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Abstract: The structure of the random matrices introduced in this work is given by deterministic
matrices—the skeletons of the random matrices—built with an algorithm of matrix substitutions
with entries in a finite field of integers modulo some prime number, akin to the algorithm of one
dimensional automatic sequences. A random matrix has the structure of a given skeleton if to the
same number of an entry of the skeleton, in the finite field, it corresponds a random variable having,
at least, as its expected value the correspondent value of the number in the finite field. Affine matrix
substitutions are introduced and fixed point theorems are proven that allow the consideration of
steady states of the structure which are essential for an efficient observation. For some more restricted
classes of structured random matrices the parameter estimation of the entries is addressed, as well
as the convergence in law and also some aspects of the spectral analysis of the random operators
associated with the random matrix. Finally, aiming at possible applications, it is shown that there
is a procedure to associate a canonical random surface to every random structured matrix of a
certain class.

Keywords: random fields; random Matrices; random linear operators; notions of recurrence; symbolic
dynamics; automata sequences
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1. Introduction

Let us start with some motivations. A generic problem in Big Data analysis may have
as a starting point a large matrix having columns to represent the questions and the lines to
represent the subject’s answers (see [1], p. 28). The typical observed matrix may appear to
be random. The questions can admit answers that can be either categorical—and so can
be modelled by random variables taking values in a finite set—or be quantitative and be
modelled by random variables taking values in some set of numbers; in this case, we can
also have random variables taking values in a finite set by consider a partition in intervals
of the range of the real valued random variables. A natural generic question about these
matrices is to determine the existence of a possible structure of the matrix. One initial idea,
to better understand this line of problems, is to build matrices with random entries but
with a prescribed structure and try to recover this structure by means of some statistical
tests or by the spectral analysis of the matrix. These ideas give a practical motivation for
this study.

Let us situate our work in the context of the subject of substitutions. The analysis
of scalar or string substitutions so to say, is a widely studied subject for which [2,3] are
comprehensive references. Important results in the subject of substitutions are to be found
also under the denomination of automated sequences, for instance in [4,5]. To the best of
our present knowledge, the study of matrix valued substitutions has received no special
attention in the literature. In this work, we propose a first approach to this topic. There
has been work in multidimensional substitutions but in a different perspective than the
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adopted here that can be studied in [6–8] and in the chapter by J. Peyriére in [9] and other
references therein.

An important starting point of the study of spectral statistics of random matrices
is the work [10]. In it, the author focuses on three ensembles of asymmetric Gaussian
random matrices derived from the Gaussian Orthogonal, Gaussian Unitary and Gaussian
Symplectic random matrix ensembles by relaxing the Hermitian character. The three
sets of matrices have a common Gaussian probability measure but they exhibit profound
differences in their spectral patterns, differences that are qualitatively described in this
work although the quantitative description was further improved by other authors. The
difficult study of generic properties of random matrices related to the spectral analysis
has received much attention in recent years as perfectly demonstrated in the following
works: [11–18]. Readable introductions to the subject are presented in [19–25].

For a remarkable general formulation of the circular law that is most useful for our
purposes we will refer the following result that conveys the flavour of an universality result
that may be a relevant guide for the statistical analysis of possible existing particular types
of structure in large observed matrices.

Theorem 1 (Circular law, Tao and Wu [22]). If Mn is a n × n matrix with entries that are
independent identically distributed with a complex centred and standardised random variable.
Then, given,

µ M√
n
(x, y) :=

1
n

#{1 ≤ i ≤ n : <λi ≤ x ,=λi ≤ y} ,

the empirical spectral distribution of the eigenvalues λi of (1/
√

n)Mn, we have that the sequence
(µ M√

n
(x, y))n≥1 converges to the uniform measure on the unit disc given by:

dµcircular(x, y) =
1
π

1I{|x|2+|y|2≤1}(x, y)dxdy .

We stress that until this optimal formulation was reached, several other technically in-
volved formulations were obtained attesting the intrinsic difficulty of the subject, displayed
in the works on the subject first referred above. Let us quote Terence Tao for a synthesis of
the recent short history of the subject: A rigorous proof of the circular law was then established
by Bai, assuming additional moment and boundedness conditions on the individual entries. These
additional conditions were then slowly removed in a sequence of papers by Gotze–Tikhimirov, Girko,
Pan–Zhou, and Tao–Vu .

We now refer to recent developments in the study of random matrices having some
structure, the main topic that is dealt with in the present work, in particular results on
the spacing distribution, on invertibility, and appearance of large structures and on the
spectral analysis of these random matrices. These works may give an idea of the amount of
exploratory work needed in the subject of random matrices with structure.

In [26], the authors consider four specific sparse patterned random matrices, namely
the Symmetric Circulant, Reverse Circulant, Toeplitz, and the Hankel matrices. The entries
are assumed to be Bernoulli with success probability linearly decreasing to zero. The mo-
ment approach is used to show that the expected empirical spectral distribution converges
weakly for all these sparse matrices. The work in [27] is a complementary reference where
the author investigates the existence and properties of the limiting spectral distribution of
different patterned random matrices as the dimension grows. The method of moments
and normal approximation with some combinatorics is used to deal with the Wigner ma-
trix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample
auto-covariance matrix, and the k-Circulant matrices.

In [28], a bound on the growth of the smallest singular value is found for random
matrices with independent uniformly anti-concentrated entries with no restrictions on the
null mean or identical distribution of the entries. The result obtained covers inhomogeneous
matrices with different variances of the entries as long as the sum of second moments has
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sub-quadratic growth with the order of the matrix. Following this work, the reference [29]
extends the results of Tao and Vu and Krishnapur on the universality of empirical spectral
distributions to a class of inhomogeneous complex random matrices where the entries are
linear images of standardised independent random variables satisfying a lower bound
and Pastur’s condition. The proof uses an anti-concentration for sums of non-identically
distributed independent complex random variables.

In [30], the semicircle law is established for a sequence of random symmetric matrices
that may be considered as adjacency matrices of random graphs; the random matrices have
independent entries given by the product of independent standardised random variables,
the weight of the edges, with Bernoulli random variables that gives the probability of
the edge. The empirical distribution of the eigenvalues of the normalised random matrix
converges in the Kolmogorov distance to the distribution function of the semicircle law
under boundedness and average conditions.

The work [31] deals with random ray pattern matrices that is matrices for which
each of its nonzero entries has modulus one. A ray pattern matrix corresponds to a
weighted digraph. A random model of ray pattern matrices with order n is introduced,
where a uniformly random ray pattern matrix is defined to be the adjacency matrix of a
simple random digraph whose arcs are weighted with i.i.d. random variables uniformly
distributed over the unit circle in the complex plane. In this paper, it is shown that the
threshold function for a random ray pattern matrix to be ray nonsingular is 1/n. This
function is also a threshold function for the property that giant strong components appear
in the simple random digraph.

The work [32] deals with patterned random matrices which are real symmetric with
substantially less independent entries than in real symmetric matrices. The main results are
the calculation of spacing distribution for order three matrices deriving the distributions
analytically. As expected, spacing distribution displays a range of behaviours based on the
structural constraints imposed on the matrices.

In this work, we propose and study an algorithm to build sequences of random
matrices, with independent entries, that have a built in structure. Furthermore, we explore
some aspects of this kind of random matrices related to identification, spectral analysis,
and an idea for applications. An overview of the content of this work is now detailed.

• In Section 2, we present a first example of the algorithm, used to build structured
matrices, given by the iterative application of matrix valued substitutions; the second
example uses powers of the Kronecker product of a given matrix and is a partic-
ular case of the generic algorithm of matrix substitutions. A general procedure of
construction of the sequence of structured matrices by substitutions is detailed in
Section 3.1.

• In Section 3, we present the results on fixed points of matrix substitutions.
• The randomisation of structured matrices defined by matrix substitutions is studied

in Section 4. Preliminary results on the spectral analysis of these random matrices are
presented in Section 4.3. An application to modelling is detailed in Section 4.4 with an
algorithm to associate a random field to an infinite random matrix of the kind studied
in this work.

2. Structured Matrices Built by Substitutions

We start by presenting two examples of an algorithm to build sequences of arbitrary
large matrices with entries in a finite set. For technical reasons we suppose that the entries
of the structured matrices take values in some finite field, for instance:

Zp = Z/pZ = {0, 1, 2, . . . , p− 1} ,

p being a prime number. The identification of the entries of the matrix as elements of Zp
matters, essentially for the matrix substitution procedure used to build these structured
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matrices. Further ahead we will also consider that the entries of the matrix represent integer
real numbers.

We will proceed to show, in Section 3, that in a certain class of matrix substitution
maps we define, namely the affine matrix substitution maps, every such map admits either
a fixed point or a periodic point.

2.1. A Matrix Sequence Built by Iterated Application of a Matrix Substitution

In the following examples, we suppose that the matrices entries take values in the
field Z3 = {0, 1, 2}. We now consider an example of a sequence of matrices with a structure
defined by substitutions. The main idea of the construction of this sequence of matrices is
the following. We start with some initial matrix M0. The second matrix in the sequence,
the matrix M1, is obtained by replacing each term of the M0 matrix by the matrices given
by σ0, σ1, σ2 according to the entry of M0 we are replacing is, respectively, 0, 1, 2.

