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Abstract: Determining the optimal price of products is essential, as it plays a critical role in improving
a company’s profitability and market competitiveness. This requires the ability to calculate customers’
demand in the Fast Moving Consumer Goods (FMCG) industry as various effects exist between
multiple products within a product category. The substitution effect is one of the challenging effects
at retail stores, as it requires investigating an exponential number of combinations of price changes
and the availability of other products. This paper suggests a systematic price decision support tool for
demand prediction and price optimise in online and stationary retailers considering the substitution
effect. Two procedures reflecting the product price changes and the demand correlation structure
are introduced for demand prediction and price optimisation models. First, the developed demand
prediction procedure is carried out considering the combination of price changes of all products re-
flecting the effect of substitution. Time series and different well-known machine learning approaches
with hyperparameter tuning and rolling forecasting methods are utilised to select each product’s
best demand forecast. Demand forecast results are used as input in the price optimisation model.
Second, the developed price optimisation procedure is a constraint programming problem based
on a week time frame and a product category level aggregation and is capable of maximising profit
out of the many price combinations. The results using real-world transaction data with 12 products
and 4 discount rates demonstrate that including some business rules as constraints in the proposed
price optimisation model reduces the number of price combinations from 11,274,924 to 19,440 and
execution time from 129.59 to 25.831 min. The utilisation of the presented price optimisation support
tool enables the supply chain managers to identify the optimal discount rate for individual products
in a timely manner, resulting in a net profit increase.

Keywords: price optimisation; demand prediction; demand correlation; substitution effect; data
driven machine learning; retailing

MSC: 90-10; 90B06

1. Introduction

One of the critical challenges in any business is determining the right price for individ-
ual products and services as pricing plays a significant role in strengthening a company’s
competitive power. Therefore, a company requires pricing strategies to improve profitabil-
ity [1,2]. The first factor that a company should consider is how customers will react to
the pricing of various goods and services [3]. The pricing strategy includes a range of
factors such as demand, cost, margin, market share, customer loyalty, and product life
cycle. To consider these factors and to make pricing decisions successfully for the effective
operation of the companies, most of them have attempted to construct systematic price
decision support tools using price optimisation models [4]. For instance, the retail industry
has been actively using price optimisation models to determine their prices, inventory
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levels, and assortment [5]. Two main categories of price optimisation models in the retail
industry have been studied in detail. The first category has been developed for the fashion
industry, which has the characteristic that product inventory is highly perishable at the end
of the season [6,7]. The capacity and price policy properties, in this case, are similar to those
used in the airline or hotel industries [5]. Another category of price optimisation models
developed for the retail industry is to consider unlimited inventory capabilities [8–10].
Usually, online and offline Fast Moving Consumer Goods (FMCG) companies deal with
products with a short shelf life and high turnover rates because of their high customer de-
mands. Thus, demand forecasting plays an essential role in companies’ sales and operation
planning (S&OP) [11] when it comes to determining the price.

In the FMCG industry, in contrast to the fashion industry, the customer’s response
to a price change is more important than inventory management as inventory can be
continually replenished. In this case, the demand for goods is usually independent over
time as customers purchase products repeatedly. Although there is enough transactional
sales data in the FMCG industry, it is not easy to predict demand or reflect the exact
reaction of customers to products as there are demand correlation issues [12,13]. Demand
correlation in the retail industry measures how changes in demand for one product affect
demand for another. These include factors such as seasonality, consumer trends, inflation,
and recession. The income effect also is another important factor in changing demand.
The income effect is the resulting change in demand for goods or services due to an increase
or decrease in a consumer’s purchasing power or real income in microeconomics [14]. In
the FMCG industry, demand correlation exists in various types. For instance, within a
product category, the sales of one product usually decrease when the price of other goods
decreases. This is called the substitution effect. Another type of demand correlation is a
complementary effect. That is if the price of one product decreases, the sales of related
products increase, i.e., pasta and pasta sauce, wine and cheese [15–17]. In addition, the sale
of one product can be affected by the competitor’s price. This is called the competition
effect [18]. In general, estimating demand for each product taking into account these
correlations is complicated as it should deal with multiple products [11]. The more effect
factors needed to predict demand, the more variables and price combinations should be
considered. This can result in an exponential number of variables and a higher degree of
model complexity.

In papers [19] and [20], some models for demand prediction in multiple products
with a substitution effect have been developed. In these models, it is assumed that every
customer prefers a specific product based on individual consumer choices. This means
every customer associates a utility function with each product [21,22]; thus, the choice
probabilities should be determined. In this case, the customer’s choice becomes an essential
element of the formulation, and the demand process depends on a whole vector of prices,
including the price of substitute products. If the distribution of utilities across the customers
is known, the Multinomial Logit (MNL) model or the Locational Choice (LC) model can
be used to calculate the purchase probability of a product and substitution probability in
case the product is not on the shelf. The MNL model assumes that the customer purchases
a substitute based on the market share of the products if the preferred product is not on
the shelf [21,23]. On the other hand, the LC model assumes that the customer purchases
a substitute that is the most similar to the preferred product [20]. Furthermore, in [19],
the Exogenous Demand (ED) model was applied for the substitution effect. In this model,
the share of customers with a favorite product and the probability of buying another
product if the favored product is not in the assortment are defined. The ED model is
more flexible for substitution than the MNL and the LC models; however, it is more
challenging to be utilised due to the number of parameters [22]. Although these models
and research works have performed quite well in some applications, finding individual
customer preferences and the segmentation of the customers appropriately is challenging
in real-world situations. Thus, the calculation of accurate substitution probabilities can not
be guaranteed.
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Once demand correlation considering various effects has been calculated demand
prediction and price optimisation models are constructed and solved. Some researchers
have applied data-driven machine learning approaches to the demand prediction model.
For instance, Islam et al. [24] used the Relational Regressor Chain (RRC) method together
with traditional time series methods. Makridakis et al. [25] presented the background,
data, and characteristics of the Makridakis 5 (M5) competition that forecast demand for
items on sale at Walmart. Chawla et al. [26] performed demand forecasting by applying
an Artificial Neural Network (ANN) method to the same Walmart data used for the M5
competition. Punia et al. [27] attempted to forecast demand by applying a prediction
method that combines Long Short Term Memory (LSTM) networks and Random Forest
(RF) to actual multichannel retail data. Vairagade et al. [28] also applied RF and ANN to
Supply Chain Management (SCM).

To solve the price optimisation model, various methods have been applied. For in-
stance, Akçay et al. solved the optimisation problem for multiple products using dynamic
programming (DP) [29]. Although the results were promising for this particular applica-
tion, the model complexity increases when the effect in optimisation model results in an
exponential number of variables. Some researchers have proposed to apply more efficient
approaches to reduce the number of operations and thus execution time. Caro et al. [6]
used Mixed Integer Programming (MIP) to compensate for the higher degree of complexity.
They applied approximate formulations in which future sales are replaced by their ex-
pected values. Ferreira et al. [5] applied Integer Programming (IP) to solve the optimisation
problem for substitute products using a reference price metric.

