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Abstract: The problem of determining the occurrence rate for Earth-size planets orbiting Sun-like stars
is emerging in the universe. We propose a methodology based on a spatial Poisson regression model
with model parameters being inferred by the Bayesian framework to investigate this occurrence
rate. We analyzed an exoplanet sample and its corresponding survey completeness data. Our results
suggest that 46% of Sun-like stars have an Earth-size (i.e., 1–2 times Earth radii) planet with an
orbital period of 5–100 days. Furthermore, we are also interested in the occurrence rate of Earth
analogs hosted by GK dwarf stars (i.e., orbital period of 200–400 days and size 1–2 times Earth
radii). After completeness correction, we obtained an occurrence rate of 0.18% based on the proposed
methodology.

Keywords: conditional autoregressive model; Markov chain Monte Carlo; occurrence rate; spatial
Poisson model
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1. Introduction

In spatial epidemiology, the spatial distribution of diseases is used to construct disease
maps for finding the complex spatial patterns of interesting diseases. When Bayesian
hierarchical models are used to investigate the disease mapping, various spatially struc-
tured random effects can be considered in models. Recently, we have been witnessing a
resurgence of interest in disease mapping, and many efficient methods have been proposed
in the literature (see Moraga and Lawson 2012 [1]; Duncan et al., 2017 [2]; Lawson 2018 [3];
Baer and Lawson 2019 [4]). To the best of our knowledge, the application of disease map-
ping concepts to explore related issues in astronomy within the context of spatial regression
remains unaddressed. This knowledge gap is the driving force behind our investigation
into whether spatial disease mapping techniques can be utilized to examine the occurrence
of Earth-size planets in the Kepler survey. Disease mapping leverages neighboring region
information for parameter estimation in epidemiology, leading to more accurate spatial pre-
dictions. In this study, we extended this approach by incorporating spatial random effects
to capture the spatial correlation in the data. Interestingly, the incorporation of neighboring
region information is still relatively unexplored in astronomy (e.g., Petigura et al., 2018 [5]).

To the best of our knowledge, however, how to apply the concepts of disease mapping
to discuss the related issues in astronomy has not been adequately addressed under the
spatial regression settings. This motivates us to explore whether the techniques of spatial
disease mapping can be applied to investigate the occurrence of Earth-size planets in the
Kepler survey.

The Kepler mission aims to explore the diversity of planets and planetary systems.
The discovery of thousands of transiting planets and planet candidates by the Kepler
mission drastically broadens our knowledge of exoplanets, especially in the category of
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close-in (.1 AU) and small (.4 earth radii) planets around main-sequence dwarf stars
(see Batalha 2014 [6]; Burke et al., 2014 [7]; Mullally et al., 2015 [8]). The inference of the
occurrence of Earth-size planets is an interesting problem that has attracted the attention of
astronomers because of the important theories regarding planet formation and evolution
models (see Benz et al., 2014 [9]). Owing to the low false positive rate of the survey
(see Fressin et al., 2013 [10]; Lissauer et al., 2014 [11]) while seeing different results from
Santerne et al. (2016) [12] for giant-planet candidates, numerous works offered a window
into the statistical studies of planet occurrence rates in terms of orbital periods and planet
radius (see Dong and Zhu 2013 [13]; Fressin et al., 2013 [10]; Petigura et al., 2013 [5]; Burke
2015 [14]; Dressing and Charbonneau 2015 [15]; Silburt et al., 2015 [16]; Morton et al.,
2016 [17]).

In this paper, we took the exoplanet sample and its corresponding survey complete-
ness from Petigura et al., 2013 [5]. In the proposed methodology, we defined the planet
occurrence to be based on the detection of a planet within a specified range of orbital period
and orbital radius. To consider the spatial dependences of the data, we applied a spatial
Poisson regression model (e.g., Besag et al., 1991 [18]; Chen and Yang 2011 [19]; Cressie
2015 [20]) to model the detection probability of an exoplanet. Further, to infer the poste-
rior probability of detecting an exoplanet, a stochastic algorithm based on Markov chain
Monte Carlo (MCMC) under the Bayesian framework was designed. Finally, the posterior
inferences can simultaneously describe the number of exoplanets and the corresponding
occurrence rate in the study region.

The remainder of this paper is organized as follows. In Section 2, we introduce a joint
modeling methodology and present how to estimate parameters in the proposed model.
Section 3 applies the proposed model to determine the occurrence rate of the Kepler planet.
We conclude the paper with a discussion in Section 4.

