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Abstract: Data technology advances have increased in recent years, especially for robotic systems, in
order to apply data-driven modelling and control computations by only considering the input and
output signals’ relationship. For a data-driven modelling and control approach, the system is considered
unknown. Thus, the initialization values of the system play an important role to obtain a suitable
estimation. This paper presents a methodology to initialize a data-driven model using the pseudo-
Jacobian matrix algorithm to estimate the model of a mobile manipulator robot. Once the model is
obtained, a control law is proposed for the robot end-effector position tasks. To this end, a novel neuro-
fuzzy network is proposed as a control law, which only needs to update one parameter to minimize the
control error and avoids the chattering phenomenon. In addition, a general stability analysis guarantees
the convergence of the estimation and control errors and the tuning of the closed-loop control design
parameters. The simulations results validate the performance of the data-driven model and control.

Keywords: data-driven model; Jacobian matrix initialization; robotic system

MSC: 65

1. Introduction

In the last decade, data-driven control has increased its applications in mechanical,
electronic, and robotic systems, see, for instance, the works of [1–3]. A data-driven approach
simplifies the modelling in complex processes using only the online input and output
signals of the system. A data-driven model is based on the premise that the system is
unknown [4–6]. In the same way, the only requirement is the measurable information
from the system to approximate its model [7]. Robot manipulators are considered complex
and nonlinear systems with parametric uncertainties. Thus, it is difficult to define their
model precisely. The Jacobian matrix represents the system for a kinematic control at
the velocity level to achieve the position tasks of the robot’s end-effector. The robot
model is obtained through the approximation of the Jacobian matrix using a data-driven
approach. In comparison with the traditional robot model, the data-driven modelling
requires less information to approximate the Jacobian matrix. The main difference between
the traditional and estimation method for robot modelling is the initialization of the Jacobian
matrix. While the traditional method has its initial conditions well defined, in the case of a
data-driven model, the initial conditions are unknown.

Data-driven modelling works by using the input and output signals from the
system [8–10]. Therefore, there is no discrimination in the class, structure, or type of
robot to apply this approach [10–12]. It can be applied to inertial, noninertial, and flexible
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robots with multi-input and multioutput signals [13–16]. The Jacobian matrix is computed
only with the measurements of the online joint velocities and end-effector velocities [17].
Moreover, data-driven modelling and control can be applied to robots as a complement
to industrial processes. Ref. [18] implemented a data-driven model in the joint position
control of a robotic arm as single-input single-output (SISO) system. On the other hand,
a redundant robot was considered as a discrete-time MIMO system under the principle
of a data-driven model, where the time-varying parameter was the estimated Jacobian
matrix [19]. In that particular case, Ref. [20] proposed the pseudo-Jacobian matrix (PJM)
algorithm to estimate the kinematic model of MIMO robotic systems.

Commonly, the computation of a data-driven model in SISO systems is through the
principle of the pseudo-partial derivative (PPD) [21,22]. Hence, the estimated model starts
up with a scalar value. However, the challenge for data-driven models in redundant
robots is that they require the Jacobian matrix computation, so that the estimated model
requires a set of initial values. The initialization of the Jacobian matrix values represents a
challenging topic for data-driven modelling, since the system is unknown even from the
beginning. The most common proposal used is to use a zero initialization. Thus, the initial
Jacobian matrix values tend to update with the same order of magnitude. However, each
value of the Jacobian matrix depends on different orders of magnitude with respect to the
robot’s nature. As a consequence, the implementation of the zero-initialization technique
diminishes the quality of the estimation algorithm. On the other hand, a Jacobian matrix
with random initialization values loses repeatability and estimation performance. The
initialization techniques are generally applied to computer vision applications. Ref. [23]
presented the initialization of the segmentation of images for a medical approach. Ref. [24]
implemented the initialization of multimodal pair registration algorithm. However, in the
case of the initial values of the Jacobian matrix, it is necessary to satisfy the performance of
the robot control. Moreover, it is important to guarantee the convergence of the estimation
and control errors. In general, each type of robot demands an exclusive Jacobian matrix of
its kinematic model. Therefore, the initialization values for the PJM approach represent
a challenge for the topological configuration of each robot. The proposal of this work
is to present a generalized methodology to find the adequate values for the Jacobian
matrix initialization.

As was mentioned above, the common initialization techniques are selected intuitively
by the user’s experience, which are unsatisfactory for starting up the PJM algorithm. This
work proposes a novel methodology for the Jacobian initialization based on the kinematic
constraints, rank, and domain values of the Jacobian matrix.

This paper establishes a methodology for the initial values’ selection of an estimated
Jacobian matrix based on the input and output signals of a redundant robot. The equivalent
model is approximated through the PJM algorithm. A control law is also proposed based
on a new neuro-fuzzy network that only needs to adapt one parameter to achieve the
convergence of the control error. The input to the neuro-fuzzy network is a function in
terms of the future error, which avoids the chattering phenomenon [25].

