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Abstract: Direct ESS has some disadvantages, which are seen even in the case of repeated games
when the sequence of stage ESSs may not constitute the direct ESS in the repeated game. We present
here the refinement of the ESS definition, which eliminates these disadvantages and represents the
base for the definition of ESS in games in extensive form. The effectiveness of this approach for
multistage n-person games is shown for metagame (this notion is used for the first time), in which
under some relevant conditions, the existence of ESS is proved, and ESSs are constructed using
threat strategies.
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1. Introduction

Evolutionary games were first formulated in [1]. We shall follow [2] in the definition
of evolutionary stable strategies (ESSs) [3–6] for symmetric bimatrix games; here, the
definition of ESS (so-called “direct ESS”) applicable for extensive-form game with perfect
recall (see [7]) is also purposed. This definition is based upon the concept of symmetry in
extensive-form games introduced in [8]. As we saw earlier (see [9]), the classical definition
of ESS proposed for normal two-person games cannot be applied to repeated and multistage
games. In this paper, we propose a refinement of this definition, which can be considered
an attempt to solve the problem. First, we present an example of a two-stage Hawk and
Dove game, for which we try to explain the problem and show the effectiveness of the new
refined definition. After, we propose the new ESS definition for general n-person games and
specially for repeated and multistage games (metagames). In the last section, we present
an algorithm for constructing ESS in general n-person multistage games (metagames) and
prove the corresponding theorem. This result is illustrated by an example.

2. Definition of ESS for Two-Person Games

Following [2], the symmetric extensive-form 2-person game is a pair (Γ, T) where Γ
is an extensive-form game and T is a symmetry of Γ. If b1, b2 are the behavior strategies
of player 1 in (Γ, T) and bT

1 , bT
2 (behavior strategies of player 2) are the symmetric images

of b1, b2, respectively, then the probability that the endpoint z is reached when (b1, bT
2 ) is

played is equal to the probability that zT is reached when (b2, bT
1 ) is played. Therefore, the

expected payoff of player 1 when (b1, bT
2 ) is played is equal to player 2’s expected payoff

when (b2, bT
1 ) is played [10]:

E1(b1, bT
2 ) = E2(b2, bT

1 ), (1)

Equation (1), restricted to pure strategies, defines the symmetric normal form of (Γ, T).
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Definition 1. Direct ESS in (Γ, T) is a behavior strategy b̄ of player 1 that satisfies

E1(b̄, b̄T) = max
b

E1(b, b̄T) (2)

and if b 6= b̄ and E1(b, b̄T) = E1(b̄, b̄T),

then E1(b, bT) < E1(b̄, bT). (3)

We try to purpose some refinement of this definition. Let µ(b′, b′′) be the probability
generated over the set of endpoints in the game if players choose behavior strategies b′, b′′,
respectively.

Definition 2. The behavior strategy b̄ is called ESS in (Γ, T) if b̄ satisfies

E1(b̄, b̄T) = max
b

E1(b, b̄T) (4)

and if for b′ such that µ(b′, b̄T) 6= µ(b̄, b̄T)

the payoff E1(b′, b̄T) = E1(b̄, b̄T),

then E1(b′, b′T) < E1(b̄, b′T). (5)

Note that in Definition 2, the important condition µ(b′, b̄T) 6= µ(b̄, b̄T) is weak, and if
we revert to biological interpretations of ESS, we have to take into account that the bio-
logical populations may not react to the changes of strategies in extensive-form games
(remember that the strategy in an extensive game has a very complicated structure), and
it is clear that “animals” cannot realize the deviation from it and may react to changes
in probability measure on the final positions of the game (on the set of outcomes). Thus,
deviations which do not affect measure µ on the endpoints cannot be taken into account
when considering ESS.

Example 1. We repeated the Hawk and Dove game [11]. This game is a two-person bimatrix game
Γ with payoff matrices:

A =
H D

H
[1

2 (V − C) V
]

D 0 1
2 V

AT =
H D

H
[1

2 (V − C) 0
]

D V 1
2 V

If V > C, (H, H) is ESS in Γ. Consider now a two-stage version of this game, which can be
represented on Figure 1.