2. Methodology

Let D be a bounded continuous random field in the <2, which is partitioned into

n = n1 × n2 regular grids D1, . . . , Dn with D =
n⋃

i=1

Di and Di
⋂

Dj = ∅ for i 6= j. Let

Yi, i = 1, . . . , n, be a random variable that counts the number of exoplanets in grid Di. For
grid Di, the expected number, E, of exoplanets can be easily evaluated by:

E =
1
n

n

∑
i=1

Yi.

Motivated by the concept of a standardized mortality ratio in epidemiology (see Kelsall
and Wakefield 2002 [21]; Lawson 2018 [3]), a standardized occurrence ratio of exoplanets
for the grid Di is defined by

ri =
Yi
E

, i = 1, . . . , n.

In general, one can simply use ri as the occurrence rate of exoplanets in grid Di.
Here, one potential influential factor is that a large amount of gravity generally exists
among planets, and the correlation of the data set among grids should be considered in
estimating such an occurrence rate. Obviously, the quantity ri does not take into account
the dependence among {Y1, . . . , Yn}. Thus, using ri to estimate the occurrence rate of
exoplanets of the grid Di may yield inaccurate results. Motivated from existing works (see
Kelsall and Wakefield 2002 [21]; Chen and Yang 2011 [19]; Moraga and Lawson 2012 [1];
Lawson 2018 [3]; Baer and Lawson 2019 [4]), a spatial conditional autoregressive (CAR)
model (see Moraga and Lawson 2012 [1]; Cressie 2015 [20]; Lawson 2018 [3]; Baer and
Lawson 2019 [4]) was applied, which was used to describe possible spatial correlations
among {Y1, . . . , Yn}. The estimates of the occurrence rate of exoplanets in the grid Di, i =
1, · · · , n, were then proposed.
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2.1. Spatial Poisson Regression Model

For i = 1, . . . , n, let Ri be the occurrence rate of exoplanets in grid Di. Then, an
intuitive model for Yi given Ri; i = 1, . . . , n, is a Poisson distribution as follows:

Yi | Ri ∼ Poi(RiE). (1)

In Equation (1), RiE represents the intensity rate of the Poisson process and Ri > 0 is
the main parameter of interest in this research. In this paper, our goal was to incorporate the
spatial dependence of Y1, . . . , Yn to estimate the unobserved variables R1, . . . , Rn. Suppose
that there are p grid-level covariates observed in grid Di denoted together with 1 for the
intercept by xi = (1, xi1, . . . , xip)

′. As suggested in Basag et al. (1991) [18], the occurrence
rate Ri of interest can be modeled in the following manner:

ln(Ri) = x′iβ + δi; i = 1, . . . , n, (2)

where β = (β0, β1, . . . , βp)′ is the vector of regression coefficients and δi is a spatial random
error process. In spatial statistics, the spatial random errors δ = (δ1, . . . , δn)′ capture the
spatial variation and can offer a local adjustment to the mean trend due to unobserved
covariates. In general, we assume that δ follows a multivariate Gaussian process as follows:

δ | σ2, φ ∼ N
(

0, σ2V(φ)
)

, (3)

where the n× n matrix V(φ) is a spatial correlation matrix, φ is an unknown parameter, and
σ2 is a variance component. According to the CAR model, σ2V(φ) given in Equation (3)
can be further decomposed as

σ2V(φ) = (I − φC)−1M,

where C = (cij) is an n× n spatial association matrix, I is an identity matrix, and M = σ2 I.
Under these settings, we have the following facts: (i) (I − φC) is nonsingular; (ii) when
φ ∈ (φmin, φmax), (I− φC)−1M is symmetric and positive-definite, where the upper and lower
limits of φ are evaluated by the inverses of the smallest and the largest eigenvalues of the spatial
association matrix. For the sake of simplicity, in this paper, we constructed C according to the
rook contiguity structure; that is, the (i, j)th element of C is of the following form:

cij =

{
1, i ∼ j;
0, otherwise.

(4)

Note that i ∼ j in Equation (4) represents that Di and Dj are neighbors with a common
boundary.