To demonstrate the initialization methodology, the end-effector control of an eight-
degree-of-freedom (dof) redundant robot through three different scenarios is performed,
including a regulation control task, trajectory tracking task, and position task against dis-
turbance. Furthermore, a general stability analysis is established, including the parameter
settings for the estimation model and the proposed control law.

The structure of this work is as follows: Section 2 describes the robotic system repre-
sentation and the Jacobian matrix initialization, Section 3 introduces the control law design
and the Lyapunov analysis, Section 4 exposes the numerical results, and Section 5 provides
the conclusions.
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2. Robotic System Representation

The representation of the end-effector velocity working within the discrete-time do-
main is approximated by the following expression:

χ(k + 1)− χ(k)
Ts

= J∗A(k)
q(k)− q(k− 1)

Ts
(1)

where J∗A(k) is an ideal Jacobian matrix, ν(k + 1) = χ(k+1)−χ(k)
Ts

is the end-effector velocity,

ω(k) = q(k)−q(k−1)
Ts

represents the joints’ velocities, and Ts is the sampling time.
Assumption 1 below is required for the robot control in a closed-loop configuration.

Assumption 1. The robotic system needs to satisfy the Lipschitz condition, where a positive
constant L limits the relationship between the system’s input and output: ‖ ν(k + 1) ‖≤ L ‖
ω(k) ‖. This means a change in the output of the system imposes a change in the input of the system.

The ideal Jacobian matrix approach J∗A(k) is represented by:

J∗A(k) = ĴA(k) + ε(k) (2)

where ĴA(k) is the Jacobian matrix computed for the PJM algorithm, and ε(k) is the estima-
tion error. The Jacobian matrix is the relationship between the output and input signals
within the discrete-time domain

ĴA(k) =
ν(k + 1)

ω(k)
∈ Rm×n (3)

where m is equal to the number of end-effector dofs and n is equal to the number of dofs of
the robot, whereas the robot is considered a MIMO system. The robotic system requires the
observability condition in Assumption 2 in order to apply a data-driven model and control.

Assumption 2. To apply a data-driven model and control under the concept of the PJM algorithm,
the output of the robotic system needs to be observable, ν(k + 1) = ĴA(k)ω(k) ∀k > 0. An
approximated Jacobian matrix is computed as a model identification by the measured output (end-
effector velocity).

The PJM algorithm approximates the Jacobian matrix, see the reference [20] for more
details. The Jacobian matrix is updated as follows:

ĴA(k + 1) = ĴA(k) +
η
[

J∗A(k)ω(k)− ĴA(k)ω(k)
]
ωT(k)

µ+ ‖ ω(k) ‖2 (4)

where µ, η ∈ R+ are the weight parameter and the step parameter, respectively.

2.1. Jacobian Matrix Initialization

The initialization of an estimated model is a critical topic for data-driven modelling
and control. The selection of the initial parameters for an estimated Jacobian matrix plays
an important role to determine the end-effector trajectory and the convergence time of
the control error and the control signals. The first stage of a data-driven model is to
determine the initialization values of the Jacobian matrix. Thus, during the second stage,
the estimation algorithm approximates the Jacobian matrix. In the first stage, the proposed
initialization contains fixed values only to start up the estimation algorithm, and during the
second stage the estimation algorithm computes the online Jacobian matrix. The quality of
the online estimation algorithm relies on the adequate selection values in the initialization
Jacobian matrix. Consequently, the robot can achieve the proper control position task in a
closed-loop configuration.
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The proposed methodology for the initialization of the Jacobian matrix is presented below.

Assumption 3. The initialization values from the estimated Jacobian matrix ĴA(0) and the control
signals ω(0) should satisfy ε(k) ≈ 0 when k→ ∞.

Corollary 1. If the equivalent model obtained by the PJM algorithm fulfils Assumptions 1–3, the
initialization of the estimated Jacobian matrix should satisfy the next criteria:

i Fulfil the robot kinematic constraints.
ii The Jacobian matrix should be full rank, i.e., σ(ĴA(0)) = m.
iii The domain Di of the initial Jacobian matrix ĴA(0) should guarantee that the estimation error

ε(k) ≈ 0 and the control error e(k)→ 0 when k→ ∞.
iv The domain of the Jacobian matrix from a discrete-time MIMO system belongs to a domain

ĴA(k) ∈ D, and the subdomain from the initial conditions ĴA(0) ∈ Di belongs to the Jacobian
matrix domain, this means Di ∈ D.

v Therefore, the error converges to a vicinity of the origin for tracking control in a compact set
Ωset, when the criteria i to iv are fulfilled.

To exemplify the initialization method, the analysis of this work was applied to a
mobile manipulator robot. KUKA youBot has 8 dofs. The estimated Jacobian matrix
represents the whole robot with two parts: the omnidirectional platform and the robotic
arm. The omnidirectional platform is composed of 3 dofs: 2 prismatic joints in the x and
y direction, and 1 revolute joint. The robotic arm is composed of 5 revolute joints. The
topology configuration of the robot is SE(2)×T5.