M0 =

 2 0 1
1 2 1
1 0 2

 σ0 =

 0 1 2
1 1 2
2 0 1

 σ1 =

 1 0 0
0 2 0
1 0 1

 σ2 =

 1 2 2
0 1 2
0 0 1

 . (1)

In Section 3 we present a formal description of this procedure in a more general case. With
this algorithm we have that,

M1 =



1 2 2 0 1 2 1 0 0
0 1 2 1 1 2 0 2 0
0 0 1 2 0 1 1 0 1
1 0 0 1 2 2 1 0 0
0 2 0 0 1 2 0 2 0
1 0 1 0 0 1 1 0 1
1 0 0 0 1 2 1 2 2
0 2 0 1 1 2 0 1 2
1 0 1 2 0 1 0 0 1


(2)

and also,

M2 =



1 0 0 1 2 2 1 2 2 0 1 2 1 0 0 1 2 2 1 0 0 0 1 2 0 1 2
0 2 0 0 1 2 0 1 2 1 1 2 0 2 0 0 1 2 0 2 0 1 1 2 1 1 2
1 0 1 0 0 1 0 0 1 2 0 1 1 0 1 0 0 1 1 0 1 2 0 1 2 0 1
0 1 2 1 0 0 1 2 2 1 0 0 1 0 0 1 2 2 0 1 2 1 2 2 0 1 2
1 1 2 0 2 0 0 1 2 0 2 0 0 2 0 0 1 2 1 1 2 0 1 2 1 1 2
2 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 2 0 1 0 0 1 2 0 1
0 1 2 0 1 2 1 0 0 1 2 2 0 1 2 1 0 0 1 0 0 0 1 2 1 0 0
1 1 2 1 1 2 0 2 0 0 1 2 1 1 2 0 2 0 0 2 0 1 1 2 0 2 0
2 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 1 0 1 2 0 1 1 0 1
1 0 0 0 1 2 0 1 2 1 0 0 1 2 2 1 2 2 1 0 0 0 1 2 0 1 2
0 2 0 1 1 2 1 1 2 0 2 0 0 1 2 0 1 2 0 2 0 1 1 2 1 1 2
1 0 1 2 0 1 2 0 1 1 0 1 0 0 1 0 0 1 1 0 1 2 0 1 2 0 1
0 1 2 1 2 2 0 1 2 0 1 2 1 0 0 1 2 2 0 1 2 1 2 2 0 1 2
1 1 2 0 1 2 1 1 2 1 1 2 0 2 0 0 1 2 1 1 2 0 1 2 1 1 2
2 0 1 0 0 1 2 0 1 2 0 1 1 0 1 0 0 1 2 0 1 0 0 1 2 0 1
1 0 0 0 1 2 1 0 0 0 1 2 0 1 2 1 0 0 1 0 0 0 1 2 1 0 0
0 2 0 1 1 2 0 2 0 1 1 2 1 1 2 0 2 0 0 2 0 1 1 2 0 2 0
1 0 1 2 0 1 1 0 1 2 0 1 2 0 1 1 0 1 1 0 1 2 0 1 1 0 1
1 0 0 0 1 2 0 1 2 0 1 2 1 0 0 1 2 2 1 0 0 1 2 2 1 2 2
0 2 0 1 1 2 1 1 2 1 1 2 0 2 0 0 1 2 0 2 0 0 1 2 0 1 2
1 0 1 2 0 1 2 0 1 2 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1
0 1 2 1 2 2 0 1 2 1 0 0 1 0 0 1 2 2 0 1 2 1 0 0 1 2 2
1 1 2 0 1 2 1 1 2 0 2 0 0 2 0 0 1 2 1 1 2 0 2 0 0 1 2
2 0 1 0 0 1 2 0 1 1 0 1 1 0 1 0 0 1 2 0 1 1 0 1 0 0 1
1 0 0 0 1 2 1 0 0 1 2 2 0 1 2 1 0 0 0 1 2 0 1 2 1 0 0
0 2 0 1 1 2 0 2 0 0 1 2 1 1 2 0 2 0 1 1 2 1 1 2 0 2 0
1 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 2 0 1 2 0 1 1 0 1



2.2. A Matrix Sequence Built by Kronecker Power Iterations

An apparently different way of building substitution structured matrices is by means
of Kronecker powers of an initially given matrix that we now illustrate. The initial matrix
is given by:

R0 =

 2 1 0
0 1 1
1 0 2
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The sequence of the matrices taking values in Z3 = {0, 1, 2} is defined by induction for
n + 1 by taking the Kronecker product of the matrix for index n with R0 modulo 3 to keep
the entries of the matrix in Z3, that is,

Rn+1 := [Rn ⊗ R0] (mod 3).

So, the second matrix of the sequence is,

R1 =



1 2 0 2 1 0 0 0 0
0 2 2 0 1 1 0 0 0
2 0 1 1 0 2 0 0 0
0 0 0 2 1 0 2 1 0
0 0 0 0 1 1 0 1 1
0 0 0 1 0 2 1 0 2
2 1 0 0 0 0 1 2 0
0 1 1 0 0 0 0 2 2
1 0 2 0 0 0 2 0 1


,

and the third matrix of the sequence is:

R2 =



2 1 0 1 2 0 0 0 0 1 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 2 2 0 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 0 1 0 0 0 2 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 0 1 2 0 0 0 0 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 2 0 1 2 0 1 0 0 0 1 0 2 1 0 2 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 2 1 0 2 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 1 1 0 1 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 1 0 2 1 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 2 1 0 0 0 0 1 2 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 2 2 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 2 0 1 1 0 2 0 0 0 2 0 1 1 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 1 0 0 0 0 2 1 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 2 0 0 0 1 0 2 1 0 2
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 2 0 2 1 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 2 0 1 1 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 1 1 0 2 0 0 0 2 0 1
1 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 2 0 0 0 0
0 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 0 0
2 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 1 0 0 0
0 0 0 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0
0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 2
0 0 0 1 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 0 1
2 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0
0 1 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 1 1
1 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 2



.

Remark 1 (Kronecker power matrices are matrix substitutions). We observe that the above
example of a Kronecker power matrix sequence corresponds to a special kind of substitution, the
linear matrix substitution (see Definition 3 ahead). In fact, the algorithm for building a Kronecker
power series of matrices is given by the substitutions in the sense of Section 2.1 with the matrices
σ0, σ1 and σ2 defined by:

σ0 =

 0 0 0
0 0 0
0 0 0

 σ1 = R0 =

 2 1 0
0 1 1
1 0 2

 σ2 =

 1 2 0
0 2 2
2 0 1

.

This is a consequence of the fact that computing a Kronecker power sequence starting with the matrix
R0 is equivalent to computing a matrix substitution given by:

σ0 = (0 · R0 mod 3) = 03×3, σ1 = (1 · R0 mod 3) = R0, σ2 = (2 · R0 mod 3).
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We observe that the two kinds of substitutions give rise to different structured matrices.
For instance, the distribution of the absolute values of the eigenvalues—in C, that is,
supposing that the entries are complex—of the seventh iteration of substitutions for these
two types of matrix substitutions are different and is shown, as histograms in Figure 1

0 2 4 6 8 10 12 14
0

100

200

300

400

Histogram of absolute values of R7

0 2 4 6 8 10 12 14
0

500

1000

1500

Histogram of absolute values of M7

Figure 1. Histogram of absolute values of the eigenvalues of the structured matrices R7 and M7.

Another significant difference between the two constructions is noticeable in the form
of the dispersion, in the plane, of the eigenvalues that can be seen in Figure 2.

-40 -20 20

-30

-20

-10

10

20

30

Eigenvalues of R7, in  , with Kronecker stucture

-5 5

-0.05

0.05

Eigenvalues of M7 , in  , with affine stucture

Figure 2. Dispersion or real and imaginary parts of eigenvalues of R7 and M7.

Remark 2. The dispersion of eigenvalues observed in Figure 2 is to be compared to the dispersion of
samples of randomised matrices of both kinds, Kronecker and simple, presented in Figure 3 ahead. It
is as if the general structure of this dispersion remains despite the randomisation, at least whenever
the variance of the random variables is small. This leads to conjecture that it may be important
to determine the spectral distribution of the substitution matrices in order to infer for the spectral
distribution of the randomised matrices.
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Figure 3. Eigenvalues distribution inC of a sample of 40 matrices with affine substitution induced
structure and increasing variance

3. On the Fixed Points of Affine Matrix Substitutions

In this Section we present fixed point theorems for affine matrix substitutions . The
work here presented rests upon a procedure to build sequences of structured matrices, by
means of matrix substitutions. In order for such matrices to be a usable model, subject to
observation, some stable resulting structure should result from the procedure. Our view is
that this stable structure should be either a fixed point or at least a periodic point of a map
on some space of matrices. We opt to consider spaces of infinite matrices. A general and
historic approach to the subject of infinite matrices is given in [33]. A more recent account
of important results on this subject is given in [34]. Furthermore, a flavour of a specific
kind of problems can be read in [35]. The perspective of considering an infinite matrix as a
linear operator on some Banach space of power summable sequences is exploited in the
reference book [36] in which the concept of band-dominated operators, corresponding to
operators that are limits of operators defined by infinite matrices with a finite number of
non-null lines and columns, plays an important role. A particular case of this concept is of
crucial importance in our work to prove the existence of a particular kind of observable
fixed point.

To begin with we define some spaces of finite and infinite matrices with entries in Zp.

3.1. Some Spaces of Matrices

Let us briefly describe the setting. For simplicity, let p be a prime number and let
Zp = {0, 1, . . . , p− 1} be the finite field with #Zp = p. The set Zp may be though as the
alphabet when the perspective of finite automata is adopted or, in the context of Big Data
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the set that codifies the possible answers. We next define the space of infinite matrices with
entries in the field Zp.

M+∞ :=
{

M =
[
aij
]

i,j≥1 : aij ∈ Zp

}
= Z

(N\{0}×N\{0})
p . (3)

We have thatM+∞ is a vectorial space over the field Zp. LetM0 be a particular subspace
ofM+∞ which may be identified to a set of finite square matrices if all infinite parts of
rows and infinite parts of columns having as entries only 0 ∈ Zp are discarded, that is:

M0 :=
{

M =
[
aij
]

i,j≥1 ∈ M+∞ : ∃n ≥ 1 ∀i, j ≥ n aij = 0
}

.

