
Citation: Cao, Y.; Fang, X. Optimized-

Weighted-Speedy Q-Learning

Algorithm for Multi-UGV in Static

Environment Path Planning under

Anti-Collision Cooperation

Mechanism. Mathematics 2023, 11,

2476. https://doi.org/10.3390/

math11112476

Academic Editors: Ravil Muhamedyev

and Evgeny Nikulchev

Received: 17 April 2023

Revised: 19 May 2023

Accepted: 23 May 2023

Published: 27 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimized-Weighted-Speedy Q-Learning Algorithm for
Multi-UGV in Static Environment Path Planning under
Anti-Collision Cooperation Mechanism
Yuanying Cao and Xi Fang *

School of Science, Wuhan University of Technology, Wuhan 430070, China; caoyuanying@whut.edu.cn
* Correspondence: fangxi@whut.edu.cn; Tel.: +86-13554016042

Abstract: With the accelerated development of smart cities, the concept of a “smart industrial park”
in which unmanned ground vehicles (UGVs) have wide application has entered the industrial field
of vision. When faced with multiple tasks and heterogeneous tasks, the task execution efficiency of a
single UGV is inefficient, thus the task planning research under multi-UGV cooperation has become
more urgent. In this paper, under the anti-collision cooperation mechanism for multi-UGV path
planning, an improved algorithm with optimized-weighted-speedy Q-learning (OWS Q-learning) is
proposed. The slow convergence speed of the Q-learning algorithm is overcome to a certain extent by
changing the update mode of the Q function. By improving the selection mode of learning rate and the
selection strategy of action, the relationship between exploration and utilization is balanced, and the
learning efficiency of multi-agent in complex environments is improved. The simulation experiments
in static environment show that the designed anti-collision coordination mechanism effectively solves
the coordination problem of multiple UGVs in the same scenario. In the same experimental scenario,
compared with the Q-learning algorithm and other reinforcement learning algorithms, only the OWS
Q-learning algorithm achieves the convergence effect, and the OWS Q-learning algorithm has the
shortest collision-free path for UGVS and the least time to complete the planning. Compared with the
Q-learning algorithm, the calculation time of the OWS Q-learning algorithm in the three experimental
scenarios is improved by 53.93%, 67.21%, and 53.53%, respectively. This effectively improves the
intelligent development of UGV in smart parks.

Keywords: optimized-weighted-speedy Q-learning algorithm; path planning; anti-collision cooperation
mechanism; reinforcement learning; unmanned ground vehicle (UGV)

MSC: 68T01

1. Introduction

The general trend of the fourth revolution is intelligence, which is characterized by the
integration of wisdom into the physical system of real objects, and one of its technical trends
is intelligent complex systems, artificial intelligence, and smart cities [1]. A smart industrial
park is an important manifestation of a smart city, with the enrichment of intelligent
scenes and the continuous evolution of industrial park forms, the functions carried by the
industrial park are becoming increasingly diversified and three-dimensional, and with the
development of the smart industrial park, the path planning of unmanned vehicles in the
industrial park has also attracted widespread attention from scholars. Although the method
of path planning is mature, due to the complex environment, irregular road lines, large
areas of the industrial park, and large flow of people, it is still challenging for unmanned
vehicles to carry out path planning in the industrial park. At the present stage, due to
the slow speed and safety of unmanned vehicles in the industrial park, they have shown
great advantages in research and application. Therefore, the study of unmanned vehicles in
industrial park path planning has high research value and practical application significance.

Mathematics 2023, 11, 2476. https://doi.org/10.3390/math11112476 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112476
https://doi.org/10.3390/math11112476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8420-307X
https://doi.org/10.3390/math11112476
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11112476?type=check_update&version=2

Mathematics 2023, 11, 2476 2 of 28

An unmanned ground vehicle (UGV) is an artificially remote-controlled, semi-
autonomous, or autonomous agent that can replace humans in performing diverse and
high-risk tasks and plays an important role in many practical applications [2]. Due to
the increased demand, the simultaneous coordinated use of a group of vehicles in order
to perform tasks more efficiently has aroused the interest of scholars [3]. Compared with
a single UGV, multiple UGVs can perform tasks in parallel and cover a larger area, and
the system can continue to work even if one robot fails [4]. The simultaneous use of
multiple UGVs at the same time can effectively shorten the time of task execution and
improve the efficiency of task execution, but it also increases the complexity of planning
to a certain extent [5]. Due to the high computational complexity of multi-agent path
planning, there is a lack of complete algorithms that provide solution optimization and
computational efficiency [6].

With the growing interest in intelligent assistive technologies and autonomous robotic
vehicles, path planning has become one of the most challenging topics in the field of navi-
gation research [7]. Path planning is divided into offline planning and online planning [8].
When generating paths for multi-agents, the multi-agents under offline planning cannot
take advantage of the cooperation capability due to no or little interaction between them,
and finally, the multi-agent system cannot ensure that the robot walks along the predeter-
mined path, and when generating paths for multi-agent online planning, there is often a
certain interaction among multiple agents [8]. For the solution of some complex problems,
sometimes some strategies need to be adopted. For example, Liao et al. [9] proposed a
channel-related payload division strategy based on channel modification probability to
solve the problem of how to use inter-channel correlation to allocate payload to enhance
color image performance. The interaction among multiple agents is manifested in the
cooperation strategy among agents, which is divided into centralized and decentralized.
Centralized systems are more cooperative than decentralized systems because they have a
central decision-maker, where the central decision-maker assigns tasks and schedules to
each agent [10]. Although centralized decision-making has no restrictions on the algorithms
used to solve problems, in general, decentralized decision-making is more widely used
in practice, which enables agents to communicate and interact with each other, reduces
the computational complexity through limited sharing of information, and has higher
flexibility, robustness, and scalability [10].

The most commonly used method of path planning is the heuristic algorithm, but
when the solution conditions involved are more complex, the traditional heuristic algorithm
is inefficient, so many scholars use improved heuristic algorithms to solve path planning
problems. Zhang et al. [11] proposed an improved A* algorithm including two-way sector
expansion and variable-step search strategy for complex terrain and static radar threats in
order to quickly avoid static threats. Saranya et al. [12] proposed an improved D* algorithm
for the path planning problem of complex environments, introducing terrain slope into
cost function calculation. Guo et al. [13] proposed a chaotic shared learning particle swarm
optimization algorithm (CSPSO) for the path planning and path control problem of USV
with multi-objective constraints.

However, in the face of changing environments, classical path planning algorithms
can no longer meet the real-time and efficient requirements of path planning, so more and
more reinforcement learning algorithms are used to solve agent path planning problems.
Reinforcement learning is an algorithm that finds the best solution through trial and error
in an unknown environment, and reinforcement learning is widely used in path planning
because of its own characteristics. In addition, reinforcement learning is also used to solve
problems such as image steganography and other problems, and Tan et al. [14] proposed a
new end-to-end network architecture based on GAN for image steganism. As a model-free
algorithm in reinforcement learning algorithms, the goal of the Q-learning algorithm is
to learn a strategy that can handle random transformation and reward problems without
adapting to the environment. Q-learning algorithms are widely used because of their
simplicity and easy convergence, but Q-learning algorithms also have some shortcomings

Mathematics 2023, 11, 2476 3 of 28

in reinforcement learning. In recent years, some scholars have proposed some improved
Q-learning algorithms for the shortcomings of the Q-learning algorithm. Hu et al. [15] pro-
posed a multi-agent Q-learning method NashQ in the framework of general and random
games, which guarantees convergence considering some highly restrictive assumptions
about the stage game form during the learning process, and its advantage is that the
complexity is relatively low. In order to overcome the inefficiency of the basic Q-learning
algorithm in multi-agent systems, Ono et al. [16] proposed the modular Q-learning algo-
rithm, which decomposes the big problem to be learned into small problems and applies
Q-learning to each sub-problem. Using basic Q-learning algorithms in multi-agent en-
vironments, where agents are often unable to find answers or take a lot of time to solve
problems, Iima et al. [17] proposed a group reinforcement learning algorithm based on the
Sarsa method to quickly obtain the optimal strategy for the maximum reward problem.
Low et al. [18] introduced the concept of partially guided Q-learning and initialized the Q
table using the pollination algorithm (FPA). Li et al. [19] proposed a dynamic parameter ad-
justment strategy and an action deletion mechanism of trial and error method on the basis
of Q-learning combined with ε− greedy, so as to better balance the relationship between
exploration and utilization and improve the exploration efficiency of the agent. The above
research has made useful progress in improving the efficiency of Q-learning algorithms,
however, in large and complex environments, Q-learning algorithms are difficult to achieve
the desired results.

Therefore, in order to promote the intelligent development of smart parks, give full
play to the advantages of unmanned vehicles in global path planning and obstacle avoid-
ance. In view of the low efficiency of single UGV task execution and blind exploration of
UGVS random selection of actions under Q-learning algorithm in complex environments,
resulting in low learning efficiency, slow convergence speed in complex environments, this
paper proposes an improved Q-learning algorithm to solve the path planning problem
of multi-UGV based on the idea of Q-learning algorithm and distributed collaboration
strategy between multiple agents. The algorithm expects to obtain better path planning
results than the traditional Q-learning algorithm, which can enable multiple UGVs to find
their respective paths in the same iteration, reduce the time of path planning, and obtain
a shorter final path. The specific improvement of the Q-learning algorithm in this paper
is to change the update method of the Q function, use a more aggressive learning rate to
accelerate the convergence speed of the algorithm, and select actions more effectively by
improving the ε− greedy strategy. The main contributions of this paper are as follows:

1. Aiming at the problem of path planning of multiple UGVs in the complex environ-
ment of smart parks, a grid environment model is established, and an anti-collision
coordination mechanism between multiple UGVs is proposed.

2. Aiming at the problem that the Q-learning algorithm converges slowly in the complex
environment of multi-agent systems, the Q estimate of the next state and the Q value
of the current state is weighted to change the update mode of the Q function, so as
to overcome the problem of slow convergence speed of the Q-learning algorithm.
By using a more aggressive learning rate and a ε − greedy strategy with improved
action selection, the relationship between exploration and utilization of the Q-learning
algorithm is balanced, the convergence speed of the algorithm is accelerated, and an
improved reinforcement learning algorithm optimized-weighted-speedy Q-learning
(OWS Q-learning) algorithm is proposed.

3. The proposed algorithm is compared with the SARSA algorithm, Q-learning algorithm,
and speedy Q-learning algorithm, the comprehensive performances of stability and
robustness of the proposed algorithm are explained from the evaluation indexes such as
shortest path steps, path length, calculation time, and reward function convergence.

The rest of this article is organized as follows. In Section 2, the literature related to
multi-agent autonomous path planning is briefly summarized. In Section 3, a simulation
environment model is established, and the collision avoidance cooperation mechanism
in multi-UGV path planning and evaluation indexes of the algorithm are introduced. In

Mathematics 2023, 11, 2476 4 of 28

Section 4, the theory of reinforcement learning and the proposed improved algorithm are
introduced. In Section 5, the experimental scenario and experimental parameters are set,
the simulation experiments are carried out, and the experimental results are compared
and analyzed. In Section 6, the full text is summarized and an outlook for future work
is provided.

2. Related Work

Path planning algorithms are widely used in indoor and outdoor path planning
problems, and so far, scholars have conducted a lot of research on path planning problems,
and various methods have been proposed to better solve path planning problems [8]. Multi-
robot path planning algorithms can be divided into three categories: classical algorithms,
heuristic algorithms, and artificial intelligence algorithms [3].