We define Ni ≡ {j | j ∼ i} to be the neighborhood set of grid Di and δ−i ≡
(δ1, . . . , δi−1, δi+1, . . . , δn)′; then, the conditional distribution of δi conditioned on δ−i is
given by

δi | σ2, φ, δ−i ∼ N

(
φ ∑

j∈Ni

cijδj, σ2

)
, (5)

for i = 1, . . . , n. Note that the joint distribution of δi | σ2, φ, δ−i, i = 1, . . . , n can be shown to
be a multivariate Gaussian distribution as in Equation (3) based on the factorization theorem
of Besag (1974) [22] and the properties of multivariate Gaussian distributions. Readers can
better understand the correctness of Equation (5) by referring to De Oliveira (2012) [23]
for a comprehensive and systematic introduction to the CAR model. It is obvious from
Equation (5) that the spatial dependence is considered through the information derived
from neighbors. Notice that the spatial Poisson regression model offers the advantage of
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incorporating information from neighboring regions to enhance parameter estimation and
prediction. Additionally, it is worth noting that the consideration of data correlation in
recent literature is still relatively uncommon, as observed in studies such as Petigura et al.
(2018) [24].

2.2. Prior Specifications and Posterior Distribution

Using the Bayesian approach, we set mutually independent prior distributions on
parameters β, σ2, and φ as shown in Table 1. For β and σ2, the hyper-parameters are
pre-specified constants such that the corresponding priors are nearly flat. Based on the
CAR model, the spatial dependence parameter φ must fall within (φmin, φmax) to ensure
that (I − φC)−1 is a positive-definite matrix. However, φmin can be less than zero, leading
to a negative spatial correlation, which is rare in practice. Hence, we further restricted the
spatial correlation parameter φ domain to (0, φmax), ensuring positive spatial correlation.
This modification ensures that the model captures the desired spatial dependence structure
and aligns with common practices in the field. According to the priors in Table 1, the joint
prior distribution of β, σ2, and φ, denoted as π(β, σ2, φ), is given by

π(β, σ2, φ) = π(β)π(σ2)π(φ) ∝ σ−2(a+1) exp
(
− 1

bσ2

)
; σ > 0, φ ∈ (0, φmax). (6)

Combining Equations (1)–(3) and Equation (6), the joint posterior distribution of σ2, φ,
β, and δ conditioned on observed data Y = (Y1, . . . , Yn)′ satisfies:

p(σ2, φ, β, δ | Y) =
p(σ2, φ, β, δ, Y)

p(Y)

∝
n

∏
i=1

p(Yi | Ri)p(δ | σ2, φ)π(β, σ2, φ)

∝ exp

(
n

∑
i=1

Yi
(
x′iβ + δi

)
− E

n

∑
i=1

exp
(

x′iβ + δi
))

×
(

det
(

σ2V(φ)
))−1/2

exp
(
− 1

2σ2 δ′V(φ)−1δ

)
×σ−2(a+1) exp

(
− 1

bσ2

)
. (7)

Because the joint posterior distribution in Equation (7) cannot be applied directly to
generate posterior samples of model parameters, an alternative method called a Markov
chain Monte Carlo (MCMC) method will be introduced in the following to generate poste-
rior samples of model parameters.

Table 1. Priors for model parameters β, σ2, and φ.

Parameter Prior Distribution Support of Hyper-Parameter

β Non-informative prior
σ2 Inverse gamma (a, b) a, b > 0
φ Uniform (0, φmax) φmax > 0

2.3. Posterior Inferences of Model Parameters

To generate posterior samples of σ2, φ, β, and δ, the conditional posterior distributions
of each parameter given all of the others are needed. One can then successively sample these
conditional posterior distributions and obtain Markov chains in the parameter spaces that
will converge to the joint posterior distribution of Equation (7) under Tierney’s conditions
(1994) [25].
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Next, we summarize all necessary conditional posterior distributions for σ2, φ, β, and
δi, i = 1, . . . , n, based on Equations (1)–(7) as follows:

p(σ2 | φ, β, δ, Y) ∝ p(δ | σ2, φ)π(σ2)

∝ σ−2(n/2+a+1) exp
(
− 1

σ2

(
1
b
+

1
2

δ′(I − φC)δ

))
p(φ | σ2, β, δ, Y) ∝ p(δ | σ2, φ)π(φ)

∝ (det(V(φ)))−1/2 exp
(

φ

2σ2 δ′Cδ

)
p(β | σ2, φ, δ, Y) ∝

n

∏
i=1

p(Yi | Ri)π(β)