We have thatM0 is a vectorial subspace ofM+∞ and we observe that M ∈ M0 can have
null lines and columns. We now decomposeM0 by observing that for each M ∈ M0 there
always exists nM, the first integer n ≥ 1 such that for all i, j > nM we have that aij = 0.
Using this property, let us defineM#

n×n =M#
n×n(Zp) ⊂M0 as:

M#
n×n :=

{
M =

[
aij
]

i,j≥1 : ∃n ≥ 1,
(
∃i, ain 6= 0∨ ∃j, anj 6= 0

)
∧
(
∀i, j > n , aij = 0

)}
.

that is,M#
n×n is a subset ofM0 of infinite square matrices having a leading principal matrix

of exact order n such that neither the column or the line of order n have all its entries equal
to zero and such that all columns or rows of order greater or equal to n + 1 have only zero
entries. M#

n×n is not a subspace as the sum of two matrices inM#
n×n may be an element of

M#
n−1×n−1 by the fact that the entries belong to Zp and the sum is to be computed modulus

p. We then may define:

Mn×n(Zp) =Mn×n :=
⋃

1≤k≤n

M#
k×k , (4)

which is a vectorial space of infinite matrices over Zp, a subset ofM0, defined in such a
way such that the decomposition is of partition type, and that we have,

M0 =
⋃

n≥1

Mn×n(Zp) . (5)

We now introduce a sequence of infinite matrices associated with a given matrix
substitution map. This sequence will be obtained by operating substitutions either on the
finite matrix corresponding to the leading principal matrix of the infinite matrix or, directly,
on the infinite matrix.

Definition 1 (Matrix substitution map). The matrix substitution map associated with matrix
substitution rules is defined in the following sequence of steps.

1. Let us consider the initial state as M0 ∈ Mn×n(Zp) for some n ≥ 1.
2. We associate to M0 its leading principal matrix of order n, denoted by M<∞

0 which, we
stress, is a finite matrix of order n. LetM<∞

n×n(Zp) denote the set of the leading principal
matrices of order n associated with the elements ofMn×n(Zp),M0 orM+∞.

3. For technical reasons we will restrain our study by considering that we chose d ≥ 1 such that
for all k ∈ Zp we have σk a finite matrix of order d that is, such that σk ∈ M<∞

d×d(Zp). In
the applications we may have d = n. Let us define the global substitution rule σ : Zp 7→
M<∞

d×d(Zp), associated with {σ0, σ1, . . . , σp−1} by:

∀j ∈ Zp σ(j) =
p−1

∑
k=0

σk1I{k=j}(j) , (6)
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We now have an associated finite matrix substitution map denoted by Φ<∞
σ defined by:

∀A =
[
ai,j
]

1≤i,j≤r ∈ M
<∞
n×n Φ<∞

σ (A) =
[
σ
(
ai,j
)]

1≤i,j≤r ∈ M
<∞
d·n×d·n . (7)

4. We define matrix substitution map denoted by Φσ by adding to the finite matrix Φ<∞
σ (A) ∈

M<∞
d·n×d·n infinite rows and columns of entries of 0 ∈ Zp in such a way that Φσ(A) is an

infinite matrix such that we have Φσ(A) ∈ Mn×n(Zp) and such that the leading principal
matrix of order n of Φσ(A) is precisely Φ<∞

σ (A).
5. We now define the extension of the notion of a matrix substitution map for matrices inMn×n,

to the space of infinite matrices M+∞. Given that we supposed that global substitution
σ : Zp 7→ M<∞

d×d(Zp) take values in a space of finite matrices of order d, we may define
Φσ(M) for M ∈ M+∞, with M = [aij]i,j≥1 as the matrix [σ(aij)]i,j≥1, that is, an infinite
matrix having entries matrices [σk(aij)], for aij = k with k ∈ Zp.

6. The matrix substitutions sequence denoted by Mσ ≡ (Mm)m≥0 is defined by induction,
for M0 = M with M ∈ M<∞

d·n×d·n or M ∈ M+∞, by:

∀n ≥ 0 Mm+1 = Φ<∞
σ (Mm) , M ∈ M<∞

d·n×d·n ; Mm+1 = Φσ(Mm) , M ∈ M+∞ . (8)

Remark 3 (A substantiation for operating on finite order matrices). The procedure of applying
matrix substitutions to the leading principal matrix of the infinite matrices is designed to overcome
the restriction of having σ0 always equal to the null matrix with only 0 ∈ Zp entries.

Remark 4 (Generalisations and open problems). It is possible to generalize this procedure
in several ways. For instance, we could have two different matrix substitution maps applied
successively. There are several interesting problems under the perspective of this setting.

(I) Given a sequence of matrices (An)n≥0 , satisfying some compatibility conditions, is it possible
to determine conditions under which there exists an initial state M0 and a matrix substitution
map Φσ such that (An)n≥0 = Mσ?

(II) A related and very important problem is to determine the properties of the eigenvalues of the
matrices of the sequence Mσ that may be derived from the properties of Φσ.

3.2. On the Existence of Fixed Points for Matrix Substitution Maps

In this Section we consider the existence of fixed points of matrix substitution maps
both for matrices inM+∞ and inM0.

3.2.1. Fixed Points for Matrix Substitution Maps over Infinite Matrices

Let us first deal with fixed points inM+∞ (see the definition in Formula (3)) of a linear
matrix substitution map Φσ. We consider the definition of a matrix substitution map given
in Definition 1 for matrices in the space of infinite matricesM+∞. For infinite matrices
we will show that a matrix substitution map defined on M+∞ may be seen as a usual
substitution of constant length on a finite set in the sense of ([3], p. 87).

Theorem 2 (On the existence of fixed points for infinite matrices). Let σ : Zp 7→ M<∞
d×d(Zp)

be a global substitution taking values in a space of finite matrices, of order d, with entries in Zp, and
let Φσ be the associated matrix substitution map defined onM+∞. Then, there exists an integer ρ
and M ∈ M+∞ such that,

M = Φρ
σ(M) := Φσ ◦Φσ ◦ · · · ◦Φσ︸ ︷︷ ︸

ρ times

(M) ,

that is, M is a fixed point for the matrix substitution map Φρ
σ(M) defined for M ∈ M+∞.

Proof. We will show that to each matrix substitution map there corresponds a univocal
substitution map in the usual sense and then, we will apply a well known result that
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guarantees the existence of fixed points for usual substitution maps (see [3], pp. 87–88).
We first observe that given s = [sij]1≤i,j≤d a d× d matrix with entries in Zp we have an
enumeration of these entries given by (s̃k)k=1,...,d2 with:

sij = s̃(i−1)d+j = s̃k .

This type of enumeration of a finite matrix will be applied to to the matrices of the substitu-
tions σk in order to convert the matrix σk in a word of length constituted by letters taken
from Zp. The reversion of this enumeration works as follows. Given a finite word having
d2 letters we associate to it a d× d square matrix having as its first line the first d letters
of the word, as its second line the letters of order d + 1 to 2d2 and so on and so forth. It is
clear that applying the enumeration and then the reversion gives the initial matrix.

Next, we have that given an infinite matrix, M = [mij]i,j≥1 with entries in Zp we have
an enumeration of these entries given by (m̃l)l≥1 with:

mij = m̃ (i+j−1)(i+j−2)
2 +i

= m̃l .

This second type of enumeration will be applied to convert an infinite matrix with entries
in Zp in an infinite word. Again, let us detail how the reversion of this enumeration process
works. Take an infinite word and consider the associated infinite matrix as follows: the
first letter of the word is the first entry of the matrix; the second and the third letters of the
word give the first diagonal, just below the first entry, in the direction up-down; the forth,
fifth, and sixth letters of the word give the second diagonal, just below the first diagonal,
in the direction up–down and so on and so forth. It is clear also that applying the second
enumeration and then this reversion process gives the initial matrix. Now, take the global
matrix substitution rule σ that replaces each k ∈ Zp by the d× d matrix σk. Consider the
associated words σ̃k with letters in Zp obtained by applying the first enumeration to the
matrices σk. Take an infinite matrix M with entries in Zp and apply the second enumeration
rule to M to obtain an infinite word M̃ = (m̃l)l≥1; we may define first an usual substitution
rule σ̃ on Zp by σ̃(k) = σ̃k and also an usual word substitution map Φ̃σ on the set of infinite
words built with letters in Zp by:

Φ̃σ(M̃) = (Φ̃σ(m̃l))l≥1 ,

which is an infinite word obtained from the infinite word M̃ by replacing each one of its
letters k ∈ Zp by the correspondent word σ̃k. Recall Proposition V.1 in ([3], p. 88) that
guarantees the existence of some infinite word M̃ and some integer ρ such that:

Φ̃ρ
σ(M̃) = Φ̃σ ◦ Φ̃σ ◦ · · · ◦ Φ̃σ︸ ︷︷ ︸

ρ times

(M) = M̃ ,

and consider the infinite matrix M such that the second type of enumeration applied to it
returns M̃. It is clear that if we apply the second enumeration process to Φρ

σ(M) we obtain
Φ̃ρ

σ(M̃) which is equal to M̃ and by reverting the enumeration process on M̃ we finally
obtain M, that is:

Φρ
σ(M) = M ,

as stated above.

3.2.2. Fixed Points for Matrix Affine Substitutions Maps Defined over Finite Matrices

We can obtain finite dimensional fixed points of matrix substitution maps by applying
Theorem 2.

Definition 2 (Generalised fixed points for a finite matrix substitution map). Let us consider
a given integer n ≥ 1. The matrix M ∈ M<∞

n×n(Zp) (see Definition 1) is a finite matrix fixed point
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of the matrix substitution map (Φ<∞
σ ) if and only if there exists an integer ρ ≥ 1 such that the

leading principal part of order n of (Φ<∞
σ )ρ(M) is equal to M.

Proposition 1. For any integer n ≥ 2 and a given matrix substitution map (Φ<∞
σ ) there exists

fixed points in the sense of Definition 2.

Proof. We only have to apply Theorem 2 in order to obtain a fixed point of order ρ of
M ∈ M+∞ for the matrix substitution map Φσ and then to consider the leading principal
matrix of order n of M. We obtain that (Φ<∞

σ )ρ(M) ∈ M<∞
ndρ×ndρ(Zp) and since we have that

the leading principal part of Φρ
σ(M) of order ndρ is equal to the finite matrix (Φ<∞

σ )ρ(M)
we will have that the leading principal part of order n of (Φ<∞

σ )ρ(M) is equal to M.