Among the classical algorithms, Zhao et al. [20] proposed a collision avoidance strategy
and risk assessment based on improved APF and fuzzy inference systems for multi-robot
path planning in completely unknown environments. Yu [21] aimed at the optimal multi-
robot path planning problem with computational complexity and used the floor plan to
establish the complexity of the problem on the floor plan to reduce path sharing in the
opposite direction. Alottaibi et al. [22] argued that for multi-robot path planning problems,
the RRT algorithm outperforms the Bibox algorithm in optimizing solutions and exploring
search spaces in urban environments. Nedjati et al. [23] proposed a centralized algorithm
framework for the multi-robot path planning problem in general two-dimensional con-
tinuous environment, which obtained a high level of effectiveness by discretizing the
continuous environment and quickly solving the resulting discrete planning problem.
Dutta et al. [24] aimed at the NP difficulty problem of multi-robot path planning under
communication constraints, using continuous region division into Voronoi components
to effectively divide initially unknown environments among robots according to newly
discovered obstacles, thereby improving load balancing among robots. Yuan et al. [25]
proposed a two-layer path planning algorithm—an improved A* algorithm and a dynamic
fast exploration random tree (RRT) algorithm with kinematic constraints to optimize the
path of multiple AGVs, and simulation experiments show that the proposed two-layer
path planning algorithm performs well in search efficiency and significantly reduces the
incidence of multiple AGV path conflicts. Singh et al. [26] proposed the EA* algorithm,
allocation technology, and fault detection algorithm using the circumferential division
method for the target location-allocation problem in multi-robot path planning and area
exploration and tested them in different environments. Dou et al. [27] proposed a compre-
hensive framework of dynamic path planning algorithms for the real-time and concurrent
movement of multiple robot cars on the ground of parking lots without driving lanes,
and the simulation results show that the proposed design makes the robot car close to
the optimal path and can process dozens of concurrent requests in real time, even in the
case of fixed cars. Salerno et al. [28] proposed a conflict-based search method for the
multi-agent path planning problem in the train route problem of multiple vehicles and
train route setting paths, considering the complexity of the scene. Sun et al. [29] aimed at
the challenging problem of multi-agent cooperative motion planning for complex tasks, a
timed waypoint-based method is proposed to apply the linear time logic formula to solve
multi-robot path planning, and simulation experiments show that the proposed method
supports multi-agent planning from complex specifications in a long planning cycle, and
significantly outperforms the most advanced abstraction-based and MPC-based motion
planning methods.

A biomimetic algorithm is a kind of algorithm that simulates the random search
method of natural biological evolution or group social behavior, and its application range
is wide, such as Jaaz et al. [30] designed whale optimization weighted fuzzy clustering
head selection algorithm to promote successful communication of IoMT-based systems.
Wang et al. [31] adopted the PSO algorithm in the photovoltaic power generation system,
which can quickly and accurately control the maximum power point in the event of sudden

Mathematics 2023, 11, 2476 5 of 28

changes in lighting. In the application of path planning, Chen et al. [32] aimed at the path
planning problem of deployment and acquisition of a rail vehicle system composed of
one ground mobile robot and two aerial flying robots, considered the actual constraints,
minimized the objective function, transformed the path planning problem of the robot
system into a multi-constraint optimization problem, and used the PSO algorithm for
path planning. Xu et al. [33] proposed a new method of smoothing path planning for
mobile robots (PSO-AWDV) algorithm based on a new quart-degree Bezier transition
curve and improved particle swarm optimization (PSO) algorithm to solve the problem
of path smoothing of mobile robots. Li et al. [34] proposed an improved FOA algorithm
(ORPFOA) to solve the problem of multi-UAV path planning in the three-dimensional
complex environment of online transformation tasks, which realized a fast and stable
solution by using reference points and distance cost matrices. Han et al. [35] proposed an
improved genetic algorithm for the path-planning problem of multiple automated guided
vehicles (multi-AGV). A three-exchange cross heuristic is used to produce more optimized
descendants for more information, and a two-path constraint that minimizes the total path
distance of all AGVs and minimizes the single-path distance of each AGV is imposed.
Huang et al. [36] established a multi-UAV path planning model (MUPPEC) with energy
constraints for UAVs to perform certain monitoring tasks within a specified time and
proposed a hybrid discrete intelligent algorithm based on gray wolf optimizer (HDGWO)
to solve the MUPEC problem. Shi et al. [37] proposed an adaptive multi-UAV path planning
method AP-GWO to improve the gray wolf algorithm for slow convergence and unsmooth
flight path planning, which improved the convergence speed of the algorithm and the
efficiency of UAV task completion. Das et al. [38] proposed a hybrid IPSO-EOPs algorithm
in the multi-robot path planning problem to enhance the exploration and development
ability of robots to achieve better convergence, and simulation experiments show that the
IPSO-EOPs algorithm shows better results for different numbers of robots.

As an important branch of machine learning in artificial intelligence algorithms, rein-
forcement learning is widely used in science, engineering, art, and other fields. Liu et al. [39]
proposed a FANET multi-objective optimization routing protocol based on Q-learning,
aiming at the problem that the existing routing protocols rarely meet the low latency and
low energy consumption requirements of FANET, and the Q-learning parameters can be
adaptively adjusted in the proposed protocol to adapt to the high dynamics of FANET.
Sajad et al. [40] used Q-learning algorithms to solve the problem of path planning on
various terrains by self-reconstructing modular robots. In order to overcome the prob-
lem of low learning efficiency of Q-learning, Low et al. [41] proposed the IQL algorithm,
which introduced the characteristics of distance measurement, improved Q function, and
virtual motion target into the IQL algorithm. Chen et al. [42] proposed a dynamic obsta-
cle avoidance path planning method for manipulators based on the deep reinforcement
learning algorithm soft actor-critic (SAC) to solve the problem of difficult path planning of
manipulators in a dynamic environment. Yang et al. [43] proposed a DDQN-based path
planning algorithm for the global static path planning problem of amphibious USV, which
combines electronic charts and elevation maps to construct an environmental model and
integrates an action mask method to deal with the invalid actions generated by amphibious
USVs on the basis of prior knowledge. Bae et al. [44] combined deep Q-learning and
CNN algorithms to generate a new learning algorithm for the problem that traditional
path planning algorithms cannot actively respond to variable conditions in multi-robot
systems. Li et al. [45] proposed a path-planning method based on prior knowledge and a
Q-learning algorithm to plan the static collision-free path of a single robot in the constructed
model by using the improved Q-learning algorithm, initializing the Q table with the prior
knowledge obtained in the previous step, and using the Q-learning algorithm to achieve
conflict-free motion between multiple robots. Yang et al. [46] used the DQN algorithm for
multi-robot path planning problems, which combines the Q-learning algorithm, experience
playback mechanism, and volume-based technology for producing neural networks to
generate target Q values, and the improved DQN algorithm improves the efficiency of

Mathematics 2023, 11, 2476 6 of 28

multi-robot path planning. Koval et al. [47] proposed a new collaborative approach to the
problem of exploration and search and rescue of mobile robots in autonomous collaborative
scenarios. Splitting the task of collaborative exploration into two core parts, the first part is
sensor-based, and the second part is the path planner assigns actionable tasks to each agent,
including the ability to provide reachable collision-free paths and multiple simulations in
complex location environments. Wang et al. [48] proposed a multi-UAV collaborative path
planning method based on reinforcement learning to solve the problem that traditional
heuristic algorithms are difficult to extract empirical models from large sample terrain
data in time, which comprehensively considers the influencing factors such as survival
probability, path length, load balancing and durability constraints. Hao et al. [49] proposed
a dynamic fast Q-learning (DFQL) algorithm for the path planning problem of USV in
some known marine environments, which combines Q-learning with artificial potential
field (APF) to initialize the Q table and provides USV with prior knowledge from the envi-
ronment. Zhang et al. [50] in order to overcome the problem that traditional Q-learning is
prone to local optimization in coverage path planning, a new reward function derived from
the predator–prey model is introduced into the traditional Q-learning-based CPP solution.

For the multi-agent path planning problem, the above scholars have made effective
progress in improving the efficiency of classical algorithms, heuristic algorithms, and
artificial intelligence algorithms. There are many application scenarios of multi-agent path
planning, and the application in different scenarios has different degrees of complexity.
However, in the face of such a large and complex environment to the industrial park, the
existing artificial intelligence algorithms have problems such as low learning efficiency,
slow convergence speed, and incomplete path planning of agents, and it is difficult for
multiple agents to achieve convergence at the same time in the same round of training
and learning.

3. Multi-UGV Path Planning Modeling

Since the concept of a smart city was proposed, it has attracted widespread attention
in the international community, triggering a boom in the development of global smart
cities, and smart cities have become a strategic choice to promote further development of
the world [51]. The smart industrial park is the overall performance of the development
process of urban science and technology, which gathers the high-tech smart technology
industry in the city. It is also an important embodiment of smart city construction and
a gathering place for top technology and enterprises in the city. As the carrier of smart
city construction, the smart industrial park can effectively achieve the rapid development
of the point with the surface and the whole in the trend of urban construction and the
gathering place of high-tech industries. In addition, it can quickly and efficiently improve
urban construction, provide a steady stream of power for smart city construction, and
establish a “postcard” of the city. The UGV autonomous path planning is realized in the
industrial park, and artificial intelligence and other technologies are used to promote the
intelligent development of infrastructure construction in the smart industrial park. It breaks
the information island of the industrial park, realizes the intelligent interconnection of the
industrial park, helps the industrial park comprehensively improve the level of intelligent
management, helps the industrial park operation to reduce costs and increase efficiency,
and builds a new industrial ecology.

The purpose of the multi-UGV path planning problem in the industrial park is to
generate a collision-free path from the starting point to the target point for each UGV in a
messy environment. This paper solves the multi-UGV path planning problem in two steps.
The first step is to plan the collision-free path of each UGV based on the proposed OWS
Q-learning algorithm, and the second step is to avoid collisions among UGVs through
motion control of the UGV.

Mathematics 2023, 11, 2476 7 of 28

3.1. Environment Settings

Before path planning, it is first necessary to model the environment in which UGV
is located. The quality of environmental model construction affects the efficiency of path
planning and determines the success or failure of path planning to a certain extent.

The research background of this paper is the smart industrial park, the environment
in the industrial park has the characteristics of relatively simple traffic scenes, low vehicle
speed, and mostly structured roads. Therefore, this paper uses the raster method based
on the global map environment modeling method to construct the environment for the
simulation experiment. The environment in which the agent is run is quantified to form
some small cells in the size of the UGV projection as a mesh map of the environment [52].
In a raster map, the operating environment of the UGV is evenly broken into cells of the
same size, and depending on the size of the environment, the corresponding grid map is
a× b. The representation of the raster graph is shown in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 30

The purpose of the multi-UGV path planning problem in the industrial park is to

generate a collision-free path from the starting point to the target point for each UGV in a

messy environment. This paper solves the multi-UGV path planning problem in two

steps. The first step is to plan the collision-free path of each UGV based on the proposed

OWS Q-learning algorithm, and the second step is to avoid collisions among UGVs

through motion control of the UGV.

3.1. Environment Settings

Before path planning, it is first necessary to model the environment in which UGV is

located. The quality of environmental model construction affects the efficiency of path

planning and determines the success or failure of path planning to a certain extent.

The research background of this paper is the smart industrial park, the environment

in the industrial park has the characteristics of relatively simple traffic scenes, low vehicle

speed, and mostly structured roads. Therefore, this paper uses the raster method based

on the global map environment modeling method to construct the environment for the

simulation experiment. The environment in which the agent is run is quantified to form

some small cells in the size of the UGV projection as a mesh map of the environment [52].

In a raster map, the operating environment of the UGV is evenly broken into cells of the

same size, and depending on the size of the environment, the corresponding grid map is

a b . The representation of the raster graph is shown in Figure 1.

Figure 1. Raster graph representation.

In the figure, the yellow grid is the starting point of UGV, the red grid is the target

point of UGV, and the black grids are the obstacles in the industrial park, such as buildings

and green belts. The obstacles in the industrial park are inflated, the black grids are rep-

resented in the grid map, and the white grids are the road that can be freely passed in the

industrial park.

3.2. UGV Settings

When planning the path of UGV, the motion state of UGV is the condition for the

formation of an obstacle avoidance path. The geodetic coordinate system OXY is estab-

lished, and the movement of UGV is shown in Figure 2. In addition, when planning the

path of multiple UGVs, this paper assumes the following UGVs:

• Consider each UGV in motion as a particle;

Figure 1. Raster graph representation.

In the figure, the yellow grid is the starting point of UGV, the red grid is the target
point of UGV, and the black grids are the obstacles in the industrial park, such as buildings
and green belts. The obstacles in the industrial park are inflated, the black grids are
represented in the grid map, and the white grids are the road that can be freely passed in
the industrial park.

3.2. UGV Settings

When planning the path of UGV, the motion state of UGV is the condition for the for-
mation of an obstacle avoidance path. The geodetic coordinate system OXY is established,
and the movement of UGV is shown in Figure 2. In addition, when planning the path of
multiple UGVs, this paper assumes the following UGVs:

• Consider each UGV in motion as a particle;
• The movement speed and movement angle of each UGV are the same;
• The initial and target locations of each UGV are known;
• In each step, the UGV moves only once, that is, in the environment shown in Figure 1,

the UGV can only move from one cell to another adjacent cell at a time;
• Each UGV has eight directions of movement: up, down, left, right, upper left, lower

left, upper right, and lower right, as shown in Figure 3.

Mathematics 2023, 11, 2476 8 of 28

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 30

• The movement speed and movement angle of each UGV are the same;

• The initial and target locations of each UGV are known;

• In each step, the UGV moves only once, that is, in the environment shown in Figure

1, the UGV can only move from one cell to another adjacent cell at a time;

• Each UGV has eight directions of movement: up, down, left, right, upper left, lower

left, upper right, and lower right, as shown in Figure 3.