The structure of the initial estimated Jacobian matrix is defined as:

ĴA(0) =


 a0


3×3

[
b0
]

1×5[
c0
]

1×5[
d0
]

1×5

 ∈ R3×8 (5)

where a0 represents the holonomic constraint of the omnidirectional mobile platform
expressed as follows

a0 =

0 1 0
1 0 0
0 0 0

 ∈ R3×3 (6)

Then, b0 is the subspace of the estimated Jacobian matrix which represents the mini-
mum change from axis x with respect to the robotic arm joints represented by

b0 =
[
0 0 0 0 0 0

]
∈ R1×5; (7)

likewise, c0 is the subspace of the estimated Jacobian matrix which represents the minimum
change from axis y with respect to the robotic arm joints represented by

c0 =
[
0 0 0 0 0 0

]
∈ R1×5; (8)

for this case, d0 is the subspace of the estimated Jacobian matrix which represents the
change from axis z with respect to the robotic arm. The selection of the d0 values becomes
essential to fulfil the requirements of the estimated Jacobian matrix initialization. It is
important to select a domain of values to satisfy the conditions of a full rank of the Jacobian
matrix and the convergence of the estimation error regarding the criteria in Assumption 1.
The set of values selected were:

d0 =
[
−0.06 −0.05 −0.03 0.02 0.03

]
∈ R1×5 (9)
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Therefore, according to the previous conditions, the initial Jacobian matrix was formed
as follows

ĴA(0) =

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −0.06 −0.05 −0.03 0.02 0.03

 ∈ R3×8 (10)

where the selected values in (10) satisfied σ(ĴA(0)) = 3 and they guaranteed an estimation
error close to zero, which is demonstrated in Corollary 2.

Corollary 2. The term Pk = J∗A(k)Ĵ
†
A(k) allows a comparison between the ideal Jacobian J∗A(k)

and the estimated Jacobian ĴA(k). Therefore, it satisfies the next inequality,

Pmin
k <‖ I − J∗A(k)Ĵ

†
A(k) ‖≤ Pmax

k . (11)

Since Pmin
k and Pmax

k are the lower and upper values. They depend on the initialization
of the Jacobian matrix ĴA(0) [26]; Pmin

k = 0 and Pmax
k = 1.85 were obtained by simulations

using a proportional controller, and Figure 1 depicts its performance. In terms of the
damping factor, the pseudoinverse matrix computation is

Ĵ†
A(k) = ĴT

A(k)
[
ĴA(k)ĴT

A(k) + ξ I
]−1

(12)

where the domain of values is established for ξ ∈ (0, 1). The PJM algorithm approximates
the Jacobian matrix by maintaining the estimation error close to zero. Consequently,

Pk = J∗A(k)Ĵ
†
A(k) ≈ I (13)
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Figure 1. Magnitude of Pk and ‖ ε(k) ‖.

Therefore, an estimation error ‖ ε(k) ‖= 0.16 is guaranteed, according to Figure 1,
when the selected values in (10) are applied.

2.2. Equivalent Model Stability Analysis

This section presents the stability analysis for the data-model of the PJM algorithm
in (4) using the Lyapunov candidate function in terms of the estimation error. The estima-
tion error is defined as:

ε(k + 1) = J∗A(k + 1)− ĴA(k + 1) (14)
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The ideal Jacobian matrix is the reference model; this Jacobian Matrix is computed by
the kinematic model considering the Denavit–Hartenberg parameters. Under a classical
approach, the robot model requires us to know the physical and mechanical parameters
such as the types of joints (revolute or prismatic ones), the link distance, the centre of mass,
and the gravity. In contrast, the proposed data-driven model only requires the inputs and
outputs to estimate the Jacobian matrix as a model of the robot. For the case where the
estimation error achieves to be zero, the updated Jacobian matrix satisfies J∗A(k+ 1) = J∗A(k);
then, the estimated Jacobian matrix becomes:

ĴA(k + 1) = ĴA(k) + Θk ‖ ω(k) ‖2 ε(k). (15)

Hence, the next inequality should be fulfilled

Θk =
η

µ+ ‖ ω ‖2 > 0,∈ R+ (16)

and by substituting (15) in (14), the estimation error is

ε(k + 1) = J∗A(k + 1)− ĴA(k + 1)

= J∗A(k)− ĴA(k)−Θk ‖ ω(k) ‖2 ε(k) (17)

= ε(k)− ε(k)Θk ‖ ω(k) ‖2

and the change in the estimation error is

ε(k + 1)− ε(k) = −ε(k)Θk ‖ ω(k) ‖2

∆ε(k + 1) = −ε(k)Θk ‖ ω(k) ‖2 (18)

Theorem 1. As the KUKA youBot is considered a discrete-time MIMO system, the PJM algorithm
can compute an estimated Jacobian matrix, when the system in (3) satisfies the observability and
Lipschitz conditions. Therefore, the data-driven model approach is applied when ε(k) ≈ 0.

