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Abstract: In this paper, under the symmetric entropy and the scale squared error loss functions,
we consider the maximum likelihood (ML) estimation and Bayesian estimation of the Shannon
entropy and Rényi entropy of the two-parameter inverse Weibull distribution. In the ML estimation,
the dichotomy is used to solve the likelihood equation. In addition, the approximation confidence
interval is given by the Delta method. Because the form of estimation results is more complex in the
Bayesian estimation, the Lindley approximation method is used to achieve the numerical calculation.
Finally, Monte Carlo simulations and a real dataset are used to illustrate the results derived. By
comparing the mean square error between the estimated value and the real value, it can be found
that the performance of ML estimation of Shannon entropy is better than that of Bayesian estimation,
and there is no significant difference between the performance of ML estimation of Rényi entropy
and that of Bayesian estimation.
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1. Introduction

Information is an abstract concept. In the face of a large amount of data, it is easy
to know how much data there are, but it is not clear how much information these data
contain. Entropy is one of the important terms in physics. Shannon [1] introduced the
concept of entropy into statistics, which represents the uncertainty of events. This entropy
is generally called “Shannon entropy”. Generally speaking, when we hear a message
within expectation, we think it contains less information. When we hear an unexpected
message, we think that the amount of information it conveys to us is significant. In
statistics, the probability is usually used to describe the uncertainty of an event. Therefore,
Shannon believes that probability can be used to describe the amount of information
contained in an event. After that, Rényi [2] generalized Shannon entropy and put forward
the concept of Rényi entropy. Since then, the study of entropy has attracted a lot of
attention [3,4]. For example, Chacko and Asha [5] considered the maximum likelihood
(ML) estimation and Bayesian estimation of Shannon entropy for a generalized exponential
distribution by the important sampling method based on record values. Liu and Gui [6]
considered the ML estimation and Bayesian estimation of Shannon entropy for a two-
parameter Lomax distribution by the Lindley method and the Tierney–Kadane method
under a generalized progressively hybrid censoring test. Shrahili et al. [7] considered the
estimation of entropy of a log-logistic distribution. The estimations of different entropy
functions were obtained by the ML method, and the approximate confidence intervals
were obtained by using various censoring methods and sample sizes. Mahmoud et al. [8]
considered the estimation of entropy and residual entropy of a two-parameter Lomax
distribution based on the generalized type-II hybrid censoring scheme. The ML estimators

Mathematics 2023, 11, 2483. https://doi.org/10.3390/math11112483 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112483
https://doi.org/10.3390/math11112483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11112483
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11112483?type=check_update&version=2


Mathematics 2023, 11, 2483 2 of 16

and Bayesian estimators of entropy and residual entropy were obtained. The simulation
study of estimating performance under different sample sizes was described. Finally,
the conclusion was discussed. Hassan and Mazen [9] estimated three entropy measures
for the inverse Weibull distribution using progressive Type-II censored data, which were
Shannon entropy, Rényi entropy, and q-entropy. The method of maximum likelihood and
the maximum product of spacing were used to estimate them. Mavis et al. [10] proposed
and studied a gamma-inverse Weibull distribution, and some mathematical properties were
given including moments, mean deviations, Bonferroni and Lorenz curves, and entropies.
Basheer [11] introduced a new generalized alpha power inverse Weibull distribution,
and the Shannon entropy and Rényi entropy were obtained. Valeriia and Broderick [12]
proposed the weighted inverse Weibull class of distributions and derived the expressions
of Shannon entropy and Rényi entropy.

In 1982, Keller and Kamath [13] introduced the Inverse Weibull Distribution (IWD) to
model the degradation of mechanical components of diesel engines. It is a useful lifetime
probability distribution, and it can be used to represent various failure characteristics.
Depending on the value of the shape parameter of the IWD, the risk function can be
changed flexibly. The use of IWDs for data fitting is therefore more appropriate in many
cases. For example, Abhijit and Anindya [14] found that the use of the IWD was superior
to previous normal models when measuring concrete structures using ultrasonic pulse
velocities. Chiodo et al. [15] proposed a new model generated from an appropriate mixture
of IWDs for modeling extreme wind speed scenarios. Langlands et al. [16] observed that
breast cancer mortality data could be analyzed using IWDs for modeling analysis. That
is why the two-parameter IWD has attracted the attention of more and more researchers
and has caused discussion among them in recent years [17,18]. For example, Asuman
and Mahmut [19] considered the classical and Bayesian estimation of parameters and the
reliability function of the IWD. In classical estimation, they derived the ML estimators
and modified ML estimators. In Bayesian estimation, they utilized the Lindley method
to calculate the Bayesian estimators of parameters under symmetric and asymmetric loss
functions. Sultan et al. [20] discussed the estimation of parameters of the IWD based on
the progressive type-II censored sample. They put forward an approximate maximum
likelihood method to obtain the ML estimator and used Lindley’s approximation to obtain
the Bayesian estimators. Amirzadi et al. [21] considered the Bayesian estimation of the scale
parameter and the reliability in the inverse generalized Weibull distribution, in addition
to general entropy, the squared log error, and the weight squared error function. They
introduced a new loss function to carry out Bayesian estimation. Peng and Yan [22] studied
the Bayesian estimation and prediction for shape and scale parameters of the IWD under
a general progressive censoring test. Sindhu et al. [23] assumed different priors and loss
functions, and discussed the Bayesian estimation of inverse Weibull mixture distributions
based on doubly censored data. Mohammad and Sana [24] obtained the Bayes estimators
and ML estimators for the unknown parameters of the IWD under lower record values.
Faud [25] developed a linear exponential loss function, and estimated the parameter and
reliability of the IWD based on lower record values under this loss function. Li and Hao [26]
considered the estimation of a stress–strength model when stress and strength are two
independent IWDs with different parameters. Ismail and Tamimi [27] proposed a constant-
stress partially accelerated-life test model and analyzed it using type-I censored data from
an IWD. Kang and Han [28] derived the approximate maximum likelihood estimators
of parameters of an IWD under multiply type-II censoring and also proposed a simple
graphical method for a goodness-of-fit test. Saboori et al. [29] introduced a generalized
modified inverse Weibull distribution, and some statistical and probabilistic properties
were derived.