∝ exp

(
n

∑
i=1

Yix′iβ− E
n

∑
i=1

exp
(
x′iβ + δi

))
p(δi | σ2, φ, β, δ−i, Y) ∝ p(Yi | Ri)p(δi | σ2, φ, δ−i)

∝ exp

(
Yiδi − E exp

(
x′iβ + δi

)
− 1

2σ2

(
δ2

i − 2δiφ ∑
j∈Ni

cijδj

))

We notice that p(σ2 | φ, β, δ, Y) is an inverse gamma distribution; that is, σ2 |
φ, β, δ, Y ∼ IG

(
n/2 + a, (1/b + δ′(I − φC)δ/2)−1). Therefore, a Gibbs sampling algo-

rithm (see Geman and Geman 1984 [26]) can be used to generate the posterior samples of
σ2. However, p(φ | σ2, β, δ, Y), p(β | σ2, φ, δ, Y), and p(δi | σ2, φ, β, δ−i, Y), i = 1, . . . , n,
are not all standard distributions; hence, a Metropolis–Hastings algorithm (see Chib and
Greenberg 1995 [27]) can be applied to φ, β, and δi, respectively, to iteratively generate an
ergodic Markov chain that yields the corresponding posterior samples. In particular, gener-
ating the posterior samples of φ is relatively difficult because φ appears in the covariance
matrix V(φ). In this paper, we treated φ as a discrete random variable that is defined on
finite grid points from 0 to φmax; hence, the values of matrix V(φ) on these finite grid points
can be computed in advance. For each step, the posterior sample of φ is generated from a

probability mass function, which is based on the values of (det(V(φ)))−1/2 exp
( φ

2σ2 δ′Cδ
)

evaluated on the finite grid points of φ ∈ (0, φmax).
Based on the posterior samples of σ2, φ, β, and δi, i = 1, . . . , n, the inferences of model

parameters and the occurrence rate of exoplanets in grid Di, i = 1, . . . , n, can be obtained.

3. Application of the Proposed Methodology

To model the occurrence distribution of planets as a function of the planet period
and radius, Petigura et al. (2013) [5] considered transiting planets that are all hosted
by GK-type stars. They defined GK-type stars as those with surface temperatures of
4100 K ≤ Teff ≤ 6100 K and gravities of 4.0 cm/s2 ≤ log g ≤ 4.9 cm/s2. Furthermore, these
planets are restricted to the brightest GK-type stars observed by Kepler (Kp = 10–15 mag).
These 42,557 stars have the lowest photometric noise in the Kepler survey, thereby max-
imizing the detectability of Earth-size planets. In the present work, we mainly studied
the occurrence rate of planets based on the catalog by Petigura et al. (2013) [5], which can
compare our findings with their seminal work by adopting the same study region. Figure 1
shows the scatter plot of the data. Let x1 be the orbital period (days), x2 be the planet
size (Earth radii), and D = [6.25, 400]× [1, 16] be the region of interest for this work; it is
divided into the 6× 4 grids shown in Figure 2. Let Yi record the number of events in grid
Di for i = 1, . . . , 24. Please note that the region D is the same as in Petigura et al. (2013) [5].
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Figure 1. The scatterplot of exoplanets in the x1–x2 space and the 24 subregions Di, i = 1, · · · , 24.
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Figure 2. The values of Yi for i = 1, · · · , 24.
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We applied the linear regression model illustrated in Equation (2) of Section 2.1 to
model the occurrence rate Ri and considered two grid-level covariates, xi1 and xi2, in the
model, where xi1 and xi2 are, respectively, defined by the central points of the orbital period
(days) and planet size (earth radii) of the grid Di (i.e., the central coordinate of the grid Di)
for i = 1, . . . , 24. As a result, the used model, called Model 1, is given by

ln(Ri) = β0 + β1x1,i + β2x2,i + δi; i = 1, . . . , 24, (8)

where β0, β1, and β2 are unknown regression coefficients, and δi is a spatial random error
process. Based on the Bayesian approach in Section 2.3, prior distributions of parameters in
θ = (σ2, φ, β0, β1, β2)

′ are, respectively, set as follows:

σ2 ∼ IG(3, 0.001)

φ ∼ U(0, φmax)

β0 ∼ U(−20, 20)

β1 ∼ U(−20, 20)

β2 ∼ U(−20, 20)

Note that φmax is 0.29 because the smallest eigenvalue of C is 3.42. Since we lacked
additional information about the central tendencies of the parameters, we selected the
hyper-parameter values for the prior distributions based on the preference for larger
variances. Although larger variances may result in a slower convergence, the MCMC
algorithm can still converge. Additionally, the larger variances allow for more flexibility
and variation in the MCMC updates, enhancing the parameter space exploration.