Proof. The candidate discrete Lyapunov function is

Vsys(k + 1) =
1
2

ε(k + 1)εT(k + 1). (19)

The Lyapunov function change is represented by

∆Vsys(k + 1) = Vsys(k + 1)−Vsys(k). (20)

The change in the Lyapunov function in terms of the estimation error ∆ε(k + 1) is

∆Vsys(k + 1) = ∆ε(k + 1)
[

ε(k) +
1
2

∆ε(k + 1)
]T

. (21)

Substituting (18) in (21), it is necessary to look at the Lyapunov stability condition

∆Vsys(k + 1) = −ε(k)εTΘk ‖ ω(k) ‖2

×
[

1− 1
2

Θk ‖ ω(k) ‖2
]

. (22)

The Lyapunov conditions are Vsys(k + 1) > 0 and ∆Vsys(k + 1) < 0, and the next
inequality condition should satisfy

Φk = 1− 1
2

η ‖ ω(k) ‖2

µ+ ‖ ω(k) ‖2 > 0,∈ R+ (23)
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Remark 1. The details of Theorem 1 are discussed in [27], the stability analysis of the PJM
algorithm and the convergence of the estimation error are relevant for the global stability analysis of
a data-driven control in a closed-loop configuration presented below in Theorem 3.

Remark 2. The upper and lower joints’ velocities depend on the actuators’ saturation, and me-
chanical damage in the robot needs to be prevented. Hence, the estimation error must be close
to zero.

For k→ ∞, ω(k) ≈ 0, and the stability condition Φk is accomplished by using (23). The
saturation of the actuators ωsat(k) depends on the robot characteristics (revolute or prismatic
joints). Nevertheless, the damages into the KUKA youBot actuators can be prevented under
the operating range ω(k)sat = ±0.6 rad

sec . From (23), the next inequality should satisfy

0 < η ≤
2
[
µ+ ‖ ωsat(k) ‖2]
‖ ω(k)sat ‖2 (24)

Accordingly, Φk ≤ Υ, where Υ is the upper limit, when Φk(||ω(k)||, ηMax), so that (22)
becomes:

∆Vsys(k + 1) ≤ −||ε(k)||2Θk ‖ ω(k) ‖2 Φk (25)

Since, ∆Vsys(k + 1) < 0 when (24) is fulfilled and µ > 0, ε(k) ≈ 0, i.e., J∗A(k)Ĵ
†
A(k) ≈ I

as k→ ∞.

3. Control Law

The proposed control law is a proportional controller with adaptive gains for each ith
axis of the robot in the x, y, and z directions. A neuro-fuzzy network was applied to tune
the adaptive gains of the controller. The position error of the end-effector is

ei(k + 1) = χi(k + 1)− χdi
(k + 1) (26)

where χi(k + 1) represents the position of the end-effector axis, and χdi
(k + 1) is the desired

position task of the robot. The controller design uses the function si(k + 1) in the input of
the neuro-fuzzy network in order to improve the tracking of the position error. Hence, the
function is defined as:

si(k + 1) = C1ei(k + 1) + C2ei(k) (27)

where C1 and C2 ∈ R+ are positive constants. The novelty of the proposed controller is
that the function si(k + 1) is the input to the neuro-fuzzy network, and the output of the
neuro-fuzzy network tunes the gains of the proportional controller Ksi . The architecture
of the adaptive gains is based on the fuzzy rules emulated network (FREN) structure
proposed by [28]. The proposed topology based on a FREN to tune the adaptive gains for
the proportional controller is depicted in Figure 2.

µPLµPLµPL

µPSµPSµPS

µZEµZEµZE

µNSµNSµNS

µPSµPSµPS

βPLβPLβPL

βPSβPSβPS

βZEβZEβZE

βNSβNSβNS

βPSβPSβPS

∑∑∑si(k + 1)si(k + 1)si(k + 1) KsiKsiKsi

Figure 2. Artificial neuro-fuzzy network architecture.
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The layers of the FREN are:
Layer 1: The function si(k + 1) is defined as the input to the neuro-fuzzy structure.
Layer 2: The second layer contains the linguistic variables as membership functions.

The output at the jth node of this layer is calculated by φij as

φij = µij(si) (28)

where µij denotes the linguistic variable at the jth node (j = 1, 2, ..., N) for the ith axis. The
five linguistic variables are PL for positive large, PS for positive small, ZE for zero, NS for
negative small, and NL for negative large.

Layer 3: This layer may be considered as a defuzzification step. In this case, the
parameters βij remain constant.

Layer 4: This is the output of the artificial neuro-fuzzy network, where the gains of the
controller are updated for the proportional controller as

Ksi =
N

∑
j=1

βijφij (29)

where N is the number of linguistic variables. The output of the FREN, Ksi , contains
positive values according to the membership functions taking values between 0 and 1, and
positive values for βij ∈ R+.