This paper considers the Bayesian estimation of Shannon entropy and Rényi entropy
of a two-parameter IWD based on complete samples. In Section 2, some related knowledge
is introduced first, and then the specific expressions of Shannon entropy and Rényi entropy
of the two-parameter IWD are derived. In Section 3, the maximum likelihood estimators
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of the scale parameter and shape parameter of the IWD are derived by the dichotomy
method, and then the ML estimators of Shannon entropy and Rényi entropy are obtained.
In Section 4, the gamma distribution is adopted as the prior distribution (PD) of the scale
parameter. A non-informative PD is adopted as the PD of the shape parameter. Then,
the Bayesian estimators of Shannon entropy and Rényi entropy are obtained based on
the symmetric entropy loss function and scale squared error loss function. The Lindley
approximation is used to achieve the numerical calculation of the Bayesian estimators of
entropy, on account of the complexity of these Bayesian estimators. In Section 5, Monte
Carlo simulations are utilized to simulate and compare the estimators that are mentioned
above. In Section 6, a real data set is analyzed for illustrative purposes. Finally, the
conclusions of the article are given in Section 7.

2. Preliminary Knowledge

The probability density function (pdf) of the two-parameter IWD is defined as Equation (1):

f (t; ω, υ) = ωυt−υ−1 exp(−ωt−υ), ω > 0, υ > 0, t > 0, (1)

and the cumulative distribution function (cdf) of the two-parameter IWD is defined as
Equation (2):

F(t; ω, υ) = exp(−ωt−υ), ω > 0, υ > 0, t > 0, (2)

where the scale parameter is ω and the shape parameter is υ.
Figure 1 shows the pdf of the IWD under different values of shape and scale parameters.
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The Shannon entropy is defined in Equation (3) [1]

Hs(t) = −
∫ +∞

−∞
f (t) ln[ f (t)]dt, (3)

and the Rényi entropy is defined in Equation (4) [2]

Hr(t) =
1

1− r
ln
∫ +∞

−∞
f r(t)dt, r > 0, r 6= 1, (4)

where f (t) is the pdf of a continuous random variable T.
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Theorem 1. Let T1, T2, . . . , Tn be a random sample that follows the IWD with the pdf (1), with
t1, t2, . . . , tn being the sample observations of T1, T2, . . . , Tn.

(i) The Shannon entropy of the IWD is shown in Equation (5):

Hs =
υ + 1

υ
(ln ω + γ)− ln ωυ + 1. (5)

(ii) The Rényi entropy of the IWD is shown in Equation (6):

Hr =
1

1− r
[− rυ + r

υ
ln r +

r
υ

ln ω + r ln υ + ln Γ(r +
r
υ
+ 1)], (6)

where Γ(·) is the gamma function and γ is the Euler constant.

Proof. The log density of pdf (1) of the IWD is shown in Equation (7):

ln[ f (t)] = ln ωυ− (υ + 1) ln t−ωt−υ. (7)

According to the log-density function (7) and Equation (3), the Shannon entropy of
the IWD can be derived as follows:

Hs = −
∫ +∞

0 f (t)[ln ωυ− (υ + 1) ln t−ωt−υ]dt

= −(ln ωυ)
∫ +∞

0 f (t)dt + (υ + 1)
∫ +∞

0 f (t) ln tdt + ω
∫ +∞

0 t−υ f (t)dt

= − ln ωυ + (υ + 1)E(ln T) + ωE(T−υ)

.

Obviously,
E(Tc) =

∫ +∞
0 ωυtct−υ−1e−ωt−υ

dt

= ω
t
υ
∫ +∞

0 (ωt−υ)
− c

υ e−ωt−υ
d(ωt−υ)

= ω
c
υ Γ(1− c

υ )

.

Let c = −υ,

E(T−υ) = ω−1Γ(2) =
1
ω

.

Because
E(Tc ln T) = dE(Tc)

dc

= 1
υ ω

c
υ Γ(1− c

υ ) ln ω− 1
υ ω

c
υ Γ′(1− c

υ )

= 1
υ ω

c
υ [Γ(1− c

υ ) ln ω− Γ′(1− c
υ )].

Let c = 0,

E(ln T) =
1
υ
(ln ω + γ).

Therefore, the Shannon entropy of the two-parameter IWD can be expressed as

Hs = − ln ωυ + (υ + 1)E(ln T) + ωE(T−υ)

= υ+1
υ (ln ω + γ)− ln ωυ + 1.

Obviously, ∫ +∞
−∞ f r(t)dt =

∫ +∞
0 (ωυt−υ−1e−ωt−υ

)
r
dt

= (ωυ)r∫ +∞
0 t−rυ−re−rωt−υ

dt

= r
−rυ−r

υ ω
r
υ υrΓ(1 + r+rυ

υ )

.
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Then, according to Equation (4), the Rényi entropy of the two-parameter IWD can be
expressed as

Hr =
1

1− r
[
−rυ− r

υ
ln r +

r
υ

ln ω + r ln υ + ln Γ(1 +
rυ + r

υ
)].

