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Abstract: Reaction–diffusion systems have a broad variety of applications, particularly in biology, and
it is well known that fractional calculus has been successfully used with this type of system. However,
analyzing these systems using discrete fractional calculus is novel and requires significant research in
a diversity of disciplines. Thus, in this paper, we investigate the discrete-time fractional-order Lengyel–
Epstein system as a model of the chlorite iodide malonic acid (CIMA) chemical reaction. With the help
of the second order difference operator, we describe the fractional discrete model. Furthermore, using
the linearization approach, we established acceptable requirements for the local asymptotic stability
of the system’s unique equilibrium. Moreover, we employ a Lyapunov functional to show that when
the iodide feeding rate is moderate, the constant equilibrium solution is globally asymptotically stable.
Finally, numerical models are presented to validate the theoretical conclusions and demonstrate the
impact of discretization and fractional-order on system dynamics. The continuous version of the
fractional-order Lengyel–Epstein reaction–diffusion system is compared to the discrete-time system
under consideration.

Keywords: Lengyel–Epstein reaction–diffusion system; second order difference operator; fractional-
order Caputo h̄-difference operator; Lyapunov function; local stability; global stability

MSC: 39A12; 39A30; 39A60; 39B82

1. Introduction

A mathematical model is a collection of equations that represents the mathematical
representation of hypotheses (or assumptions). Mathematical modeling is widely used
in ecological, epidemiological, and biological fields [1–6]. To gain a better understanding
of patterns, modeling is widely utilized. There are several studies that use mathematical
models as a tool for analysis; for example, ref. [7] addresses the modeling of biological
systems using an enhanced fractional Gompertz equation. The dynamical complexity
in a time-delayed tumor-immune model was investigated in [8]. A fractional Keller–
Segel model was introduced in [9]. In [10], an anoise-assisted tumor-immune system was
introduced, and stochastic sensitivity and chaos were investigated. The deterministic and
stochastic dynamics of Michaelis–Menten kinetics-based tumor-immune interactions were
explored in [11]. In [12], a delayed model of hospital-acquired infection with multidrug-
resistant bacterium Acinatobactor baumannii was explored.

Due to their ability to imitate a variety of real-world phenomena and the complexity of
their solutions, reaction–diffusion systems have gained significant theoretical interest and
are of tremendous value in many scientific and engineering domains [13–16]. Meanwhile,
the fractional partial differential equation is commonly employed in practical applications.
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Several publications in the topic have been published lately [17,18]. Fractional diffusion
equations are employed in the modeling of anomalous diffusion in porous media with rich
nano–micro size features, which is an efficient and frequent application.

Many nonlinear processes in nature, such as population models, brain networks, and
gene information, have discrete properties. Given this, discrete models may be employed
to effectively identify parameters from experimental data. Fractional partial difference
equations provide a distinct time-discretization model, especially for anomalous diffusion.
A time-discretization difference approach was only recently presented as a discrete frac-
tional modeling. Ref. [19], for example, developed a fractional time-discretization diffusion
model in the Caputo-like delta interpretation and also addressed diffusion concentration
for different fractional difference orders. On the other hand, ref. [20] suggested a variable-
order fractional diffusion equation on discrete timeframes and generated a variable-order
function using a chaotic map.

Since 1991, numerous scientists have expressed interest in the investigated Lengyel–
Epstein reaction–diffusion system proposed in [21,22] as a model of the chlorite-iodide
malonic-acid (CIMA) chemical reaction–diffusion model. The CIMA reaction is of partic-
ular relevance since it was one of the first tests to demonstrate Alan Turing’s theoretical
claims concerning the chemical foundation for morphogenesis and, more broadly, pattern
generation in 1952 [23,24]. However, due to the complexities of biochemical reactions,
chemical reaction practices are frequently affected by or depend on the historical context
of chemical reactions. The Lengyel–Epstein chemical reactions model has been solved
by numerous researchers [25–28]. A number of researchers stated that fractional-order
methods were more appropriate than classical ones [29–32].