The generalized rules depend on:

• If sij is j, then Ksij is j.

Figure 3a–c show the memberships function for the x, y, and z axes, respectively.
The five membership functions were designed by considering the input function to the
artificial neuro-fuzzy network si(k + 1) in (27). As the function si(k + 1) was in terms of the
position errors, this depended on the physical characteristics of the KUKA youBot, where
the omnidirectional platform moved on the x–y plane and the robotic arm in the z direction.
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Figure 3. Membership function design. (a) The 5 membership functions designed in terms of sx(k);
(b) the 5 membership functions designed in terms of sy(k); (c) the 5 membership functions designed
in terms of sz(k).
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Theorem 2. We can tune the parameters βxj, βyj and βzj in Table 1 through the conditions
in (A10).

The novelties of the proposed neuro-fuzzy network are:

• The five membership functions are designed according to the physical characteristics
of the robot axes.

• The proposed function si(k + 1) is the input of the neuro-fuzzy network. This avoids
the chattering action, and it benefits the trajectory tracking control.

• The proposed neuro-fuzzy network needs to update only one parameter Ksi for each
robot axis in order to minimize the control errors.

Table 1. Value of βij parameters.

Parameters sx sy sz

βPL 1 1 8.16
βNL 0.75 0.75 7.5
βZE 0.5 0.5 5
βNS 0.75 0.75 2.5
βNL 1 1 1

3.1. Robot Control

Figure 4 shows the block diagram of the proposed control scheme. The function
si(k + 1) is fed with the end-effector position error, which in turn is considered the input to
the neuro-fuzzy FREN, where the tuning and adaptation of the gains Ksi is achieved. Later,
the gains Ksi , the control error e(k), and the estimated pseudoinverse Jacobian matrix Ĵ†

A(k)
are used in the kinematic control law. The equivalent model is derived from the estimation
of the Jacobian matrix through the PJM algorithm. By consequence, the loop closes when
the end-effector position χ(k + 1) reaches the desired position χd(k + 1).

∑ s(k) FREN Ks(k) u(k) Kinematic
control

Model
by PJMĴA(k)Adaptation

Knowledge based on the system

IF-THEN
rules

e(k)
Ød(k)

˚ (k + 1)

z−1

Ĵ†
A(k)

!(k)

Figure 4. Control block diagram of the neuro-fuzzy control applying PJM algorithm.

The position error of the end-effector was defined in (26). Starting from this, the
position of the robot’s end-effector is now

χ(k + 1) =χ(k) + J̄A(k)ω(k) ∈ Rm

=χ(k) + Ts ĴA(k)ω(k) + Tsε(k)ω(k) ∈ Rm (30)

where the terms J̄A(k) = J∗A(k)Ts ∈ Rm×n include the ideal Jacobian matrix and the sam-
pling time, and from (2), the ideal Jacobian is J∗A(k) = ĴA(k) + ε(k),∈ Rm×n. Substituting
the current position (30) in the control error (26):

e(k + 1) =χ(k) + J̄A(k)ω(k)− χd(k + 1)

=χ(k) + J∗A(k)∆q(k)− χd(k + 1) (31)
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The pseudoinverse Jacobian matrix Ĵ†
A(k) resolves the inverse kinematics, the joint’s

velocities are the control signals

ω(k) = −Ĵ†
A(k)u(k) ∈ Rn (32)

and u(k) contains the control law of ux, uy(k), and uz(k) as follows

u(k) = [Kse(k)− νd(k + 1)] ∈ Rm (33)

where Ks ∈ Rm×m is a diagonal matrix which contains the adaptive gains Ksx , Ksy and Ksz .
The desired velocity νd(k + 1) ∈ Rm of the end-effector is included in the tracking control.
The next equation solves the pseudoinverse Jacobian matrix Ĵ†

A(k) problem

Ĵ†
A(k) = ĴT

A(k)
[
ĴA(k)ĴT

A(k) + ξ I
]−1

(34)

where the value of the damping factor is ξ = 0.1. The updated positions are

q(k + 1) = q(k) + ω(k)Ts (35)

3.2. Controller Stability Analysis

Theorem 3. For a closed-loop control using the PJM to estimate the Jacobian matrix of a discrete-
time MIMO system such as the KUKA youBot, the error position of the end-effector converges to a
vicinity of the origin for the trajectory tracking control. When it satisfies the Lipschitz condition,
‖ I − J∗A(k)Ĵ

†
A(k) ‖≤ Pmax

k , and ε(k) ≈ 0.