�

3. Maximum Likelihood Estimation

Suppose that T1, T2, . . . , Tn is a random sample that follows the IWD with the pdf (1),
and t1, t2, . . . , tn are the sample observations of T1, T2, . . . , Tn. Thus, the likelihood function
(LF)can be derived as Equation (8):

s(t; ω, υ) = ωnυn(
n

∏
i=1

t−υ−1
i ) exp(−ω

n

∑
i=1

t−υ
i ). (8)

Then, the corresponding log LF of Equation (8) is shown in Equation (9):

S(t; ω, υ) = ln s(t; ω, υ) = n ln ωυ− (υ + 1)
n

∑
i=1

ln ti −ω
n

∑
i=1

t−υ
i . (9)

For convenience, we denote S(t; ω, υ) as S. Thus, the likelihood equations can be
expressed, respectively, as Equations (10) and (11):

∂S
∂ω

=
n
ω
−

n

∑
i=1

t−υ
i = 0, (10)

∂S
∂υ

=
n
υ
−

n

∑
i=1

ln ti + ω
n

∑
i=1

t−υ
i ln ti = 0. (11)

By simplifying Equations (10) and (11), the ML estimator υ̂ is a unique solution of
Equation (13), and the ML estimator ω̂ can be obtained according to Equation (12). The
uniqueness of the solution to Equation (13) is proved in Appendix A.

ω̂ = n(
n

∑
i=1

t−υ̂
i )
−1

, (12)

y(υ) =
n
υ
−

n

∑
i=1

ln ti + n(
n

∑
i=1

t−υ
i )
−1 n

∑
i=1

t−υ
i ln ti. (13)

According to Equation (13), it is difficult to obtain the analytical solution υ̂. The
following are the steps to obtain a numerical solution using the dichotomy method.

(i) Give the accuracy ε, determine the interval [υu, υl ], and verify y(υu) · y(υl) < 0.
(ii) Find the midpoint υm of the interval [υu, υl ] and calculate y(υm).
(iii) If y(υm) = 0, υ̂ = υm.
(iv) If y(υu) · y(υm) < 0, υl = υm; if y(υl) · y(υm) < 0, υu = υm.
(v) If |υu − υl |< ε , υ̂ is equal to υu or υl . If not, return to step (ii) to step (v).

Due to the invariance of ML estimation, the ML estimators of Shannon entropy and
Rényi entropy can be obtained by putting ω̂ and υ̂ into Equations (3) and (4), and their
mathematical expressions are shown in Equations (14) and (15):

Ĥs1 =
υ̂ + 1

υ̂
(ln ω̂ + γ)− ln ω̂υ̂ + 1, (14)

Ĥr1 =
1

1− r
[
−rυ̂− r

υ̂
ln r +

r
υ̂

ln ω̂ + r ln υ̂ + ln Γ(1 +
rυ̂ + r

υ̂
)]. (15)
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Next, the Delta method is used to derive the approximate confidence intervals (briefly,
ACIs) of Shannon entropy and Rényi entropy.

Denote vector Ds and Dr, respectively, as

Ds = (
∂Hs

∂ω
,

∂Hs

∂υ
)|ω=ω̂,υ=υ̂ , (16)

Dr = (
∂Hr

∂ω
,

∂Hr

∂υ
)|ω=ω̂,υ=υ̂ , (17)

in which Ds and Dr are calculated through Equations (18) and (19), respectively.

∂Hs

∂ω
=

1
ωυ

,
∂Hs

∂υ
=
−γ− ln ω

υ2 − 1
υ

(18)

∂Hr

∂ω
=

r
(1− r)ωυ

,
∂Hr

∂υ
=

r
(1− r)υ

[1 +
ln r− ln ω

υ
− Γ′(1 + r + rυ−1)

υΓ(1 + r + rυ−1)
] (19)

According to the Delta method, calculate the estimated variance of Ĥs1 and Ĥr1 as
Equations (20) and (21), respectively. I is the Fisher information matrix of ω and υ, and
Equation (22) gives the elements of I. I−1 is the inverse matrix of I.

Vs = Ds I−1DT
s |ω=ω̂,υ=υ̂ (20)

Vr = Dr I−1DT
r |ω=ω̂,υ=υ̂ (21)

∂2S
∂ω2 = − n

ω2 , ∂2S
∂ω∂υ = ∂2S

∂υ∂ω =
n
∑

i=1
t−υ
i ln ti

∂2S
∂υ2 = − n

υ2 −ω
n
∑

i=1
t−υ
i (ln ti)

2
(22)

Then, the 100(1− α)% ACI of Shannon entropy is Equation (23) and the 100(1− α)% ACI
of Rényi entropy is Equation (24), where z α

2
is the upper ( α

2 )th quantile of the standardized
normal distribution.