Next, we first examined the hypothesized model (i.e., Equations (1)–(3)) that is suitable
for analyzing the occurrence rate of Earth-size planets in the Kepler survey. In this paper, we
conducted a simulation study based on the Pearson chi-squared test to illustrate the goodness
of fit of the used model (i.e., Equation (8)); Model 1). In addition, as listed in the bottom of
Table 2, a model (i.e., Model 2) with only the regressors and a model (i.e., Model 3) with only
the spatial random error process were also used for comparison. Let Y∗(t)i ; i = 1, . . . , 24, be

independently generated from Poi
(
R∗(t)i E

)
, with E being the expected number of exoplanets

evaluated according to the observed data Y , where R∗(t)i is an estimate of the occurrence
rate Ri based on the posterior medians of θ under the used model (i.e., Model 1, Model 2, or
Model 3) and t = 1, . . . , 5, represents the t-th simulation. For each simulation replicate, the
goodness-of-fit test statistic is computed in the following manner:

χ2(t) ≡
24

∑
i=1

(
Y∗(t)i − R∗(t)i E∗(t)

)2

R∗(t)i E∗(t)

where E∗(t) is the expected number of exoplanets evaluated based on the t-th simulated
data Y∗(t)i ; i = 1, . . . , 24. The simulation results are displayed in Table 2. First, we notice
that Model 2 with only the regressors has a large χ2(t) value for each simulation replicate.
This indicates that Model 2 without considering the spatial correlation of the data is very
inappropriate. Comparing the proposed model (i.e., Model 1) versus Model 3, they have
relatively small χ2(t) values and hence Model 1 and Model 3 are both appropriate for the
analysis of the occurrence rate of Earth-size planets. Overall, the χ2(t) values of Model 1
are slightly smaller than those of Model 3, which further suggests to us to use Model 1
(i.e., Equation (8)) to analyze the data set. Even if all the estimated regression coefficients
are not significant (see Table 3), in general, the regressors should slightly contribute to
evaluating the occurrence rate. Moreover, Figure 3 shows 95% credible intervals of Yi;
i = 1, . . . , 24, for Model 1, Model 2, and Model 3. The results are in accord with Table 2;
that is, Figure 3 reveals that Model 2 performs poorly and that Model 1 and Model 3
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are fairly comparable. On the other hand, we notice that the data may contain potential
biases that may arise from observational precision that results in inaccurate estimates of the
underlying occurrence rates. In our proposed methodology, the random effects describe the
spatial correlation in the data and are a suitable remedy for missing explanatory variables,
addressing the limitations caused by uncollected vital variables. The simulation results
indicate the effectiveness of our approach in mitigating potential biases and enhancing
the model’s explanatory power. Based on the results in Table 2 and Figure 3, Model 1 in
Equation (8) is acceptable and hence we used it to analyze the occurrence rate of Earth-size
planets in the next content.

i
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Figure 3. The 95% credible intervals for Models 1–3. Model 1: a model with the regressors and the
spatial component; Model 2: a model with only the regressors; Model 3: a model with only the spatial
component.

Table 2. The expected numbers and the values of chi-squared test statistics for Model 1, Model 2,

and Model 3 based on the observed data Y and the simulated data Y∗(t) =
(
Y∗(t)1 , . . . , Y∗(t)24

)′, where t
represents the t-th simulation with t = 1, . . . , 5.

Y∗(t)

Y
1 2 3 4 5

Model 1 E∗(t) 23.167 24.958 22.917 22.917 23.500 23.000
χ2(t) 0.665 0.389 0.560 0.680 0.580 0.129

Model 2 E∗(t) 23.083 23.000 22.125 22.917 23.125 23.000
χ2(t) 29.606 19.295 13.640 26.167 10.892 222.619

Model 3 E∗(t) 22.000 21.042 21.958 21.125 24.333 23.000
χ2(t) 0.823 0.769 0.803 0.809 0.774 0.140

Note: Model 1: ln(Ri) = β0 + β1x1,i + β2x2,i + δi ; Model 2: ln(Ri) = β0 + β1x1,i + β2x2,i ; Model 3: ln(Ri) = β0 + δi ;
i = 1, . . . , 24.
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Table 3. Summary of posterior inferences for model parameters.