Although the models and methods described above have demonstrated some promis-
ing results, their applications to real-world situations are not always possible due to the
curse of dimensionality and time complexity. Thus, it is essential to design techniques
that can be executed on the available computer resources within a reasonable time while
considering both various business rules and optimisation processes.

In this paper, we extend the study of the retailer in the FMCG industry aiming to
provide an efficient price optimisation model that can be applied to business operations in
a computationally effective manner. More specifically, we investigate the demand predic-
tion and the price optimisation of multiple products considering the combination of price
changes of products to reflect the effect of the substitution within the product category.
The customers’ responses to the different price ranges using real-world transactional sales
data are also studied. A significant part of this research is associated with the substitution ef-
fect and has been conducted to estimate demand in the retail industry. This research is more
focused on the price-based substitution effect than the assortment-based substitution effect.

The main contributions of this paper are:

• investigating demand prediction models for multiple products with substitution effect
and proposing a new demand prediction procedure;

• utilising data-driven machine learning approaches in demand forecasting;
• studying price optimisation models for the retailer that reflects all price changes of

products and constructing a novel price optimisation procedure;
• applying the proposed demand prediction and price optimisation procedures to real-

world transaction data.

The rest of the paper is organised as follows. Section 2 presents the data collection and
how to identify the key factors for the demand prediction model using Exploratory Data
Analysis (EDA). Sections 3 and 4 describe the demand prediction and price optimisation
models, respectively, as well as the experimental results of the models. Section 5 presents
the discussion and conclusion.

2. Data Set

This section provides information about the data set used in our experiments followed
by the description of processing and analysing data.
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2.1. Data Description

Three years of transaction data on products sold in US supermarket chains were
taken from the Dunnhumby website and used as a sample for this study (Dunnhumby’s
‘Breakfast at the Frat: A Time Series Analysis’). The data consists of three tables in total (in
CSV format): the product table that provides product information such as product name,
description, subcategory, brand, and size; the transaction table that contains weekly unit
sales, sales amounts, number of visitors, number of visiting households, base price, actual
sales price at the shelf, and promotion information for each product; and finally, the store
table that has information such as store type, store size, parking lot size, and average
sales amount.

The data contains the sales histories of four product categories during 156 weeks from
2009 to 2011 in 4 US states, 51 cities, and 79 stores. These categories are bag snacks, cold
cereal, frozen pizza, and oral hygiene products. Each category has sales of the top three
products for each of the top five brands—a total of 15 products. Among these categories,
cold cereal is selected as a sample in our experiments due to the following reasons: it has
the most frequent purchases, the appropriate number of subcategories, and a relatively
wide range of discount frequencies and depths. In addition, products in this category are
known to represent the characteristics of essential consumer goods in the FMCG industry
and are less affected by time series (e.g., seasonal and monthly effects).

The cold cereal category consists of five brands (Kellogg, Post, General MI, Quaker,
and Private Label). As Quaker brand products have a shorter sales period than other
products, it is not easy to use the products of this brand for modeling. Thus, we remove
them from the data and consider only sales data from 12 products representing four brands.
Furthermore, as the sales periods are slightly different for each product, 104 weeks of data,
the two years from 8 July 2009, are used for developing the demand prediction model.
In addition, one of the Cincinnati stores (Store id = 25,027) is selected as a sample since this
store has a relatively large amount of transactional sales data.

Moreover, the products of each brand have different market shares, but at the same
time, sales of products are greatly affected by price changes caused by discounts or promo-
tions. As the discount period and depth vary from brand to brand, how the price change
of one product affects the sales of other products should be measured, for instance, using
transaction data. As a result, weekly sales of each product are widely distributed according
to brand loyalty, discount rate, and substitution effect. In the following, exploratory data
analysis is done to measure and examine own-product price elasticity, cross-product price
elasticity, and seasonal effects in detail.

2.2. Data Preprocessing

First, the three tables (the transaction data, product information, and store information)
are combined into one table. Then, missing values and outliers are scanned. There are no
significant outliers in the sample; however, missing values occurred due to differences in
product sales periods when generating the price combination variable of products within a
product category. We impute the missing values using Random Forest, when implementing
the demand prediction model.

Next, we create various derivative variables such as discount rate, unit price, relative
price, and successive discount periods. Since the price variable has a significant impact
on sales, some derivative variables related to price are created. In addition, we calculate
the discount rate using the base and actual selling prices (DISCOUNT_RATE). The unit
price is also created by calculating the selling price per unit—in this case, usually per
ounce (UNIT_PRICE). Note that the relative prices within product categories have been
frequently used as reference prices in previous studies [5]; thus, we calculate these values
by dividing the price of each product by the average of the prices of all products in the
product category (RELATIVE_PRICE). As most product discounts do not stop after just
one week but last for several consecutive weeks, new variables are created by calculating
consecutive discount weeks (DISCOUNT_WEEKS) and consecutive nondiscount weeks
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(NO_DISCOUNT_WEEKS). Variables such as YEAR, MONTH, and WEEK are also newly
created to understand the influence of time series factors such as trends and seasonality.

Furthermore, we create various discount-type variables (DISCOUNT_TYPE2). They
include NO if the product is not discounted at all, UNSUPPORTED if the discount is
put in place without other promotion, and SUPPORTED if the discount is supported
simultaneously with promotions such as display and feature.

2.3. Exploratory Data Analysis (EDA)

To get more insight into customer response to price changes and features that affect
sales, and also to calculate price sensitivity and substitution effect, we conduct EDA.
Univariate analysis shows the distribution of prices, discount rates, promotions, and sales
of each product. Each product has a different price, discount rate, discount frequency,
and promotional frequency. Since the sales distribution of most products has a long right
tail, indicating that the sales of products increased dramatically during discount periods
(see Figure 1), we apply log transformation to variables such as sales units, sales amount,
and price. This allows us to calculate price elasticity efficiently as well as to improve the
prediction accuracy of the demand prediction model.

Figure 1. Univariate analysis: Histogram and Kernel Density Estimators (KDE) of sales units for
different products.

Furthermore, we apply the well-known demand forecasting approach, time series
analysis, to investigate trends, seasonality, and cycles. The results show that there is no
distinct seasonality, and the hypothesis that the sales of FMCG industry products are
time-independent is satisfied. The results of heatmap are illustrated in Figures 2 and 3. It
can be seen that there is no special monthly effect on sales and discount rates. The darker
the color in the heat map graph below, the higher the month’s sales volume (see Figure 2).
For instance, months with high sales are a darker color in the graph, but each product has a
different month with high sales. Consequently, the heatmap graph shows no patterns in
which the sales of a particular month were steadily higher or lower.
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Figure 2. Time Series Analysis: Heatmap of sales units (Year vs. Month vs. Sales units).

Figure 3. Time Series Analysis: Heatmap of discount rates (Year vs. Month vs. Discount Rate).