Given that the discreteness and structure of the underlying spatial area have a major
effect on dynamical behavior, discrete fractional reaction–diffusion systems are more closely
related to biological systems than continuous systems. To show this effect on such systems,
this research will focus on the discrete-time fractional form of the Lengyel–Epstein CIMA
reaction–diffusion model. To begin, we use the same technique as [19] in order to create
a discrete fractional representation of the model. Following the model presentation, we
supply adequate conditions for local stability using the same strategy as in [33], which is to
linearize the reaction–diffusion system around the steady-state. The Lyapunov function is
also used to explore global asymptotic stability. Furthermore, numerical simulations are
conducted using a numerical formula and the fact that the conditions considered in the
discrete-time fractional reaction–diffusion model are boundary conditions; these conditions
are the same as those used in [19] when presenting the discrete version of fractional reaction–
diffusion equations. One can clearly see that the main conclusions of the work are similar
to those obtained in the study of the continuous version of the model, but the calculations
and selection of the Lyapunov functions and the stability criteria differ from one model to
another, making the study very interesting and opening the door to many problems that
we hope to investigate in the future.

The following is how this document is structured: Section 2 provides some terminology
and theory relevant to fractional discrete-time systems. In Section 3, a unique discrete-time
fractional-order Lengyel–Epstein reaction–diffusion system is introduced. Section 4 speci-
fies requirements for the proposed system’s local asymptotic stability, whereas, Section 5
discusses the global asymptotic stability for the proposed system. Finally, Section 6 uses
numerical examples to demonstrate the analytical conditions.

2. Preliminaries

This section begins by introducing the subject’s required nomenclature and stability theory.

Definition 1 ([34]). Assume κ : N→ R. The forward difference operator ∆ is then defined.

∆κ(`) = κ(`+ 1)−κ(`); ` ∈ N. (1)
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In addition, the operators ∆n, n = 1, 2, 3, ..., are recursively identified by ∆nκ(`) = ∆(∆n−1κ(`)),
` ∈ N.

In particular, the second-order difference operator of function κ(t) is given by

∆2κ(`) = κ(`+ 2)− 2κ(`+ 1) +κ(`). (2)

Lemma 1 ([34]). Here, we give some properties of the difference operator ∆

• ∆c = 0 where c is a constant.
• ∆(κ(`) + κ(`)) = ∆κ(`) + ∆κ(`).
• ∆(κ(`)κ(`)) = κ(`)∆κ(`) + κ(`+ 1)∆κ(`).

Theorem 1 ([34]). Given two functions κ; κ : R → R and a; b ∈ N; a < b; we have the
summation by parts formulas:

b−1

∑
=a

κ()∆κ() = κ()κ()|ba −
b−1

∑
=a

κ( + 1)∆κ(), (3)

b−1

∑
=a

κ( + 1)∆κ() = κ()κ()|ba −
b−1

∑
=a

κ()∆κ(). (4)

Definition 2 ([35]). Let κ ∈ (hN)a → R. For given α > 0, the α-th order h-sum is given by

h̄∆−α
a κ(t) = h̄

Γ(α)

s= a
h̄

∑
t
h̄−α

(t− σ(sh̄))(α−1)κ(sh̄), σ(sh̄) = (s + 1)h̄, t ∈ (hN)a+αh̄, (5)

with a ∈ R being the initial value and the h̄-falling factorial function being described by

t(α)h̄ = h̄α Γ( t
h̄ + 1)

Γ( t
h̄ + 1− α)

,

while
(h̄N)a+αh̄ = {a + (1− α)h̄, a + (2− α)h̄, ...}.

Definition 3 ([36,37]). For a function κ(t) defined on (hN)a and for a certain α > 0 so that
α ∈ N, the Caputo h̄-difference operator is expressed by

C
h̄ ∆α

aκ(t) =h̄ ∆−(n−α)
a ∆n

h̄κ(t), (6)

where ∆n
h̄κ(t) =

κ(t + h̄)−κ(t)
h̄

.