The strategy of player I (II) in this game is a rule, which defines the choice of one from two
alternatives H or D in each information set of a player. Player I (II) has 5 information sets, and thus,
each of them has 32 strategies, which can be represented as sequence (H, H, D, H, D). Denote this
strategy of player as u(·).

Consider the strategy u(·) = (H, H, H, H, H), which is composed from ESS (case V > C)
in each stage game. It would be appropriate if this strategy is ESS in our two-stage game [12,13].
Unfortunately, it does not satisfy Definition 1, which was the reason to change in our paper this
definition to Definition 2.
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Figure 1. Hawk and Dove game with two stage.

It can be easily seen that condition (2) holds since (u(·), u(·)) is NE in the game Γ. How-
ever, there exist a strategy

v(·) = (H, H, D, D, D)

for which the payoff
E1(v(·), u(·)) = E1(u(·), u(·)).

Since
E1(v(·), u(·)) = E1(u(·), u(·)) = V − C

and
E(v(·), v(·)) = E(u(·), v(·)) = V − C

this shows that the condition (3) is not satisfied.
However, according to Definition 2, the strategy u(·) = (H, H, H, H, H) is ESS since the

strategy v(·) = (H, H, D, D, D) giving the same payoff against u(·) as u(·) itself is excluded from
consideration because of condition (5) of Definition 2.

Remark: In our example, ESS is in pure strategies, and thus in definitions ((2)–(5)), the
mathematical expectation of the payoff coincides with the payoff itself [14].

Suppose now that Γ is the n-stage repeated bimatrix game. Let G be a stage symmetric
bimatrix game. The strategies in G are alternatives in Γ. To each strategy i of player 1 in Γ,
we correspond a strategy T(i) = i of player 2 in G with the same index i. Each alternative
c ∈ Ci(i = 1, 2) in Γ is a strategy (index) in some stage game G in Γ. The mapping T(c)
corresponds to the alternative c (strategy) of player 1 in stage game G, the alternative
T(c) = c (strategy) of player 2 in the same stage game (strategy with the same index).
To each information set u1 of player 1, mapping T corresponds the information set u2
of player 2 in the same stage game (the bimatrix game can be represented as a game in
extensive form with two moves and two successive information sets u1 for player 1 and u2
for player 2).

Theorem 1. If β̄ is a ESS in G, then the behavior strategy b̄ prescribing the behavior β̄ to the
alternatives of each information set (β̄ is ESS in stage game G) is ESS in (Γ, T).

3. Definition of ESS for n-Person Games

There are many different approaches to how the ESS should be extended to the n-
person case. We shall follow the definition given in [15]. Suppose we have a game G in
normal form:

G =< N; X1, ..., Xn; K1, ..., Kn >,
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when N = 1, ..., n is the set of players, Xi = {xi} is the set of strategies of player i, and
Ki(x1, ..., xn) is the payoff function of player i. We suppose for simplicity that the sets
Xi, i = 1, ..., n are finite.

Note that the strategy profile x̄ = (x̄1, ..., x̄n) is an ESS in G[16], if it is a strict Nash
equilibrium, i.e., if

Ki(x̄||xi) < Ki(x̄) for all xi ∈ Xi, i = 1, ..., n. (6)

It is proved that condition (6) protects the strategy x̄i against the invasion of a few
mutants playing another strategy yi.

It is also clear that (6) cannot be used to define ESS in multistage games since
there is always a large number of strategies yi ∈ Xi such that for any strategy profile,
x = (x1, ..., xn), Ki(x||yi) = Ki(x).

Following the ideas of the previous section, try to refine the ESS concept specified in
(6) in such a way that it could be useful also for n-person multistage games.

For this reason, we have to mention that (6) automatically excludes the mixed strategy
profiles from consideration. Additionally, the refinement of this concept will act only with
pure strategy profiles.

Denote by Ui the strategy set of player i in Γ. ui ∈ Ui is the strategy of player i, and
Hi(u1, ..., un) is the payoff function of player i. Let Γ be a multistage n-person game.