Parameter 2.5% 5% Median 95% 97.5% Mean S.D.

β0 −6.052 −5.673 −0.283 2.852 3.128 −0.85 2.739
β1 −0.957 −0.893 0.066 0.593 0.664 −0.021 0.453
β2 −1.987 −1.696 0.444 1.935 2.222 0.332 1.097
σ2 45.641 49.314 74.668 119.905 132.288 78.394 22.407
φ 0.029 0.029 0.116 0.232 0.261 0.122 0.068

Note: S.D. represents the standard deviations for each model parameter.

We implemented 200,000 iterations for the posterior calculations to obtain a convergent
sequence and approximately independent posterior samples. The first 100,000 iterations
were discarded as burn-in. Then, one has an approximately independent joint posterior
sample size of 100,000 by subsampling every 10th scan. The execution time for 200,000
MCMC iterations was 56.26471 s on an i7-12700 2.10 GHz PC. The system environment was
R language version 4.2.3 lined to Intel’s Math Kernal Library (MKL) on Windows 11. The
core codes of the MCMC process were implemented using custom-written code without
relying on external packages.The trace plot in Figure 4 displays the logarithm values of
Equation (7) for the 200,000 MCMC iterations. Given that the proposed model incorporates
multiple parameters and random effect terms, we assessed the overall convergence of the
MCMC process using these logarithm values. Notably, the trace plot reveals that it belongs
to an interval within the 200,000 iterations, implying that the MCMC process has reached
convergence. Table 3 presents posterior inferences based on 10,000 posterior samples for
model parameters. Furthermore, the posterior means of Ri = exp(x′iβ+ δi) for i = 1, . . . , 24,
are shown in Figure 5. Figure 6 displays the results with estimated occurrence rates Pi,
i = 1, . . . , 24 in each grid.

Iteration of MCMC
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Figure 4. The logarithm trace plot of Equation (7) for the 200,000 MCMC iterations.
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Figure 5. The posterior means of Ri = exp(x′i β + δi) for i = 1, · · · , 24.
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j=1 Rj for i = 1, · · · , 24 without using com-
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Next, we considered the variable detection efficiency (or completeness) in order to
identify realistic occurrence rates. After obtaining the estimated occurrence rates in each
cell shown in Figure 6, we further considered the survey completeness in order to identify
realistic occurrence rates. The values of completeness function used here were constructed
by Foreman-Mackey et al. (2014) [28]. We can thus obtain the true occurrence rates Ptr

i ,
i = 1, . . . , 24 in each cell, as shown in Figure 7. Because the method proposed in this paper
is presented as a totally different approach to that of Petigura et al. (2013) [5], we need
to make a comparison with Petigura et al.’s method (2013) [5]. We computed realistic
occurrence rates with different values of orbital period (P) and planet radius (R) and the
corresponding realistic occurrence rates, as shown in Table 4. Note that case (i) in Table 4
corresponds to Jupiter-size planets.

From Table 4, we find that (1) for cases (ii), (iii), (iv), (vii), and (ix), the occurrence
rates obtained from the proposed method are larger than those of Petigura et al. (2013) [5]
by approximately a factor of two; (2) for cases (i), (v), and (vi), the occurrence rates
obtained the proposed method are almost the same as Petigura et al.’s (2013) [5]; and
(3) for cases (viii) and (x), the occurrence rates obtained by Petigura et al. (2013) [5]
are larger than the proposed method herein. Because the proposed model considers the
information of neighbors, the grid density is high, which will produce higher occurrence
rates. On the contrary, if the grid density is low, lower rates will occur. Furthermore, both
methods confirm the occurrence rates of planets with (i) P = 5–100 d and size 8–16 R⊕;
(ii) P = 25–50 d and size 1–16 R⊕; and (iii) P = 50–100 d and size 1–16 R⊕.
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Figure 7. The true occurrence rates Ptr
i for i = 1, · · · , 24.