Figure 2. Schematic diagram of UGV motion.

Figure 3. UGV movement direction.

In Figure 2, S is the starting point of UGV, and F is the target point of UGV. In each

step, UGV selects one of the actions shown in Figure 3 to execute.

3.3. Multi-UGV Collision Avoidance Cooperation Mechanism

In the path planning problem for multiple UGVs, each UGV must avoid collisions

with other UGVs in the process of finding the path. In the experiment of this paper, the

initial position of each UGV is initially generated, only the initial position of each UGV is

considered not overlapping, and then a multi-intelligent motion cooperation method is

proposed to prevent UGV from colliding with other UGVs in the process of movement,

and the final goal is that multiple UGVs can quickly find the target point in the same one,

and the path generated by each UGV reaches the shortest.

We assume that three UGVs start from the starting point at the same time and move

towards the target point at the same speed, and each UGV first observes whether it can

move. If it cannot be moved, wait at the origin until it can be moved; if it can be moved,

check whether it has encountered an obstacle, such as UGV1:UGV1, which determines

whether it has encountered a fixed obstacle (that is, whether it has moved to the black area

of the environment), and if it encounters an obstacle, it selects the action with the maxi-

mum Q value according to the improved greedy − strategy to execute; if UGV1 does

not encounter a fixed obstacle during this movement, it is determined whether the current

state of UGV2, UGV3 and UGV1 is collusion-free: if there is no collision, UGV1 will select

the action with the maximum Q value according to the improved greedy − strategy

to execute, if the state among the three is any of the upward collision, downward collision,

Figure 2. Schematic diagram of UGV motion.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 30

• The movement speed and movement angle of each UGV are the same;

• The initial and target locations of each UGV are known;

• In each step, the UGV moves only once, that is, in the environment shown in Figure

1, the UGV can only move from one cell to another adjacent cell at a time;

• Each UGV has eight directions of movement: up, down, left, right, upper left, lower

left, upper right, and lower right, as shown in Figure 3.

Figure 2. Schematic diagram of UGV motion.

Figure 3. UGV movement direction.

In Figure 2, S is the starting point of UGV, and F is the target point of UGV. In each

step, UGV selects one of the actions shown in Figure 3 to execute.

3.3. Multi-UGV Collision Avoidance Cooperation Mechanism

In the path planning problem for multiple UGVs, each UGV must avoid collisions

with other UGVs in the process of finding the path. In the experiment of this paper, the

initial position of each UGV is initially generated, only the initial position of each UGV is

considered not overlapping, and then a multi-intelligent motion cooperation method is

proposed to prevent UGV from colliding with other UGVs in the process of movement,

and the final goal is that multiple UGVs can quickly find the target point in the same one,

and the path generated by each UGV reaches the shortest.

We assume that three UGVs start from the starting point at the same time and move

towards the target point at the same speed, and each UGV first observes whether it can

move. If it cannot be moved, wait at the origin until it can be moved; if it can be moved,

check whether it has encountered an obstacle, such as UGV1:UGV1, which determines

whether it has encountered a fixed obstacle (that is, whether it has moved to the black area

of the environment), and if it encounters an obstacle, it selects the action with the maxi-

mum Q value according to the improved greedy − strategy to execute; if UGV1 does

not encounter a fixed obstacle during this movement, it is determined whether the current

state of UGV2, UGV3 and UGV1 is collusion-free: if there is no collision, UGV1 will select

the action with the maximum Q value according to the improved greedy − strategy

to execute, if the state among the three is any of the upward collision, downward collision,

Figure 3. UGV movement direction.

In Figure 2, S is the starting point of UGV, and F is the target point of UGV. In each
step, UGV selects one of the actions shown in Figure 3 to execute.

3.3. Multi-UGV Collision Avoidance Cooperation Mechanism

In the path planning problem for multiple UGVs, each UGV must avoid collisions
with other UGVs in the process of finding the path. In the experiment of this paper, the
initial position of each UGV is initially generated, only the initial position of each UGV is
considered not overlapping, and then a multi-intelligent motion cooperation method is
proposed to prevent UGV from colliding with other UGVs in the process of movement,
and the final goal is that multiple UGVs can quickly find the target point in the same one,
and the path generated by each UGV reaches the shortest.

We assume that three UGVs start from the starting point at the same time and move
towards the target point at the same speed, and each UGV first observes whether it can
move. If it cannot be moved, wait at the origin until it can be moved; if it can be moved,
check whether it has encountered an obstacle, such as UGV1:UGV1, which determines
whether it has encountered a fixed obstacle (that is, whether it has moved to the black
area of the environment), and if it encounters an obstacle, it selects the action with the
maximum Q value according to the improved ε− greedy strategy to execute; if UGV1 does
not encounter a fixed obstacle during this movement, it is determined whether the current
state of UGV2, UGV3 and UGV1 is collusion-free: if there is no collision, UGV1 will select
the action with the maximum Q value according to the improved ε− greedy strategy to
execute, if the state among the three is any of the upward collision, downward collision, left
collision, right collision, upper left collision, lower left collision, upper right collision, lower
right collision, at this time, if UGV1 waits in place for more than 1 s, continue to judge the
relationship among the three UGV states, and select the action execution according to the
relationship among the three, otherwise, wait in place until the waiting time is greater than
1 s. The specific cooperation mechanism is shown in Figure 4, and the same cooperation
mechanism is followed in the process of each UGV movement.

Mathematics 2023, 11, 2476 9 of 28

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 30

left collision, right collision, upper left collision, lower left collision, upper right collision,

lower right collision, at this time, if UGV1 waits in place for more than 1 s, continue to

judge the relationship among the three UGV states, and select the action execution accord-

ing to the relationship among the three, otherwise, wait in place until the waiting time is

greater than 1 s. The specific cooperation mechanism is shown in Figure 4, and the same

cooperation mechanism is followed in the process of each UGV movement.

Figure 4. Multi-UGV collision avoidance cooperation mechanism.

3.4. Evaluation Indexes

The performance of the algorithm proposed in this paper is mainly evaluated from

the average shortest path step, average path length, average calculation time, average re-

ward, and simultaneous convergence of UGVs in one iteration and step convergence.

Figure 4. Multi-UGV collision avoidance cooperation mechanism.

3.4. Evaluation Indexes

The performance of the algorithm proposed in this paper is mainly evaluated from the
average shortest path step, average path length, average calculation time, average reward,
and simultaneous convergence of UGVs in one iteration and step convergence.

3.4.1. Average Shortest Path Steps

S =
l

∑
u=1

n

∑
i=1

s1i/(n× l) (1)

where i is the number of UGVs, n is the number of UGVs, s1i is the shortest number of path
steps for each UGV in path planning.

Mathematics 2023, 11, 2476 10 of 28

3.4.2. Average Path Length

In this paper, the path length generated by each UGV is calculated using the Euclidean
distance, the path length of each UGV is as follows:

di =

√√√√ m

∑
p=1

(
xp − yp

)2 (2)

where di is the path length of the first i UGV, p is the number of steps in the process of
generating the final path of the UGV,

(
xp, yp

)
is the position coordinate of the UGV when it

moves for the p.

d =
l

∑
u=1

n

∑
i=1

di/(n× l) (3)

where d is the average path length and i is the number of UGVs.

3.4.3. Average Calculation Time

t =
l

∑
u=1

ti/l (4)

where t is the average calculation time, ti is the calculation time of the i UGV.

3.4.4. Average Rewards

r =
l

∑
u=1

n

∑
i=1

ri/(n× l) (5)

where r is the average reward and ri is the reward function value of the i UGV.
The simultaneous convergence of UGVs in one iteration and the convergence of the

reward function are compared and analyzed in the images of Sections 5.3.1 and 5.3.2.

3.5. Objective Function

In the process of multi-UGV path planning, different factors affecting the effect of
multi-UGV path planning are considered, including the shortest path steps in the training
process of UGV, the length of the planned path, the time used for planning, the reward
of UGV, and the convergence of the algorithm. The objective function also evaluates
these factors at design time, so in this study, the objective function of multi-UGV path
programming is summarized as Equation (6):

f = fS + fd + fr + fc (6)

where fS is the smallest average shortest path step of UGVs, fd is the shortest average path
length of UGVs, fr is the shortest average calculation time of OWS Q-learning algorithm
under the same experimental environment setting, the average reward function value of
UGVs is the largest, fc is UGVs to achieve the target point in a round of iterative learning,
f is a combination of the above four indexes.

4. OWS Q-Learning Algorithm

Reinforcement learning, as a learning method of machine learning, is an artificial
intelligence algorithm that does not require prior knowledge and acts based on feedback
from the environment. Through continuous interaction with the environment, trial, and
error, the specific purpose is finally achieved, or the overall action benefit is maximized.
It does not need the label of the training data, but it needs to know whether the feedback
given by the environment for each step is a reward or a punishment. The feedback can
be quantified, and the behavior of the training object is constantly adjusted based on the

Mathematics 2023, 11, 2476 11 of 28

feedback. Reinforcement learning is mainly composed of five parts: agent, environment,
state, action, and reward.

Agent: The subject of reinforcement learning training.
Environment: The environment in which the agent is located.
State (S): The state in which the current environment and agent are located, because

the position of the agent is constantly changing, the entire state is changing, and the state
contains the state of the agent and environment.

Action (A): An action set that the agent can take based on the current state.
Reward (R): The agent takes a specific action under the current state and obtains

certain feedback from the environment as a reward.
State transition is represented by the p function:

p(s′
∣∣s, a

)
= p

(
S′ = s′

∣∣S = s, A = a
)

(7)

This is a conditional probability density function that represents the probability of the
p function output if the current state s and the action a are observed. The framework of
reinforcement learning is shown in Figure 5:

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 30

where Sf is the smallest average shortest path step of UGVs, df is the shortest average

path length of UGVs, rf is the shortest average calculation time of OWS Q-learning al-

gorithm under the same experimental environment setting, the average reward function

value of UGVs is the largest, cf is UGVs to achieve the target point in a round of iterative

learning, f is a combination of the above four indexes.

4. OWS Q-Learning Algorithm

Reinforcement learning, as a learning method of machine learning, is an artificial in-

telligence algorithm that does not require prior knowledge and acts based on feedback

from the environment. Through continuous interaction with the environment, trial, and

error, the specific purpose is finally achieved, or the overall action benefit is maximized.

It does not need the label of the training data, but it needs to know whether the feedback

given by the environment for each step is a reward or a punishment. The feedback can be

quantified, and the behavior of the training object is constantly adjusted based on the

feedback. Reinforcement learning is mainly composed of five parts: agent, environment,

state, action, and reward.

Agent: The subject of reinforcement learning training.

Environment: The environment in which the agent is located.

State (S): The state in which the current environment and agent are located, because

the position of the agent is constantly changing, the entire state is changing, and the state

contains the state of the agent and environment.

Action (A): An action set that the agent can take based on the current state.

Reward (R): The agent takes a specific action under the current state and obtains cer-

tain feedback from the environment as a reward.

State transition is represented by the p function:

((| , |) ,)' 'p s s a p S s S s A a= = = = (7)

This is a conditional probability density function that represents the probability of

the p function output if the current state s and the action a are observed. The

framework of reinforcement learning is shown in Figure 5:

Figure 5. Reinforcement learning framework.

tS is the state of the environment at t moment, tA is the action that the agent

performs at t moment in the environment, tA makes the state of the environment

change to 1tS + . In the new state, the environment generates a new feedback 1tR + , and

the agent performs a new action t 1A + according to 1tS + and 1tR + , and so on until the

end of the iteration.

In reinforcement learning, agents learn to solve sequential decision problems, which

are usually described by the Markov decision process (MDP). It is used to describe and

Figure 5. Reinforcement learning framework.

St is the state of the environment at t moment, At is the action that the agent performs
at t moment in the environment, At makes the state of the environment change to St+1. In
the new state, the environment generates a new feedback Rt+1, and the agent performs a
new action At+1 according to St+1 and Rt+1, and so on until the end of the iteration.