(Ĥs1 − z α
2

√
Vs , Ĥs1 + z α

2

√
Vs) (23)

(Ĥr1 − z α
2

√
Vr , Ĥr1 + z α

2

√
Vr) (24)

4. Bayesian Estimation

Bayesian estimation is a method of introducing prior information to deal with decision
problems. The advantage is that it can include the prior information in statistical inference
and improve the accuracy of the taken decision. From the time when Bayesian estimation
was proposed to now, many researchers have adopted this method in estimating parameters
and related functions. For example, Liu and Wang [30] considered the Bayesian inference
and prediction of the proportional hazards model, based on interval type-II censored data.
They Assumed that the prior distribution of parameter is non-informative prior distribution
and used MH algorithm to obtain the parameter estimator. Ren [31] derived the Bayesian
estimator and emprical Bayesian estimator of parameter of Rayleigh distribution under
symmetric entropy loss function. Furthermore, this paper also discussed the admissibility
conditions for a class of inverse linear estimators. Mohammad and Mina [32] presented
the Bayesian inferences of parameters of the inverse Weibull distribution based on type-I
hybrid censored data and computed the Bayes estimates using the Lindley approximation.
Algarni et al. [33] considered the Bayes estimation of parameters for the inverse Weibull
distribution by employing a progressive type-I censored sample. The Metropolis–Hasting
(MH) algorithm was used to compute the Bayesian estimates.
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In addition to the areas mentioned above, there are some recent applications of the
Bayesian method. Zhou and Luo [34] developed a supplier’s recursive multiperiod dis-
counted profit model based on Bayesian information updating. Yulin et al. [35] put
forward a Bayesian approach to tackle the misalignment for over-the-air computation.
Taborsky et al. [36] presented a novel generic Bayesian probabilistic model to solve the
problem of parameter marginalization under the constraint of forced community struc-
ture. Oliver [37] introduced the Bayesian toolkit and showed how geomorphic models
might benefit from probabilistic concepts. Ran et al. [38] proposed a Bayesian approach to
measure the loss of privacy in a mechanism. Luo et al. [39] used the Bayesian information
criterion for model selection when revisiting the lifetime data of brake pads. Peng et al. [40]
extended a general Bayesian framework to deal with the degradation analysis of sparse
degradation observations and evolving observations. František et al. [41] illustrated the
benefit of Bayesian estimation in parametric survival analysis. Liu et al. [42] proposed
fuzzy Bayesian knowledge tracing models to address continuous score scenarios. In predic-
tive maintenance, Zhuang et al. [43] applied the Bayes theorem to the bidirectional LSTM
network to optimize prognostic performance.

In this paper, the Bayesian estimations of Shannon entropy and Rényi entropy of the
IWD are investigated under symmetric entropy (SE) and scale squared error (SSE) loss
functions, which are widely used in Bayesian statistical inference [44–46].

(i)The SE loss function is defined in Equation (25) [44]:

L1(H, Ĥ) =
H
Ĥ

+
Ĥ
H
− 2, (25)

where Ĥ is the estimator of H.

Lemma 1. Suppose that T is the historical data information about the entropy function H. Then,
under the SE loss function (25), the Bayesian estimator Ĥ1 for any prior distribution is shown in
Equation (26):

Ĥ1 = [
E(H|T )

E(H−1|T )
]

1
2
, (26)

where E(H|T) is the posterior expectation of H and E(H−1
∣∣T) is the posterior expectation of H−1.

Proof. Under the SE loss function (25), the Bayesian risk of Ĥ is

R(Ĥ) = EH(E(L1(H, Ĥ)|T )).

To minimize R(Ĥ), we only need to minimize E(L1(H, Ĥ)
∣∣T) . For convenience, let

g(Ĥ) = E(L1(H, Ĥ)
∣∣T) .

Because
g(Ĥ) = Ĥ−1E(H|T ) + ĤE(H−1|T )− 2,

and the derivative is
g′(Ĥ) = −Ĥ−2E(H|T ) + E(H−1|T ).

The Bayesian estimator Ĥ1 can be obtained by g′(Ĥ) = 0.
(ii) The SSE loss function is defined in Equation (Equation (27)) [46]

L2(H, Ĥ) =
(H − Ĥ)

2

Hk , (27)

where k is a nonnegative integer. �
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Lemma 2. Suppose that T is the historical data information about the entropy function H. Then,
under the SSE loss function (27), the Bayesian estimator Ĥ2 for any prior distribution is

Ĥ2 =
E(H1−k|T )

E(H−k|T )
, (28)

where E(H1−k
∣∣∣T) is the posterior expectation of H1−k and E(H−k

∣∣∣T) is the posterior expectation

of H−k.

Proof. Under the SSE loss function (27), the Bayesian risk of Ĥ is

R(Ĥ) = EH(E(L2(H, Ĥ)|T )).

To minimize R(Ĥ), we only need to minimize E(L2(H, Ĥ)
∣∣T) . Similarly, let

h(Ĥ) = E(L2(H, Ĥ)
∣∣T) .

Because

h(Ĥ) = E(H2−2HĤ+Ĥ2

Hk |T )

= E(H2−k|T )− 2ĤE(H1−k|T ) + Ĥ2E(H−k|T )
,

and the derivative of h(Ĥ) is

h′(Ĥ) = −2E(H1−k|T ) + 2ĤE(H−k|T ).

The Bayes estimator Ĥ2 can be obtained by h′(Ĥ) = 0.
Assume that the scale parameter ω and shape parameter υ of the two-parameter IWD

are independent random variables, where ω obeys Γ(a, b) and υ obeys a non-informative
PD as follows, respectively:

P1(ω) =
ab

Γ(b)
ωb−1e−aω, a > 0, b > 0, (29)

P2(υ) ∝
1
υ

. (30)

Thus, the joint PD of ω and υ is

P(ω, υ) ∝
ab

υΓ(b)
ωb−1e−aω. (31)

Referring to the Bayesian formulation, the posterior distribution of ω and υ is

P(ω, υ|T ) =
P(ω, υ)s(t; ω, υ)∫ +∞

0

∫ +∞
0 P(ω, υ)s(t; ω, υ)dωdυ

. (32)