We will pursue next the goal of obtaining fixed points of matrix substitution maps in an
algorithmic way, that is, by dealing with finite matrices. Let us now introduce topological
structures over the spaces of matrices defined in Section 3. In order to define semi-norms
overMn×n, a space we may identify to the space of finite matrices of order n over the
field Zp = Z/pZ, we will consider the trivial absolute value |·|p (see [37], pp. 197–198),
given by:

∀k ∈ Zp |k|p =

{
0 if k = 0
1 if k 6= 0 .

If Zp is considered as a vectorial space over itself then, due to the properties of an absolute
value over a field, we have that |·|p may be considered as a norm over the vectorial space
Zp. For M ∈ Mn×n(Zp) let the modified sum semi-norm be given, for m > 1, by:

‖M‖m :=
1

m2 ∑
1≤i,j≤m

∣∣aij
∣∣

p ≤ 1 . (9)

Essentially, ‖M‖m counts the proportion of nonzero elements in the leading principal
matrix of order m of M. We observe that—with m the order of the semi-norm and n the
order of the matrix—as m > n grows, ‖M‖m will tend to zero. ‖·‖m is a semi-norm as
the proportion of nonzero entries of the sum of two matrices—with entries in the field
Zp—can only decrease with respect with the sum of the proportions of each matrix. As a
consequence of the decomposition ofMn×n(Zp) in Formula (4), we have that:

‖M‖[n] = ‖M‖Mn×n(Zp)
:=

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p ≤ 1 , (10)

is a norm overMn×n(Zp) and, with the norm ‖M‖Mn×n(Zp)
the space of matricesMn×n(Zp)

is, obviously, a Fréchet space. Now, let j :Mn×n 7→ M(n+1)×(n+1) be the natural injection
which is well defined taking into account Formula (4). Since we have that, for M ∈
Mn×n \Mn+1×n+1 that for i = n + 1 or j = n + 1,

∣∣aij
∣∣

p = 0, we then have,

‖j(M)‖[n+1] =
1

(n + 1)2 ∑
1≤i,j≤n+1

∣∣aij
∣∣

p

≤ 1
(n + 1)2 ∑

1≤i,j≤n

∣∣aij
∣∣

p +
1

(n + 1)2 ∑
i=n+1∨j=n+1

∣∣aij
∣∣

p

≤ 1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p = ‖M‖[n] .

(11)

As a consequence j maps continuously (Mn×n, ‖·‖n) into
(
Mn+1×n+1, ‖·‖n+1

)
. Further-

more, as a consequence, we may consider overM0 the inductive topology generated by
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the family of Fréchet spaces (Mn×n, ‖·‖n)n≥1 (see ([38], pp. 53–65) or ([39], pp. 57–60),
or ([40], pp. 222–225)).

Remark 5 (On the topology of the spaceM0). Let τ be this topology overM0. As a consequence
of the well known results in the theory of LF spaces, we have that:

1. The restriction of τ toMn×n coincides with the norm topology ‖·‖n.
2. (M0, τ) is a Hausdorf space.
3. We have the Dieudonné–Schwartz lemma, that is, if a set B is bounded in (M0, τ) then there

exists some nb ≥ 1 such that B ⊂Mnb×nb .
4. A sequence (Mn)n≥1 converges in (M0, τ) if and and only if there exists some nc ≥ 1 such

that {Mn : n ≥ 1} ⊂ Mnc×nc and the sequence (Mn)n≥1 converges in
(
Mnc×nc , ‖·‖nc

)
.

5. We have Köthe’s theorem, that is, (M0, τ) is a complete space.

Remark 6 (A comparable topology). If we consider over M+∞ the family of semi-norms
(sm)m≥1, given by:

sm

([
aij
]

i,j≥1

)
:= sup

n≤m

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p , (12)

we have that (see [38], p. 64 for a proof of this result)M+∞ is a Fréchet space, we have that (M0, τ)
embeds continuously inM+∞ and that the closure of (M0, τ) isM+∞.

Now, let us consider Mσ ≡ (Mn)n≥0 with Mn+1 = Φσ(Mn) Our first goal is to study
the contraction properties of Φσ overM0. The second goal is to extend Φσ toM+∞, also
as a contraction. This allows us to identify an invariant set. For that purpose we have to
identify conditions under which Φσ is linear, or affine overM0.

Definition 3 (Linear matrix substitutions). The matrix substitution map Φσ (see
Formulas (6)–(8)) is defined to be a linear matrix substitution map overM0 iff for all k, k′ ∈ Zp
we have that:

σk + σk′ = σ(k+k′ mod p) and k′ · σk = σ(k′ ·k mod p) . (13)

Remark 7 (A substantiation of Definition 3). With k + k′ ∈ Zp and k · k′ ∈ Zp we will
obviously have that,

Φσ(M + N) =
[
σ
(
aij + bij

)]
1≤i,j≤n =

[
σ
(
aij
)]

1≤i,j≤n +
[
σ
(
bij
)]

1≤i,j≤n

= Φσ(M) + Φσ(N) .

In fact, for the sum property—as for the product property the justification is similar—we have
by definition, [

σ
(
aij
)
= σk iff aij = k

]
and

[
σ
(
bij
)
= σk′ iff bij = k′

]
,

and so,

σ
(
aij
)
+ σ

(
bij
)
= σk + σk′ = σ(k+k′ mod p) = σ

(
aij + bij

)
iff aij + bij = (k + k′ mod p) .

Remark 8 (A consequence of Definition 3). Condition (13) for having a matrix substitution
linear implies that σ0 = 0 ∈ Zp because we should have for all k ∈ {0, 1, 2, . . . p − 1} that
σ0 + σk = σk.

Remark 9 (Examples of linear matrix global substitution rules). A first example of a linear
matrix substitution in Z3 is given by:

σ0 =

(
0 0
0 0

)
σ1 =

(
0 2
1 1

)
σ2 =

(
0 1
2 2

)
.
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Let us return to the example of Section 2.2. We observe that:

σ2 + σ1( mod 3) = σ(2+1 mod 3) = σ0 = 03×3 ,

thus showing that the substitution is a linear matrix substitution. A linear matrix substitution is
essentially defined by its σ1 substitution and so, every linear matrix substitution is derived from
a Kronecker power matrix equal to σ1 as defined in Section 2.2. We stress that not all matrix
substitutions are linear as the first example in Section 2.1 shows. In fact, with the notations and
definitions of this first example, we have that:

(σ1 + σ1)( mod 3) =

 2 0 0
0 1 0
2 0 2

 (σ2 − σ0)( mod 3) =

 1 1 0
2 0 0
1 0 0

 ,

and (σ2 − σ0 mod 3) 6= (σ1 + σ1 mod 3) thus showing that the substitution is not linear.

Remark 10 (On the contraction character of a matrix substitution map). Let us suppose that
we have some matrix with constant entries, for instance:

M =
[
aij
]

i,j≥1 ∈ Mn×n with aij ≡ p− 1.

Then, with the usual absolute value over Zp,

‖M‖[n] =
1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p =
1
n2 ∑

1≤i,j≤n
1 = 1 .

Now suppose, in the worst case scenario, that σp−1 ∈ M<∞
d×d is a matrix with all its entries, except

one, equal to p− 1 and the exception is 0. We now have as a consequence that all the entries of
leading principal matrix of order n + 1 of Mn+1 = Φσ(Mn) will be equal to p− 1 with n2 entries
that will be equal to 0. It then follows that,

‖Mn+1‖[d·n] = ‖Φσ(Mn)‖[d·n] =
1

(d · n)2 ∑
1≤i,j≤d·n

∣∣aij
∣∣

p

=
1

(d · n)2

[
(d · n)2 − n2

]
= 1− 1

d2 =

(
1− 1

d2

)
‖M‖[n] ,

since ‖M‖n = 1. This example shows that the contraction properties of Φσ depend on the proportion
of zeros vis-a-vis the nonzero entries of the substitutions.

Proposition 2 (Linear matrix substitutions that are contractions). Let Φσ be a linear matrix
substitution map associated with a global substitution rule σ such that the maximum number of
zeros in each σk, for k ∈ {1, . . . , k− 1}, is r with 1 ≤ r < d2. We recall that σ0 is the square matrix
with d2 entries all equal to 0 ∈ Zp. Then, the map Φσ is a contraction fromMn×n intoMn·d×n·d
for every n ≥ 1.

Proof. Take a matrix A ∈ Mn×n such that the number of zero entries in the leading
principal matrix of order n of A is s with 0 ≤ s < n2. The case where A is a null matrix
is irrelevant because, in this case, Φσ(A) is the null matrix. Then in the leading principal
matrix of order nd of Φσ(A) there will be at least sd2 zero entries due to the substitution
of each zero in A by d2 zeros of the matrix σ0 which is a matrix of order d. Now, there are
n2 − s entries on A which are different of zero and for each of these non-null entries there
correspond a maximum of r zero entries in Φσ(A). As a consequence the total number of
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zero entries in Φσ(A) is bounded by sd2 + (n2 − s)r. As such, we have that the proportion
of nonzero elements in Φσ(A) has the following upper bound:

‖Φσ(A)‖[d·n] ≤ 1− sd2 + (n2 − s)r
n2d2 =

(
1− s

n2

)(
1− r

d2

)
=
(

1− r
d2

)
‖M‖[n] , (14)

and so, Φσ is a contraction with constant 1− r/d2 < 1.

Remark 11 (On the fixed points of linear matrix substitutions maps). We have first to observe
that if Φσ is a linear matrix substitution map associated with any global substitution rule σ then
any null matrix M =

[
aij
]

i,j≥1 ∈ Mn×n, that is, such that aij ≡ 0 ∈ Zp, is a fixed point of Φσ.
In fact, since h aij ≡ 0 ∈ Zp and σ0 = 0 we have,

Φσ(M) = M = 0 .