In reinforcement learning, agents learn to solve sequential decision problems, which
are usually described by the Markov decision process (MDP). It is used to describe and
solve the problem hypothesis that agents learn strategies to maximize returns or achieve
specific goals in the process of interacting with the environment. The quaternion of the
Markov decision process (MDP) is < S, A, R, P >, where S is the set of states, A is the
set of actions, R is the reward function, Rt = R(St, At) is the reward obtained by the
agent after executing At under state St, P is the state transition probability, denoted as
P(St+1, Rt|St, At). It indicates the probability distribution of t moment state St, after
executing action At, obtaining a reward Rt and the next state is St+1.The complete Markov
decision model is shown in Figure 6.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 30

solve the problem hypothesis that agents learn strategies to maximize returns or achieve

specific goals in the process of interacting with the environment. The quaternion of the

Markov decision process (MDP) is , , ,S A R P , where S is the set of states, A is

the set of actions, R is the reward function, (),t t tR R S A= is the reward obtained by

the agent after executing tA under state tS , P is the state transition probability, de-

noted as ()1, | ,t t t tP S R S A+
. It indicates the probability distribution of t moment state

tS , after executing action tA , obtaining a reward tR and the next state is 1tS + .The com-

plete Markov decision model is shown in Figure 6.

Figure 6. Markov decision chain.

In MDP, the status 1tS + and reward 1tR + depend only on the previous state tS

and action tA , as described by the following function:

() 1 1, | , , | ,t t t tp s r s a Pr R r S s S A+ +
 = = = (8)

In the process of learning, the agent tries to maximize the cumulative return, and the

estimated discounted return expressed by the discount rate tG is:

1
0

, 0 1k

t t k
k

G R

+ +
=

= (9)

The agent follows the policy ()|a s , which is a function of the probability of se-

lecting each possible action from that state. It represents the probability that the agent

chooses to perform action tA a= in the case of tS s= . The status value function

()s is the expected discounted return when the agent follows the strategy , which

can be expressed by the formula:

() |t ts G S s = = (10)

Similarly, the state–action value function (),Q s a is defined as the expected re-

turn value that starts at state s and takes action a .The state–action value function

(),Q s a is expressed by the formula as:

() , | ,t t tQ s a G S s A a = = = (11)

The optimal state–action value function is defined as *Q , expressed by the formula:

() ()* *, ,Q s a maxQ s a

= (12)

The optimal Bellman equation for the state–action value function is:

()* 1 * 1[()], , | ,t t t t
a'

Q s a R maxQ S a' S s A a+ += + = = (13)

Reinforcement learning algorithms use these optimality equations to iterate to up-

date the strategy followed by the agent.

Figure 6. Markov decision chain.

In MDP, the status St+1 and reward Rt+1 depend only on the previous state St and
action At, as described by the following function:

p
(
s′, r
∣∣s, a

)
= Pr

{
Rt+1 = r, St+1 = s′

∣∣St, At
}

(8)

Mathematics 2023, 11, 2476 12 of 28

In the process of learning, the agent tries to maximize the cumulative return, and the
estimated discounted return γ expressed by the discount rate Gt is:

Gt =
∞
Σ

k=0
γkRt+k+1, 0 ≤ γ ≤ 1 (9)

The agent follows the policy π(a|s), which is a function of the probability of selecting
each possible action from that state. It represents the probability that the agent chooses
to perform action At = a in the case of St = s. The status value function νπ(s) is the
expected discounted return when the agent follows the strategy π, which can be expressed
by the formula:

νπ(s) = Eπ [Gt|St = s] (10)

Similarly, the state–action value function Qπ(s, a) is defined as the expected return
value that starts at state s and takes action a. The state–action value function Qπ(s, a) is
expressed by the formula as:

Qπ(s, a) = Eπ [Gt|St = s, At = a] (11)

The optimal state–action value function is defined as Q∗, expressed by the formula:

Q∗(s, a) = max
π

Q∗(s, a) (12)

The optimal Bellman equation for the state–action value function is:

Q∗(s, a) = E[Rt+1 + γmaxQ∗
a′

(St+1, a′)|St = s, At = a] (13)

Reinforcement learning algorithms use these optimality equations to iterate to update
the strategy followed by the agent.

Based on the above, the idea chain of reinforcement learning solution is: solution
of reinforcement learning→solution of optimal strategy→solution of optimal value
function→solution of Bellman equation, that is, the solution problem of reinforcement
learning finally boils down to solving the optimal Bellman equation [53].

4.1. Q-Learning Algorithm

The Q-learning algorithm was first proposed by Watkins et al. in 1989 as a method for
solving reinforcement learning tasks [54], using a state–action value function Q(s, a). The
general idea of the algorithm is that the agent keeps trying in an unknown environment.
In the process of trying, the agent constantly adjusts the strategy based on the feedback
obtained, and finally generates a better strategy. The update process of the Q-learning
algorithm’s value function Q(s, a) is as follows:

Q(s, a)← Q(s, a) + α

[
R + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

]
(14)

where Q(s, a) indicates that the agent’s state at t moment is st, the sum of the optimal reward
discount obtained after executing the action at. α is the learning rate, which represents the
impact of the current training sample on the current learning. γ is the discount factor [55],
which reflects the proportion of the value of future rewards at the current moment.

The updates of the value function Q(s, a) in the Q-learning algorithm are as follows:
under the state S, the agent uses the ε− greedy strategy to select the action a, executes the
action a, obtains the immediate reward r, and the agent transfers to the next state S′, at
which time the agent selects the a that makes the largest Q(s′, a) as the next action a′ to
update the value function (12). a′ only participates in the update of the value function and
does not really execute. The action performed in the next state S′ is re-selected using the

Mathematics 2023, 11, 2476 13 of 28

ε− greedy strategy after the value function is updated. The agent from the beginning to the
endpoint is called an episode. The pseudocode for the Q-learning Algorithm 1 is as follows:

Algorithm 1 Q-learning algorithm

Input: state set S, action set A, reward function R
Output: optimal state–action value function Q∗(s, a), from the optimal state–action
value function to obtain the optimal strategy π∗(S)
Process:
1. Initialize the Q table and have a Q value of 0 for all state–action pairs
2. π: derived from Q
3. If strategy π is not optimal
4. For all states s ∈ S, a ∈ A
5. Update the state–action value function Q(s, a):

Q(s, a)← Q(s, a) + α

[
R + γmax

a′
Q(s′, a′)−Q(s, a)

]
6. If the strategy is optimal at this point, end the calculation, otherwise skip back to step four

4.2. Speedy Q-Leaning Algorithm

Although the Q-learning algorithm is a classical algorithm of reinforcement learning,
the algorithm has certain limitations [56]. When the number of state actions of the agent
is limited, the Q-learning algorithm can converge to the optimal strategy, but when the
discount factor γ is close to 1, the convergence speed of the Q-learning algorithm will
become very slow [56]. The speedy Q-learning algorithm was first proposed in 2011 by
Azar et al. [57]. The speedy Q-learning algorithm improves the Q-learning algorithm by
using an aggressive learning rate, replacing the learning rate of an updated criterion in the
Q-learning algorithm with a larger learning rate, which improves the convergence speed
of the algorithm [57]. In essence, the speedy Q-learning algorithm replaces the estimation
function of the historical Q value with that of the current Q value and selects a more efficient
estimator, thus improving the convergence speed of the Q-learning algorithm [53].

Assuming that M(s′, a′) = max
a′

Q(s′, a′), M−(s′, a′) represents the maximum value

function value of the next state when the Q value of state action (s, a) is updated in the pre-
vious iteration step. The Q value update process of the speedy Q-learning algorithm [53] is:

Q(s, a) = (1− α)Q(s, a) + α
[
r + γM−

(
s′, a′

)]
+ (1− α)γ

[
M
(
s′, a′

)
−M−

(
s′, a′

)]
(15)

The pseudocode for the speedy Q-learning Algorithm 2 is as follows:

Algorithm 2 Speedy Q-learning algorithm

Input: state set S, action set A, reward function R
Output: optimal state–action value function Q∗(s, a), from the optimal state–action
value function to obtain the optimal strategy π∗(S)
Process:
1. Initialize Q(s, a) = M(s, a), s, and have a Q value of 0 for all state–action pairs

for i = 1 to episodes
2. Repeat:
3. Based on the value function Q, use a strategy (such as strategy ε− greedy) to select action a
in state s;
4. Execute action a to obtain instant reward r and obtain the next state s′;
5. a∗ ← argmaxQ(s′, a′)
6. σ← (2α− 1)γM(s, a)
7. M(s, a)← Q(s′, a∗)
8. Q(s, a)← (1− α)[Q(s, a) + γM(s, a) + αr + σ]
9. s← s′

Until s is terminated
End for

Mathematics 2023, 11, 2476 14 of 28

4.3. OWS Q-Learning Algorithm

In this paper, Q-learning algorithm has been improved in three aspects, namely, Q
function update mode, learning rate and ε− greedy strategy.

4.3.1. Q Function Updating

In a random environment, the performance of the reinforcement learning algorithm
Q-learning is poor [58]. The use of the maximum action value as an approximation of the
maximum expected action value in the Q-learning algorithm introduces a positive bias,
resulting in overestimation and affecting the overall performance of the algorithm [58].
The speedy Q-learning algorithm essentially takes the estimation function of the current
Q value as an estimate of the historical Q value. Although the convergence speed of the
algorithm is improved, it has the same overestimation problem as the Q-learning algorithm,
resulting in a poor strategy for the agent to update the Q value in the early stage of training.
Using the estimation function of the current Q value as the estimation function of the
historical Q value will produce a large error, which makes the convergence speed of the
algorithm slower at the beginning of the iteration [59].

Aiming at the problem of the slow convergence speed of the Q-learning algorithm,
and in order to further improve the convergence speed of the speedy Q-learning algorithm,
this paper proposes the OWS Q-learning algorithm. This algorithm changes the way the Q
function is updated and obtains a new estimation strategy by assigning different weights to
the maximum estimate of the next state Q value and the maximum estimate of the current
state Q value in the historical Q table, so as to obtain a more accurate estimate. Where the
value of weight β is defined as:

β =

∣∣∣∣max
a′

Q(s′, a′)−min
a′

Q(s′, a′)
∣∣∣∣

c +
∣∣∣∣maxQ

a′
(s′, a′)−min

a′
Q(s′, a′)

∣∣∣∣ (16)

where β ∈ (0, 1) and c is a free parameter that can be adjusted according to the environment
of the experiment.

Suppose that M(s′, a′) = max
a′

Q(s′, a′), M−(s′, a′) represent the value function Q value

of the previous iteration step update state action Q value when the next state is valued, and
the Q function of the algorithm is updated as follows:

Q(s, a)← α{r + γ[βM(s′, a′) + (1− β)M−(s′, a′)]−Q(s, a)}
+(1− α)γ[M(s′, a′)−M−(s′, a′)]

(17)

The above is an improvement in the update method of the Q function, and an opti-
mization and improvement in the learning rate α and ε− greedy strategies.

4.3.2. Optimize Learning Rate

The learning rate α controls the learning progress of the model in the process of
iteration and determines the degree to which the newly obtained information overwrites
the original information [60]. α = 0 means that the agent cannot do anything to learn
and only uses prior knowledge, and α = 1 means that the agent only considers the latest
information and ignores prior knowledge [60]. The speed and accuracy of the convergence
of the Q-learning algorithm are seriously affected by the learning rate, if the value of the
learning rate is too large, the learning will accelerate, but the noise in the environment will
also be absorbed, so the Q value will fluctuate greatly, and it is difficult to converge [59].
On the contrary, if the value of the learning rate is too small, then the Q value will converge
slower, making it difficult for the training of the agent to keep up with changes in the
environment [59]. In most Q-learning applications, the learning rate is usually set as a
constant, usually α takes a value between 0.01–0.1, and a constant learning rate is often

Mathematics 2023, 11, 2476 15 of 28

used, such as taking α = 0.1 in experiments, so it cannot meet the needs of dynamic and
fast learning.

If the learning rate is fixed in practice, when the algorithm reaches convergence, the
Q value will swing in a large area near the optimal value. However, when the learning
rate decreases with the increase in the number of iterations, the algorithm will converge,
and the Q value will swing in a smaller area near the optimal value. In this paper, the
learning rate α is optimized, so that α decayed along with the number of training rounds.
In the early stage of training, the learning rate α is larger, the new information covers the
original information less, and the agent considers less prior knowledge, with the increase
in training rounds, the learning rate gradually decreases, the new information covers the
old information more, the agent considers more prior knowledge, α1 is used to represent
the improved learning rate. The optimization result of the learning rate is as follows:

α1 =
1

k + 10
(18)

where k is the number of training rounds episodes, k = 0, 1, . . . (k ∈ Z), α1 with the
dynamic change in the number of training rounds of the agent, the value of k is small when
the agent first starts training, in order to ensure that the value of α1 is meaningful, the
denominator part is set to k + 10 after multiple experimental comparisons.