Lemma 2 ([35]). Here are some important properties employed in this work

• Discrete Leibniz integral law

h̄∆−α
a+(1−α)h̄

C
h̄ ∆ακ(t) = κ(t)−κ(a), 0 < α ≤ 1, t ∈ (h̄N)a+h̄. (7)

• Caputo fractional difference of a constant x

C
h̄ ∆αx = 0, 0 < α ≤ 1. (8)

Lemma 3 ([35]). The following inequality holds

C
h̄ ∆α

aκ2(t) ≤ 2κ(t + αh̄)C
h ∆α

aκ(t), t ∈ (h̄N)a+αh̄, (9)

where 0 < α ≤ 1.
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Let us consider the nonlinear fractional-order difference system

C
h̄ ∆α

aκ(t) = ψ(t + h̄α,κ(t + h̄α)), t ∈ (hN)a+αh̄, (10)

Theorem 2 ([38]). Let κ∗ be an equilibrium point of (24). If all the eigenvalues of ψ′(κ∗) are
located in Sα

h̄ , then κ∗ is asymptotically stable. where

Sα
h̄ =

{
w ∈ C : |Arg(w)| > απ

2
or |w| > 2α

h̄α cosα

(
Arg(w)

α

)}
. (11)

Theorem 3 ([35]). Let κ = 0 be the system’s equilibrium point (24). The equilibrium point is
asymptotically stable if there exists a positive definite and declining scalar function C

h̄ ∆α
a V(t,κ(t)) ≤ 0.

3. The Fractional Discrete Lengyl–Epstein Reaction–Diffusion System

In this part, the models under examination are approximated using two well-known
methods. To the best of our knowledge, these discrete models would be the first in the
literature.

As known, the Lengyel–Epstein reaction–diffusion system was presented as a model
of the chlorite-iodide-malonic-acid chemical reaction (CIMA) that may be characterized by
three chemical reaction schemes, which are as follows:

MA + I2 → IMA + I− + H+, (1)
CIO2 + I− → 1

2 I2 + CIO−2 , (2)
CIO−2 + 4I− + 4H+ → CI− + 2I2 + 2H2O. (3)

• (1) describes the iodization of malonic acid (MA).
• (2) describes the oxidation of iodide ions by free chlorine dioxide radicals.
• (3) describes an interaction between chlorite and iodide ions created in the (1) and (2)

processes to produce iodine.

Using the empirical rate laws for these processes and disregarding constant factors,
the model for this reaction was simplified to the standard Lengyel–Epstein model with two
independent variables u and v relating to the iodide concentration (I−) and the chlorite
concentration (ClO2). This model represents the system that resulted from two differential
equations. In [28], the following model was considered

∂u
∂t

= ∆u + a− u− uv
1 + u2 , x ∈ Ω, t > 0,

∂v
∂t

= σ

(
c∆v + b

(
u− uv

1 + u2

))
, x ∈ Ω, t > 0,

∂u = ∂v = 0 , x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(12)

where Ω is a bounded domain in Rn with sufficiently smooth boundary ∂Ω. u indicates
the chemical concentration of the activator iodide and v represents the inhibitor chlorite at
time t < 0 and a point x ∈ Ω. The parameters a and b are rotated to the feed concentration,
c is the ratio of the diffusion coefficient, and σ > 0 is a rescaling parameter depending on
the concentration of the starch.

Since the time fractional systems have been widely investigated by researchers, a
fractional-time Lengyel–Epstein reaction–diffusion system was presented as follows

C
0 Dδ

t u− d1∆u = a− u− 4uv
1 + u2 ,

C
0 Dδ

t v− d2∆v = σb
(

u− uv
1 + u2

)
,

(13)
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where ∆ = ∑n
i=1

∂2

∂x2
i

, 0 < δ ≤ 1 is the fractional-order and C
0 Dδ

t describes the Caputo

fractional derivative; d1, d2 and σ are strictly positive constants with the same initial
conditions and Neumann boundary conditions.

Based on the model (13) and with the discretization used in [19], assuming that
x ∈ [0, L], we have xi+1 = xi + k, i = 0, ..., m and using the central difference formula

concerning x,
∂2u(x, t)

∂x2 and
∂2v(x, t)

∂x2 can be approximately expended as


∂2u(x, t)

∂x2 ≈ ui+1(t)− 2ui(t) + ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ vi+1(t)− 2vi(t) + vi−1(t)

k2 .

Using the definition of the second order difference operator of ui and vi, we obtain
∂2u(x, t)

∂x2 ≈ ∆2ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ ∆2vi−1(t)

k2 .