Let us describe now the non-null other fixed points of Φσ, a linear matrix substitution map
belonging toM0 (see Formula (5)). Consider a non-null matrix M =

[
aij
]

i,j≥1 ∈ Mn×n such
that Φσ(M) = M. By recalling that Φσ(M) ∈ Mnd×nd and reverting to the leading principal
matrices of both M—a finite matrix of order n—and Φσ(M)—which in turn is a finite matrix of
order nd—we may conclude that, with 0 6= a11, if a11 = k for k ∈ {1, 2, . . . , p− 1} ⊂ Zp, then
σ(a11) = σk(a11) = M 6= 0. Moreover, we should also have, due to Φσ(M) = M, that:

∀(i, j) 6= (1, 1), aij 6= a11 and ∀l ∈ {1, 2, . . . , p− 1}, l 6= k⇒ σl = 0 .

We may conclude that if we are given a linear matrix substitution map then either the the correspon-
dent global substitution rule has the particular structure described above or there exists no other
fixed points inM0 besides the null matrix.

In order to overcome the limitation of the fixed points for linear matrix substitutions
maps we may consider other matrix substitution maps such as the ones defined next.

Definition 4 (Affine matrix substitutions). A matrix substitution map Φ is an affine matrix
substitution map if there exists a linear global substitution rule σ and a constant global
substitution rule νc such that,

Φ = Φσ +( mod p) Φνc = Φσ+(mod p)νc , (15)

with Φσ the linear matrix substitution map associated with σ and Φνc the constant matrix substitu-
tion map associated with νc.

Remark 12. The important equality in the right-hand side of Formula (15) can be verified by
resorting to the definition of a matrix substitution map associated with a global substitution rule.

We will now consider Definition 2 of the generalised fixed points for finite matrix
substitution maps. Recall that according to the definition in Formula (7) for we have that
Φ<∞

σ (M) ∈ M<∞
d·n×d·n and introduce the following notation,

Φ<∞
σ+νc(M)

∣∣
n , (16)

to denote the leading principal part of order n of Φ<∞
σ+νc

(M) for M ∈ Mn×n.

Theorem 3 (Fixed points of affine matrix substitutions). Consider an affine matrix substitution
Φσ+νc = Φσ + Φνc such that for the linear part global substitution rule σ, the maximum number
of zeros in each σk, for k ∈ {1, . . . , k− 1}, is r with 1 ≤ r < d2. Then we have that:

1. Φσ+νc is a contraction fromMn×n intoMn·d×n·d for every n ≥ 1.
2. Φσ+νc is a contraction fromM0 intoM0.
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3. There exists s ≥ 1 and L =
[
aij
]

i,j≥1 ∈ Ms×s a fixed point of Φσ+νc , that is, such that

Φ<∞
σ+νc

(L)
∣∣
s = L.

Proof. The first statement follows from Formula (14) of Proposition 2. Recall that, by
Formula (10) we have that ‖M‖[n] = ‖M‖n for M ∈ Mn×n where for m integer ‖M‖m is
the semi-norm defined in Formula (9). For M, N ∈ Mn×n we have that:

‖Φσ+νc(M)−Φσ+νc(N)‖[d·n] = ‖Φσ(M− N)‖[d·n] ≤
(

1− r
d2

)
‖M− N‖[n] , (17)

thus showing that the second statement is a consequence of the definition of the inductive
topology ofM0 and of a natural definition of a contraction in an LF topological vector space.
The last statement follows from a usual Banach fixed point theorem type argument, suitably
modified. We first show the Cauchy sequence contraction inequality. Let M ∈ Mn×n be
given and, consider the matrix substitutions sequence Mσ+νc ≡ (Mn)n≥0 that is defined,
by induction, by:

∀n ≥ 0 Mn+1 = Φσ+νc(Mn) = Φ(n+1)
σ+νc

(M0) ,

with M0 = M and, the iterated application map given, for instance for the second order
iteration by Φ(2)

σ+νc
= Φσ+νc ◦ Φσ+νc . We now show that Mσ+νc is a Cauchy sequence in

M0. For that, see ([38], p. 30), we have to show that for every U, a neighbourhood of
zero in M0 there exists some integer m0 ≥ 1 such that for all p ≥ 1 and m ≥ m0 we
have Mm+p −Mm ∈ U. We start by using Formula (17) to establish a contraction Cauchy
sequence type inequality.

∥∥Mm+p −Mm
∥∥
[dm+p ·n] ≤

p

∑
k=1
‖Mm+k −Mm+k−1‖[dm+k ·n]

≤
p

∑
k=1

∥∥∥Φ(m+k)
σ+νc

(M0)−Φ(m+k−1)
σ+νc

(M0)
∥∥∥
[dm+k ·n]

≤
(

p

∑
k=1

(
1− r

d2

)m+k−1
)
‖Φσ+νc(M0)−M0‖[d·n]

=

(
d2

r

)(
1− r

d2

)m
‖Φσ+νc(M0)−M0‖[d·n] .

(18)

Since by Köthe’s Theorem M0 is a complete space the conclusion now follows by the
following argument. Let us rewrite the inequality (18) in the form:

Mm+p −Mm ∈ B[dm+p ·n](0, cλm) , (19)

with B[dm+p ·n](0, cλm) the ball centred on zero with radius cλm inMdm+p ·n×dm+p ·n with,

c :=
d2

r
‖Φσ+νc(M0)−M0‖[d·n] and λ :=

(
1− r

d2

)
.

Now, let U be a convex neighbourhood of zero inM0. Then, see ([38], p. 57), for all n ≥ 1
we have that U ∩Mn×n is a neighbourhood of zero inMn×n and so,

∃ε > 0 BMn×n(0, ε) ⊆ U ∩Mn×n(⊂ U) .

Let m0 be an integer such that for all m ≥ m0 we have that cλm < ε, which is possible
as λ < 1. Now, due to the decreasing properties of the norms of the spaces Mn×n we
have that

∀p ≥ 1 , M ≥ m0 B[dm+p ·n](0, cλm) ⊂ BMn×n(0, ε) ⊂ U ,
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thus showing that Mσ+νc is a Cauchy sequence inM0. Finally, as a consequence of the
properties of the topology of the spaceM0, we have that the sequence Mσ+νc converges
inM0 and so, for some s ≥ 1 we have that Mσ+νc converges inMs×s. As a consequence,
there exists L ∈ Ms×s such that:

lim
n→+∞

∥∥∥L−Φ(n)
σ+νc

(M))
∥∥∥
[s]

= 0 (20)

We now observe that:

‖L−Φσ+νc(L)‖[s+1] ≤
∥∥∥Φσ+νc(L)−Φ(n+1)

σ+νc
(M))

∥∥∥
[s+1]

+
∥∥∥Φ(n)

σ+νc
(M)−Φ(n+1)

σ+νc
(M)

∥∥∥
[s+1]

+
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s+1]

.

Now by the contraction property of Φσ+νc shown in Formula (17) by the canonical injection
ofMs+1×s+1 inMs×s shown in Formula (11) we have that:∥∥∥Φσ+νc(L)−Φ(n+1)

σ+νc
(M))

∥∥∥
[s+1]

≤
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s+1]

≤
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s]

,

and so, by Formulas (18) and (20) we have that ‖L−Φσ+νc(L)‖[s+1] = 0 and this implies
that Φ<∞

σ+νc
(L)
∣∣
s = L, that is, L is a generalised fixed point for the finite matrix substitution

map Φσ+νc .

Remark 13 (Comparing Theorem 3 and Proposition 2). Theorem 3 is an improvement of
Proposition 2 in two directions. It is a constructive result since it gives an algorithm to obtain a
fixed point and while in Proposition 2 the fixed point was a fixed point of some number of iterations
of the matrix substitution map in Theorem 3 the fixed point obtained is a fixed point of only one
iteration of the matrix substitution map.

4. Random Matrices Associated to Structured Matrices

In this Section we consider structured random matrices derived from the structured
matrices considered in Section 2. Our approach to the spectral analysis of random matrices
derived from matrices built with a matrix substitution procedure relies on the general
theory of random linear operators as exposed in [41]. Other more recent approaches to
this subject are given in [42–44]. Take a structured matrix built by substitutions—that we
will denominate the skeleton of the random matrix—and consider the associated random
matrix having as entries random variables such that to the occurrence of each field element
i ∈ Zp in the skeleton structured matrix there corresponds a random variable with at least
the same expected value as the expected value of a given random variable Xi, the same
for a given i ∈ Zp. We will also consider the more stringent assumption that the entries in
the random matrix corresponding to same field element i ∈ Zp are equi-distributed with
a given random variable Xi.The random matrix can have independent entries or not. As
usual the study of the independent case is easier and we will assume independence. For
instance, take the matrix M1 in Formula (2), that is:
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M1 =
[
m1

i,j

]
i,j
=



1 2 2 0 1 2 1 0 0
0 1 2 1 1 2 0 2 0
0 0 1 2 0 1 1 0 1
1 0 0 1 2 2 1 0 0
0 2 0 0 1 2 0 2 0
1 0 1 0 0 1 1 0 1
1 0 0 0 1 2 1 2 2
0 2 0 1 1 2 0 1 2
1 0 1 2 0 1 0 0 1


This matrix is the skeleton of the following random matrix:

M1(X#) =



X#1 X#2 X#2 X#0 X#1 X#2 X#1 X#0 X#0
X#0 X#1 X#2 X#1 X#1 X#2 X#0 X#2 X#0
X#0 X#0 X#1 X#2 X#0 X#1 X#1 X#0 X#1
X#1 X#0 X#0 X#1 X#2 X#2 X#1 X#0 X#0
X#0 X#2 X#0 X#0 X#1 X#2 X#0 X#2 X#0
X#1 X#0 X#1 X#0 X#0 X#1 X#1 X#0 X#1
X#1 X#0 X#0 X#0 X#1 X#2 X#1 X#2 X#2
X#0 X#2 X#0 X#1 X#1 X#2 X#0 X#1 X#2
X#1 X#0 X#1 X#2 X#0 X#1 X#0 X#0 X#1


,

built with the rules detailed above and so it is a structured random matrix M1(X#) =[
X#(m1

i,j)
]

i,j
with skeleton M1 =

[
m1

i,j

]
i,j

such that the entries are independent and verify,

at least, E
[

X#(m1
i,j)
]
= m1

i,j.
We will address, in Sections 4.1, 4.2 and 4.4 several questions regarding these structured

random matrices, to wit:

1. Identification of a random matrix model (Section 4.1);
2. Convergence in law of random matrices built on skeletons matrices derived from

substitution maps having a fixed point (Section 4.2);
3. Spectral analysis of some random structured matrices (Section 4.3);
4. Random surfaces associated with random matrices built on skeletons matrices derived

from substitution maps having a fixed point (Section 4.4).

