|AM,Y| = |AM−e,Y|+ |AM−e,Y| as required.

Considering A as the class of {1,−1}-functions on matroids fromM corresponding
to acyclic orientations, any g : B→ {1,−1} coincides with Y ⊆ B such that g = χY,B. Thus,
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we can write AM,Y and χn,Y instead of AM,g and χn,g, respectively. We apply this notation
in the following corollary of Theorem 1.

Corollary 4. Suppose thatM is a B-class of oriented matroids, with B finite, and letA be the class
of acyclic orientations of oriented matroids fromM. Assume thatMB,A = (M1, . . . , Mn). Then,
for each M ∈ M, there exists an integral vector xM = (x1, . . . , xn) such that for every Y ⊆ B,
|AM,Y| = χn,Y · xM.

Proof. It follows from Lemma 4 and Theorem 1.

For any Y ⊆ B, denote by CM,Y the set of subsets Z of E \ B such that Z∪Y M is totally
cyclic. Since Z∪Y M is uniquely determined by χZ∪Y,E(M), CM,Y can also be considered set of
{1,−1}-functions χZ∪Y,E(M) corresponding to totally cyclic orientations. Denote by C the
union of CM,Y, where M runs throughM and Y runs through the subsets of B. We claim
that C is (0, 2, 1, 1)-regular.

Lemma 5. For any M ∈ M, e ∈ E\B, and Y ⊆ B,

|CM,Y| = 0|CM−e,Y| if e is an isthmus of M,
|CM,Y| = 2|CM−e,Y| if e is a loop of M,
|CM,Y| = |CM−e,Y|+ |CM−e,Y| otherwise.

Proof. It follows from Lemma 4 and (10).

Similar to the above, C can be considered the class of {1,−1}-functions on matroids
from M corresponding to totally cyclic orientations. Any g : B → {1,−1} coincides
with Y ⊆ B such that g = χY,B, and we can write CM,Y and χn,Y instead of CM,g and χn,g,
respectively.

Corollary 5. Suppose thatM is a B-class of oriented matroids, with B finite, and let C be the class
of totally cyclic orientations of oriented matroids fromM. Assume thatMB,C = (M1, . . . , Mn).
Then, for each M ∈ M, there exists an integral vector xM = (x1, . . . , xn) such that for every
Y ⊆ B, |CM,Y| = χn,Y · xM.

Proof. It follows from Corollaries 4 and (10).

Let M be a regular matroid on E associated with a totally unimodular matrix D and N
be the regular chain group associated with D. The set of circuits of M coincides with the
set of supports of primitive chains of N. If fact, each circuit C ⊆ E of M corresponds to
exactly one primitive function fC of N such that σ( fC) = C. The set of primitive functions
forms a set of oriented circuits of an oriented matroid (see [15]). Thus, we can apply
Lemmas 4 and 5 and Corollaries 4 and 5 for any B-class of regular matroids.

6. Orientations of Graphs

Consider a fixed orientation D of a graph G. Each circuit C in G indicates two directed
circuits; we denote one of them by Q and the other one by Q−1. The edges of C and Q
indicate a signed set X such that X = E(C), X+ consists of the edges having the same
orientation in D and Q, and X− consists of the edges having different orientations in D and
Q. Then, Q−1 indicates −X in an analogous way. Applying this process for each circuit
of G, we generate a set O such that (E(G),O) is an oriented matroid M on E(G), and the
underlying matroid M is the cycle matroid of G; i.e., O is the set of circuits of G.

If Z ⊆ E(G), then denote by ZD the orientation of G arising from D after changing the
orientation of edges from Z. Clearly, ZD corresponds to Z M. Analogously, an orientation
D of G is totally cyclic if each edge of G is covered by a directed circuit and is acyclic if no
edge of G is covered by a directed circuit.
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Recall that a B-class of graphs is a class G such that for each G ∈ G, B ⊆ E(G), and
for each e ∈ E(G) \ B, G−e, G/e ∈ G. The class A (resp. C) of acyclic (resp. totally cyclic)
orientations of digraphs from G is the class of acyclic (resp. totally cyclic) orientations
of matroids from the class of cyclic matroids of graphs from G. Similarly, we write AG,Y
(resp. CG,Y) instead of AM,Y (resp. CM,Y), supposing that M denotes the cyclic matroid of G.
Analogously, we write GB,A = (G1, . . . , Gn) instead ofMB,A = (M1, . . . , Mn), where Mi is
the cycle matroid of Gi for i = 1, . . . , n.

Lemma 6. For each G ∈ M, e ∈ E(G) \ B, and Y ⊆ B,

|AG,Y| = 2|AG−e,Y| if e is an isthmus of G,
|AG,Y| = 0|AG−e,Y| if e is a loop of G,
|AG,Y| = |AG/e,Y|+ |AG−e,Y| otherwise.

(14)

Proof. It follows from Lemma 4.

Corollary 6. Suppose that B is a B-class of graphs, with B finite, and let A be the class of acyclic
orientations of graphs from G. Assume that GB,A = (G1, . . . , Gn). Then, for each G ∈ G, there
exists an integral vector xG = (x1, . . . , xn) such that for every Y ⊆ B, |AG,Y| = χn,Y · xG.

Proof. It follows from Corollary 4.

Lemma 7. For each G ∈ M, e ∈ E(G) \ B, and Y ⊆ B,

|CG,Y| = 0|CG−e,Y| if e is an isthmus of G,
|CG,Y| = 2|CG−e,Y| if e is a loop of G,
|CG,Y| = |CG/e,Y|+ |CG−e,Y| otherwise.

(15)

Proof. It follows from Lemma 5.

Corollary 7. Suppose that B is a B-class of graphs, with B finite, and let C be the class of totally
cyclic orientations of graphs from G. Assume that GB,C = (G1, . . . , Gn). Then, for each G ∈ G,
there exists an integral vector xG = (x1, . . . , xn) such that for every Y ⊆ B, |CG,Y| = χn,Y · xG.

Proof. It follows from Corollary 5.
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