Therefore, we consider the following discrete-time reaction–diffusion fractional Lengyel–
Epstein system

C
h̄ ∆α

t0
ui(t) =

d1

k2 ∆2ui−1(t + h̄α) + a− ui(t + h̄α)− 4ui(t + h̄α)vi(t + h̄α)

1 + (ui(t + h̄α))2 ,

C
h̄ ∆α

t0
vi(t) =

d2

k2 ∆2vi−1(t + h̄α) + σb
(

ui(t + h̄α)− ui(t + h̄α)vi(t + h̄α)

1 + (ui(t + h̄α))2

)
,

(14)

where C
h̄ ∆α

t0
is the Caputo-like difference, 0 < α ≤ 1, t ∈ (h̄N)t0 , with periodic boundary

conditions {
u0(t) = um(t), u1(t) = um+1(t),
v0(t) = vm(t), v1(t) = vm+1(t),

(15)

and initial conditions

ui(t0) = φ1(xi) ≥ 0, vi(t0) = φ2(xi) ≥ 0.

4. Local Stability

In order to investigate the asymptotic stability of the considered discrete-time fractional
Lengyel–Epstein system, we consider the unique equilibrium point which is the solution of
the following system 

d1

k2 ∆2u∗ + a− u∗ − 4u∗v∗

1 + (u∗)2 = 0,

d2

k2 ∆2v∗ + σb
(

u∗ − u∗v∗

1 + (u∗)2

)
= 0.

(16)

Using Lemma 1, the unique equilibrium point of system (14) is given by

(u∗, v∗) =
(

a
5

, 1 +
( a

5

)2
)

. (17)
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4.1. Local Stability of the Free Diffusions System

In this part, we develop suitable requirements for the local asymptotic stability of the
following system:

C
h̄ ∆α

t0
u(t) = a− u(t + h̄α)− 4u(t + h̄α)v(t + h̄α)

1 + (u(t + h̄α))2 ,

C
h̄ ∆α

t0
v(t) = σb

(
u(t + h̄α)− u(t + h̄α)v(t + h̄α)

1 + (u(t + h̄α))2

)
.

(18)

The characteristic equation for the eigenvalues is obtained using linear stability analysis
around this stable state.

J =

 ∂ψ

∂u
∂ f
∂v

∂Ψ
∂u

∂g
∂v

 =


3
( a

5
)2 − 5

1 +
( a

5
)2 −

4 a
5

1 +
( a

5
)2

2bσ
( a

5
)2

1 +
( a

5
)2 −

bσ a
5

1 +
( a

5
)2

, (19)

where

ψ(u, v) = a− u(t + h̄α)− 4u(t + h̄α)v(t + h̄α)

1 + (u(t + h̄α))2 , (20)

and

Ψ(u, v) = σb
(

u(t + h̄α)− u(t + h̄α)v(t + h̄α)

1 + (u(t + h̄α))2

)
. (21)

We might observe from the Jacobian matrix that

tr(J) =
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2 , det(J) =

5abσ

1 +
( a

5
)2 . (22)

The Jacobian matrix has the following characteristic equation:

Λ2 − tr(J)Λ + det(J) = 0. (23)

Its discriminant is

∆Λ = tr2(J)− 4det(J) =

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 20abσ

1 +
( a

5
)2 . (24)

As a result, we may deduce the following:

Theorem 4. System (18) is locally asymptotically stable at the positive steady-state (u∗, v∗) if the
following conditions hold

• If

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 20abσ

1 +
( a

5
)2 ≥ 0 and

3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2 < 0.

• If

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 20abσ

1 +
( a

5
)2 < 0 and

3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2 ≤ 0.

Proof. Based on (24), we investigate each case independently.

• If ∆Λ > 0, we can see that det(J) > 0. As a result, the eigenvalues’ negativity is
dependent on the sign of tr(J), and the eigenvalues Λ1 and Λ2 are real and may be
represented as

Λ1 =
tr(J)−

√
∆Λ

2
, Λ2 =

tr(J) +
√

∆Λ

2
. (25)
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– If tr(J) < 0, then, we have

Λ1 =
tr(J)−

√
∆Λ

2
< 0, (26)

As a result, Arg(Λ1) = π. Since both eigenvalues are real, it is obvious that
Arg(Λ1) = Arg(Λ2) = π. As a consequence, based on Theorem 2, the equilib-
rium (u∗,v ∗) is asymptotically stable.