To assess whether there is an autocorrelation with past sales of products, we utilize
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). The ACF
indicates the correlation coefficient between the current time series and the kth time leg,
and the PACF shows a partial correlation between the current time series and the kth time
lag. Since the results are very similar for ACF and PACF, we only include the results of
the ACF (see Figure 4). If the height of the bar is significant in the positive or negative
direction, then there is a substantial correlation between the time lag and the current time
series. The ACF starts with a lag of 0, which is the correlation of the time series with itself
and therefore results in a correlation of 1. The shaded area represents the 95% confidence
interval and indicates the significance threshold. For instance, lags within the shaded area
are insignificant, and lags outside the shaded area are statistically significant. The results
show that most products have a significant correlation with time lag 1 or lag 2. However,
none of ACF and PACF graphs show significant correlation with time lags 12 and 24,
which means that there is no specific seasonality (i.e., they did not cross the 5% confidence
boundary for auto correlation).
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Figure 4. Time Series Analysis: ACF Plot.

Next, we study the variables affecting sales—as they are essential input variables for
the demand prediction model—and select candidate features. We apply the correlation
analysis for this purpose. The results of our analysis show that sales of each product were
most affected by price and discount. Promotions such as displays and features were also
strongly correlated with product sales. Figure 5 shows the product sales when there is no
discount (NO), a price discount without promotion (UNSUPPORTED), and a price discount
with the promotion such as display and feature promotion (SUPPORTED). The graph
presents that if the discounts are supported together with the promotions (SUPPORTED),
product sales increase sharply compared to if they are not discounted (NO) or discounted
without promotions (UNSUPPORTED).

Figure 5. Correlation Analysis: Discount Type vs. Sales Units.

Furthermore, we examine the relationship between sales, prices, and discounts in
more detail using regression analysis. The price sensitivity of each product is assumed
to be equal to its own-product price elasticity, and a product with high price elasticity is
considered to be a product with high price sensitivity. Indeed, it is expected that products
with high price elasticity are more critical in the demand forecasting model. Many studies
used a log-log linear regression function to calculate the own-product price elasticity for a
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particular period [30,31]. In this case, the own-product price elasticity is the same as the β1
value (slope) of the regression function (see Equation (1)) as it represents the change in the
sales of one product divided by the price change.

logQA = β0 + β1 ∗ logPA + ε (1)

where:

β0 : intercept

β1 : own-product price elasticity of product A (PA)

Moreover, the results of our analysis (given in Figure 6) reveal that each product
had different price elasticity. In this figure, the larger the slope in the negative direction,
the more significant the change in sales volume. For example, product P9 has a slope of
−4.905, showing that its changes in product sales from changes in price are much greater
than for other products. As expected for a product with high price elasticity, the higher the
discount rate, the more sales increase.

Figure 6. Regression Analysis: Own Product Price Elasticity—Log-Log Regression (Price vs. Sales Units).

In addition, the cross-product price elasticity was used to identify the substitution
effect of two products in many studies [32]. Like the own-product price elasticity, the log-
log linear regression function is used to calculate the cross-product price elasticity of two
products A and B for a particular period. That is, the (1) can be reformulated as (2) to see
how product B’s sales change as product A’s price changes, and vice versa.

logQA = β0 + β1∗logPB + ε, and logQB = β0 + β1∗logPA + ε. (2)

Using these equations, we calculate the cross-product price elasticity matrix, Figure 7.
This matrix shows which/how price changes in some products had more significant impacts
on the sales of other products. The diagonal of this matrix represents the own-product
price elasticity of each product, and the larger the negative value, the higher the price
elasticity. Asymmetric cross-product price elasticity between two products is also given
in the matrix. This means that price changes of one product have a greater impact on
the sales of other products, while conversely, some products are more affected by price
changes of other products. The cross-product price elasticity results have the advantage of
showing the influence of each product pair. However, there is the limitation that they show
the substitution effect only between two products. The results of this matrix show that
it is not desirable to assume a specific mathematical model for substitution effects as the
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price change of each product has different effects on other products. Therefore, we focus
on demand prediction and price optimisation models that reflect the substitution effect
through machine learning data-driven methods.

Figure 7. Regression Analysis: Cross Product Price Elasticity Matrix.

3. Demand Prediction Models

One of the most critical factors of price optimisation is to obtain demand forecasts
that match changes in a product price. One needs to understand how a product’s demand
changes with different pricing options. As mentioned above, there are different factors
that can affect prediction of demand. We study demand prediction models that consider
the substitution effect. To reflect this effect, demand prediction models should include the
price changes of all the products in the product category as input. We utilise the candidate
variables selected through EDA and the prices of all products within the product category
as input variables for demand prediction.

In this section, we present a framework that selects each product’s best demand
prediction model among the candidate models. The demand prediction model selected as
best for each product will then automatically become the input of the price optimisation
model. To select the best model for each product, we compare the benchmark models with
the candidate demand prediction models.

3.1. Existing Models

Among existing demand prediction models, the simple average, simple median, naïve
Bayes, and seasonal naïve models are commonly used in most studies [33–35]. Thus, we
consider these models as benchmarks for our study.

The simple average model uses the average of the sales historical data to forecast all
future values, and defined as

ŷT+h = ȳ =
(
y1 + · · ·+ yT

)
/T (3)

where:

ŷT+h : h step ahead of predicted value for time T period data

y1, . . . , yT : sales historical data for time T period

Like the simple average model, the simple median model uses the median value of
the sales historical data to forecast all future values, and given as

ŷT+h = Median
(
y1, . . . , yT

)
(4)
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The naïve model utilises the value of the last observation to forecast all future values
and is defined as

ŷT+h = yT , (5)

where yT is the last observed value of time T period data.
The seasonal naïve model works well in data that have seasonal components. While

the naïve model uses the most current value as a predictor, the seasonal naïve model
predicts the value of the last observation from the previous season. For example, when we
want to forecast monthly data, the seasonal naïve model predicts the May of this year as
the data value of the May of the previous year. The seasonal naïve model is defined as

ŷT+h−km = yT , (6)

where m is the seasonal period and k =
[

h−1
m

]
+ 1. Note that the seasonal Naïve model is

used to check if the seasonality improves the model performance.
The first demand prediction model used in our comparison is the ARIMA, where time

series elements are included as primary input variables. As no seasonality was observed in
the FMCG industry dataset, the ARIMA model is used and tested. The ARIMA model is a
generalisation of the Auto Regressive Moving Averages model, that explains the current
time series values using past observations and errors. ARIMA is a model that integrates the
Auto Regressive (AR) and Moving Averages (MA) models. The ARIMA model has three
parameters (p, d, q)—the p-order of the AR (p) model, the q-order of the MA (q) model,
and the number of differences (d-order) as follows:

p : the number of autoregressive parameters

d : the number of differences involved

q : the number of residuals caused by lagged predicting

Parameters p, d, and q could be manually identified using the ACF and PACF graphs
above but instead we use a hyperparameter tuning method to find the optimal parameters
by programming (Python coding) as this allows the analysis to be automated. Then, the
forecast at time t, Yt, using the ARIMA is given by

Yt = c + φ1Yt−1 + · · ·+ φpYt−p + θ1et−1 + · · ·+ θqet−q + et (7)

where:

Yt : the forecast at time t

c : intercept

φ : coefficient of p

θ : coefficient of q

et : residuals at time t

The MLR model uses the prices of all the products and other critical features as
identified through the EDA for forecasting demand. We apply the log-log linear regression
to estimate the demand for one product, that is

logQ1 = β0 + β1∗logP1 + · · ·+ βn∗logPn + βn+1∗V1 + · · ·+ βn+m∗Vm + ε (8)

where:
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logQ1 : log values of demand of product 1

β0 : the intercept

βn, · · · , βn+m : model parameters of price and key variables

V1, · · · , Vm : other key variables used as input for the model

logP1, · · · , logPn : log values of prices of product 1 to n

For other machine learning models, K-Neighbours, Decision Tree, Random Forest,
Extremely Randomised Tree, GBM, Light GBM, Histogram-based GBM, and XGBoost, we
apply hyperparameter tuning to find the optimal parameters. More precisely, during the
model training and testing process, various parameter combinations are tested to find the
most robust demand forecasting model. In addition, a grid search method to implement
one of the time-series cross-validation techniques, rolling forecasting, is utilised in the
tuning procedure.

The K-Neighbours regression algorithm is a supervised learning, a nonparametric
algorithm that regresses using labeled data. It is commonly used for demand forecasting in
the retail industry, as it has no assumptions about the underlying distribution of the data,
is robust to outliers, and is easy to implement [36–38].

The Decision Tree model has been the most widely used in the field of data science
because it has fast, easy-to-interpret, and strong predictive performance [39]. The ‘training’
of this model is carried out by dividing the data set for learning into subsets according to
the appropriate partitioning rule. However, they also have the disadvantage that there can
easily be overfitting when new data is predicted [40].

One of the typical methods to prevent such overfitting is Random Forest, which em-
ploys the ensemble technique. Random Forest is an algorithm that creates multiple decision
trees and determines the results using the voting method. Random Forest composes the
forest using bootstrap aggregation, called the ‘begging’ algorithm [41]. Several studies
conducted retail demand forecasting using Random Forest, as it can handle missing values,
nonlinear relationships, large data sets, and is robust to overfitting [28,42].

The Randomised Trees model, also known as the Extra Trees model, increases ran-
domness by randomly dividing each candidate feature in the forest tree—that is, the model
randomly selects independent variables at each node [43].

Unlike the Random Forest model, Gradient Boosting creates a tree sequentially in
a way that compensates for the error of the previous tree [44]. Therefore, the Gradient
Boosting model has no randomness, as the next tree is affected by the outcome of the
previous tree. Compared to the ‘bagging’ algorithm that only controls high variance in the
model, the ‘boosting’ algorithm is known to control both bias and variance [45]. Several
studies used Gradient Boosting for forecasting demand, as it is more robust to noisy data
and uses less memory [46,47].

XGBoost (Extreme Gradient Boosting) [48], LightGBM developed by Microsoft [49],
and Histogram-based Gradient Boosting [50] are the most popular Gradient Boosting
implementation libraries. XGBoost is a scalable and highly accurate gradient-boosting
machine learning library. XGBoost shows faster computational performance because the
trees are built in parallel rather than sequentially as they are in Gradient Boosting. In ad-
dition, XGBoost has the advantage of minimising overfitting by fine-tuning more diverse
parameters through hyperparameter tuning.

Despite XGBoost’s excellent prediction performance, it has the disadvantage of requir-
ing an extended learning time [48]. In comparison, LightGBM has the advantage of fast
speed and low memory usage, and its accuracy is not much different from XGBoost [49].
Histogram-based Gradient Boosting reduces the split points to consider by binning the
input sample with an integer value of bin (histogram, typically 255 bins). As a result,
the number of candidates to split is significantly reduced compared to sorted continuous
values because the algorithms utilise data structures based on integers [50] (see Table 1).
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Table 1. Demand prediction models.

Type Models

Benchmarking Simple Average
Simple Median
Naïve Bayes
Seasonal Naïve

Time Series Auto Regressive Integrated Moving Averages (ARIMA)

Machine Learning Multivariate Linear Regression (MLR)
K-Neighbours
Decision Tree
Random Forest
Extremely Randomised Tree
Gradient Boosting Machine (GBM)
XGBoost
Light GBM
Histogram-based GBM

3.2. Selection of Variables

We use the historical transaction data without assuming consumer preference or utility
being utilised. Since the prices of all products in a product category have to be used as
inputs to a demand prediction model to reflect the substitution effects, we consider the
price combination of all products within a product category.

In the benchmark and ARIMA models, only the historical sales data is used, while all
the candidate variables and the prices of all products are used in other models. The candi-
date variables that have the most significant impact on the sales of the products are selected
through univariate, bivariate, correlation, and time series analysis. They include the key
variables highly correlated with product sales such as price, discount rates, promotion
type, and time-related variables like month and week. The time lags are also selected as
a candidate variable, as there is an autocorrelation with lags 1 and 2 through time series
analysis in the EDA process. In addition, previous discounts, discount weeks, and no
discount weeks are selected, see Table 2.

Table 2. Candidate feature lists.

Features Description

LOG_PRICE Log Prices of different brand products within product
category

DISCOUNT Discount rate of product
D_RATE Discount rate (0 = 0%, 1 = 0–10%, 2 = 10–20%, . . . ,

5 = 40–50%)
DISPLAY Display promotion (0 = No, 1 = Yes)
FEATURE Feature promotion (0 = No, 1 = Yes)
DISCOUNT_TYPE2 Discount types (0 = No Discount, 1 = Unsupported Dis-

count, 2 = Supported Discount)
PREVIOUS_DISCOUNT Discount rate of previous periods
DISCOUNT_WEEKS Consecutive discount weeks
NO_DISCOUNT_WEEKS Consecutive nondiscount weeks
MONTH Month
WEEK Week
t-1 Time lag 1
t-2 Time lag 2
t-3 Time lag 3
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3.3. Validation of Models

We use the time-series cross-validation technique for model validation. Compared to
general cross-validation techniques that randomly separate training data and test data to
validate model performance, time-series cross-validation techniques have the characteristic
of separating training data and test data by taking the training data from one time period
and the test data from a subsequent time period. For more robust model evaluation, we
apply a rolling forecasting method, which sequentially separates historical data into several
pairs of train-test sets and considers the average value of prediction errors for each test set
as the final model performance. Furthermore, we utilise the expanding window technique
to expand the training data sequentially, but the test data is used only for a fixed period.