Thus, the Bayesian estimators of Shannon entropy and Rényi entropy, respectively,
under SE can be expressed as

Ĥs2 = [
E(Hs|T )

E(H−1
s |T )

]

1
2
= [

∫ +∞
0

∫ +∞
0 HsP(ω, υ|T )dωdυ∫ +∞

0

∫ +∞
0 Hs−1P(ω, υ|T )dωdυ

]

1
2

, (33)

Ĥr2 = [
E(Hr|T )

E(H−1
r |T )

]

1
2
= [

∫ +∞
0

∫ +∞
0 HrP(ω, υ|T )dωdυ∫ +∞

0

∫ +∞
0 H−1

r P(ω, υ|T )dωdυ
]

1
2

. (34)
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The Bayesian estimators of Shannon entropy and Rényi entropy, respectively, under
SSE can be expressed as

Ĥs3 =
E(H1−k

s |T )

E(H−k
s |T )

=

∫ +∞
0

∫ +∞
0 H1−k

s P(ω, υ|T )dωdυ∫ +∞
0

∫ +∞
0 H−k

s P(ω, υ|T )dωdυ
, (35)

Ĥr3 =
E(H1−k

r |T )

E(H−k
r |T )

=

∫ +∞
0

∫ +∞
0 H1−k

r P(ω, υ|T )dωdυ∫ +∞
0

∫ +∞
0 H−k

r P(ω, υ|T )dωdυ
. (36)

From Equation (33) to Equation (36), it can be seen that the calculation of Bayesian
estimators of Shannon and Rényi entropy are complex and difficult to calculate. Thus, the
Lindley approximation will be employed to achieve the approximate calculation results of
Ĥs3 and Ĥr3. �

4.1. Bayesian Estimation by Using Lindley Approximation under SE Loss Function

Referring to the Lindley approximation, I(t) can be defined as

I(t) = E[U(ω, υ)|T ] =

∫
U(ω, υ)eS(t;ω,υ)+G(ω,υ)d(ω, υ)∫

eS(t;ω,υ)+G(ω,υ)d(ω, υ)
, (37)

where U(ω, υ) is a function of independent variables ω and υ, S(t; ω, υ) is a log LF defined
in Equation (9), and G(ω, υ) is the log of the joint PD defined in Equation (31).

If the sample size is large, Equation (37) can be expressed as

I(t) = U(ω̂, υ̂) +
1
2
(A + B + C + D), (38)

where ω̂ and υ̂ are the ML estimators of ω and υ, respectively, and

A = (Ûωω + 2ÛωĜω)σ̂ωω + (Ûυω + 2ÛυĜω)σ̂υω

B = (Ûωυ + 2ÛωĜυ)σ̂ωυ + (Ûυυ + 2ÛυĜυ)σ̂υυ

C = (Ûω σ̂ωω + Ûυσ̂ωυ)(Ŝωωω σ̂ωω + Ŝωυω σ̂ωυ + Ŝυωω σ̂υω + Ŝυυω σ̂υυ)

D = (Ûω σ̂υω + Ûυσ̂υυ)(Ŝωωυσ̂ωω + Ŝωυυσ̂ωυ + Ŝυωυσ̂υω + Ŝυυυσ̂υυ)

(39)

σij (i, j = ω, υ) is the element of the inverse matrix of −Sij.
The Ûωω denotes taking the second derivative of U(ω, υ) with respect to ω and putting

ω̂ into it. Similarly, the others can be expressed as

Sωωυ = Sωυω = Sυωω = 0, Sωωω = 3n
ω3

Sωυυ = Sυωυ = Sυυω = −
n
∑

i=1
t−υ
i ln ti, Sυυυ = 2n

υ3 + ω
n
∑

i=1
t−υ
i (ln ti)

3.

Gω = b−1
ω − a, Gυ = 1

υ

(40)

Under the SE loss function, the step of numerical calculation of Shannon entropy Ĥs2
by the Lindley approximation is shown as follows:

When U(ω, υ) = Hs,

Uω = 1
ωυ , Uυ = −γ−ln ω

υ2 − 1
υ

Uωω = − 1
ω2υ

, Uυυ = 2 ln ω+2γ
υ3 + 1

υ2 , Uωυ = Uυω = − 1
ωυ2

. (41)

Putting Equations (40) and (41) into Equation (38), E(Hs|T) is obtained.
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Similarly, when U(ω, υ) = Hs
−1,

Uω = −H−2
s

1
ωυ , Uυ = H−2

s ( γ+ln ω
υ2 + 1

υ )

Uωω = 2H−3
s

1
ω2υ2 + H−2

s
1

ω2υ

Uυυ = 2H−3
s (−γ−ln ω

υ2 − 1
υ )

2
− H−2

s ( 2 ln ω+2γ
υ3 + 1

υ2 )

Uωυ = Uυω = 2H−3
s (−γ−ln ω

ωυ3 − 1
ωυ2 ) + H−2

s
1

ωυ2

. (42)

Then, putting Equations (40) and (42) into Equation (38), E(H−1
s |T ) is obtained. Thus,

the numerical calculation of Shannon entropy Ĥs2 is calculated by Equation (33).
Under the SE loss function, the numerical calculation of Rényi entropy Ĥr2 by the

Lindley approximation is shown as follows:
When U(ω, υ) = Hr,

Uω = r
(1−r)ωυ

, Uωω = −r
(1−r)ω2υ

, Uωυ = Uυω = −r
(1−r)ωυ2

Uυ = r
(1−r)υ [1 +

ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
]

Uυυ = 2r(ln ω−ln r)
(1−r)υ3 − [Γ′(1+r+rυ−1)]