4.3.3. Improve ε—Greedy Strategy

The entire learning process of reinforcement learning can be divided into two stages:
(1) exploration stage: the agent randomly explores the environment to learn the current
environment; (2) utilization stage: the agent uses the environmental information that has
been explored to achieve the goal. The balance of exploration and utilization is also a key
challenge in reinforcement learning, commonly used in a heuristic exploration algorithm
ε− greedy. The algorithm selects the action with the largest Q value from the action set A
with a certain probability, randomly selects the action with the probability of ε, and selects
the action with the largest Q value with a probability of 1− ε. The mathematical expression
for the ε− greedy strategy is:

πε(a) =

{
argmax

a∈A
Q(a), take probability 1− ε

randomly select action A, take probability ε

}
(19)

where a is a randomly generated real number between (0, 1).
Strategy ε− greedy can update and adjust the strategy in time according to the selected

action and the instant reward obtained, so as to avoid the algorithm falling into a suboptimal
state. Parameter ε is difficult to set accurately. When ε is large, the algorithm has strong
flexibility, a fast exploration rate, and can quickly explore potential high rewards, so the
convergence speed of the algorithm is faster and the adaptability to environmental changes
is strong, but the overall cumulative reward may be very low. When ε is small, the algorithm
has strong stability, the exploration rate is slower, and there is more probability of making
good use of the better reward that have been explored, but it will make the convergence
speed of the algorithm slower, and will make the algorithm less adaptable to environmental
changes, but it is possible to obtain a higher cumulative reward in the end.

This paper optimizes and improves the value of ε, and sets the value of ε to the form
of segments. In order to balance the relationship between exploration and utilization in
reinforcement learning, to ensure that the agent can fully explore in the early stage of
training, and as the training progresses, the agent can make full use of the information
explored for more effective learning, and the initial value of ε is set to 0.85 under multiple
experiments, as shown in Equation (20):

ε =

{
0.85 + episode ∗ 0.0001, episode ≤ m

1, else
(20)

Mathematics 2023, 11, 2476 16 of 28

where m is a positive integer less than the maximum number of rounds, set according to
the experimental environment.

The pseudocode for the OWS Q-learning Algorithm 3 is as follows:

Algorithm 3 OWS Q-learning algorithm

Input: state set S, action set A, reward function R
Output: optimal state–action value function Q∗(s, a), from the optimal state–action
value function to obtain the optimal strategy π∗(S)
Process:
1. Initialize Q(s, a) = M(s, a), s, and have a Q value of 0 for all state–action pairs

for i = 1 to episodes
2. Repeat:
3. Based on the value function Q, the improved ε− greedy strategy is used to select action a
under state s;
4. Execute action a, obtain instant reward r, obtain the next state s′;
5. a∗ ← argmax

a′
Q(s′, a′)

6. σ← M(s, a)
7. M(s, a)← Q(s′, a∗)
8. Q(s, a)← α{r + γ[βM(s, a) + (1− β)σ]−Q(s, a)}+ (1− α)γ[M(s, a)− σ]
9. s← s′

Until s is terminated
End for

4.3.4. Reward Function

In reinforcement learning, the reward function is an important factor affecting the
result of the path planning. The ultimate goal of reinforcement learning is to maximize
the cumulative return expectation from the initial state to the target state, and the reward
function defines the value that the agent can obtain by performing different actions under
the current environment. Based on the UGV environment, the reward function in this paper
is set as follows:

R =

r1, the UGV reaches the target point
r2, the UGV hit an obstacle
r3, the UGV movement to environmental boundaries
r4, else

 (21)

In Equation (21), the value of r1, r2, r3 and r4 need to be set according to the experi-
mental environment in which the UGV is located.

5. Simulation Experiments and Analysis

The time series difference method is a model-free reinforcement learning algorithm,
which can be divided into two types: online control algorithm SARSA and offline control
algorithm Q-learning [61]. Among them, the SARSA algorithm was first mentioned by
Rummery et al. [62] in 1994. The biggest difference between the SARSA algorithm and the
Q-learning algorithm is the update method of the Q function, the Q-learning algorithm
is bolder in the choice of actions, while the SARSA algorithm is more conservative in the
selection of actions [61].

In order to verify the effectiveness of the proposed algorithm, in the simulation
experiment in this section, the Q-learning algorithm, SARSA algorithm, speedy Q-learning
algorithm, and the proposed OWS Q-learning algorithm are used to plan the paths of three
UGVs in the industrial park, and the experimental results are compared and analyzed. The
configuration of the experimental system is Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz
2.40 GHz, and the simulation experiments are conducted in the Python3 package.

Mathematics 2023, 11, 2476 17 of 28

5.1. Parameter Settings

In order to compare the algorithms, the Q-learning algorithm, SARSA algorithm,
speedy Q-learning algorithm, and the OWS Q-learning algorithm proposed in this paper
are unified experimental parameter settings as shown in Table 1.

Table 1. Experimental parameter settings.

Parameter Numeric Value

Learning rate α 0.02
Learning rate α1 1/(k + 10)
Explore factors ε 0.9
Discount factor γ 0.9

Reward function r1 120
Reward function r2 −120
Reward function r3 −100
Reward function r4 −3

m 400
n 3
l 10

Max episode 1800

5.2. Path Planning Scenarios

The complexity of the experimental scenario is mainly defined by the shape, pro-
portion, and density of obstacles in the scenario, and the scenario is divided into simple
scenarios and complex scenarios. The number of obstacles in simple scenarios is small and
the shape of obstacles is regular. The number of obstacles in complex scenarios is large or
the shape of obstacles is irregular. In order to verify the completeness and robustness of
the proposed algorithm, this paper sets up three different experimental scenarios accord-
ing to the division of the complexity of the experimental scenario, and the scenarios are
complicated in turn. In order to verify the collision-free nature of the path planned by the
proposed algorithm for multiple UGVs, the settings of the start point and target point of
UGV1 and UGV3 do not show the relationship of upper and lower correspondence but set
the relationship of cross-correspondence.

5.2.1. Simulation Scenarios That Contain Only Convex Obstacles

The structure of the scenario uses the Tkinter module in Python, and the position of
each agent is represented by the position coordinates of the two points of the upper left
corner and the lower right corner of the square, and the side length of a grid is set to 20. The
simple scenario is equipped with eight regular-shaped obstacles, 38 × 38 environment size.
The top yellow square, blue square, and red square in the environment diagram represent
UGV1, UGV2, and UGV3, respectively, and the square at the bottom of the environment
map is the target point of the UGV corresponding to the color. The coordinates of the start
point and target point of each UGV are shown in Table 2.

Table 2. The starting and target points of the UGV obstacle avoidance path.

Number The Coordinates of the Starting Point The Coordinates of the Target Point

1 (120, 40, 140, 60) (120, 680, 140, 700)
2 (360, 40, 380, 60) (360, 680, 380, 700)
3 (620, 40, 640, 60) (620, 680, 640, 700)

In the simple scenario, the path planning simulation results of the SARSA algorithm,
Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning algorithm
are shown in Figure 7.

Mathematics 2023, 11, 2476 18 of 28

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 30

represent UGV1, UGV2, and UGV3, respectively, and the square at the bottom of the en-

vironment map is the target point of the UGV corresponding to the color. The coordinates

of the start point and target point of each UGV are shown in Table 2.

Table 2. The starting and target points of the UGV obstacle avoidance path.

Number The Coordinates of the Starting Point The Coordinates of the Target Point

1 (120, 40, 140, 60) (120, 680, 140, 700)

2 (360, 40, 380, 60) (360, 680, 380, 700)

3 (620, 40, 640, 60) (620, 680, 640, 700)

In the simple scenario, the path planning simulation results of the SARSA algorithm,

Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning algorithm

are shown in Figure 7.

(a) (b)

(c) (d)

Figure 7. Path planning that contains only convex obstacles. (a) SARSA algorithm path planning.

(b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d) OWS

Q-learning algorithm path planning.

From the path planning results in the simple scenario, the SARSA algorithm plans

the route from the starting point to the target point for UGV2 and UGV3, and the route is

tortuous. The Q-learning algorithm mapped out a route from the start point to the target

point for the three UGVs, but the route was complicated. Compared with the Q-learning

algorithm, the SARSA algorithm is more conservative in action selection, so under the

Figure 7. Path planning that contains only convex obstacles. (a) SARSA algorithm path planning.
(b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d) OWS
Q-learning algorithm path planning.

From the path planning results in the simple scenario, the SARSA algorithm plans
the route from the starting point to the target point for UGV2 and UGV3, and the route is
tortuous. The Q-learning algorithm mapped out a route from the start point to the target
point for the three UGVs, but the route was complicated. Compared with the Q-learning
algorithm, the SARSA algorithm is more conservative in action selection, so under the
same training and learning round, the SARSA algorithm does not complete the task of
planning the path for all three UGVs. The speedy Q-learning algorithm and the proposed
OWS Q-learning algorithm both plan the route from the starting point to the target point
for the three UGVs. The specific experimental results are shown in Table 3.

The experimental results in Table 3 show that the calculation time of the OWS Q-
learning algorithm is the shortest in the same experimental scenario. In general, compared
with the other three comparison algorithms, the OWS Q-learning algorithm has the shortest
calculation time, the most complete planned path, and the shortest planned path compared
with the other three comparison algorithms.

Mathematics 2023, 11, 2476 19 of 28

Table 3. Comparison of simulation results of the four algorithms containing only convex obstacles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps
UGV1 0 261 37 35
UGV2 106 178 34 34
UGV3 556 212 36 34

Path length (unit)
UGV1 0 279.98 46.36 45.60
UGV2 114.47 181.41 41.70 43.18
UGV3 574.04 231.04 46.60 42.94

Calculation time (s) — 10,191 8545 5007 3345

5.2.2. Simulation Scenarios That Contain Only Non-Convex Obstacles

In order to verify the robustness of the OWS Q-learning algorithm, the experimental
scenario is complicated on the basis of the experimental scenario setting in Section 5.2.1.
The more complex scenario is equipped with eight irregularly shaped obstacles, and the
environment size is still 38 × 38. The coordinates of the start and target points of each UGV
are shown in Table 2.

In the complex scenario, the path planning simulation results of the SARSA algorithm,
Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning algorithm
are shown in Figure 8.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 30

same training and learning round, the SARSA algorithm does not complete the task of

planning the path for all three UGVs. The speedy Q-learning algorithm and the proposed

OWS Q-learning algorithm both plan the route from the starting point to the target point

for the three UGVs. The specific experimental results are shown in Table 3.

Table 3. Comparison of simulation results of the four algorithms containing only convex obstacles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps

UGV1 0 261 37 35

UGV2 106 178 34 34

UGV3 556 212 36 34

Path length (unit)

UGV1 0 279.98 46.36 45.60

UGV2 114.47 181.41 41.70 43.18

UGV3 574.04 231.04 46.60 42.94

Calculation time (s) — 10,191 8545 5007 3345

The experimental results in Table 3 show that the calculation time of the OWS Q-

learning algorithm is the shortest in the same experimental scenario. In general, compared

with the other three comparison algorithms, the OWS Q-learning algorithm has the short-

est calculation time, the most complete planned path, and the shortest planned path com-

pared with the other three comparison algorithms.

5.2.2. Simulation Scenarios That Contain Only Non-Convex Obstacles

In order to verify the robustness of the OWS Q-learning algorithm, the experimental

scenario is complicated on the basis of the experimental scenario setting in Section 5.2.1.

The more complex scenario is equipped with eight irregularly shaped obstacles, and the

environment size is still 38 × 38. The coordinates of the start and target points of each UGV

are shown in Table 2.

In the complex scenario, the path planning simulation results of the SARSA algo-

rithm, Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning algo-

rithm are shown in Figure 8.

(a) (b)

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 30

(c) (d)

Figure 8. Path planning that contains only non-convex obstacles. (a) SARSA algorithm path plan-

ning. (b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d)

OWS Q-learning algorithm path planning.

The path planning results in the complex scenario show that the SARSA algorithm

does not plan the path for UGV1, the Q-learning algorithm does not plan the path for

UGV3, and the speedy Q-learning algorithm and the OWS Q-learning algorithm have

planned collision-free paths for the three UGVs. Compared with the path planning results

in the simple scenario, it shows that the SARSA algorithm and Q-learning algorithm can-

not solve the multi-UGV path planning problem well. The specific experimental results

are shown in Table 4.

Table 4. Comparison of simulation results of four algorithms containing only non-convex obstacles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps

UGV1 0 285 41 32

UGV2 178 166 35 35

UGV3 195 0 38 37

Path length (unit)

UGV1 0 298.61 50.36 42.60

UGV2 197.45 183.31 42.53 44.36

UGV3 209.94 0 49.43 48.43

Calculation time (s) — 12,143 11,255 5453 3577

The results in Table 4 in the complex experimental scenario show that compared with

the other three algorithms, the OWS Q-learning algorithm has the shortest path, the short-

est path steps, and the shortest calculation time for UGVs. In general, in the complex sce-

nario, the OWS Q-learning algorithm still shows the efficiency of solving the multi-UGV

path planning problem.