Definition 3. The strategy profile ū = (ū1, .., ūn) in Γ is called ESS if

Hi(ū||ui) ≤ Hi(ū), ui ∈ Ui, i = 1, ..., n (7)

and if Hi(ū||ui) = Hi(ū) for some i ∈ N, ui ∈ Ui, then paths corresponding to (ū||ui) and ū
necessarily coincide.

From Definition 3, it follows that strict inequality in (7) is valid for all those deviations,
for which the resulting paths differ from that generated by the ESS strategy profile.

4. Existence of ESS in Multistage Repeated n-Person Games

Suppose that Γ is a finite stage repeated n-person game with simultaneous n-person
stage game G. Suppose that G has an ESS (strict Nash equilibrium) [17]. Denote ESS in G
as x̄ = (x̄1, ..., x̄n), and the payoff in G as Ki(x̄1, ..., x̄n). Denote K̄i = Ki(x̄1, ..., x̄n). Consider
zero-sum games Gi between player i as first player and subset N \ {i} as second player
with strategy sets

Xi, XN\{i} = ∏
k∈N\{i}

Xk

correspondingly and payoff of player i equal to Ki(x1, ..., xn). (The payoff of second player
N \ {i} equals −Ki(x1, ..., xn).) Denote by µ∗ = (µ∗i , µ∗N\{i}) the corresponding mixed-

strategy saddle point in Gi, and by υi the value of game Gi. Fix some n-tuple x̃ = (x̃1, ..., x̃n),
K̃i = Ki(x̃), and consider ˜̃Ki = max

xi∈Xi
Ki(x̃||xi).

Suppose that the following conditions hold

K̃i + K̄i >
˜̃Ki + υi, K̃i > K̄i, K̄i > υi. (8)

Theorem 2. If there exists such an n-tuple of strategies x̃ = (x̃1, ..., x̃n) in G that (8) holds, then Γ
has an ESS which is constructed as follows.

If l is a number of stages in Γ, then each player i has to play x̃i on the first l − 1 stages and
x̄i (ESS in G) on the last stage l: in case on some stage t < l, player i first deviates for the first
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timefrom x̃i, starting from the stage t + 1 coalition of players, (N \ {i}) chooses µ∗N\{i} from the

mixed-strategy saddle point in Gi.

5. ESS for Metagames

Finite multistage game Γ, at each stage of which some n-person game G is played,
is called metagame; the game realized at each stage depends on the players’ choices in
previous games.

Over the strategy profiles x in the stage game G, the mapping TG(x) is defined,
which corresponds to each stage game G and strategy profile x for the next stage game
G1 = TG(x).

Suppose that in metagame Γ, on the first stage, the stage game G1 is played. If in
G1, players choose strategy profile x1 = (x1

1, ..., x1
n), then on the second stage, the game

G2 = TG1(x1) is played. If on stage k, players playing the stage game Gk choose strategy pro-
file xk = (xk

1, ..., xk
n), on the next stage, the game Gk+1 = TGk (xk) is played. The metagame

ends on stage m. The payoff of player i ∈ N in the metagame is equal to the sum of their
payoffs in stage games. Denote by Kl

i(xl
1, .., xl

n), the payoff of player i ∈ N in stage game
Gl , then the payoff of player i ∈ N in metagame is equal to

Hi =
m

∑
l=1

Kl
i(xl

1, ..., xl
n), i ∈ N.

It is important that after each stage, players know all of the prehistory (prehistory—
players’ choices before current stage of metagame).

The strategy ui of player i ∈ N in Γ is a mapping which corresponds to the choice of
strategy in stage game G as a function of the strategy profiles of all players in stage games
realized before the stage game G.

Suppose that stage game G has ESS (strict Nash equilibrium). Note that strategy
profile x̄ = (x̄1, ..., x̄n) is ESS in G, and Ki(x̄1, ..., x̄n) = K̄i is the payoff of player i in G under
the strategy profile ũ.

Suppose that under strategy profile ū = (u1, ..., ui, ..., un), the sequence of stage games
G1, ..., Gk, ..., Gn is realized. This sequence of stage games we shall call path corresponding
to n is the strategy profile u = (u1, ..., ui, ..., un).