3.4. Evaluation and Comparison of Models

To compare the models, we apply the Root Mean Square Percentage Error (RMSPE) to
report the difference between the actual and the predicted values at all times, defined as

RMSPE =

√√√√ 1
n

n

∑
t=1

(
yt − ŷt

yt

)2
(9)

where:

yt : the actual value at time t

ŷt : the predicted value at time t

Next, we present and discuss the results obtained by the models mentioned above.
After testing all candidate demand prediction models, the best model—the one that min-
imised prediction error—is selected for each individual product. For instance for the
product (P4), the results are given in Figure 8. We can see that the prediction errors of
most candidate machine learning models, Random Forest, Extra Tree, Gradient Boosting,
XGBoost, and Decision Tree as well as MLR, are lower than those produced by the ARIMA
and the benchmark models. Overall, these machine learning models show an improvement
in RMSPE score of between 2% to 16% over the benchmark models. The best model with
the lowest value of the RMSPE score is Extra Trees (0.0639), which shows a performance
improvement of about 3% over the Simple Average model (0.0939) and about 10% over the
Seasonal Naïve model (0.1650).

Figure 8. Comparison of models using RMSPE for product P4.

The final results with all products are presented in Table 3. In this table, the first
column indicates the product name, the second column shows the best model for the
corresponding product, and the last two columns present the best parameters and scores.
The ‘n_estimators’ parameter in the third column indicates the number of trees in the forest
and this value could be 100, 500, or 1000. Likewise the ‘max_depth’ parameter represents
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the maximum number of levels in each decision tree and this was tested at values of 3,
4, or 5 for hyperparameter tuning. Moreover there is no one correct answer for these
parameters as the decision is more experimental than theoretical. Therefore, we need to test
various combinations of the parameter options to see which gets the best results. The best
score is the RMSPE value of the best model of each product, that is, the model with the
lowest prediction error.

Table 3. Best Demand Prediction Models for each Product.

Product Model Best_Parameters Best_Score

P1 GradientBoosting {‘max_depth’:3, ‘n_estimators’:100, ‘sub-
sample’: 0.7}

0.1534

P2 ExtraTrees {‘max_depth’:3, ‘n_estimators’:500} 0.2243
P3 GradientBoosting {‘max_depth’:3, ‘n_estimators’:100, ‘sub-

sample’: 0.8}
0.0763

P4 ExtraTrees {‘max_depth’:5, ‘n_estimators’:100} 0.0639
P5 ExtraTrees {‘max_depth’:3, ‘n_estimators’:500} 0.0528
P6 ExtraTrees {‘max_depth’:3, ‘n_estimators’:1000} 0.0660
P7 ExtraTrees {‘max_depth’:5, ‘n_estimators’:100} 0.0763
P8 ExtraTrees {‘max_depth’:4, ‘n_estimators’:100} 0.0896
P9 RandomForest {‘max_depth’:5, ‘n_estimators’:100} 0.1200
P10 GradientBoosting {‘max_depth’:4, ‘n_estimators’:100, ‘sub-

sample’: 0.8}
0.2084

P11 RandomForest {‘max_depth’:3, ‘n_estimators’:500} 0.1034
P12 ExtraTrees {‘max_depth’:4, ‘n_estimators’:500} 0.0813

We can see from this table that mostly machine learning models are selected as the
best model for each product. These results also confirm that the accuracy of the models
reflecting the substitution effect (machine learning models) is higher than the models with
no substitution effect (ARIMA and benchmark models).

3.5. The Proposed Demand Prediction Procedure

Following our observations and experiments, next we propose a procedure for best
demand prediction. Denote the number of products by p (also used for the number of
iterations), the number of demand prediction models by m, the number of hyperparameter
options for each product by h, and the number of possible rolling forecasting windows
r. To find the best demand prediction model for each product, one should follow the
following procedure (illustrated also in Figure 9):

1. Start modelling for the first product on the product list p (p = 1–12);
2. Generate input data including key features, price of all products, time lags, and sales

of the target product from the database;
3. Split features and target variable;
4. Select the individual demand prediction model from the predefined model set m

(m = 1–14);
5. Select the hyperparameter option combination from the predefined parameter set h (h

is different depends on the model);
6. Increase the rolling forecasting windows from 52 weeks to [the total number of weeks

of each product − test weeks];
7. Perform the demand prediction model training with selected demand prediction

model, hyperparameter option and rolling forecasting window obtained in steps 4–6;
8. Calculate and store RMSPE score from the model validation process using (9);
9. After finishing the rolling forecasting loop, calculate and store the average RMSPE

score of all the rolling forecasting for selected hyperparameter option;
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10. After finishing the hyperparameter option loop, store the best hyperparameter option
with the lowest RMSPE score for selected demand prediction model;

11. After finishing the demand prediction model loop, store the best demand prediction
model with the best hyperparameter option for selected product;

12. After finishing the product loop, print the best demand prediction model for all
the products.

Figure 9. The proposed demand prediction procedure.
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Note that the demand forecasting for each product is performed using the best demand
prediction model for that product. In addition, the KN demand prediction results reflecting
all the product price combinations (where K is the number of products in the category,
and N is the number of discount rate options) are taken from the model and are used to
reflect the substitution effect. These demand forecast results will be the key input for the
price optimisation model.

4. Price Optimisation Models

The final price optimisation model should be as accurate as possible and be feasible
within affordable system performance. The core input to the price optimisation model is
demand forecasts reflecting the substitution effect. Another important key is solving the
curse of dimensionality caused by the substitution effect of considering the price combi-
nation of all products in the product category. The final output of the price optimisation
model is the optimal discount rate for individual products selected from a set of discount
rate options (e.g., {0%, 25%, 50%}).

Furthermore, any business rules and limitations associated with the industry must be
investigated and applied to the price optimisation model. Most business rules have to be
created based on the business strategy already used by the retail company. The company
can also develop new strategies and business rules using the insights gained from the EDA.

In this paper, we concentrate more on a model that can reduce the number of combi-
nations and thus execution time using Constraints Programming (CP) techniques, as, in
essence, this is a typical combinatorial optimisation problem. We use the best demand pre-
diction model, for each product with different price combinations of products in the product
category, constructed in the previous section. Furthermore, we add several business rules
as constraints.

In the following, we first describe a basic price optimisation model that reflects the
substitution effect. After determining the input variables, decision variables, parameters,
and objective function, we evaluate the model from various viewpoints. Then, we add
several business rules that may arise in FMCG industries to this price optimisation model
as constraints and formulate two price optimisation models named Model 1 and Model
2. Finally, we compare the models through computing simulations to assess how the
combinations and execution times vary when the number of products, discount rates,
and constraints are changed.

4.1. Basic Model

To formulate the basic model, we use products for sale in the cold cereal product
category from the data set described in Section 2. Recall that the number of discount
rate options determines the number of price combinations for products within a product
category and thus has a significant impact on system performance and execution time.
Therefore, the basic price optimisation model allows us to check changes in system perfor-
mance based on the number of discount rate options. Note that it is assumed there are a
limited number of discount rate options.

Using each product’s underlying price and cost, the product margin is calculated by
applying each product’s selected discount rate. Then, in the objective function, the total
profit for the product is estimated by applying the calculated margin to the demand values
from the demand prediction model. The goal of the basic model is to find a single set of
discount rate options that maximise profit. The optimal discount rate selected for each
product allows the store to maximise its overall weekly profit.

We use the following notations to form the model.