4.1. Testing for a Given Matrix Structure in a Realisation of a Stochastic Matrix

In this Section we will address the problem of testing if a given observed matrix can be
considered as a realisation of a random matrix associated with a structured matrix built by a
substitution map; this will be performed in a simple case. Let us suppose that we are given
a realisation M =

[
xij
]

1≤i,j≤N of a random matrix M =
[
Xij
]

1≤i,j≤N having a structure
derived from a matrix substitution map. We will admit the following assumptions.

(A) The matrixM has its skeleton—that is, a matrix M =
[
mi,j
]

i,j with entries inZp—which
is a fixed point of the matrix substitution map. This assumption is justified on the
grounds of the process that originated the skeleton being over its transient phase.

(B) The random variables which are entries of the random matrixM form a set of inde-
pendent random variables.

Consider now, for each i ∈ Zp the sequence Xi
Ni

= (Xi
n)1≤n≤Np formed by the random

variables of the random matrixM that correspond to the entries in the skeleton with value
i; we observe that ∑i∈Zp Ni = N2. We assume furthermore that:

(C) For each i ∈ Zp we have that Xi _ Gi(θ), that is, the correspondent random variable
Xi has a probability law Gi(θ) with θ ∈ Θi ⊂ Rq a parameter.

Due to hypothesis (B) and (C), the sequenceXp
Ni

is a sample of the given random variable
Xi. Furthermore, so a test procedure such as, a likelihood ratio test can be applied to
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determine if the matrix realisation M comes from a prescribed model of a random matrix
with entries distributions verifying assumption (C) and with the skeleton given by a fixed
point of the substitution map according to assumption (A).

Remark 14 (On the detection of a structured random matrix). Let us suppose that we have an
observed large matrix which we suppose to be a realisation of a random matrix with independent
centred entries. If the random variables are identically distributed then by force of the circular
law, as quoted in Theorem 1 the spectral distribution of the normalised random matrix should be
approximately the uniform distribution in the unit circle; a rejection of such a null hypothesis can be
thought to be a strong indication of the existence of some particular structure in the matrix, namely
that the entries are not identically distributed. For a formulation of such a statistical test, see [45]
and also [46–48] and other references therein. Let us observe that it may be impossible to discern
between possible existing structure or not; in fact, we have examples that show that if the coefficient
of variation is large the distribution of eigenvalues of a structured matrix may have a similar pattern
to the distribution of eigenvalues of a unstructured matrix.

4.2. Convergence in Law of Random Structured Matrices Built by Arbitrary Substitutions

In this section, we show that if we consider a matrix fixed point of a matrix substitution
map then the sequence of random matrices having as skeletons the sequence of iterates, by
the matrix substitution map, of a given matrix converges in law to the random matrix that
has as skeleton the fixed point of the matrix substitution map. We suppose that we are in
the following context and notations.

• A global substitution given by : σ : Zp 7→ M<∞
d×d(Zp);

• The associated matrix substitution map Φσ defined onM+∞;
• A fixed point M∞ of the substitution map Φσ.
• The entries in the random matrix corresponding to same field element p ∈ Zp are

equi-distributed with a given random variable Xp.

We recall that if M0 ∈ M+∞ and Mn = Φσ(Mn−1) for n ≥ 1 then M∞ =M∞

limn→+∞ Mn the convergence taking place in the topology ofM∞ defined by the increasing
sequence of semi-norms given in Formula (12) (see Remark 6).

Theorem 4 (Convergence in law of random structured matrices). Suppose that for each i ∈ Zp
the characteristic function of the random variable Xi is continuous at zero. If for n ≥ 1, Mn(X#)
and M∞(X#) are the random structured matrices with skeletons Mn and M∞, , respectively, and as
defined above then:

Law(Mn(X#)) −→n→+∞
Law(M∞(X#)) . (21)

Proof. Before applying Levy’s continuity theorem we clarify the convergence inM∞. The
increasing family of semi-norms (sm)m≥1 defined by:

sm(M) = sm

([
aij
]

i,j≥1

)
:= sup

n≤m

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p ,

gives the maximum proportion of non-null terms in the leading principal parts of dimension
less or equal to m of the matrix M =

[
aij
]

i,j≥1. Taking M0 ∈ M+∞ and Mn = Φσ(Mn−1)

for n ≥ 1, we have that M∞ =M∞ limn→+∞ Mn if and only if:

∀m ≥ 1 , lim
n→+∞

sm(Mn −M∞) = 0 .

If this is the case, taking now ε < 1/m, for a given m ≥ 1, and if sm(Mn −M∞) ≤ ε we have
necessarily the leading principal parts of order m of Mn and M∞ are equal. This implies that
all the entries of the leading principal parts of order m of Mn(X#) and M∞(X#) have that
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same laws. Now given an infinite random matrix M(X#)) =
[
aij(X#)

]
i,j≥1 with skeleton

M =
[
aij
]

i,j≥1 we may consider its characteristic function ϕM(X#)
, for each t ∈ R, by:

∀t ∈ R , ϕM(X#)
(t) =

[
ϕaij(X#)

(t)
]

i,j≥1
=
[
E

[
eitaij(X#)

]]
i,j≥1

.

For each t ∈ R, we have that ϕMn(X#)
(t) and ϕM∞(X#)

(t) are infinite matrices with coeffi-
cients inC. We consider on the spaceM∞(C) of infinite matrices

[
zij
]

i,j≥1 with coefficients
in zij ∈ C the topology defined by the increasing family of semi-norms:

ρm

([
zij
]

i,j≥1

)
= sup

n≤m
∑

1≤i,j≤n

∣∣zij
∣∣ ,

and we now show that:

lim
n→+∞

ϕMn(X#)
(t) =M∞(C) ϕM∞(X#)

(t)

⇔ ∀m ≥ 1 lim
n→+∞

ρm

(
ϕMn(X#)

(t)− ϕM∞(X#)
(t)
)
= 0 ,

for every fixed t ∈ R. It is enough to consider ε < 1/m for any fixed m ≥ 1. As seen
above if n ≥ 1 is such that sm(Mn −M∞) ≤ ε we have necessarily the leading principal
parts of order m of Mn(X#) and M∞(X#) have that same laws and so their the characteristic
functions of the entries of the respective leading principal parts of order m also coincide
and so ρm

(
ϕMn(X#)

(t)− ϕM∞(X#)
(t)
)
= 0. As a consequence of Levy’s continuity theorem

(see ([49], p. 389) or ([50], p. 144)), we have the thesis of the theorem in Formula (21).

4.3. Spectral Analysis of Some Structured Random Matrices

In this Section we will provide results shedding light on the spectral analysis of some
random structured matrices. The first result shows that under some mild assumptions a
random structured matrix defines, almost surely for each one of its realisations, a Hilbert-
Schmidt operator on l2(N), the Hilbert space of square summable sequences. The two main
references needed in this Section are [51,52] for the results on Hilbert–Schmidt operators
and [41] for random linear operators.

Theorem 5 (Random structured matrices with vanishing second moments). Consider a
random structured matrix M(X(#)) =

[
X

mij
ij

]
i,j

with skeleton M =
[
mij
]

i,j only verifying

E[X
mij
ij ] = mij besides the independence of the entries. Let (ei)i≥1 be the canonical orthonormal

basis of l2(N), that is, ei = (e1
i , e2

i , . . . en
i , . . . ) with en

i = δn
i the Kronecker’s delta. We assume that

the second moments E
[∣∣∣Xmij

ij

∣∣∣2] of the random matrix entries go to zero, sufficiently fast as i, j

grow indefinitely, more precisely:

∑
i,j
E

[∣∣∣Xmij
ij

∣∣∣2] = C < +∞ . (22)

Then we have that:

P

[
∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 < +∞

]
= 1 . (23)

Moreover, for ω ∈ Ω almost surely, M(X(#))(ω) defines a bounded operator in l2(N) which is
also a Hilbert–Schmidt operator in l2(N).
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Proof. The proof essentially relies on a Skorohod’s sufficient condition for random linear
operators in Hilbert space. We observe that:

∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 = ∑

i,j

∣∣∣Xmij
ij

∣∣∣2 .

Condition in Formula (22) implies, by Lebesgue’s monotone convergence theorem that:

E

[
∑
i,j

∣∣∣Xmij
ij

∣∣∣2] = ∑
i,j
E

[∣∣∣Xmij
ij

∣∣∣2] = C < +∞

Furthermore, so, by a standard argument we have the conclusion announced in For-
mula (23),

P

[
∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 < +∞

]
= P

[
∑
i,j

∣∣∣Xmij
ij

∣∣∣2 < +∞

]
= 1 .

We first have for ω ∈ Ω almost surely, that the operator M(ω) := M(X(#)(ω)) is bounded,
since, for all s ∈ l2(N), that is such that s = (si)i≥1 with ∑i≥1|si|2 < +∞, we have, by
Parseval’s equality and by Cauchy–Schwartz’s inequality:

‖M(ω)(s)‖2 = ∑
j≥1

∣∣〈M(ω)(s), ej
〉∣∣2 = ∑

j≥1

∣∣∣∣∣∑i≥1

〈
M(ω)(ei), ej

〉
〈s, ei〉

∣∣∣∣∣
2

≤ ∑
j≥1

[(
∑
i≥1

∣∣〈M(ω)(ei), ej
〉∣∣2)(∑

i≥1
|〈s, ei〉|2

)]

=

(
∑

i,j≥1

∣∣〈M(ω)(ei), ej
〉∣∣2)‖s‖2 ,

(24)

and thus, by Formula (23), the operator M(ω) is bounded. The final conclusion results
from Remark 2 in Skorohod’s treaty ([41], p. 8) stating that the condition expressed in
Formula (23), is suffices for the matrix operator defined by the random matrix M(X(#)) to
be a Hilbert–Schmidt operator, almost surely. In fact, by Theorem 2 in ([51], p. 34) we have
that a sufficient condition for the operator M(ω) to be an Hilbert–Schmidt operator is that:

∑
i≥1
‖M(ω)(ei)‖2 = ∑

j≥1
∑
i≥1
|〈M(ω)(ei), ei〉|2 < +∞ ,

and so the last result announced follows.