2−Γ′′ (1+r+rυ−1)Γ(1+r+rυ−1)

(1−r)r−2υ4[Γ(1+r+rυ−1)]
2 − r

(1−r)υ2

(43)

Putting Equations (40) and (43) into Equation (38), E(Hr|T) is obtained.
When U(ω, υ) = Hr

−1,

Uω = −rH−2
r

(1−r)ωυ
, Uυ = −rH−2

r
(1−r)υ [1 +

ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
]

Uωω = 2r2 H−3
r

(1−r)2ω2υ2 +
rH−2

r
(1−r)ω2υ

,

Uωυ = Uυω = r22H−3
r

(1−r)2ωυ2 [1 +
ln r−ln ω

υ − 1
υ

Γ′(1+r+rυ−1)
Γ(1+r+rυ−1)

]

Uυυ = [Γ′(1+r+rυ−1)]
2−Γ′′ (1+r+rυ−1)Γ(1+r+rυ−1)

(1−r)r−2υ4[Γ(1+r+rυ−1)]
2 H2

r
+ rH−2

r
(1−r)υ2 −

2r(ln ω−ln r)
(1−r)υ3 H2

r

+ 2r2 H−3
r

(1−r)2υ2 [1 +
ln r−ln ω

υ − Γ′(1+r+rυ−1)
υΓ(1+r+rυ−1)

]

(44)

Putting Equations (40) and (44) into Equation (38), E(H−1
r
∣∣T) is obtained. Thus, the

numerical calculation of Shannon entropy Ĥr2 is calculated by Equation (34).

4.2. Bayesian Estimation by Using Lindley Approximation under SSE Loss Function

Under the SSE loss function, the step of numerical calculation of Shannon entropy Ĥs3
by the Lindley approximation is shown as follows:

When U(ω, υ) = H1−k
s ,

Uω = (1− k)H−k
s

1
ωυ , Uυ = (1− k)H−k

s (−γ−ln ω
υ2 − 1

υ )

Uωω = −k(1− k)H−k−1
s ( 1

ωυ )
2 − (1− k)H−k

s
1

ω2υ

Uυυ = k(1− k)H−k−1
s ( γ+ln ω

υ2 + 1
υ )

2
+ (1− k)H−k

s ( 2 ln ω+2γ
υ3 + 1

υ2 )

Uωυ = Uυω = k(1− k)H−k−1
s

1
ωυ (

γ+ln ω
υ2 + 1

υ )− (1− k)H−k
s

1
ωυ2

. (45)

Then, putting Equations (40) and (45) into Equation (38), E(H1−k
s |T ) is obtained.
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When U(ω, υ) = H−k
s ,

Uω = −kH−k−1
s

1
ωυ , Uυ = kH−k−1

s ( γ+ln ω
υ2 + 1

υ )

Uωω = k(k + 1)H−k−2
s ( 1

ωυ )
2
+ kH−k−1

s
1

ω2υ

Uυυ = k(k + 1)H−k−2
s (−γ−ln ω

υ2 − 1
υ )

2
− kH−k−1

s ( 2 ln ω+2γ
υ3 + 1

υ2 )

Uωυ = Uυω = k(k + 1)H−k−2
s

1
ωυ (

−γ−ln ω
υ2 − 1

υ ) + kH−k−1
s

1
ωυ2

. (46)

Then, putting Equations (40) and (46) into Equation (38), E(H−k
s |T ) is obtained. Thus,

the numerical calculation of Shannon entropy Ĥs3 is calculated by Equation (35).
Under the SSE loss function, the step of numerical calculation of Rényi entropy Ĥr3 by

the Lindley approximation is shown as follows:
When U(ω, υ) = H1−k

r ,

Uω = (1−k)rH−k
r

(1−r)ωυ
, Uυ = (1−k)rH−k

r
(1−r)υ [1 + ln r−ln ω

υ − Γ′(1+r+rυ−1)
υΓ(1+r+rυ−1)

]

Uωω = (k− 1)[ kr2 H−k−1
r

(1−r)2ω2υ2 +
rH−k

r
(1−r)ω2υ

]

Uωυ = Uυω = kr2 H−k−1
r (k−1)

(1−r)2ωυ2 [1 + ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
] + rH−k

r (k−1)
(1−r)ωυ2

Uυυ = r2kH−k−1
r (k−1)

(1−r)2υ2 [1 + ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
]
2
+ 2r(ln ω−ln r)(1−k)

(1−r)υ3 Hk
r

− [Γ′(1+r+rυ−1)]
2−Γ′′ (1+r+rυ−1)Γ(1+r+rυ−1)

(1−r)(1−k)−1r−2υ4[Γ(1+r+rυ−1)]
2 Hk

r
− (1−k)H−k

r r
(1−r)υ2

(47)

Putting Equations (40) and (47) into Equation (38), E(H1−k
r

∣∣∣T) is obtained.

When U(ω, υ) = H−k
r ,

Uω = − rkH−k−1
r

(1−r)ωυ
, Uυ = rkH−k−1

r
(1−r)υ [ Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
− 1− ln r−ln ω

υ ]

Uωω = kr
(1−r)ω2υ

[ rH−k−2
r (k−1)

υ + H−k−1
r ]

Uωυ = Uυω = r2k(k−1)H−k−2
r

(1−r)2ωυ2 [1 + ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
] + rkH−k−1

r
(1−r)ωυ2

Uυυ = r2k(k−1)H−k−2
r

(1−r)2υ2 [1 + ln r−ln ω
υ − Γ′(1+r+rυ−1)

υΓ(1+r+rυ−1)
]
2
− 2rk(ln ω−ln r)

(1−r)υ3 Hk+1
r

+ [Γ′(1+r+rυ−1)]
2−Γ′′ (1+r+rυ−1)Γ(1+r+rυ−1)

(1−r)r−2υ4k−1 Hk+1
r [Γ(1+r+rυ−1)]

2 + rkH−k−1
r

(1−r)υ2

(48)

Putting Equation (40) and Equation (48) into Equation (38), E(H−k
r |T ) is obtained.