– If tr(J) < 0, then, we have

Λ2 =
tr(J) +

√
∆Λ

2
> 0. (27)

Therefore, Arg(Λ2) = 0. Based on Theorem 2, system (18) is unstable.

• If ∆Λ < 0, then,

Λ1 =
tr(J)− i

√
−∆Λ

2
, Λ2 =

tr(J) + i
√
−∆Λ

2
. (28)

We may discuss the solutions based on the sign of tr(J).

– If tr(J) < 0 or tr(J) > 0, then, following the same case investigated previously,
system (18) is asymptotically stable.

– If tr(J) = 0 then

Arg
(
−i
√
−∆Λ

2

)
= Arg

(
i
√
−∆Λ

2

)
=

π

2
,

and system (18) is asymptotically stable.

• If ∆Λ = 0, as det(J) > 0, tr(J) cannot be equal to zero. The sign of the eigenvalues
is the same as the sign of tr(J). As a result, (u∗, v∗) is asymptotically stable for all
α ∈ (0, 1] if tr(J) < 0 and unstable if tr(J) > 0.

The proof is completed.

4.2. Local Stability of the Diffusion System

We shall now show that in the presence of diffusion, the steady-state (u∗, v∗) can be
stable under certain parameter circumstances. We will adopt the same approach as in [33],
first considering the eigenvalues of the following equation:

∆2κi−1(t + h̄α) + Λiκi(t + h̄α) = 0, (29)

with the periodic boundary conditions:

κ0(t) = κm(t), κ1(t) = κm+1(t). (30)

We obtain
C
h̄ ∆α

t0
ui(t) =

d1

k2 Λiui(t + h̄α) + a− ui(t + h̄α)− 4ui(t + h̄α)vi(t + h̄α)

1 + (ui(t + h̄α))2 ,

C
h̄ ∆α

t0
vi(t) =

d2

k2 Λivi(t + h̄α) + σb
(

ui(t + h̄α)− ui(t + h̄α)vi(t + h̄α)

1 + (ui(t + h̄α))2

)
.

(31)

We derive the following by linearizing the reaction–diffusion system (31) about the steady-
state (u∗, v∗)

Ji =

 − d1
k2 Λi +

3( a
5 )

2−5

1+( a
5 )

2
−4 a

5

1+( a
5 )

2

σb
2( a

5 )
2

1+( a
5 )

2 − d2
k2 Λi − σb

a
5

1+( a
5 )

2

. (32)



Mathematics 2023, 11, 2447 8 of 16

The following result is conducted,

Theorem 5. We suppose that(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 20abσ

1 +
( a

5
)2 > 0 and

3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2 < 0,

system (14) is asymptotically stable at the steady-state (u∗, v∗) if the following holds:

• If d1 < d2 and d1
k2 Λ1 −

3( a
5 )

2−5

1+( a
5 )

2 ≥ 0.

• If d1 > d2 and d1
k2 Λ1 −

3( a
5 )

2−5

1+( a
5 )

2 ≥ 0, in addition the eigenvalues

µj(Λi) =
tr(Ji) +−

√
tr(Ji)2 − 4det(Ji)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
απ

2
.

Proof. To explore the system’s local asymptotic stability, we shall linearize it. If the eigen-
values of the linearized system fulfill the conditions of Theorem 2, using fundamental linear
operator theory and maintaining the system’s fractional structure in mind, we might state
that (u∗, v∗) is asymptotically stable. Assume that (Φ, Ψ) is an eigenfunction of (29) with
the eigenvalue Λ. Then, let ui = ∑n

j=1 κijΦij and vi = ∑n
j=1 δijΨij. We have


∑n

j=1 κij
C
h̄ ∆α

t0
Φij =

d1

k2 ξi ∑n
j=1 κijΦij + a−∑n

j=1 κijΦij −
4 ∑n

j=1 κijΦij ∑n
j=1 δijΨij

1 + (∑n
j=1 κijΦij)2 ,

∑n
j=1 δij

C
h̄ ∆α

t0
Ψij =

d2

k2 ξi ∑n
j=1 δijΨij + σb

(
∑n

j=1 κijΦij −
∑n

j=1 κijΦij ∑n
j=1 δijΨij

1 + (∑n
j=1 κijΦij)2

)
.