5.2.3. Simulation Scenarios That Contain More Odd-Shaped Obstacles

On the basis of the experimental scenario setting in Section 5.2.2, the experimental

scenario is complicated again to verify the robustness of the OWS Q-learning algorithm.

In the more complex scenario, 12 irregularly shaped obstacles were set, and the environ-

ment size was still 38 × 38. The coordinates of the start and target points of each UGV are

shown in Table 2.

In the more complex scenario, the path planning simulation results of the SARSA

algorithm, Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning

algorithm are shown in Figure 9.

Figure 8. Path planning that contains only non-convex obstacles. (a) SARSA algorithm path planning.
(b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d) OWS
Q-learning algorithm path planning.

Mathematics 2023, 11, 2476 20 of 28

The path planning results in the complex scenario show that the SARSA algorithm
does not plan the path for UGV1, the Q-learning algorithm does not plan the path for
UGV3, and the speedy Q-learning algorithm and the OWS Q-learning algorithm have
planned collision-free paths for the three UGVs. Compared with the path planning results
in the simple scenario, it shows that the SARSA algorithm and Q-learning algorithm cannot
solve the multi-UGV path planning problem well. The specific experimental results are
shown in Table 4.

Table 4. Comparison of simulation results of four algorithms containing only non-convex obstacles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps
UGV1 0 285 41 32
UGV2 178 166 35 35
UGV3 195 0 38 37

Path length (unit)
UGV1 0 298.61 50.36 42.60
UGV2 197.45 183.31 42.53 44.36
UGV3 209.94 0 49.43 48.43

Calculation time (s) — 12,143 11,255 5453 3577

The results in Table 4 in the complex experimental scenario show that compared with
the other three algorithms, the OWS Q-learning algorithm has the shortest path, the shortest
path steps, and the shortest calculation time for UGVs. In general, in the complex scenario,
the OWS Q-learning algorithm still shows the efficiency of solving the multi-UGV path
planning problem.

5.2.3. Simulation Scenarios That Contain More Odd-Shaped Obstacles

On the basis of the experimental scenario setting in Section 5.2.2, the experimental
scenario is complicated again to verify the robustness of the OWS Q-learning algorithm. In
the more complex scenario, 12 irregularly shaped obstacles were set, and the environment
size was still 38 × 38. The coordinates of the start and target points of each UGV are shown
in Table 2.

In the more complex scenario, the path planning simulation results of the SARSA
algorithm, Q-learning algorithm, speedy Q-learning algorithm, and the OWS Q-learning
algorithm are shown in Figure 9.

From the path planning results in the more complex scenario, the SARSA algorithm
only plans the route from the starting point to the target point for UGV2. The Q-learning
algorithm only maps out the route from the starting point to the target point for UGV2.
Compared with the simulation results in the simple scenario and the complex scenario, we
find that with the increase in complexity of the experimental scenario, the effectiveness
of the SARSA algorithm and Q-learning algorithm in solving multi-UGV path planning
problems is getting worse and worse. This is because the SARSA algorithm is conservative
in action selection and the Q-learning algorithm converges slowly, so it is difficult for the
SARSA algorithm and the Q-learning algorithm to achieve the goal of planning a path for
each UGV under the same round of training. Only the speedy Q-learning algorithm and
the OWS Q-learning algorithm mapped out the route from the start point to the target point
for the three UGVs. The specific experimental results are shown in Table 5.

From the experimental results in Table 5, compared with the speedy Q-learning
algorithm, the total path length planned by the OWS Q-learning algorithm for UGVs is
shorter. Compared with the three comparison algorithms, the OWS Q-learning algorithm
takes the shortest time under the same training episodes.

Mathematics 2023, 11, 2476 21 of 28Mathematics 2023, 11, x FOR PEER REVIEW 22 of 30

(a) (b)

(c) (d)

Figure 9. Path planning that contains more odd-shaped obstacles. (a) SARSA algorithm path plan-

ning. (b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d)

OWS Q-learning algorithm path planning.

From the path planning results in the more complex scenario, the SARSA algorithm

only plans the route from the starting point to the target point for UGV2. The Q-learning

algorithm only maps out the route from the starting point to the target point for UGV2.

Compared with the simulation results in the simple scenario and the complex scenario,

we find that with the increase in complexity of the experimental scenario, the effectiveness

of the SARSA algorithm and Q-learning algorithm in solving multi-UGV path planning

problems is getting worse and worse. This is because the SARSA algorithm is conservative

in action selection and the Q-learning algorithm converges slowly, so it is difficult for the

SARSA algorithm and the Q-learning algorithm to achieve the goal of planning a path for

each UGV under the same round of training. Only the speedy Q-learning algorithm and

the OWS Q-learning algorithm mapped out the route from the start point to the target

point for the three UGVs. The specific experimental results are shown in Table 5.

Figure 9. Path planning that contains more odd-shaped obstacles. (a) SARSA algorithm path planning.
(b) Q-learning algorithm path planning. (c) Speedy Q-learning algorithm path planning. (d) OWS
Q-learning algorithm path planning.

Table 5. Comparison of simulation results of four algorithms containing more odd-shaped obstacles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps
UGV1 0 0 35 37
UGV2 301 162 35 37
UGV3 0 0 53 35

Path length (unit)
UGV1 0 0 45.60 48.01
UGV2 319.53 174.89 44.77 45.53
UGV3 0 0 61.77 45.18

Calculation time (s) — 6789 9364 4149 3110

The simulation results in the above three experimental scenarios show that compared
with the SARSA algorithm, Q-learning algorithm, and speedy Q-learning algorithm, under the
same training episodes, the OWS Q-learning algorithm has the shortest calculation time and
the shortest planned path length, and the best effect of solving the multi-UGV path planning
problem, which verifies the stability and robustness of the OWS Q-learning algorithm.

Mathematics 2023, 11, 2476 22 of 28

5.3. Comparative Analysis of Algorithm Performance
5.3.1. Algorithm Convergence Analysis

Reinforcement learning is model-free learning, in the process of training, because the
agent does not have any experience accumulation in the early stage of learning, it takes a lot
of time to find the path, and the agent may encounter different obstacles in the process of
searching. However, as learning progresses, the agent continues to accumulate experience
and knowledge, so as the number of training rounds increases, the number of steps the
agent needs in each round will also decrease.

The changes in the number of steps in the training and learning process of the SARSA
algorithm, Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-learning algo-
rithm in different scenarios are compared and analyzed. The steps of each UGV in the four
algorithms in three scenarios are shown in Figure 10. The three different scenarios are recorded
as scenarios 1, 2, and 3 in turn, among them, columns 1, 2, and 3 are the steps convergence
result graphs of scenario1, scenario2, and scenario3, and rows 1, 2, 3, and 4 are the steps
changes in UGV under SARSA algorithm, Q-learning algorithm, Speedy Q-learning algorithm,
and OWS Q-learning algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 23 of 30

Table 5. Comparison of simulation results of four algorithms containing more odd-shaped obsta-

cles.

Index Number SARSA Q-Learning Speedy Q-Learning OWS Q-Learning

Shortest path steps

UGV1 0 0 35 37

UGV2 301 162 35 37

UGV3 0 0 53 35

Path length (unit)

UGV1 0 0 45.60 48.01

UGV2 319.53 174.89 44.77 45.53

UGV3 0 0 61.77 45.18

Calculation time (s) — 6789 9364 4149 3110

From the experimental results in Table 5, compared with the speedy Q-learning al-

gorithm, the total path length planned by the OWS Q-learning algorithm for UGVs is

shorter. Compared with the three comparison algorithms, the OWS Q-learning algorithm

takes the shortest time under the same training episodes.

The simulation results in the above three experimental scenarios show that compared

with the SARSA algorithm, Q-learning algorithm, and speedy Q-learning algorithm, un-

der the same training episodes, the OWS Q-learning algorithm has the shortest calculation

time and the shortest planned path length, and the best effect of solving the multi-UGV

path planning problem, which verifies the stability and robustness of the OWS Q-learning

algorithm.

5.3. Comparative Analysis of Algorithm Performance

5.3.1. Algorithm Convergence Analysis

Reinforcement learning is model-free learning, in the process of training, because the

agent does not have any experience accumulation in the early stage of learning, it takes a

lot of time to find the path, and the agent may encounter different obstacles in the process

of searching. However, as learning progresses, the agent continues to accumulate experi-

ence and knowledge, so as the number of training rounds increases, the number of steps

the agent needs in each round will also decrease.

The changes in the number of steps in the training and learning process of the SARSA

algorithm, Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-learning al-

gorithm in different scenarios are compared and analyzed. The steps of each UGV in the

four algorithms in three scenarios are shown in Figure 10. The three different scenarios

are recorded as scenarios 1, 2, and 3 in turn, among them, columns 1, 2, and 3 are the steps

convergence result graphs of scenario1, scenario2, and scenario3, and rows 1, 2, 3, and 4

are the steps changes in UGV under SARSA algorithm, Q-learning algorithm, Speedy Q-

learning algorithm, and OWS Q-learning algorithm.

1-1

2-1

3-1

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 30

1-2

2-2

3-2

1-3

2-3

3-3

1-4

2-4

3-4

Figure 10. Steps convergence of each UGV of the four algorithms in three scenarios.

Figure 10 results show that in the three experimental scenarios, the SARSA algorithm,

Q-learning algorithm, and speedy Q-learning algorithm have no convergence trend under

1800 iterations of learning. In scenario1, after about 850 episodes of learning, the three

UGVs in the OWS Q-learning algorithm can find their respective target points in the same

round, and the training effect is relatively stable. In scenario2, after about 800 episodes of

learning 3 UGVs in the OWS Q-learning algorithm, the 3 UGVs can find their respective

target points in the same episode after that, and the results are relatively stable. In sce-

nario3, after about 1000 episodes of learning 3 UGVs in the OWS Q-learning algorithm,

the 3 UGVs can find their respective target points in the same episode after that, and the

training effect is relatively stable. It can be seen that the OWS Q-learning algorithm pro-

posed in this paper is effective for solving multiple UGV path planning problems.

5.3.2. UGVs Reward Analysis

The reward function changes in the three UGVs were compared and analyzed when

the SARSA algorithm, Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-

learning algorithm were planned from the starting point to the target point. The reward

changes in each UGV in the four algorithms in three scenarios are shown in Figure 11.

Among them, columns 1, 2, and 3 are the reward change result graphs of scenario1,

scenario2, and scenario3. Rows 1, 2, 3, and 4 are the UGV changes under the SARSA algo-

rithm, Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-learning algo-

rithm.

Figure 10. Steps convergence of each UGV of the four algorithms in three scenarios.

Mathematics 2023, 11, 2476 23 of 28

Figure 10 results show that in the three experimental scenarios, the SARSA algorithm,
Q-learning algorithm, and speedy Q-learning algorithm have no convergence trend under
1800 iterations of learning. In scenario1, after about 850 episodes of learning, the three
UGVs in the OWS Q-learning algorithm can find their respective target points in the same
round, and the training effect is relatively stable. In scenario2, after about 800 episodes of
learning 3 UGVs in the OWS Q-learning algorithm, the 3 UGVs can find their respective
target points in the same episode after that, and the results are relatively stable. In scenario3,
after about 1000 episodes of learning 3 UGVs in the OWS Q-learning algorithm, the 3 UGVs
can find their respective target points in the same episode after that, and the training effect
is relatively stable. It can be seen that the OWS Q-learning algorithm proposed in this paper
is effective for solving multiple UGV path planning problems.

5.3.2. UGVs Reward Analysis

The reward function changes in the three UGVs were compared and analyzed when
the SARSA algorithm, Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-
learning algorithm were planned from the starting point to the target point. The reward
changes in each UGV in the four algorithms in three scenarios are shown in Figure 11.

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 30

1-1

2-1

3-1

1-2

2-2

3-2

1-3

2-3

3-3

1-4

2-4

3-4

Figure 11. The reward changes in each UGV of the four algorithms in three scenarios.

From the results of Figure 11, in the three experimental scenarios, the rewards of the

3 UGVs of the SARSA algorithm in 1800 iterative learning did not converge, and the re-

ward function under each round fluctuated greatly, and the training effect of UGV in the

process of finding the path was unstable. The reward of the 3 UGVs in the 1800 iterative

learning of the Q-learning algorithm also did not converge, but compared with the SARSA

algorithm, the fluctuation range of the reward function of the 3 UGVs was alleviated. Un-

der the speedy Q-learning algorithm, the reward of 3 UGVs in 1800 learning iterations also

did not converge but compared with the SARSA algorithm and Q-learning algorithm, the

fluctuation range of each UGV reward function slowed down. In scenario1, the reward

function converges to around 0 after about 850 iterations of learning for three UGVs in the

OWS Q-learning algorithm. In scenario2, the reward function converges to around 0 after

about 800 iterations of learning for 3 UGVs in the OWS Q-learning algorithm. In scenario3,

the reward function converges to around 0 after about 1000 iterations of learning for 3

UGVs in the OWS Q-learning algorithm.