As a consequence of Theorem 5 and of the spectral theorem we obtain the spectral
representation of the kind of structured random matrices we studied in this Section.

Remark 15 (On the definition of eigenvalues of random structured matrices). Since every
Hilbert–Schmidt operator is compact and the random matrix entries are real the spectral theorem
for compact self adjoint operators (see [52], p. 113) shows that, for ω ∈ Ω almost surely, there is
an orthonormal system (φi(ω))i≥1 of eigenvectors of M(ω) and the corresponding eigenvalues
(λi(ω))i≥1 such that for all s ∈ l2(N) we have that:

M(ω)(s) = ∑
i≥1

λi(ω)〈s, (φi(ω)〉φi(ω) ,
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and since the operator M(ω) is Hilbert–Schmidt we have that:

∑
j≥1

∥∥M(ω)(φj(ω))
∥∥2

= ∑
j≥1

∥∥∥∥∥∑
i≥1

λi(ω)
〈
φj(ω), (φi(ω)

〉
φi(ω)

∥∥∥∥∥
2

= ∑
j≥1

∥∥λj(ω)φj(ω)
∥∥2

= ∑
j≥1

∣∣λj(ω)
∣∣2 < +∞ .

So, the random structured matrices studied in this Section have, almost surely, square integrable
eigenvalues sequences .

The next result shows that the image of a nonrandom vector by some of the structured
random matrices in this Section is, asymptotically, a Gaussian vector.

Theorem 6 (Gaussian character of images of nonrandom vectors by some structured
random matrices). Consider a random structured matrix M(X(#)) =

[
X

mij
ij

]
i,j

with skele-

ton M =
[
mij
]

i,j only verifying E[X
mij
ij ] = mij and that and V

[
X

mij
ij

]
is bounded, besides the

independence of the entries. Suppose that x ∈ l2(N) ∩ l1(N). Suppose additionally that:

δL := max
j≤L

E

[∣∣∣〈x, ej
〉

X
mij
ij

∣∣∣3]
E

[∣∣∣〈x, ej
〉

X
mij
ij

∣∣∣2] −→L→+∞
0 . (25)

Then M(X(#))(x) is a vector which has components that are asymptotically Gaussian, a property
that we summarise in the form:

∑
j≥1

〈
x, ej

〉
X

mij
ij _

a(j)
N (D, C2) = N

(
∑
j≥1

〈
x, ej

〉
mij, ∑

j≥1

∣∣〈x, ej
〉∣∣2V[X

mij
ij

])
,

for each component of M(X(#))(x).

Proof. The proof is an application of Lyapunov’s central limit theorem for independent
but not identically distributed random variables (see [53], p. 362). We consider the op-
erator M(X(#)) : l2(N) 7→ l2(N) and for notational purposes that (ei)i≥1 is the canon-
ical orthonormal basis of l2(N) and that (e?i )i≥1 is its the dual basis. With the notation
M(ω) := M(X(#)(ω)) we have that M(ω)(x) = ∑i≥1

〈
M(ω)(x), e?i

〉
e?i and if we take a

nonrandom vector x = ∑i≥1〈x, ei〉ei we have that M(ω)(x) = ∑i≥1〈x, ei〉M(ω)(ei), an
expression that may be developed into:

M(ω)(x) = ∑
i≥1

〈
∑
j≥1

〈
x, ej

〉
M(ω)(ej), e?i

〉
e?i = ∑

i≥1
∑
j≥1

〈
x, ej

〉〈
M(ω)(ej), e?i

〉
e?i

= ∑
i≥1

(
∑
j≥1

〈
x, ej

〉
X

mij
ij

)
e?i ,

using the fact that M(ω) =
[

X
mij
ij

]
i,j

. We observe that using previous notations we

have that:

E

[〈
x, ej

〉
X

mij
ij

]
=
〈

x, ej
〉
mij andV

[〈
x, ej

〉
X

mij
ij

]
=
∣∣〈x, ej

〉∣∣2V[X
mij
ij

]
.
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Now due to Lyapunov central limit theorem, the assumption made in Formula (25) and
Berry estimate for the rate of convergence, we may write, for a variable A = A(L) = O(L):

P

∑
j≤L

〈
x, ej

〉
X

mij
ij −E

[〈
x, ej

〉
X

mij
ij

]
√

∑j≤L
∣∣〈x, ej

〉∣∣2V[X
mij
ij

] ≤ x

 =
1√
2π

∫ x

−∞
e−

t2
2 dt + AδL .

The above expression may be written as:

P

[
∑
j≤L

〈
x, ej

〉
X

mij
ij ≤ x

√
∑
j≤L

∣∣〈x, ej
〉∣∣2V[X

mij
ij

]
+ ∑

j≤L

〈
x, ej

〉
mij


=

1√
2π

∫ x

−∞
e−

t2
2 dt + AδL .

(26)

Since x ∈ l2(N) andV
[

X
mij
ij

]
, the variances of the entries of the matrix M(ω), are bounded

we have that:
∑
j≥1

∣∣〈x, ej
〉∣∣2V[X

mij
ij

]
= C2 < +∞ .

Since x ∈ l1(N) ∩ l2(N) and mij ∈ Zp we have that ∑j≥1
∣∣〈x, ej

〉∣∣mij < +∞. As a conse-
quence let:

∑
j≥1

〈
x, ej

〉
mij = D ∈ R .

Consider the partial sums ∑j≤L
〈

x, ej
〉
mij = DL and

√
∑j≤L

∣∣〈x, ej
〉∣∣2V[X

mij
ij

]
:= CL. We

may write Formula (26) in the form:

P

[
∑
j≤L

〈
x, ej

〉
X

mij
ij ≤ xCL + DL

]
=

1√
2π

∫ x

−∞
e−

t2
2 dt + AδL ,

which, by a change of variable, amounts to:

P

[
∑
j≤L

〈
x, ej

〉
X

mij
ij ≤ y

]
=

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du + AδL . (27)

Since we have that:

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du =
1√
2π

∫ xC+D

−∞
e−

t2
2 dt = lim

L→+∞

1√
2π

∫ xCL+DL

−∞
e−

t2
2 dt

= lim
L→+∞

1√
2πC2

L

∫ y

−∞
e
− (u−DL)

2

2C2
L du ,

and from Formula (27), we have immediately:

lim
L→+∞

P

[
∑
j≤L

〈
x, ej

〉
X

mij
ij ≤ y

]
=

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du .

We may conclude that, on account of the independence of the entries of the random matrix,
we have that M(X(#))(x), for all nonrandom x, is a random vector which has components
∑j≥1

〈
x, ej

〉
X

mij
ij that are asymptotically Gaussian.
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Remark 16. The spectral analysis discussed in Remark 15 ensures a spectral decomposition of the
random structured matrix operator M(X(#)(ω)) to exist for ω almost surely and so not only the
eigenvalues but also the eigenvectors are random variables. Theorem 6 shows that if there exist an
almost surely constant eigenvector of the operator M(X(#)(ω)) then the correspondent eigenvalue
is Gaussian.

Whenever the distributions for the three symbols are identical the effect of having
a structured matrix naturally disappears as a consequence of Theorem 1. With different
distributions the effects of having structured matrices appear.

For an illustration example in Figure 3 we have chosen,

X0 _ N (0, σ2) and X1 _ N (1, σ2) and X2 _ N (2, σ2)

and we took successively larger values for the variance.

Remark 17 (Identifying a random structured model by spectral analysis). There are two
conclusions that we may obtain from a first analysis of Figure 3. The first is that, as expected, for
smaller variances there is a similarity between the distribution of the eigenvalues in the plane of the
structure matrix, the skeleton of the random matrix with entries considered in the complex field,
and of the associated random matrix; a second observation, stressing well known facts, is that for
sufficiently large variance the distribution of the eigenvalues of the random matrix is similar to the
distribution of eigenvalues of a random matrix with independent and identically distributed entries
as in Theorem 1.

4.4. Modelling: Random Surfaces Associated to Random Matrices

In this Section we show that to each structured infinite matrix, under some hypothesis,
we can associate in a canonical way a random field, for instance, defining a random surface
over the unit square in the plane. The procedure is akin to the ones used to define the
multiplicative chaos of Mandelbrot, Kahane, and Peyrière (see [54]) with the difference that
we use products of real valued random variables instead of non-negative ones.

Prior to that we first provide a technical observation. The general theory of infinite
products of random variables of arbitrary sign is quite elaborated when compared with the
theory of infinite sums of random variables (see, for instance, [55–57]). Nevertheless, in
the case that the sequence of products is a (sub or super) martingale there are immediately
convergence results that can be taken to be used. Consider an infinite matrix M which is a
fixed point of some matrix substitution map. This assumption is motivated by the idea that
an observed matrix structure must have some permanence in time in order to be observed.
We will define an infinite random structured matrix with given skeleton M as a matrix
[Xi,j]i,j≥1 having as entries independent random variables, such that E

[
X

mi,j
i,j

]
= mi,j.

We now associate to the columns of the random matrix [Xi,j]i,j≥1 the following se-
quence of random variables (Lj)j≥1.

Lj = Lj(α, γ) := γ
1
xα

j

+∞

∑
i=1

X
mi,j
i,j

pi with xj :=
+∞

∑
i=1

mi,j

pi

with α ≥ 1 and 0 < γ ≤ 1. We will also suppose that there are no columns with only
zeros in any of the substitution matrices, which implies that there exists ε > 0 such that
xj > ε. The parameters α and γ will be chosen to satisfy certain conditions ahead. In order
to define the random surface we take a partition of ]0, 1[2 by a sequence of dyadic cells. A
representation of a decreasing sequence of dyadic cells in ]0, 1[2 is given in Figure 4.
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Figure 4. A decreasing sequence of dyadic cells.