Now consider the stage game Gk, k = 1, ..., l − 1. Note that the game Gk depends
also upon choices made by players in previous stage game Gk−1. This means that on
stage k dependent on previous strategy choices, different games of type Gk can be realized.
For each stage game Gk, denote by Gk

i the zero-sum game between player i as the first
player and subset N \ {i} as the second player with sets of strategies

Xk
i , Xk

N\{i} = ∏
m∈N\{i}

Xk
m

respectively, and the payoff of player i is given by Kk
i (xk

1, ..., xk
n). (Payoff of the second

player N \ {i} is given by −Kk
i (xk

1, .., xk
n).)

Denote by (η̂k
i , η̂k

N\{i}) the corresponding mixed-strategy profile in the saddle point of

Gk
i and by υk

i the value of Gk
i . Fix some strategy profile in Gk as

x̃k = (x̃k
1, ..., x̃k

n), K̃k
i = Kk

i (x̃k)

and suppose that
K̃k

i > K̄k
i , i = 1, ..., n.

Consider ˜̃Kk
i = maxxk

i ∈Xk
i

Kk
i (x̃k||xk

i ).
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Definition 4. The strategy profile u∗ = (u∗1 , ..., u∗n) is ESS in the metagame if

Hi(u∗) ≥ Hi(u∗||ui)

for all i and all ui, and if Hi(u∗|ui) = Hi(u∗) for some i ∈ N, ui ∈ Ui, then paths corresponding
to (u∗|ui) and u∗ coincide.

This definition is common for definition of ESS for n-person games.
Generate strategy u∗i of player i in metagame Γ as the following: in games Gk,

j = 1, ..., l − 1, players chooses strategies x̃k
i , and at last stage in Gk—x̄k

i . Then, strategy
profile u∗ = (u∗1 , ..., u∗n) realizes a sequence of stage games G1∗, G2∗, ..., Gl∗ in metagame Γ,
which we will call the optimal trajectory. Denote by K̃k

i the payoff of player i in G̃k
i .

Suppose that player i deviates from u∗i at some stage t < l, then, beginning from stage
t + 1, players from N \ {i} choose η̂k

N\{i}, k = t− 1, ..., l, see Figure 2. Define ¯̄uk
i , satisfying

Hi(ũk|| ¯̄uk
i ) ≥ Hi(ũk). After stage t, players N \ {i} choose strategy η̂l

N\{i}, l > t, optimal in

the zero-sum game Gl
i .

Figure 2. Multistage game G with deviation of player i.

Denote Wi = max0≤k≤l [maxGk υk
i ]. Suppose that

l−1

∑
k=t

K̃k
i + K̄k

i > ˜̃Kk
i + (l − t)Wi, t = 1, ..., l − 1. (9)

Theorem 3. If there exist strategies x̃
kj
i in games Gkj such that (9) holds, then the strategy profile

u∗, mentioned above, is ESS in metagame Γ.

Proof. The payoff of player i when the strategy profile u∗ is used is

Hi(u∗) =
l−1

∑
k=1

K̃k
i + K̄k

i =
l−1

∑
k=1

K̃k
i (x̃k

1, ..., x̃k
n) + K̄k

i (x̄k
1, ..., x̄k

n).

It is important to note that xk
i are pure strategies.

Suppose that player i deviates from u∗i , and this happens at stage t of metagame Γ.
Denote by ui this new strategy of player i. Then we obtain a new strategy profile (u∗||ui)
in Γ, which realizes the path, different from the optimal trajectory. Consider the payoff
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of player i under strategy profile (u∗||ui), realizing the path different from the optimal
trajectory. From (9), we obtain

Hi(u∗||ui) =
t−1

∑
k=1

K̃k
i +

˜̃Kk
i +

l

∑
k=t+1

υk
i ≤

t−1

∑
k=1

K̃k
i +

˜̃Kk
i +

l

∑
j=t+1

Wi

=
t−1

∑
k=1

K̃k
i +

˜̃Kk
i + (l − t)Wi <

l−1

∑
k=1

K̃k
i + K̄k

i = Hi(u∗)

Thus, u∗ is ESS (see Definition 4).
The theorem is proved.