(33)

We obtain 
d1
k2 Λi − µ(Λi) +

3( a
5 )

2−5

1+( a
5 )

2
−4 a

5

1+( a
5 )

2

σb
2( a

5 )
2

1+( a
5 )

2
d2
k2 ξi − µ(Λi)− σb

a
5

1+( a
5 )

2

 = Ji − µ(Λi)I, (34)

which has the eigenvalue equation

µ2(Λi)− tr(Ji)µ(Λi) + det(Ji) = 0, (35)

where

tr(Ji) = −
(

d1

k2 +
d2

k2

)
Λi +

3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2 (36)

and

det(Ji) =

(
d1

k2 Λi −
3
( a

5
)2 − 5

1 +
( a

5
)2

)
d1

k2 Λi +
bσ a

5

1 +
( a

5
)2

(
d1

k2 Λi + 5
)

. (37)

Its discriminant is
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∆i = tr2(Ji)− 4dert(Ji)

=

((
d1

k2 +
d2

k2

)
Λi +

3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

−
((

d1

k2 ξi −
3
( a

5
)2 − 5

1 +
( a

5
)2

)
d2

k2 Λi +
bσ a

5

1 +
( a

5
)2

)
,

=

(
d1

k2 −
d2

k2

)
Λ2

i ++2
(

d1

k2 −
d2

k2

)(
σb

a
5

1 +
( a

5
)2 −

3
( a

5
)2 − 5

1 +
( a

5
)2

)
Λi +

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 4
bσ a

5

1 +
( a

5
)2 ,

=

(
d1

k2 −
d2

k2

)
Λ2

i + 2
(

d1

k2 −
d2

k2

)(
σb

a
5

1 +
( a

5
)2 −

3
( a

5
)2 − 5

1 +
( a

5
)2

)
Λi + ∆Λ.

The sign of ∆i is important to the stability of (u∗, v∗). The discriminant of ∆i in relation to
Λi is

∆Λi = 4
(

d1

k2 −
d2

k2

)2
(

σb
a
5

1 +
( a

5
)2 −

3
( a

5
)2 − 5

1 +
( a

5
)2

)2

− 4

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

+ 16
bσ a

5

1 +
( a

5
)2 ,

= 32
(

d1

k2 −
d2

k2

)2 bσ
( a

5
)3(

1 +
( a

5
)2
)2 .

Clearly ∆Λi > 0. Since d1 6= d2, we distinguish two cases:

• If d1 < d2, then,

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 4 bσ a
5

1+( a
5 )

2 > 0. The two solutions of the

equation ∆Λi = 0 are both negative. Thus, ∆Λi > 0 and the roots of (35) are
µ1(Λi) =

tr(Ji) +
√

tr(Ji)
2 − 4det(Ji)

2
,

µ2(Λi) =
tr(Ji)−

√
tr(Ji)

2 − 4det(Ji)

2
.

(38)

Note that the solutions are real and µ(Λi)1 < 0. In addition, if Λ1
d1
k2 ≥

3( a
5 )

2−5

1+( a
5 )

2 , then

µ(Λi)2 < 0. This leads to

|Arg(µ1(Λi))| = |Arg(µ2(Λi)2)| = π, (39)

which ensures (u∗, v∗) is asymptotically stable.

• If d1 > d2, we have

(
3
( a

5
)2 − 5− bσ a

5

1 +
( a

5
)2

)2

− 4 bσ a
5

1+( a
5 )

2 > 0. This returns us to the

previous scenario, again, for d1
k2 Λ1 −

3( a
5 )

2−5

1+( a
5 )

2 ≥ 0, det(Ji) > 0. Hence, λ1 and λ2 are

negative and must meet the conditions of Theorem 2.

5. Global Stability

In this part, we demonstrate the global asymptotic stability of the constant steady-state
solution.

Theorem 6. If
0 < a ≤ 27, (40)
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then, system (14) is globally asymptotically stable.