Figure 11. The reward changes in each UGV of the four algorithms in three scenarios.

Mathematics 2023, 11, 2476 24 of 28

Among them, columns 1, 2, and 3 are the reward change result graphs of scenario1, sce-
nario2, and scenario3. Rows 1, 2, 3, and 4 are the UGV changes under the SARSA algorithm,
Q-learning algorithm, speedy Q-learning algorithm, and OWS Q-learning algorithm.

From the results of Figure 11, in the three experimental scenarios, the rewards of the
3 UGVs of the SARSA algorithm in 1800 iterative learning did not converge, and the reward
function under each round fluctuated greatly, and the training effect of UGV in the process
of finding the path was unstable. The reward of the 3 UGVs in the 1800 iterative learning of
the Q-learning algorithm also did not converge, but compared with the SARSA algorithm,
the fluctuation range of the reward function of the 3 UGVs was alleviated. Under the
speedy Q-learning algorithm, the reward of 3 UGVs in 1800 learning iterations also did
not converge but compared with the SARSA algorithm and Q-learning algorithm, the
fluctuation range of each UGV reward function slowed down. In scenario1, the reward
function converges to around 0 after about 850 iterations of learning for three UGVs in
the OWS Q-learning algorithm. In scenario2, the reward function converges to around
0 after about 800 iterations of learning for 3 UGVs in the OWS Q-learning algorithm. In
scenario3, the reward function converges to around 0 after about 1000 iterations of learning
for 3 UGVs in the OWS Q-learning algorithm.

In general, compared with the changes in reward function under the SARSA algorithm,
Q-learning algorithm, and speedy Q-learning algorithm, the OWS Q-learning algorithm
proposed in this paper has a significant convergence trend of reward function in multi-UGV
path planning problems.

5.3.3. Algorithm Performance Comparison

Compare and analyze the experimental results in different scenarios. The average
shortest path steps are shown in Figure 12a, the average path length is shown in Figure 12b,
and the average calculation time is shown in Figure 12c.

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 30

In general, compared with the changes in reward function under the SARSA algo-

rithm, Q-learning algorithm, and speedy Q-learning algorithm, the OWS Q-learning algo-

rithm proposed in this paper has a significant convergence trend of reward function in

multi-UGV path planning problems.

5.3.3. Algorithm Performance Comparison

Compare and analyze the experimental results in different scenarios. The average

shortest path steps are shown in Figure 12a, the average path length is shown in Figure

12b, and the average calculation time is shown in Figure 12c.

(a) (b)

(c)

Figure 12. Comparative analysis of experimental results. (a) average shortest path steps. (b) aver-

age path length. (c) average calculation time

From the histogram (a) of Figure 12, in the simulation experiments of scenarios 1, 2,

and 3, the average shortest path steps of UGVs under the OWS Q-learning algorithm in

the path planning process is less than the average shortest path steps under the SARSA

algorithm, Q-learning algorithm, and speedy Q-learning algorithm. The histogram (b)

shows that under the three experimental scenarios, the average length of the path planned

by the OWS Q-learning algorithm is the shortest. The histogram (c) shows that under dif-

ferent experimental scenarios, the OWS Q-learning algorithm takes the shortest time to

perform path planning and has the highest problem-solving efficiency. Specifically, the

improvement in the calculation time of the OWS Q-learning algorithm compared to the

SARSA algorithm, Q-learning algorithm, and speedy Q-learning algorithm is shown in

Table 6.

Figure 12. Comparative analysis of experimental results. (a) average shortest path steps. (b) average
path length. (c) average calculation time.

Mathematics 2023, 11, 2476 25 of 28

From the histogram (a) of Figure 12, in the simulation experiments of scenarios 1, 2, and 3,
the average shortest path steps of UGVs under the OWS Q-learning algorithm in the path
planning process is less than the average shortest path steps under the SARSA algorithm, Q-
learning algorithm, and speedy Q-learning algorithm. The histogram (b) shows that under the
three experimental scenarios, the average length of the path planned by the OWS Q-learning
algorithm is the shortest. The histogram (c) shows that under different experimental scenarios,
the OWS Q-learning algorithm takes the shortest time to perform path planning and has the
highest problem-solving efficiency. Specifically, the improvement in the calculation time of
the OWS Q-learning algorithm compared to the SARSA algorithm, Q-learning algorithm, and
speedy Q-learning algorithm is shown in Table 6.

Table 6. The improvement in calculation time of the OWS Q-learning algorithm compared to
other algorithms.

Scenario Statistics SARSA Q-Learning Speedy Q-Learning

1 Calculation time 60.44% 53.93% 22.26%
2 Calculation time 69.55% 67.21% 30.94%
3 Calculation time 52.90% 53.53% 24.32%

The convergence performance of the four algorithms in different experimental scenar-
ios and the results of the average reward are integrated into Table 7.

Table 7. Performance comparison of the four algorithms.

Scenario Number of
Iterations

Evaluation
Indicators SARSA Q-Learning Speedy

Q-Learning OWS Q-Learning

1 1800
Astringency Divergent Divergent Divergent 1010 iterations begin to converge

Average reward — — — 8

2 1800
Astringency Divergent Divergent Divergent 858 iterations begin to converge

Average reward — — — 12

3 1800
Astringency Divergent Divergent Divergent 810 iterations begin to converge

Average reward — — — 15

From the results of Table 6, the SARSA algorithm, Q-learning algorithm, and speedy
Q-learning algorithm do not converge in the simulation experiments in the three scenarios.
The OWS Q-learning algorithm proposed in this paper can achieve a convergence effect in
the simulation experiments of three scenarios.

Based on the above result analysis, the OWS Q-learning algorithm proposed in this
paper is superior to SARSA, Q-learning, and speedy Q-learning algorithms in terms of path
selection, algorithm convergence, and calculation time.

6. Conclusions and Outlook

In order to promote the intelligent development of parks, based on the low execution
efficiency of single UGV tasks, the slow convergence speed of Q-learning algorithms in
multi-agent systems and complex environments, and the low learning efficiency, this
paper proposes a collision avoidance cooperation mechanism among multiple UGV and an
improved reinforcement learning algorithm—OWS Q-learning algorithm. Based on the
idea of the Q-learning algorithm, the OWS Q-learning algorithm changes the update mode
of Q function, the learning rate α and the ε− greedy strategy of action selection. Finally,
simulation experiments are conducted in three different scenarios, and the performance
of the proposed OWS Q-learning is compared with SARSA, Q-learning, and speedy Q-
learning. Compared with the experimental results of the other three algorithms, only
the OWS Q-learning algorithm can converge, and the OWS Q-learning algorithm has
planned the shortest collision-free path for UGVS in different experimental scenarios.
In experimental scenario 1, compared with SARSA, Q-learning, and speedy Q-learning,
the calculation time of OWS Q-learning was reduced by 60.44%, 53.93%, and 22.26%,

Mathematics 2023, 11, 2476 26 of 28

respectively. In experimental scenario 2, compared with the above three algorithms, the
calculation time of OWS Q-learning is reduced by 69.55%, 67.21%, and 30.94%, respectively.
In experimental scenario 3, compared with the above three algorithms, the calculation time
of OWS Q-learning is reduced by 52.90%, 53.53%, and 24.32%, respectively.

The OWS Q-learning algorithm is verified to be superior to the comparison algorithm.
The multi-UGV collision avoidance coordination mechanism proposed in this manuscript
is based on the static environment of the park, but in real life, emergencies may occur in
the park, such as sudden pedestrians, vehicles, etc., which will involve some dynamically
changing obstacles, and the environment will become more complex. Therefore, in the
face of a random environment, this collision avoidance coordination mechanism needs to
be further improved, and the OWS Q-learning algorithm needs to be further improved
to better handle a larger number of UGVs. In future research work, on the one hand, we
will consider the dynamic complex environment in the park, consider the existence of
dynamic obstacles in the designed multi-UGV collision avoidance coordination mechanism,
on the other hand, in order to further improve the performance of the OWS Q-learning
algorithm, we will consider the research and improvement from the structural framework
of the algorithm to better solve the path planning problem of multiple UGVs in more
complex environments.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C.; software, Y.C.; validation, Y.C.;
writing—original draft, Y.C.; conceptualization, X.F.; supervision, X.F.; writing—review and editing,
X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Equipment Pre-Research Ministry of Education Joint Fund
(grant number 6141A02033703).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

References
1. Chu, J. The fourth industrial revolution and the age of intelligence. China’s Ind. Informatiz. 2022, 28, 40–43. [CrossRef]
2. Bao, W.; Zhu, X.; Fei, B.; Xiao, Z.; Men, T.; Liu, D. Vision-aware air-ground cooperative target localization for UAV and UGV.

Aerosp. Sci. Technol. 2022, 124, 107525. [CrossRef]
3. Lin, S.; Liu, A.; Wang, J.; Kong, X. A review of path-planning approaches for multiple mobile robots. Machines 2022, 10, 773.

[CrossRef]
4. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Symbiotic navigation in multi-robot systems with remote obstacle

knowledge sharing. Sensors 2017, 17, 1581. [CrossRef] [PubMed]
5. Liu, J.; Anavatti, S.; Garratt, M.; Abbass, H.A. Modified continuous ant colony optimisation for multiple unmanned ground

vehicle path planning. Expert Syst. Appl. 2022, 196, 116605. [CrossRef]
6. Han, S.D.; Rodriguez, E.J.; Yu, J. SEAR: A polynomial- time multi-robot path planning algorithm with expected constant-factor

optimality guarantee. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5
October 2018; pp. 7967–7974. [CrossRef]

7. Ntakolia, C.; Moustakidis, S.; Siouras, A. Autonomous path planning with obstacle avoidance for smart assistive systems. Expert
Syst. Appl. 2022, 213, 119049. [CrossRef]

8. Kapoutsis, A.C.; Chatzichristofis, S.A.; Doitsidis, L.; Sousa, J.B.d.; Pinto, J.; Braga, J.; Kosmatopoulos, E.B. Real-time adaptive
multi-robot exploration with application to underwater map construction. Auton Robot. 2016, 40, 987–1015. [CrossRef]

9. Liao, X.; Yu, Y.; Li, B.; Li, Z.; Qin, Z. A new payload partition strategy in color image steganography. IEEE Trans. Circuits Syst.
Video Technol. 2020, 30, 685–696. [CrossRef]

10. Öztürk, S.; Kuzucuoğlu, A.E. Optimal bid valuation using path finding for multi-robot task allocation. J. Intell. Manuf. 2015,
26, 1049–1062. [CrossRef]

11. Zhang, Z.; Jiang, J.; Wu, J.; Zhu, X. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using
minimal radar cross-section tactics and modified A-Star algorithm. ISA Trans. 2022, 134, 42–57. [CrossRef]

12. Saranya, C.; Unnikrishnan, M.; Ali, S.A.; Sheela, D.S.; Lalithambika, D.V.R. Terrain based D∗ algorithm for path planning.
IFAC-PapersOnline 2016, 49, 178–182. [CrossRef]

13. Guo, X.; Ji, M.; Zhao, Z.; Wen, D.; Zhang, W. Global path planning and multi-objective path control for unmanned surface vehicle
based on modified particle swarm optimization (PSO) algorithm. Ocean Eng. 2022, 216, 107693. [CrossRef]

https://doi.org/10.19609/j.cnki.cn10-1299/f.2022.04.010
https://doi.org/10.1016/j.ast.2022.107525
https://doi.org/10.3390/machines10090773
https://doi.org/10.3390/s17071581
https://www.ncbi.nlm.nih.gov/pubmed/28678193
https://doi.org/10.1016/j.eswa.2022.116605
https://doi.org/10.1109/iros.2018.8594417
https://doi.org/10.1016/j.eswa.2022.119049
https://doi.org/10.1007/s10514-015-9510-8
https://doi.org/10.1109/TCSVT.2019.2896270
https://doi.org/10.1007/s10845-014-0909-4
https://doi.org/10.1016/j.isatra.2022.07.032
https://doi.org/10.1016/j.ifacol.2016.03.049
https://doi.org/10.1016/j.oceaneng.2020.107693

Mathematics 2023, 11, 2476 27 of 28

14. Tan, J.; Liao, X.; Liu, J.; Cao, Y.; Jiang, H. Channel Attention Image Steganography with Generative Adversarial Networks. IEEE
Trans. Netw. Sci. Eng. 2022, 9, 888–903. [CrossRef]

15. Hu, J.; Wellman, M.P. Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 2003, 4, 1039–1069.
16. Ono, N.; Fukumoto, K. A modular approach to multi-agent reinforcement learning. LNCS 1997, 1221, 25–39. [CrossRef]
17. Iima, H.; Kuroe, Y. Swarm Reinforcement Learning Algorithms Based on Sarsa Method. In Proceedings of the 2008 SICE Annual

Conference, Chofu, Japan, 20–22 August 2008; pp. 2045–2049.
18. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Rob. Auton. Syst.