Example 2. Consider a metagame Γ, in which one of two possible games G′ and G′′ is played on each
stage. G′ and G′′ are two-player games with strategy sets X′1 = (x′11, x′12, x′13), X′2 = (x′21, x′22, x′23)
in G′ of players I and II, and strategy sets X′′1 = (x′′11, x′′12, x′′13), X′′2 = (x′′21, x′′22, x′′23) in G′′ of
player I and II, correspondingly. The payoffs in G′ are defined as Table 1.

Table 1. The payoffs in G′.

x′21 x′22 x′23
1 2 3

x′11 1 (10, 10) (0, 15) (0, 0)
x′12 2 (15, 0) (6, 6) (0, 0)
x′13 3 (0, 0) (0, 0) (0, 0)

In G′′ as Table 2.

Table 2. The payoffs in G′′.

x′′21 x′′22 x′′23
1 2 3

x′′11 1 (11, 11) (0, 15) (2, 2)
x′′12 2 (15, 0) (6, 6) (2, 2)
x′′13 3 (2, 2) (2, 2) (2, 2)

In both games, the Nash equilibrium is x̄′ = (x′12, x′22), x̄′′ = (x′′12, x′′22) with payoffs

K̄′1(x′12, x′22) = K̄′2(x′12, x′22) = K̄′1(2, 2) = K̄′2(2, 2) = 6

and
K̄′′1 (x′′12, x′′22) = K̄′′2 (x′′12, x′′22) = K̄′′1 (2, 2) = K̄′′2 (2, 2) = 6.

Also we have
K′i(1, 1) = 10 > 6 = K′i(2, 2), i = 1, 2

and
K′′i (1, 1) = 11 > 6 = K′′i (2, 2), i = 1, 2.

Suppose K̃′i = K′i(1, 1) = 10, i = 1, 2. In both stage games, if player i deviates from
x̃ = (1, 1) = (x′11, x′21) (or (x′′11, x′′21)), they can obtain at most

˜̃K′1 = max
l

K′1(x̃||x1l) = max
l

K′1(x′11, x′21||x1l) = K′1(2, 1) = 15.

Similarly, ˜̃K′′2 = 15. The metagame Γ proceeds as follows. On the first stage, players play the
game G′ (G1 = G′) and if in G′, they choose strategy profile (1, 1) or (1, 2), on the next stage, the
game G′ is repeated (G2 = G′). In the other case (if strategy profiles (1, 2), (1, 3), (2, 1), (2, 3), (3,
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1), (3, 2), and (3, 3) are chosen), on the next stage, the game G′′ is played (G2 = G′′). If on stage k
the game G′(Gk = G′) is played, the next stage game is defined as in the first stage. If on stage k,
the game G′′(Gk = G′′) is played, on the next stage, the game G′(Gk+1 = G′) is played if in stage
game Gk, the strategy profiles (1, 1) or (1, 2) are chosen. In other cases, on stage k + 1, the game G′′

is played (Gk+1 = G′′). The metagame ends on stage m.
In each case, when one of the players (player i) deviates from strategy profile x̃, the other player

will choose strategy 2 on the next stages of the metagame. Hence, the payoff of the deviating player
in all future stage games will be equal to 0. We see that the condition

K̃i(2, 2) + K̄i(1, 1) = 6 + 10 > ˜̃Ki + vi = 15 + 0

is satisfied, and the strategy profile u∗ constructed above is strong NE and, thus, ESS.

6. Conclusions

In this paper, based on the definition of “direct ESS”, we try to provide a broader
definition of ESS, from two-person games to multistage repeated n-person games. We
propose the concept of the “meta-game”, in which the superiority of a broad ESS definition
can be highlighted. We prove the existence of ESS under certain conditions and show
an example.

The proposed refinement of ESS in the repeated games has the natural property that
the repetition of ESS in the stage game will constitute an ESS in the whole game. This is not
true if the classical ESS definition is used for repeated games.

Additionally, the ESS definition and its construction are proposed for general multi-
stage n-person games (we call them metagames). It is determined that the use of ESS in
each stage game of the metagame (note that this case is different from repeated games, since
in the metagame, the stage games are different and depend upon the history of the game
process) does not give the ESS in the whole game. In spite of that, we propose an algorithm
of constructing the ESS in metagames using the ESS in stage games and threat strategies.
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