Proof. The candidate discrete Lyapunov function for a closed-loop control is

V(k + 1) =
1
2

e(k + 1)eT(k + 1) (36)

for the stability analysis, the Lyapunov condition is V(k + 1) > 0. The change in the
Lyapunov function for the controller is

∆V(k + 1) = −Kse(k)eT(k)
[

I − 1
2

Ks

]
+

1
2

ΩkΩT
k

∆V(k + 1) ≤ −1
2
‖ e(k) ‖2 +

1
2

Γ2 (37)

Ωk and Γ2 are discussed in Appendix A, and Γ2 is the upper-bounded value corre-
sponding to the undefined sign terms in (A8) and (A9) within a compact set. Therefore,
∆V(k + 1) < 0 ∀ Ks ≤ I, i.e., e(k) approaches a uniformly ultimately bounded (UUB)
system.

3.3. General Stability Analysis

The aim of this section is to demonstrate the stability analysis through a Lyapunov
approach, which involves the dynamic of the estimated model and the control law in
a closed-loop configuration. This means the Lyapunov candidate function includes the
control and estimation errors.
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Theorem 4. Considering that the MIMO system in (3) satisfies the following criteria:

• Assumption 1: Lipschitz condition.
• Assumption 2: observability condition.
• Assumption 3: estimation error convergence.
• Corollary 1: initialization methodology.
• Corollary 2: bounded estimation error value.
• Theorem 1: estimation model stability analysis.
• Theorem 2: robot control stability analysis.

If Assumptions 1–3, Corollaries 1 and 2, and Theorems 1 and 2 are fulfilled, then the general
closed-loop stability of the system is ensured through the model and control Lyapunov functions.
The control error converges to a vicinity of the origin and the estimation error approximates zero.

Proof. The stability proof is developed by the general Lyapunov function VG(k + 1) > 0 and
its change in the Lyapunov function ∆VG(k + 1) < 0.

Consider the following general Lyapunov function

VG(k + 1) =Vsys(k + 1) + V(k + 1)

=
1
2

[
ε(k + 1)εT(k + 1) + e(k + 1)eT(k + 1)

]
(38)

considering (19) and (36) to propose the general Lyapunov function, where VG(k + 1) > 0.
The change in the general Lyapunov function is

∆VG(k + 1) = ∆Vsys(k + 1) + ∆V(k + 1) (39)

and substituting (25) and (37) in (39), it is obtained that

∆VG(k + 1) ≤− ||ε(k)||2Θk ‖ ω(k) ‖2 Φk

− 1
2
‖ e(k) ‖2 +

1
2

Γ2 (40)

This means e(ε(k)) when ||ε(k)|| = 0.143 in Figure 1, and e(k) = 0, as long as k→ ∞
and Γ2 is within a compact set.

Using Corollary 2,

lim
k→∞
||ε(k)|| = 0.143 (41)

The estimation error converges at 4.34 s in Figure 1; meanwhile, the control error
converges at 10 s in Figure 5b. This means the estimation error should converge before
the control error. According to (30), the control error is in terms of the estimation error.
Therefore, VG(k + 1) > 0, ∆VG(k + 1) < 0 ∀k and the Lyapunov stability analysis is
guaranteed in a vicinity of the origin using (40).
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Figure 5. Simulation results for regulation control: (a) end-effector position, (b) control errors,
(c) prismatic velocities, and (d) revolute velocities. (a) End-effector reaching a fixed position in the
space and the performance in the x, y, and z directions; (b) control errors for the x, y and z directions
of the end-effector; (c) performance of the prismatic velocities ω1(k) and ω2(k) in the mobile platform;
(d) performance of the revolute velocities: ω3(k) in the mobile platform and from ω4(k) to ω8(k) in
the robotic arm.

4. Results

To start the simulations, it was necessary to consider the initialization conditions
mentioned in Corollary 1 and according to the values selected in (10) for the estimated
Jacobian matrix ĴA(0). The operating values were within ±0.6 rad

sec in order to avoid risky
damage to the robot structure. The initial values for the prismatic and revolute joints were
ωpris(0) = 0.2 m

sec and ωrev(0) = 0.2 rad
sec .

The parameter settings were selected according to Theorems 1–3 in Table 2.

Table 2. Parameter settings for the robot model and control.

Parameters Values Remark

ηx 0.5726 (24)
ηy 0.5745 (24)
ηz 0.1045 (24)
µ 1 (24)

C1 0.7 (A12)
C2 0.5 (A12)
ξ 0.01 (12)

The performance of the data-driven control was validated by three different simula-
tions.
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The first simulation was the regulation control of the end-effector. That is, the end-
effector reached a fixed desired position. Figure 5a shows the end-effector for a fixed
position task. The convergence of the three position errors are observed in Figure 5b. The
z-axis position error was the first to converge at 6 s. The x-axis error converged at 10 s.
Finally, the y-axis error converged at 13 s. Figure 5c shows the signals of the prismatic
velocities ω1(k) and ω2(k); the maximum linear velocity was 0.6 m

sec . Figure 5d depicts the
revolute joints’ signals from the robot base and the robotic arm. The maximum angular
velocity was 0.6 rad

sec for ω6(k) and the minimum velocity was −0.6 rad
sec , achieved for ω8(k).