Indices and Sets

N the set of all products in the product category

K the set of discount rate options



Mathematics 2023, 11, 2502 17 of 28

Parameters

Pn base price of each product n

Cn cost of each product n

Dkn discount rate k of each product n

Mkn margin of each product n at the discount rate k,

and defined as Mkn = Pn(1− Dkn)− Cn

Fn,k1,k2,...,kn represent the expected sales for product n if products 1, 2, . . . , and 12

sold at discount rate Dk1, Dk2, . . . , Dkn, and is given as

Fn,k1,k2,...,kn = E
[
Salesn|Dk1, Dk2, . . . , Dkn

]
, ∀n ∈ N, k1 ∈ K, k2 ∈ K, . . . , kn ∈ K

Variables

Xk1,k2,...,k12 indicates whether products 1, 2, . . . , and 12 should be sold at discount rate

Dk1, Dk2, . . . , Dkn, ∀k1 ∈ K, k2 ∈ K, . . . , k12 ∈ K

Xk1,k2,...,k12 =

{
1, if products 1, 2, . . . , and 12 should be sold at discount rate Dk1, Dk2, . . . , Dkn

0, otherwise

Zn indicates whether the product n is discounted or not

Zn =

{
1, if discount rate of product n is 0%, (if Xn = 0)
0, otherwise

Formulation

The objective of this model is to determine the discount rate options for each product
that maximises the weekly profit of all products into the product category. The price, cost,
and discount rate of each product are entered in the model as an inputs. The margin
[base price ∗ (1 − discount rate) − cost)] is then calculated from these values to obtain a solu-
tion to the objective function. This is followed by calculating profit from the product margin
and the demand forecast value. Therefore, the demand forecasts need to be generated as
many times as the discount rate combinations of all products.

maximise ∑
n

∑
k1

∑
k2
· · ·∑

kn
MknFn,k1,k2,...,knXk1,k2,...,kn ∀n ∈ N, k1 ∈ K, k2 ∈ K, . . . , k12 ∈ K (10)

subject to

∑
k1

∑
k2
· · ·∑

kn
Xk1,k2,...,k12 = 1 ∀k1 ∈ K, k2 ∈ K, . . . , k12 ∈ K (11)

∑
n

Zn ≥ 4 ∀n ∈ N (12)

∑
n

Zn ≤ 6 ∀n ∈ N (13)

Fn,k1,k2,...,kn ≥ 0 ∀n ∈ N, k1 ∈ K, k2 ∈ K, . . . , k12 ∈ K (14)

Xk1,k2,...,k12 ∈ {0, 1} ∀k1 ∈ K, k2 ∈ K, . . . , k12 ∈ K (15)

Zn ∈ {0, 1} ∀n ∈ N (16)

The number of demand forecast values to be generated by the demand prediction
model is N × (KN). For example, if twelve products and three discount rate options are
applied, a total of 12× (312) = 6,377,292 demand forecasts should be calculated. However,
if the number of products or discount rate options increases, the number of demand
forecast values to be generated will also increase exponentially. This then leads to a sharp
increase in model execution time and makes demand prediction impossible due to system
performance limitations.
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In the objective function (10), the binary decision variables Xk1,k2,...,k12 can have KN

combinations. Therefore, only one combination among the total KN cases should have
a value of 1 (as a binary value), and the remaining combinations must have zero value.
In conclusion, the combination of value with 1 should be the final optimal solution.

Constraint (11) ensures that only one combination has a value of 1. In other words, only
one of the KN combinations should be selected, and the selected combination becomes the
optimal solution of the objective function as the one that maximises profit. Constraint (12)
assumes a business rule that says there should be at least four discount products every week.
This number can be changed depending on the purpose or characteristics of the business.
Similarly, Constraint (13) requires that no more than six products be discounted every week
in the product category. Again this can be arbitrarily adjusted in a real-world situation.

Constraint (14) implies that all demand forecasts for each product must be greater
than or equal to 0 in all combinations. It means the model will not consider returns or
refunds for products. Constraints (15) and (16) ensure the range of the variables.

Next, using 12 products from the cereal category and three discount rate options (0%,
25%, and 50%) we present the model performance and its final optimal solution. Note that
the base price of each product is gained from the transaction data set. However, the cost
of each product should be assumed as the data provides no cost information. In this case,
the number of combinations of the discount rate of all products is 531,441 per product.
In Table 4, we provide the values of the parameters used for model simulation.

Table 4. Parameters used in the basic price optimisation model.

Parameters Values

Set of products: N 12 products in cold cereal category
(P1–P12)

Set of discount sates: K 3 discount rate options
(0%, 25%, 50%)

Products’ base price base price of each product in prediction week
($1.98, $1.98, $2.44, $3.04, $4.79, $2.8, $3.53, $3.25, $3.32,
$3.12, $3.12, $2.99)

Products’ cost cost of each product in prediction week
($0.59, $0.61, $0.73, $0.91, $1.44, $0.84, $1.06, $0.98, $0.99,
$0.94, $0.94, $0.90)

Price combinations combinations of discount rate of all products within the
product category: Xk1,k2,...,kn
N × KN = 12× 312 = 12× 531, 441 = 6, 377, 292 combina-
tions

To obtain the results of this model, we follow the following process:

1. Demand prediction and model training:

• Train the selected best demand prediction model for individual product in the
product category;

• Identify the demand prediction error of each model through validation process;
• Identify the impact of variables on sales by producing the feature importance score;

2. Generate new input data:

• Generate new input data to be entered into the trained demand prediction model,
which has all the price combinations and key features (KN combinations for
each product);

3. Demand forecasting:

• Perform the demand forecasting using the trained demand prediction model and
new input data;

• Produce demand forecast results which are predicted sales for each combination;
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4. Price optimisation:

• Perform the price optimisation with the basic price optimisation model and
demand forecast results;

• Produce the optimal solution that maximises the profit on the prediction week.

The results obtained using the above process are given in Table 5. From the results,
we can see that the optimal solution produces the optimal discount rate for each product.
According to the constraints of this model, the number of products to be discounted is
limited to between four and six. For example, only four products should be discounted
from 25% to 50% to maximise profits, and the optimal profit is expected to be $2456.

Table 5. The optimal solution of the basic price optimisation model.

Product Final Optimal Solution

P1 0%
P2 25%
P3 0%
P4 0%
P5 50%
P6 0%
P7 0%
P8 0%
P9 25%
P10 0%
P11 0%
P12 25%

Optimal profit $2456.777

Next, we consider two models by adding some business rules that may arise in FMCG
industries to the basic price optimisation model as constraints. This gives insight into how
business rules should be applied in real-world operating environments to perform demand
forecasting and price optimisation models more efficiently.