In order to link the column random variables of the sequence (Lj)j≥1 to the dyadic
cells we consider for each decreasing sequence of dyadic cells such as:

C = (c(i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN))N≥1

which is uniquely identified by the indexes identifying the decreasing sequence of dyadic
cells i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN , . . . , i1, i2, i3, . . . , iN , · · · ∈ {1, 2, 3, 4}. We have the follow-
ing algorithm to rename the column random variables of the sequence (Lj)j≥1 ≡ (Lj(α))j≥1:

W1 = L1 W2 = L2 W3 = L3 W4 = L4
W1,1 = L5 W1,2 = L6 W1,3 = L7 W1,4 = L8
W2,1 = L9 W2,2 = L10 W2,3 = L11 W2,4 = L12
W3,1 = L13 W3,2 = L14 W3,3 = L15 W3,4 = L16
W4,1 = L17 W4,2 = L18 W4,3 = L19 W4,4 = L20 . . .

The linking algorithm of the column random variables to the dyadic cells of [0, 1]2 in its
first step and second steps is as indicated in Figure 5.

Figure 5. The placement of the first four random variables: first step (left); The placement of the next
16 random variables: second step (right).

We now detail the sequence of random variables that give the height of the random
surface. For that purpose we define a sequence of random variables (MN)n≥1 uniquely
associated with a decreasing sequence of dyadic cells in the following way:

MN = MN(c(i1, i1i2, . . . , i1i2 . . . iN)) := Wi1 ·Wi1i2 ·Wi1i2i3 . . . Wi1i2i3 ...iN =
N

∏
k=1

Wi1i2i3 ...ik , (28)

observing that MN = MN(c(i1, i1i2, . . . , i1i2 . . . iN)) with c(i1, i1i2, . . . , i1i2 . . . iN) the finite
sequence of dyadic cells that goes until the Nth step. We further observe that for every
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(s, t) ∈]0, 1[×]0, 1[ there exists an unique sequence C(s, t) = (c(i1, i1i2, . . . , i1i2 . . . iN))N≥1
of decreasing dyadic cells such that:

{(s, t)} =
⋂

N≥1

c(i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN)

This decreasing sequence of dyadic cells of a given point allows, with an additional hypoth-
esis, the definition of the random surface via the sequence (MN)N≥1 = (MN(C(s, t))N≥1.

Consider the left (negative) tail average for the distribution of X
mi,j
i,j given by:

ai,j := −
∫ 0

−∞
xdF

X
mi,j
i,j

(x) .

We have the following result.

Theorem 7 (Existence of a nontrivial random field associated with a structured random
matrix). Suppose that the following assumptions are verified:

(a) The left tail averages verify:
∞

∑
i=1

ai,j

pi ≤ m < +∞ ,

for some constant m.
(b) The variances of the random variables X

mi,j
i,j verify V

[
X

mi,j
i,j

]
= x2α0

j · vi, for a certain
α0 = α0(m) to be determined later and with vi such that:

1 < V :=
∞

∑
i=1

vi

p2i < +∞ .

Then, there is a combination of the parameters α, γ such that, for each (s, t) ∈]0, 1[×]0, 1[ the
sequence (MN)N≥1 = (MN(C(s, t))N≥1 is a supermartingale that converges almost surely to a
random variable X(s,t) defining the random field (X(s,t))(s,t)∈]0,1[2 , that is:

X(s,t) := lim
N→+∞

MN(c(i1, i1i2, . . . , i1i2 . . . iN)) a. s. , (29)

and E
[∣∣∣X(s,t)

∣∣∣] < +∞. Moreover, V
[

X(s,t)

]
≥ 1, that is, the random variable X(s,t) is

not constant.

Proof. We first observe that since xj ≥ ε we have:

E
[∣∣Lj(α, γ)

∣∣] ≤ γ

xα
j

+∞

∑
i=1

E

[∣∣∣Xmi,j
i,j

∣∣∣]
pi

 =
γ

xα
j

(
+∞

∑
i=1

mi,j + ai,j

pi

)
≤ γ

1 + m
εα

.

We now choose α = α0 such that (1 + m)/εα ≤ 1. Due to the independence of the of the
random variables X

mi,j
i,j , we have that:

V
[
Lj
]
=

γ2

x2α0
j

+∞

∑
i=1

V

[
X

mi,j
i,j

]
p2i =

γ2

x2α0
j

+∞

∑
i=1

x2α0
j · vi

p2i = γ2V .

We now choose γ = γ0 ≤ 1 such that γ2
0V = 1. The random variables of the sequence

(Wi1 , Wi1i2 , Wi1i2i3 , . . . Wi1i2i3 ...iN )N≥1 are, in fact, distinct random variables of the sequence
(Lj(α0, γ0))j≥1 and so, are independent. It is well known that, since

0 ≤ E
[
Lj(α0, γ0)

]
=
∣∣E[Lj(α0, γ0)

]∣∣ ≤ E[∣∣Lj(α0, γ0)
∣∣] ≤ 1 ,
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a sequence such as the one defined by Formula (28) is a supermartingale with respect to its
natural filtration (see, for instance, ([58], p. 475)). Due to the independence we have that:

E[|MN |] = E
[∣∣Wi1

∣∣] ·E[∣∣Wi1i2

∣∣] ·E[∣∣Wi1i2i3

∣∣] . . .E
[∣∣Wi1i2i3 ...iN

∣∣]
=

N

∏
k=1
E
[∣∣Wi1i2i3 ...ik

∣∣] ≤ 1 ,

that is, supN≥1E[|MN |] ≤ 1, and so, due to a well known theorem of Doob (see, for
instance, ([58], p. 508)) the first conclusion follows. Using the facts thatV

[
Lj(α0, γ0)

]
= 1

and that the random variables Wi1i2i3 ...ik are distinct elements of the sequence(Lj(α0, γ0))j≥1,
observing that for k 6= l we have that,

V[Lk · Ll ] = V[Lk] ·V[Ll ] +V[Lk] ·E[Ll ]
2
V[Ll ] ·E[Lk]

2

= 1 +E[Ll ]
2 +E[Lk]

2 ≥ 1 ,

by induction, we now can state that:

V[MN ] = V

[
N

∏
k=1

Wi1i2i3 ...ik

]
≥ 1 ,

and so the second conclusion also follows.

Let us give an idea of a random field built under the hypothesis of Theorem 7. In
Figure 6, we present a low order approximation of the random surface associated with the
example introduced by Formula (1) in Section 2.1. The skeleton for this approximation is
the matrix M7 a square matrix having around 43 million entries.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. An approximation of low order of the random surface, built upon the skeleton M7: surface
plot (left); Contour plot: (right).

Remark 18 (On the covariance of the random field (X(s,t))(s,t)∈]0,1[2). Due to the general
procedure considered in the construction of the random field it is possible to determine some
interesting results on the covariance. In fact let, for two distinct points (s, t), (s′, t′) ∈]0, 1[2, be
the correspondent martingale sequences with elements MN(C(s, t)) and MN+P(C(s′, t′)) with
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N, P ≥ 1. Let us suppose that the integer 0 ≤ N0 < N is the largest integer such that the points
(s, t), (s′, t′) both belong to the same dyadic cell. It is then clear then that:

Cov
[
MN(C(s, t)), MN+P(C(s′, t′))

]
= E

[
MN0(C(s, t))2

]
E

[
N

∏
k=N0+1

Wi1i2i3 ...ik (C(s, t))

]
E

[
N+P

∏
k=N0+1

Wi1i2i3 ...ik (C(s
′, t′))

]
−E[MN(C(s, t))]E

[
MN+P(C(s′, t′))

]
.

If all the random variables of the sequence (Lj)j≥1 have mean equal to 1 and then, forcefully, the
absolute moment of second order is strictly larger than 1, for instance, equal to 2, then, again by
Lebesgue convergence theorem we have that:

Cov
[

X(s,t), X(s′ ,t′)

]
= 2N0 − 1 ,

where, as already said, N0 ≥ 0 is the largest integer such that the points (s, t), (s′, t′) both belong
to the same dyadic cell. If the points do not belong to any common dyadic cell (see Figure 5), that is
if N0 = 0, the covariance is null. The closer the points are, the larger the integer N0 is, and so, the
larger the covariance.

5. Conclusions and Future Work

In this work, we introduced structured random matrices having a skeleton built from
the a matrix substitution process with entries in a finite field. We showed that the iterated
application of a particular kind of matrix substitution generates a sequence of matrices that
admit a periodic point—that may be a fixed point—or a fixed point for the sequence of
matrix principal parts of a given order. The random matrices, with independent entries,
having as skeletons matrices derived from this matrix substitution process have remarkable
properties whenever the random variables satisfy some uniform properties. It is showed,
under adequate hypothesis, that:

• The existence of a particular type of structure of matrix substitution type is identifiable
by simple statistical procedures;

• The convergence in law of a sequence of random matrices having as skeletons a
sequence of matrices with entries in a finite field that, of matrix substitution type,
converges to a fixed point;

• There is a generic result on the spectral analysis for the random matrices derived from
a matrix substitution procedure;

• There is a canonical manner to associate a nontrivial random field with interesting
properties to a random matrix having as a skeleton a matrix with entries in a finite
field of matrix substitution type.

A more detailed analysis of the spectral properties of the random matrices here
introduced is, for us, open to future work. Furthermore, matrices with a high percentage
of zeros can be generated by considering special global matrix substitutions maps; the
detailed properties of these matrices will be object of future work. Finally, a reciprocal
problem to the one considered in this work is to determine if a large matrix is a fixed point
of some global matrix substitution map. A reasonable conjecture is that for every large
matrix there exists a global matrix substitution map admitting a fixed point that is close, in
some sense, to the given matrix.
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