2019, 115, 143–161. [CrossRef]
19. Li, C.; Li, M.J.; Du, J. An improved method of reinforcement learning action strategy ε-greedy. Comput. Technol. Autom. 2019,

38, 141–145.
20. Zhao, T.; Li, H.; Dian, S. Multi-robot path planning based on improved artificial potential field and fuzzy inference system.

J. Intell. Fuzzy Syst. 2020, 39, 7621–7637. [CrossRef]
21. Yu, J. Intractability of Optimal Multirobot Path Planning on Planar Graphs. IEEE Robot. Autom. Lett. 2016, 1, 33–40. [CrossRef]
22. Alotaibi, E.T.S.; Al-Rawi, H. Multi-robot path-planning problem for a heavy traffic control application: A survey. Int. J. Adv.

Comput. Sci. Appl. 2016, 7, 179–188. [CrossRef]
23. Nedjati, A.; Izbirak, G.; Vizvari, B.; Arkat, J. Complete coverage path planning for a multi-UAV response system in post-earthquake

assessment. Robotics 2016, 5, 26. [CrossRef]
24. Dutta, A.; Bhattacharya, A.; Kreidl, O.P.; Ghosh, A.; Dasgupta, P. Multi-robot informative path planning in unknown environments

through continuous region partitioning. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420970461. [CrossRef]
25. Yuan, Z.; Yang, Z.; Lv, L.; Shi, Y. A bi-level path planning algorithm for multi-AGV routing problem. Electronics 2020, 9, 1351.

[CrossRef]
26. Singh, A.K.; Kumar, N. Fault-detection on multi-robot path planning. Int. J. Adv. Res. Comput. Sci. 2017, 8, 539–543. [CrossRef]
27. Dou, C.; Serpen, G. Automated robotic parking systems: Real-time, concurrent and multi-robot path planning in dynamic

environments. Appl. Intell. 2015, 42, 231–251. [CrossRef]
28. Salerno, M.; Martín, Y.E.; Fuentetaja, R.; Gragera, A.; Pozanco, A.; Borrajo, D. Train route planning as a multi-agent path finding

problem. LNCS 2021, 12882, 237–246. [CrossRef]
29. Sun, D.; Chen, J.; Mitra, S.; Fan, C. Multi-agent motion planning from signal temporal logic specifications. IEEE Robot. Autom.

Lett. 2022, 7, 3451–3458. [CrossRef]
30. Jaaz, Z.A.; Ansari, M.D.; Josephng, P.S.; Gheni, H.M. Optimization technique based on cluster head selection algorithm for

5G-enabled IoMT smart healthcare framework for industry. J. Behav. Robot. 2022, 13, 99–109. [CrossRef]
31. Wang, J.; Wei, K.; Ansari, M.D.; Ansari, M.S.A.; Verma, A. Photovoltaic Power Generation Systems and Applications Using

Particle Swarm optimization Algorithm. Electrica 2022, 22, 403–409. [CrossRef]
32. Chen, Y.; Ren, S.; Chen, Z.; Chen, M.; Wu, H. Path planning for vehicle-borne system consisting of multi air–ground robots.

Robotica 2020, 38, 493–511. [CrossRef]
33. Xu, L.; Cao, M.; Song, B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and

improved PSO algorithm. Neural Comput. 2022, 473, 98–106. [CrossRef]
34. Li, K.; Ge, F.; Han, Y.; Wang, Y.; Xu, W. Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm.

Eng. Appl. Artif. Intell. 2020, 94, 103807. [CrossRef]
35. Han, Z.; Wang, D.; Liu, F.; Zhao, Z. Multi-AGV path planning with double-path constraints by using an improved genetic

algorithm. PLoS ONE 2017, 2, e0181747. [CrossRef] [PubMed]
36. Huang, G.; Cai, Y.; Liu, J.; Qi, Y.; Liu, X. A novel hybrid discrete grey wolf optimizer algorithm for multi-UAV path planning.

J. Intell. Robot. Syst. 2021, 103, 49. [CrossRef]
37. Shi, J.; Tan, L.; Zhang, H.; Lian, X.; Xu, T. Adaptive multi-UAV path planning method based on improved gray wolf algorithm.

Comput. Electr. Eng. 2022, 104, 108377.
38. Das, P.K.; Jena, P.K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary

operators. Appl. Soft Comput. 2020, 92, 106312. [CrossRef]
39. Liu, J.; Wang, Q.; He, C.; Jaffrès-Runser, K.; Xu, Y.; Li, Z.; Xu, Y. QMR: Q-learning based Multi-objective optimization Routing

protocol for Flying Ad Hoc Networks. Comput. Commun. 2020, 150, 304–316. [CrossRef]
40. Sajad, H.K.; Saeed, B.S.; Soroush, S.K. Path planning of modular robots on various terrains using Q-learning versus optimization

algorithms. Intel. Serv. Robot. 2017, 10, 121–136. [CrossRef]
41. Low, E.S.; Ong, P.; Low, C.Y.; Omar, R. Modified Q-learning with distance metric and virtual target on path planning of mobile

robot. Expert Syst. Appl. 2022, 199, 117191. [CrossRef]
42. Chen, P.; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle

avoidance. Neurocomputing 2022, 497, 64–75. [CrossRef]
43. Yang, X.; Shi, Y.; Liu, W.; Ye, H.; Zhong, W.; Xiang, Z. Global path planning algorithm based on double DQN for multi-tasks

amphibious unmanned surface vehicle. Ocean Eng. 2022, 266, 112809. [CrossRef]
44. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-Robot Path Planning Method Using Reinforcement Learning. Appl. Sci. 2019,

9, 3057. [CrossRef]

https://doi.org/10.1109/TNSE.2021.3139671
https://doi.org/10.1007/3-540-62934-3_39
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.3233/JIFS-200869
https://doi.org/10.1109/LRA.2015.2503143
https://doi.org/10.14569/IJACSA.2016.070623
https://doi.org/10.3390/robotics5040026
https://doi.org/10.1177/1729881420970461
https://doi.org/10.3390/electronics9091351
https://doi.org/10.26483/ijarcs.v8i8.4832
https://doi.org/10.1007/s10489-014-0598-x
https://doi.org/10.1007/978-3-030-85713-4_23
https://doi.org/10.1109/LRA.2022.3146951
https://doi.org/10.1515/pjbr-2022-0101
https://doi.org/10.5152/electrica.2022.22086
https://doi.org/10.1017/S0263574719000808
https://doi.org/10.1016/j.neucom.2021.12.016
https://doi.org/10.1016/j.engappai.2020.103807
https://doi.org/10.1371/journal.pone.0181747
https://www.ncbi.nlm.nih.gov/pubmed/28746355
https://doi.org/10.1007/s10846-021-01490-3
https://doi.org/10.1016/j.asoc.2020.106312
https://doi.org/10.1016/j.comcom.2019.11.011
https://doi.org/10.1007/s11370-017-0217-x
https://doi.org/10.1016/j.eswa.2022.117191
https://doi.org/10.1016/j.neucom.2022.05.006
https://doi.org/10.1016/j.oceaneng.2022.112809
https://doi.org/10.3390/app9153057

Mathematics 2023, 11, 2476 28 of 28

45. Li, B.; Liang, H. Multi-robot path planning method based on prior knowledge and Q-learning algorithms. J. Phys. Conf. Ser. 2020,
1624, 042008. [CrossRef]

46. Yang, Y.; Li, J.; Peng, L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI TRIT. 2020,
5, 177–183. [CrossRef]

47. Koval, A.; Mansouri, S.S.; Nikolakopoulos, G. Multi-Agent Collaborative Path Planning Based on Staying Alive Policy. Robotics
2020, 9, 101. [CrossRef]

48. Wang, T.; Zhang, B.; Zhang, M.; Zhang, S. Multi-UAV Collaborative Path Planning Method Based on Attention Mechanism. Math.
Probl. Eng. 2021, 2021, 6964875. [CrossRef]

49. Hao, B.; Du, H.; Yan, Z. A path planning approach for unmanned surface vehicles based on dynamic and fast Q-learning. Ocean
Eng. 2023, 270, 113632. [CrossRef]

50. Zhang, M.; Cai, W.; Pang, L. Predator-Prey Reward Based Q-Learning Coverage Path Planning for Mobile Robot. IEEE Access
2023, 11, 29673–29683. [CrossRef]

51. Antwi-Afari, P.; Owusu-Manu, D.G.; Ng, S.T.T.; Asumadu, G. Modeling the smartness or smart development levels of developing
countries’ cities. J. Urban Manag. 2021, 10, 369–381. [CrossRef]

52. Zhao, J.; Meng, C.; Wang, X. Modeling and analysis of AGV raster method under feature point extraction. Comput. Eng. Appl.
2022, 58, 156–167.

53. Zheng, S.; Luo, F.; Gu, C.; Ding, W.; Lu, H. Improved Speedy Q-learning algorithm based on dual estimators. Comput. Sci. 2020,
47, 179–185. [CrossRef]

54. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, University of Cambridge, Cambridge, UK, 1989.
55. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
56. Szepesvári, C. The Asymptotic Convergence-Rate of Q-Learning; Research Group on Artificial Intelligence, “József Attila” University:

Szeged, Hungary; Hungary and Associative Computing, Inc.: Budapest, Hungary, 1997.
57. Azar, M.G.; Munos, R.; Ghavamzadeh, M.; Kappen, H. Speedy Q-learning. Adv. Neural Inf. Process. Syst. 2011, 2011, 2411–2419.
58. Zhou, Q.; Luo, F.; Ding, W.; Gu, C.; Zheng, S. Double Speedy Q-Learning algorithm based on successive hyperrelaxation

technology. Comput. Sci. 2022, 49, 239–245. [CrossRef]
59. Sutton, R.S.; Barto, A.G. Reinforcement learning. J. Cogn. Neurosci. 1999, 11, 126–134.
60. Li, Z.; Shi, L.; Yang, L.; Shang, Z. An adaptive learning rate Q-Learning algorithm based on lalman filter inspired by pigeon

pecking-color learning. Int. J. Bio-Inspir. Com. 2020, 1160, 693–706. [CrossRef]
61. Chen, L. Research on Reinforcement Learning Algorithm for Path Planning of Moving Vehicles under Special Traffic Environment.

Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2019.
62. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; University of Cambridge, Department of Engineering:

Cambridge, UK, 1994; p. 14.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/1624/4/042008
https://doi.org/10.1049/trit.2020.0024
https://doi.org/10.3390/robotics9040101
https://doi.org/10.1155/2021/6964875
https://doi.org/10.1016/j.oceaneng.2023.113632
https://doi.org/10.1109/ACCESS.2023.3255007
https://doi.org/10.1016/j.jum.2021.06.005
https://doi.org/10.11896/jsjkx.190500143
https://doi.org/10.1613/jair.301
https://doi.org/10.11896/jsjkx.201200173
https://doi.org/10.1007/978-981-15-3415-7_59

	Introduction
	Related Work
	Multi-UGV Path Planning Modeling
	Environment Settings
	UGV Settings
	Multi-UGV Collision Avoidance Cooperation Mechanism
	Evaluation Indexes
	Average Shortest Path Steps
	Average Path Length
	Average Calculation Time
	Average Rewards

	Objective Function

	OWS Q-Learning Algorithm
	Q-Learning Algorithm
	Speedy Q-Leaning Algorithm
	OWS Q-Learning Algorithm
	Q Function Updating
	Optimize Learning Rate
	Improve —Greedy Strategy
	Reward Function

	Simulation Experiments and Analysis
	Parameter Settings
	Path Planning Scenarios
	Simulation Scenarios That Contain Only Convex Obstacles
	Simulation Scenarios That Contain Only Non-Convex Obstacles
	Simulation Scenarios That Contain More Odd-Shaped Obstacles

	Comparative Analysis of Algorithm Performance
	Algorithm Convergence Analysis
	UGVs Reward Analysis
	Algorithm Performance Comparison

	Conclusions and Outlook
	References