4.2. Model 1

In this model, the aim is to reduce the number of price combinations. Thus, in addition
to constraints that limit the total number of discounted products in the category, we add
Constraints (17) to (24) to limit the number of discounted products in the same brand
from one to a maximum of two—that is, the objective function of Model 1 is the same
as the objective of the basic model, given in (10), and Constraints (11) to (16) are hold.
The additional constraints are defined as follows:
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∑
n

Zn ≥ 1 ∀n ∈ {1, 2, 3} (17)

∑
n

Zn ≤ 2 ∀n ∈ {1, 2, 3} (18)

∑
n

Zn ≥ 1 ∀n ∈ {4, 5, 6} (19)

∑
n

Zn ≤ 2 ∀n ∈ {4, 5, 6} (20)

∑
n

Zn ≥ 1 ∀n ∈ {7, 8, 9} (21)

∑
n

Zn ≤ 2 ∀n ∈ {7, 8, 9} (22)

∑
n

Zn ≥ 1 ∀n ∈ {10, 11, 12} (23)

∑
n

Zn ≤ 2 ∀n ∈ {10, 11, 12} (24)

4.3. Model 2

In Model 2, we try to reduce the number of price combinations much more than the
basic price optimisation model and Model 1 by fine-tuning the constraints. Similar to
Model 1, the objective function of Model 2 is the same as the objective of the basic model,
given in (10), and Constraints (11) to (16) are hold. The additional constraints are defined
as follows:

∑
n

Zn = 5 ∀n ∈ N (25)

∑
n

Zn = 1 ∀n ∈ {1, 2, 3} (26)

∑
n

Zn ≥ 1 ∀n ∈ {4, 5, 6} (27)

∑
n

Zn ≤ 2 ∀n ∈ {4, 5, 6} (28)

∑
n

Zn ≥ 1 ∀n ∈ {7, 8, 9} (29)

∑
n

Zn ≤ 2 ∀n ∈ {7, 8, 9} (30)

∑
n

Zn = 1 ∀n ∈ {10, 11, 12} (31)

X1 = X7 = X11 = 0 (32)

X4 = 0.5 (33)

To limit the number of products that can be discounted to five, we define Constraint (25).
To set a different number of products to be discounted for each brand, we have the fol-
lowing: brands 1 and 4 allowed only one product to be discounted—Constraints (26) and
(31)—while brands 2 and 3 allowed one to two products to be discounted—Constraints
(27) to (30). In addition, some products are limited to fixed discount rates. For exam-
ple, the model considers products 1, 7, and 11 to be non-discountable—Constraint (32),
and product 4 to be limited to a 50% discount rate—Constraints (33). Of course, these
business rules can be changed and adjusted as much as possible in the real-world busi-
ness environment.

Next, we describe the proposed price optimisation procedure followed by the compar-
ison of these three models.
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4.4. The Proposed Price Optimisation Procedure

The proposed price optimisation procedure is designed to reflect the substitution effect
and reduce the number of iterations significantly. The execution time also can be reduced
drastically by applying the constraints listed in step 7 to the price optimisation model, as it
can help avoid unnecessary demand forecasting, which is the most time-consuming task.
Let the number of iterations to be determined by the number of products p, and n be the
number of price combination options. Then, the proposed price optimisation procedure is
as follows:

1. Start modelling for the first product on the product list p (p = 1–12);
2. Import the best demand prediction model and the best hyperparameter option for

selected product;
3. Train the best demand prediction model with the best hyperparameter option using

the previous 104 weeks of the prediction week;
4. Store the feature importance scores and rankings if the best demand prediction model

is machine learning model;
5. Calculate and store the RMSPE score using the formula (9);
6. Generate price combination options KN (K is the number of products in the product

category and N is the number of discount rate options) in the loop;
7. Generate new input data to be entered into the demand forecasting only if the selected

price combination satisfy Constraints (11)–(16), (17)–(24), or (25)–(33) of the price
optimisation model;

8. After finishing the price combination options loop, perform the demand forecasting for
the selected product using the selected best demand prediction model and generated
new input data within the loop;

9. Store the demand forecast results which are the predicted sales for each price combination;
10. After finishing the product loop, perform the price optimisation with the price optimi-

sation model: Constraint (10) and generated demand forecast results;
11. Produce the final optimal discount rate for all the products in the product category

that maximise the sales revenue on the prediction week.

This procedure is also depicted in Figure 10.

4.5. Evaluation and Comparison of Models

In this section, we present the results of the basic price optimisation model and the
models with constraints by applying the proposed price optimisation procedure. We test
the total number of price combinations for demand prediction, the number of search spaces,
and the execution time for demand prediction and price optimisation.

The number of products is tested by comparing nine products from three brands
with twelve products from four brands since each brand has three products and less than
six products are too small to see the effects of substitution. The number of discount rates
is simulated by increasing from two to five, taking the computing power into account.
Demand prediction and price optimisation models are performed using Python programs
on Google Colab notebook. Moreover, price optimisation models are implemented using
Python mip packages. Google Colab notebook hardware specifications are as follows: CPU
with Intel(R) Xeon(R) CPU @ 2.30 GHz; the number of CPU and threads per core is 2;
Memory is 13 GB and Disk Space is 108 GB.

In Table 6, the results of the basic price optimisation model are presented. The first
column in the table is the number of products, and the second column is the number of
discount rate options. The third column represents the total number of all possible price
combinations. Other columns represent the reductions in price combinations, demand pre-
diction time, and price optimisation time as each model is applied to the simulation. Results
from this table show that the total number of price combinations increases exponentially as
the number of products in the category and the number of discount rates increases. As a
result, the execution time of the demand prediction model is much longer than the price
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optimisation model, and the model can not be executed due to insufficient computational
capability when applying 12 products and 5 discount rates.

Figure 10. The proposed price optimisation procedure.
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Table 6. Results obtained for the basic price optimisation model.

No. of No. of No. of Reduced Execution Execution
Products Discount Rates Combinations Search Time Time

Space 1 (Demand (Price
N K N × (KN) Prediction) Optimisation)

9 2 4608 3024 15.4 s 0.163 s
9 3 177,147 102,816 1 m 16 s 21.5 s
9 4 2,359,296 918,540 9 m 31 s 1 m 14 s
9 5 17,578,125 4,548,096 48 m 18 s 6 m 47 s

12 2 49,152 26,532 1 m 14 s 3.87 s
12 3 6,377,292 1,108,800 13 m 39 s 7 m 14 s
12 4 201,326,592 11,274,924 1 h 58 m 46 s 25 m 12 s
12 5 2,929,687,500 NA 2 NA NA

1 Reduction in price combinations from applying constraints to the basic model. 2 Not applicable due to the lack
of computer resources.

The results obtained for Models 1 and 2 are given in Tables 7 and 8, respectively.
From Table 7, it can be observed that the number of search spaces is reduced by ap-
proximately 50% or more from those in the basic price optimisation model as additional
constraints were added to the model. As a result, both the demand prediction model and
price optimisation model have reduced execution times. However, due to insufficient
computational capability, the model would not be applicable to 12 products and 5 discount
rates. The results from Table 8 indicate that the number of search spaces dramatically
decreased through fine-tuning the constraints. As a result, the demand prediction model
could obtain forecast values in around 2.5 h for approximately 3 billion price combinations.
Moreover, the price optimisation model could now run in seconds.