For the second simulation, while the end-effector reached the object position, a distur-
bance was applied in the desired position. This means the desired position was changed in
order to probe the performance of the robot’s control against disturbances. The trajectory
of the end-effector is observed in Figure 6a, where the change in the trajectory once the
objective was moved is clearly observed. The position error is shown in Figure 6b. It is seen
that after 15 s, the disturbance in the end-effector position was introduced, increasing the
control errors in the three axes. However, after 20 s, the errors in the three axes converged
again. In the case of prismatic joints, it can be seen in Figure 6c that when applying the
disturbance, the maximum linear velocity was 0.6 m

sec . On the other hand, the revolute joints
reached their minimum and maximum value in ± 0.6 rad

sec during the disturbance.
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Figure 6. Simulation results for an external disturbance in the desired object position: (a) end-effector
position, (b) control errors, (c) prismatic velocities, and (d) revolute velocities. (a) End-effector
performance in the x, y, and z directions during an external disturbance; (b) control errors for the
x, y, and z directions during an external disturbance; (c) performance of the prismatic velocities
ω1(k) and ω2(k) in the mobile platform during an external disturbance; (d) performance of the
revolute velocities, ω3(k) in the mobile platform and from ω4(k) to ω8(k) in the robotic arm, during
an external disturbance.

In the third simulation, the end-effector followed a circular trajectory. Figure 7a shows
the position of the end-effector on its three axes. The x and y axes followed the trajectory,
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since the z-axis was maintained constant; in Figure 7b is shown the position error of the
end-effector during tracking control. Figure 7c depicts the periodic trajectory followed by
the prismatic joints in the x–y plane. Figure 7d shows that the revolute joints’ velocities
remained close to zero in order to maintain the posture of the robotic arm. Figure 7e shows
the circular trajectory of the end-effector.
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Figure 7. Simulation results for the trajectory tracking control: (a) end-effector position, (b) control
errors, (c) prismatic velocities, (d) revolute velocities, and (e) the end-effector circular trajectory in
space. (a) End-effector trajectory tracking control performance in the x, y and z directions; (b) control
errors for the x, y, and z directions during the end-effector trajectory tracking control; (c) performance
of the prismatic velocities ω1(k) and ω2(k) in the mobile platform during the end-effector trajectory
tracking control; (d) performance of the revolute velocities, ω3(k) in the mobile platform and from
ω4(k) to ω8(k) in the robotic arm, during the end-effector trajectory tracking control; (e) end-effector
trajectory.
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The drawback of the proposed initialization method is to be able to identify the four
criteria in Corollary 1. It is important to have an understanding of the kinematic constraint,
matrix rank, and the stability analysis of the closed-loop control.

5. Conclusions

This work presented a methodology based on a generalized Jacobian matrix initializa-
tion applied to a data-driven model approach for a robotic system. A redundant robot is a
class of discrete-time MIMO systems. From the data-driven model methods, the system is
considered as unknown even from the beginning. The PJM algorithm requires the input–
output signals to approximate the Jacobian matrix. Hence, the estimated Jacobian matrix
represents the model for a first-order kinematic control in a redundant robot.

The initialization of the Jacobian matrix is an indispensable research topic for data-
driven model and control, since the control error and estimation error guarantee their
convergence. It was possible to determine the conditions for the initial values of the
estimated Jacobian matrix. The conditions were closely tied to the Jacobian matrix rank,
the holonomic constraint, the domain of the Jacobian matrix, and the guarantees of control
and estimation errors’ convergence. The proposed methodology introduced a specific
procedure to identify and select the adequate set of initialization values of the estimated
Jacobian matrix by applying a data-driven model in a closed-loop control.

Moreover,de novelty of the proposed proportional controller was the adaptation of
its gains using a neuro-fuzzy architecture. The neuro-fuzzy network adapted only one
parameter for each end-effector axis; hence, the control errors converged to zero. The
control stability analysis included the convergence of the estimation and control errors.
Moreover, the conditions of the initial Jacobian matrix, the PJM algorithm, and the proposed
robot control were tested in simulations.

As future work, a comparison will be performed between the proposed Jacobian matrix
initialization method and an artificial neural network learning approach. Furthermore, the
validation of the data-driven modelling and control approach presented in this research
will be extended to an experimental setup. Finally, the entire control of the robot pose will
be considered, including the position and orientation of the end-effector.
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Appendix A

Proof of the Theorem 2. The candidate discrete-time Lyapunov function is:

V(k + 1) =
1
2

e(k + 1)eT(k + 1) (A1)

The change in the discrete-time Lyapunov function is defined as:

∆V(k + 1) = V(k + 1)−V(k) (A2)
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The Lyapunov function in terms of the control error is

∆V(k + 1) = ∆e(k + 1)
[

e(k) +
1
2

∆e(k + 1)
]

(A3)

Since χd(k + 1) = χd(k) + ∆χd(k + 1), the position error (31) is simplified as follows:

e(k + 1) =χ(k) + Ts ĴA(k)ω(k) + Tsε(k)ω(k)