Thus, the numerical calculation of Rényi entropy Ĥr3 is calculated by Equation (36).

5. Monte Carlo Simulation

In this chapter, a Monte Carlo simulation is used to generate random samples that
obey the two-parameter IWD, and 1000 experiments are repeated with different sample
sizes (n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). The true values of the parameters in the two-
parameter IWD are taken as ω = 1 and υ = 2, the parameters of the gamma distribution
are taken as a = 5 and b = 1, the parameters in SSE are taken as k = 10, and the parameters
of the Rényi entropy are taken as r = 0.5. Then, the mean squared error (briefly, MSE) is
used to compare the performance of each estimator. The results of Shannon entropy are
shown in Table 1 and the results of Rényi entropy are shown in Table 2. For showing the
performance of 100(1− α)% ACIs, the coverage probability is calculated and the results are
shown in Table 3.
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Table 1. Estimates and MSEs of Shannon entropy (Hs0 = 1.1727).

Sample
Size (n)

Estimate MSE

M̂s1 M̂s2 M̂s3 MSEs1 MSEs2 MSEs3

10 1.0604 0.8259 0.8914 0.1903 0.3666 0.2065

20 1.1183 0.9631 0.9683 0.0863 0.1282 0.1186

30 1.1388 1.0301 1.0076 0.0558 0.0751 0.0766

40 1.1355 1.0526 1.0292 0.0445 0.0574 0.0592

50 1.1461 1.0788 1.0379 0.0323 0.0404 0.0472

60 1.1503 1.0938 1.0506 0.0287 0.0343 0.0399

70 1.1579 1.1093 1.0646 0.0244 0.0282 0.0334

80 1.1623 1.1196 1.0694 0.0197 0.0224 0.0284

90 1.1653 1.1272 1.0803 0.0171 0.0191 0.0256

100 1.1628 1.1284 1.0777 0.0161 0.0183 0.0244

Table 2. Estimates and MSEs of Rényi entropy (Hr0 = 1.5641).

Sample
Size (n)

Estimate MSE

M̂r1 M̂r2 M̂r3 MSEr1 MSEr2 MSEr3

10 1.6681 1.7793 1.7682 0.0525 0.1075 0.0954

20 1.6056 1.6512 1.6587 0.0178 0.0218 0.0186

30 1.5999 1.6278 1.6229 0.0129 0.0136 0.0112

40 1.5903 1.6113 1.6082 0.0103 0.0103 0.0075

50 1.5829 1.5992 1.5972 0.0072 0.0071 0.0064

60 1.5809 1.5954 1.5896 0.0055 0.0057 0.0049

70 1.5765 1.5885 1.5878 0.0046 0.0046 0.0045

80 1.5781 1.5886 1.5857 0.0044 0.0041 0.0034

90 1.5752 1.5845 1.5779 0.0038 0.0038 0.0032

100 1.5731 1.5814 1.5775 0.0032 0.0032 0.0031

Table 3. The coverage probability of 100(1− α)% ACIs with different α.

Sample Size
(n)

Shannon Entropy Rényi Entropy

α = 0.1 α = 0.05 α = 0.1 α = 0.05

10 0.9637 0.9752 0.9662 0.9791

20 0.9798 0.9894 0.9789 0.9884

30 0.9829 0.9916 0.9847 0.9930

40 0.9839 0.9941 0.9860 0.9953

50 0.9857 0.9946 0.9894 0.9957

60 0.9876 0.9947 0.9936 0.9954

70 0.9875 0.9947 0.9925 0.9965

80 0.9875 0.9940 0.9929 0.9972

90 0.9894 0.9955 0.9934 0.9966

100 0.9865 0.9950 0.9929 0.9971
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For convenience, Hs0 and Hr0 represent the true values of Shannon entropy and Rényi
entropy, respectively; M̂s1 and M̂r1 represent the mean values of 1000 ML estimates of
entropy, respectively; M̂s2 and M̂r2 represent the mean values of 1000 Bayesian estimates of
entropy, respectively, under the SE loss function; M̂s3 and M̂r3 represent the mean values
of 1000 Bayesian estimates of entropy, respectively, under the SSE loss function; MSEs1
and MSEr1 represent MSEs of ML estimates of entropy, respectively; MSEs2 and MSEr2
represent MSEs of Bayesian estimates of entropy, respectively, under the SE loss function;
MSEs3 and MSEr3 represent MSEs of Bayesian estimates of entropy, respectively, under the
SSE loss function. The M̂sj and MSEsj(j = 1, 2, 3) are calculated by Equations (49) and (50),
where m = 1000 and Ĥsj,i represents the i-th ML estimate or Bayesian estimate of Shannon
entropy. The M̂rj and MSErj (j = 1, 2, 3) are calculated by Equations (51) and (52), where
m = 1000 and Ĥrj,i represents the i-th ML estimate or Bayesian estimate of Rényi entropy.