In summary, the results from Tables 6–8 clearly show that adjusting the constraints can
reduce the number of search spaces for the total number of price combinations. Indeed, it is
impossible to reduce the model execution time in any other way than by constraints, as price
optimisation requires forecast values from the demand prediction model. Nevertheless, fine-
tuning constraints that represent various business rules can dramatically reduce the number
of search spaces and hence execution time for demand prediction and price optimisation.
This can be seen clearly in Figure 11.

Table 7. Results obtained by Model 1.

No. of No. of No. of Reduced Execution Execution
Products Discount Rates Combinations Search Time Time

Space 1 (Demand (Price
N K N × (KN) Prediction) Optimisation)

9 2 4608 1710 15.1 s 0.232 s
9 3 177,147 50,544 56.5 s 5.86 s
9 4 2,359,296 413,343 5 m 21 s 26.2 s
9 5 17,578,125 1,928,448 21 m 57 s 1 m 11 s

12 2 49,152 10,692 31.5 s 0.469 s
12 3 6,377,292 513,204 7 m 1 s 3 m 58 s
12 4 201,326,592 5,275,044 1 h 10 m 47 s 12 m 13 s
12 5 2,929,687,500 NA 2 NA NA

1 Reduction in price combinations from applying constraints to Model 1. 2 Not applicable due to the lack of
computer resources.
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Table 8. Results obtained by Model 2.

No. of No. of No. of Reduced Execution Execution
Products Discount Rates Combinations Search Time Time

Space 1 (Demand (Price
N K N × (KN) Prediction) Optimisation)

9 2 4608 90 13.4 s 0.105 s
9 3 177,147 720 14.7 s 0.120 s
9 4 2,359,296 2430 20.4 s 0.137 s
9 5 17,578,125 5760 56.4 s 0.199 s

12 2 49,152 240 25.9 s 0.219 s
12 3 6,377,292 3840 48.6 s 0.254 s
12 4 201,326,592 19,440 11 m 13 s 0.711 s
12 5 2,929,687,500 61,440 2 h 31 m 33 s 1.38 s

1 Reduction in price combinations from applying constraints to Model 2.

The first column in this figure is the number of products, and the second column is
the number of discount rate options. The third column represents the total number of all
possible price combinations. Other columns represent the reduced price combinations,
demand prediction time, and price optimisation time when each model is applied to the
simulation. We can see that as more detailed business rules are applied, the number of
search spaces and the execution time reduces drastically. For example, when applying
four discount rates to 12 products, the search space can be reduced from 201,326,592 to
19,440 combinations if model 2 is used. Since the real-world business environment uses
more rather than fewer business rules, the proposed algorithm can be used as an effective
tool in demand forecasting and price optimisation for retail stores. Furthermore, demand
forecasting takes much longer to run than price optimisation. For example, it takes 2.5 h
as compared to just 1.38 s when applying 12 products and five discount rate options to
model 2.

Figure 11. Illustration of results given in Tables 6–8.

5. Discussion and Conclusions

Determining the optimal price of products is one of the best tools that strengthen the
company’s competitiveness. Recently, the retail industry has been actively using price
optimisation models to determine price, inventory level, and an assortment of products.
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In Fast Moving Consumer Goods (FMCG) industries with infinite inventory capacity, short
shelf life, and high turnover rates, fast pricing plays an essential role in maximising sales
and profits. However, there is only a limited number of research conducted on price
optimisation models in the FMCG industries as it is not easy to detect, calculate, and reflect
the substitution effect in the model.

In this paper, we have studied various demand prediction and price optimisation
models and have developed new procedures for both models reflecting the demand corre-
lation structure. In the proposed models, the substitution effect among products within the
category has been considered. First, key features that affect product sales, price elasticity of
products, and the substitution effect between products were identified through Exploratory
Data Analysis (EDA). Then, demand prediction model was developed by including the
price of all products and the critical features as input variables. The time series and some
machine learning approaches with hyperparameter tuning and rolling forecasting methods
have been applied to select each product’s best demand forecast. The best demand forecast
reflecting the substitution effect was used as core input for the price optimisation model.

The developed procedure is a constraint programming model that identified only one
price combination that maximises profit out of the many price combinations. The results
showed that by including constraints representing various business rules in the proposed
price optimisation procedure, the number of iterations and execution time can be signifi-
cantly reduced. For instance, when applying 12 products and four discount rates, the price
combinations to be performed decreased from 11,274,924 (basic model) to 19,440 (Model
2). Under the same conditions, the execution time for the demand prediction was reduced
from 1 h 58 min 46 s (basic model) to 11 min 13 s (Model 2), and for the price optimisation
from 25 min 12 s (basic model) to 0.711 s (Model 2).

The main goal of this study was to propose a systematic price decision support tool to
perform the demand prediction and price optimisation models within an acceptable time
frame. As the number of products in the category and discount rates increases, the number
of input data combinations to be predicted increases exponentially. To solve this problem,
we reduced the search space through the constraints before performing demand prediction
and price optimisation. The more detailed constraints were applied, the more drastically
reduced the number of price combinations.

Compared to most models reflecting the substitution effect with the consumer choice model
or customer utility functions, this study intuitively reflects the substitution effect considering
all possible price combinations of products in the product category using the data-driven
method without assuming that the retailer knows the consumer’s preference for each product.
Because consumer preferences for products are not easy to calculate accurately and may change
over time, developed procedures will be beneficial for retailers who want to optimise prices
using only available data without the assumption of consumer preference.

Another advantage of this study is that the best demand prediction model for each
product can be updated after testing emerging superior models without modifying the
price optimisation model structure. In summary, the systematic price decision support
tool presented in this paper will enable the supply chain managers to identify the optimal
discount rate for individual products in a timely manner, resulting in a net profit increase.

One of the limitations of this study is that only the assumed product cost was input
into the model without considering other costs, such as promotion cost. Optimal profit is
determined by selecting one value that maximises profits among all the price combinations
during the sales week. Therefore, the optimal profit of the basic model is higher than that
of Model 1 or Model 2, as the basic model has the highest number of price combinations.
However, the study is not aimed at finding the highest optimal profit but at determining
how the price combinations and execution time change based on the number of products,
the number of discount rates, and the constraints required by the actual retail business.
Therefore, rather than comparing the optimal profits for each case, we could simulate how
retailers can maximise profits by adjusting discount rate options and business constraints
using actual data in the future stage.
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At this stage, we focused on developing systematic demand prediction and price
optimisation procedures reflecting the substitution effects and the price changes of all the
products and checking their effectiveness and availability in the retail industry. As future
research, we aim to measure how much revenue can be improved by applying these
procedures to the actual retail store and data. This approach also can be applied to various
stores and cities to determine if the proposed procedures is robust to location change and
store’s characteristics.

Another research that needs to be further developed in the future is to construct
more accurate demand prediction and price optimisation models. This can be achieved
by trying to stack or blend methods to enforce multiple machine learning approaches for
demand prediction. Furthermore, the complement effect and/or competitive effect can be
considered in future research. The income effect can also be encompassed in the model upon
availability of information on consumer income data. Building an optimised computing
environment that can reduce model performance time will also be an ongoing task.
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