− χd(k)− ∆χd(k + 1) (A4)

for J∗A(k) = ĴA(k) + ε(k). The change in error ∆e(k + 1) can be converted into

∆e(k + 1) =Ts ĴA(k)ω(k) + Tsε(k)ω(k)

− ∆χd(k + 1)

∆e(k + 1) =Ts ĴA(k)
∆q(k)

Ts
+ Tsε(k)

∆q(k)
Ts

− ∆χd(k + 1) (A5)

∆e(k + 1) =ĴA(k)∆q(k) + ε(k)∆q(k)− ∆χd(k + 1)

=− J∗A(k)Ĵ
†
A(k)[Kse(k)− ∆χd(k + 1)]

− ∆χd(k + 1)

From [29], Ĵ†
A(k) is a full row rank matrix ĴA(k) ∈ Rm×n with m < n, and it satisfies

the condition Pk = J∗A(k)Ĵ
†
A(k) being a positive definite matrix using (11). Hence,

∆e(k + 1) =− PkKse(k) + [Pk − I]∆χd(k + 1)

=− PkKse(k) + Ωk (A6)

Meanwhile, Ωk = [Pk − I]∆χd(k + 1) ≤ Γ1 if B1 , Pk − I, Γ1 , λmax(B1) ‖ ∆χd(k +
1) ‖. Replacing the change in control error into a change in the Lyapunov function yields

∆V(k + 1) =∆e(k + 1)
[

e(k) +
1
2

∆e(k + 1)
]T

=− PkKse(k)eT(k)
[

I − 1
2

PkKs

]
(A7)

+ ΩkeT(k)[I − PkKs]

+
1
2

ΩkΩT
k

where the term Ωke(k) is undefined in sign, and it is necessary to cancel it under the
following condition

I − PkKs = 0 (A8)

where as mentioned in Corollary 2, Pk ≈ I when ε(k) ≈ 0, by Ks ≈ I.In addition, ‖
ΩkΩT

k ‖
2≤ Γ2 if B2 = Ks − I, Γ2 ,

[
λmax(B2) ‖ ∆χd(k + 1) ‖2]. The stability condition

should satisfy

∆V(k + 1) =− Kse(k)eT(k)
[

I − 1
2

Ks

]
+

1
2

ΩkΩT
k (A9)

where the Lyapunov stability condition is ∆V(k + 1) < 0. Considering that Ks ∈ R3×3 is a
diagonal matrix with positive time-varying parameters Ksx , Ksy , and Ksz , the membership
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functions φij contains values from zero to one and the βij parameters remain positive. In
consequence, the βij parameters are set by considering the performance of the control gains
Ksx , Ksy , and Ksz . The maximum value of βij is determined by the maximum value of Ksi in
Figure A1 and φij = 1, where βij = Ksi φ

−1
ij . Therefore, the βij values are as follows

0 < βxj ≤ 1.06

0 < βyj ≤ 1.00 (A10)

0 < βzj ≤ 8.16

The selected values used for βxj, βyj, and βzj in Table 1 are in agreement for condi-
tion (A10).
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Figure A1. Adaptive gains Ksx , Ksy and Ksz .

The tuning of the design parameters C1 and C2 involved in the function in (27) is
presented below. The function si(k + 1) is the input to the artificial neuro-fuzzy network
to adapt the gain Ksi , where C1 and C2 ∈ R+ are positive constants. Thus, when k → ∞,
ε(k) ≈ 0, and e(k)→ 0, the function s(k + 1) = 0 is as depicted in Figure A2. Then,

e(k + 1) = −C2

C1
e(k) (A11)

In general, (A11) can be considered e(k + 1) = Ake(k), thus the convergence can be
guaranteed when 0 < Ak < 1, where the condition is

0 <

∣∣∣∣C2

C1

∣∣∣∣ < 1 (A12)

in order to satisfy the condition C1 > C2.
Considering that Ks ≈ I and the term I − 1

2 Ks must be positive to fulfil the Lyapunov
stability condition ∆V(k + 1) < 0 in (A9),

0 < I − 1
2

Ks; (A13)

hence, the next term satisfies the stability condition

Ks < 2I (A14)
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Figure A2. Function response: sx(k), sy(k) and sz(k).

Then, the Lyapunov condition ∆V(k + 1) satisfies Theorem 3 in (36). It is possible
to fulfil the condition according to (A9), where the term 1

2 ΩkΩT
k is bounded, the term

−Kse(k)eT(k) remains negative, and by Ks ≤ I, the result is the positive definite matrix 1
2 I.

(A9) is

∆V(k + 1) ≤ −1
2
‖ e(k) ‖2 +

1
2

Γ2 (A15)

by constructing V(k + 1) > 0, see (A1); moreover, regarding (A15), ∆V(k + 1) < 0 in a
vicinity of the origin. Therefore, e(k) also approaches a compact set near to a vicinity of the
origin. Lastly, the control (11) stabilizes the robotic system in (3).
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