Furthermore, we are interested in the occurrence rate of Earth analogs hosted by
GK dwarf stars, i.e., P = 200–400 d and size 1–2 R⊕. From the scatter plot shown in
Figure 1, there are no planets in this grid, and there are few planets in the neighborhood
of this grid. Thus, it is reasonable that the occurrence rate of this grid is very small. After
completeness correction, we find the occurrence rate to be 0.18% (please see case (viii) in



Mathematics 2023, 11, 2508 12 of 14

Table 4), whereas the values obtained by Petigura et al. (2013) [5], Foreman-Mackey et al.
(2014) [28], and Chen and Hung (2019) [29] are 5.7%, 1.9%, and 2.5%, respectively. The
proposed method indicates that 46% of Sun-like stars have an Earth-size (1–2 R⊕) planet
with P = 5–100 d. This value is higher than Petigura et al.’s (2013) [5] due to the spatial
model considering the information of neighbors. We further conducted an additional
extrapolation of the hot Jupiter occurrence rate (i.e., the occurrence rate of 1–10 days and
8–24 R⊕) and compared it to the findings of Petigura et al. (2018) [24]. Their study reported
a hot Jupiter occurrence rate of 0.57%, whereas our extrapolated estimate stands at 4.17%.
According to the scalability of our proposed model, it provides an extrapolation with new
data. To the best of our knowledge, utilizing neighboring data information for occurrence
rate estimation in astronomy is a novel approach that has not been previously observed.
According to the inference of Petigura et al. (2013) [5], we may imply that the nearest
Earth-size planets in habitable zones of Sun-like stars are expected to orbit a star further
than 12 light-years from Earth because we adopted the 46% occurrence rate.

Table 4. Comparison of realistic occurrence rates with different values of orbital period (P) and planet
radius (R).

Case Period (P) Radius (R) Petigura et al. (2013) [5] The Proposed

(i) 5–100 d 8–16 R⊕ 1.6% 1.26%
(ii) 5–100 d 1–2 R⊕ 26% 46% *
(iii) 6.25–12.5 d 1–16 R⊕ 8.9% 17.21% *
(iv) 12.5–25 d 1–16 R⊕ 13.7% 21.74% *
(v) 25–50 d 1–16 R⊕ 15.7% 17.9%
(vi) 50–100 d 1–16 R⊕ 15.2% 13.16%
(vii) 6.25–25 d 1–2 R⊕ 11.5% 24.59% *
(viii) 200–400 d 1–2 R⊕ 5.7% 0.18%
(ix) <50 d 1–2 R⊕ 19.2% 36.9% *
(x) 200–400 d 2–4 R⊕ 5% 1%

* represents the occurrence rates obtained by the proposed method are larger than Petigura et al. (2013) by
approximately a factor of 2.

4. Discussion

Motivated by the study of Petigura et al. (2013) [5] on the prevalence of Earth-size
planets orbiting Sun-like stars, we adopted a joint modeling approach to investigate the
occurrence rates of planets around GK dwarfs. The inferred occurrence rate of Earth analogs
around GK dwarfs increases to 46%. Compared with that of Petigura et al. (2013) [5], our
approach increases the occurrence rate of Earth analogs by approximately a factor of two.
Nevertheless, our model suggests that the occurrence rate for Kepler planets with radii
between 1 and 2 earth radii and orbital periods between 50 and 400 days is 0.1451. Similar
to most of the results in the literature, our occurrence rate of 0.1451 is also larger than the
results computed by Petigura et al. (2013) [5], Dong and Zhu (2013) [13], and Foreman-
MacKey et al. (2014) [28]. We cautiously contend that our proposed model exhibits a higher
occurrence rate compared to other methods, attributed to the incorporation of spatial
random effects. These effects effectively capture the spatial correlation in the data and
moderately compensate for any missing explanatory variables. Applying our analysis
to the entire Kepler planet sample (Q1− Q16) will be left to future work. On the other
hand, the current approach does not consider the influence of time on occurrence rates.
All the data are treated as being from the same time point. Given the flexible nature of
the proposed model, we plan to incorporate the effect of time using a Poisson process in
future expansions. The expanded model will allow for dynamic predictions of variables
over time.

Taking into account the survey incompleteness, we confirm the study of Petigura
et al. (2013) [5]: the occurrence rates of planets with (i) P = 5–100 d and size 8–16 R⊕;
(ii) P = 25–50 d and size 1–16 R⊕; and (iii) P = 50–100 d and size 1–16 R⊕. The inferred
occurrence rates of Kepler planets suffer severely from systematic uncertainties (see Burke
2015 [14]). Follow-up spectroscopic observations of host stars will refine some of these
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uncertainties, providing a planet sample with better stellar parameters and pipeline com-
pleteness for our model and others to revise the proposed model, and thus present better
constraining theories of planet formation and evolution.
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