Proof. The function stated in Theorem 3 is applied to prove the global asymptotic stability
of the unique equilibrium point (u∗, v∗). For this, we evaluate the following function.

L(t) =
m

∑
i=1

σb
3

U3
i (t) + σbu∗U2

i (t) + 2V2
i (t).

We consider the change of variable Ui = u−u∗ and Vi = vi − v∗. Using Lemmas 1 and 2,
system (14) can be expressed as follows

C
h̄ ∆α

t0
Ui(t) =

d1

k2 ∆2Ui−1(t + h̄α) + a− (Ui(t + h̄α) + u∗)− 4(Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)
1 + (Ui(t + h̄α) + u∗)2 ,

C
h̄ ∆α

t0
Vi(t) =

d2

k2 ∆2Vi−1(t + h̄α) + σb
(
(Ui(t + h̄α) + u∗)− (Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)

1 + (Ui(t + h̄α) + u∗)2

)
.

(41)

Taking the Caputo h̄-difference operator and using Lemma 3, we have

C
h̄ ∆α

t0
L(t) =

m

∑
i=1

σb
3

C
h̄ ∆α

t0
U3

i (t) + σbu∗ C
h̄ ∆α

t0
U2

i (t) + 2 C
h ∆α

t0
V2

i (t),

≤
m

∑
i=1

σbU2
i (t + h̄α) C

h̄ ∆α
t0

Ui(t) + 2σbu∗Ui(t + h̄α) C
h̄ ∆α

t0
Ui(t) + 4Vi(t + h̄α) C

h̄ ∆α
t0

Vi(t),

=
m

∑
i=1

σb(Ui(t + h̄α) + 2u∗)Ui(t + h̄α) C
h̄ ∆α

t0
Ui(t) + 4Vi(t + h̄α) C

h̄ ∆α
t0

Vi(t),

=
m

∑
i=1

σb(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)(
d1

k2 ∆2Ui−1(t + h̄α) + a− (Ui(t + h̄α) + u∗)

− 4(Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)
1 + (Ui(t + h̄α) + u∗)2 ) + 4Vi(t + h̄α)(

d2

k2 ∆2Vi−1(t + h̄α)

+ σb
(
(Ui(t + h̄α) + u∗)− (Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)

1 + (Ui(t + h̄α) + u∗)2

)
),

=
m

∑
i=1

σbd1

k2 (Ui(t + h̄α) + 2u∗)Ui(t + h̄α)∆2Ui−1(t + h̄α) +
4d2

k2

m

∑
i=1

Vi(t + h̄α)∆2Vi−1(t + h̄α)

+
m

∑
i=1

σb(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)(a− (Ui(t + h̄α) + u∗)− 4(Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)
1 + (Ui(t + h̄α) + u∗)2 ),

+ 4σbVi(t + h̄α)

(
(Ui(t + h̄α) + u∗)− (Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)

1 + (Ui(t + h̄α) + u∗)2

)
),

= J1(t) + J2(t).

where

J1(t) =
m

∑
i=1

σbd1

k2 (Ui(t + h̄α) + 2u∗)Ui(t + h̄α)∆2Ui−1(t + h̄α) +
4d2

k2

m

∑
i=1

Vi(t + h̄α)∆2Vi−1(t + h̄α),

J2(t) =
m

∑
i=1

σb(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)(a− (Ui(t + h̄α) + u∗)− 4(Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)
1 + (Ui(t + h̄α) + u∗)2 )

+ 4σbVi(t + h̄α)

(
(Ui(t + h̄α) + u∗)− (Ui(t + h̄α) + u∗)(Vi(t + h̄α) + v∗)

1 + (Ui(t + h̄α) + u∗)2

)
).