M̂sj =
1
m

m

∑
i=1

Ĥsj,i, (49)

MSEsj =
1
m

m

∑
i=1

(Ĥsj,i − Hs0)
2, (50)

M̂rj =
1
m

m

∑
i=1

Ĥrj,i, (51)

MSErj =
1
m

m

∑
i=1

(Ĥrj,i − Hr0)
2. (52)

Based on the above tables, the following findings of these study results can be drawn:

(1) For Shannon entropy, the ML estimation performs better than the Bayesian estimation,
while for Rényi entropy, the performance of ML estimation is similar to that of
Bayesian estimation.

(2) In Bayesian estimation, it is better to select the SE to estimate Shannon entropy. On
the contrary, it is better to select the SSE to estimate Rényi entropy.

(3) The sample size has a greater influence on Shannon entropy than on Rényi entropy.
When the sample size increases gradually, the Bayesian estimation of Shannon entropy
under SE is close to the ML estimation, but it has no obvious effect on Rényi entropy.

(4) In Table 3, it can be noted that the coverage probability of ACIs is quite close to
confidence levels.

6. Real Data Analysis

There is a real data set given by Bjerkdal [47] that represents the survival time (in
days) of guinea pigs after the injection of different doses of tubercle bacilli. Kundu and
Howlader [48] proved that this set of data using the IWD fitting effect is very good; therefore,
this data set can be seen as a sample of the IWD. In Reference [47], the regimen number
refers to the common logarithm of bacillary units contained in 0.5 mL of challenge solution.
In other words, regimen 6.6 represents 4.0 × 106 bacillary units per 0.5 mL. Corresponding
to regimen 6.6, the 72 observed observations are listed as follows:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60,
60, 60, 60, 61, 62, 63, 65, 65, 67,68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99,
109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211,233, 258, 258, 263, 297, 341, 341, 376.

Using the proposed estimates described in the above sections, the ML estimates and
Bayesian estimates of Shannon entropy and Rényi entropy are displayed in Table 4. It
is obvious that the ML estimates of entropies are all smaller than the Bayesian estimates
under SE, and the Bayesian estimates under the SSE of entropies are all smaller than the
ML estimates.
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Table 4. The estimates and ACIs of entropies based on the real data set.

ML
Estimates

Bayesian Estimates 100(1-α)% ACIs

Under SE Under SSE α = 0.1 α = 0.05

Shannon entropy 5.6307 5.6998 4.8706 (5.1858,
6.0757)

(5.1328,
6.1287)

Rényi entropy 5.4129 4.7280 4.8706 (5.1877,
5.6381)

(5.1609,
5.6649)

7. Conclusions

Entropy is a significant indicator for quantifying information uncertainty. In addition,
the IWD is an important lifetime model in the field of reliability. The numerical description
of the entropy can be used to improve the lifetime test. Therefore, this paper considers the
Bayesian estimations of Shannon entropy and Rényi entropy based on the two-parameter
IWD. First, the expressions of these entropies of the two-parameter IWD are derived in
Theorem 1. For ML estimation, due to the invariance of ML estimation, the ML estimators
of parameters are obtained by the dichotomy method at first. Then, the ML estimators of
entropies can be obtained. Additionally, the approximate confidence intervals are given
by the Delta method. For Bayesian estimation, the symmetric entropy loss function and
scale squared error loss function are chosen. However, the forms of Bayesian estimators
are complex and difficult to calculate. The Lindley approximation is used to solve this
problem. Finally, the mean square errors of the above estimators are used to compare their
performances. From the findings found in Section 5, it is better to use the ML estimator
for Shannon entropy, and for Rényi entropy, the performances of the ML estimator and
Bayesian estimator are analogous. Based on these findings, it is hoped that it will be helpful
for researchers conducting lifetime tests.
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Appendix A

First, analyze the monotonicity of y(υ) with respect to υ. The derivative of y(υ) is

y′(υ) = −n[
1
υ2 +

(
n
∑

i=1
t−υ
i )

n
∑

i=1
t−υ
i (ln ti)

2 − (
n
∑

i=1
t−υ
i ln ti)

2

(
n
∑

i=1
t−υ
i )

2 ]. (A1)

According to the Cauchy inequality, there is

(
n
∑

i=1
t−υ
i )

n
∑

i=1
t−υ
i (ln ti)

2 − (
n
∑

i=1
t−υ
i ln ti)

2
≥ (

n
∑

i=1

√
t−υ
i

√
t−υ
i ln ti)

2
− (

n
∑

i=1
t−υ
i ln ti)

2

= (
n
∑

i=1
t−υ
i ln ti)

2
− (

n
∑

i=1
t−υ
i ln ti)

2

= 0

.

(A2)
Therefore, y′(υ) < 0. That is, y(υ) is a strictly monotonically decreasing function with

respect to υ.
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Then, the value domain of y(υ) is considered. Since y(υ) is a strictly monotonically
decreasing function, its value domain is the left and right limit of y(υ) in the range of υ > 0.
It is clear that lim

υ→0+
y(υ) = +∞. Denote lim

υ→+∞
y(υ) as the right limit of y(υ) and denote

tmin = min{t1, t2, . . . , tn}. The value domain of y(υ) is [ lim
υ→+∞

y(υ) ,+∞). Because of

lim
υ→+∞

y(υ) = lim
υ→+∞

n
n
∑

i=1
(

ti
tmin

)
−υ

ln ti

n
∑

i=1
(

ti
tmin

)
−υ −

n
∑

i=1
ln ti

= n ln tmin −
n
∑

i=1
ln ti

, (A3)

there is lim
υ→+∞

y(υ) < 0.

According to the monotonicity and the value domain, y(υ) has a unique solution.
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