Using summation by parts and taking into account the periodic boundary conditions
as well as Theorem 1, we conclude, for J1(t),
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J1(t) =
σbd1

k2

m

∑
i=1

(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)∆2Ui−1(t + h̄α) +
4d2

k2

m

∑
i=1

Vi(t + h̄α)∆2Vi−1(t + h̄α),

=
σbd1

k2

m

∑
i=1

(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)∆(∆Ui−1(t + h̄α)) +
4d2

k2

m

∑
i=1

Vi(t + h̄α)∆(∆Vi−1(t + h̄α)),

=
σbd1

k2 (Ui−1(t + h̄α) + 2u∗)Ui−1(t + h̄α)∆Ui−1(t + h̄α)|m+1
1

− σbd1

k2

m

∑
i=1

∆((Ui−1(t + h̄α) + 2u∗)Ui−1(t + h̄α))∆Ui−1(t + h̄α)

+
4d2

k2 Vi−1(t + h̄α)∆Vi−1(t + h̄α)|m+1
1 − 4d2

k2

m

∑
i=1

(∆Vi−1(t + h̄α))2,

= −2σbd1

k2 u∗
m

∑
i=1

(∆Ui−1(t + h̄α))2 − σbd1

k2

m

∑
i=1

∆U2
i−1(t + h̄α)∆Ui−1(t + h̄α)− 4d2

k2

m

∑
i=1

(∆Vi−1(t + h̄α))2,

= −2σbd1

k2 u∗
m

∑
i=1

(∆Ui−1(t + h̄α))2 − 4d2

k2

m

∑
i=1

(∆Vi−1(t + h̄α))2

− 4d2

k2

m

∑
i=1

(Ui(t + h̄α)∆Ui−1(t + h̄α) + ∆Ui−1(t + h̄α)Ui−1(t + h̄α))∆Ui−1(t + h̄α),

= −
(

2σbd1

k2 u∗
m

∑
i=1

(1 + Ui(t + h̄α) + Ui−1(t + h̄α))(∆Ui−1(t + h̄α))2 +
4d2

k2

m

∑
i=1

(∆Vi−1(t + h̄α))2

)
< 0.

Now, evaluating J2(t)

J2(t) =
m

∑
i=1

4σb
(Ui(t + h̄α) + u∗)

1 + (Ui(t + h̄α) + u∗)2 [(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)×(
(a− (Ui(t + h̄α) + u∗))

1 + (Ui(t + h̄α) + u∗)2

Ui(t + h̄α) + u∗
− (Vi(t + h̄α) + v∗)

)
+ Vi(t + h̄α)

(
1 + (Ui(t + h̄α) + u∗)2 − (Vi(t + h̄α) + v∗)

)
],

=
m

∑
i=1

4σb
(Ui(t + h̄α) + u∗)

1 + (Ui(t + h̄α) + u∗)2 [(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)×(
(a− (Ui(t + h̄α) + u∗))

1 + (Ui(t + h̄α) + u∗)2

Ui(t + h̄α) + u∗
−
(

a− u∗
1 + (u∗)2

u∗

))
+ Vi(t + h̄α)(v∗ − (Vi(t + h̄α) + v∗))],

=
m

∑
i=1

4σb
(Ui(t + h̄α) + u∗)

1 + (Ui(t + h̄α) + u∗)2 [(Ui(t + h̄α) + 2u∗)Ui(t + h̄α)(g(Ui(t + h̄α) + u∗)− g(u∗))−V2
i (t + h̄α)],

where

g(Ui(t + h̄α)) = (a−Ui(t + h̄α))
1 + U2

i (t + h̄α)

Ui(t + h̄α)
.

As mentioned in [28], g is a strictly decreasing function if 0 < a ≤ 27, which means that
g(Ui(t + h̄α) + u∗)− g(u∗) < 0. Therefore, J2(t) ≤ 0

Hence,
C
h̄ ∆α

t0
L(t) ≤ 0,

and C
h̄ ∆α

t0
L(t) = 0 if and only if (Ui, Vi) = (0, 0). As a result, Theorem 3 indicates that under

the condition (40), the constant steady-state (u∗, v∗) is globally asymptotically stable.
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Remark 1. We observe that the results reported in Theorem 6 are independent of the parameters b,
σ, and α. Remember that a is the iodide’s feeding rate. When the feeding rate is exceedingly low, the
chemical reaction will stabilize at the unique constant equilibrium. When the feeding rate a rises,
the system transforms into an activator–inhibitor system.

6. Numerical Simulations

In this section, we display some illustrative simulations of the theoretical characteristics
of the stability of the discrete-time fractional Lengyel–Epstein reaction–diffusion system
to show the effect of α on the dynamics of the fractional Lengyel-–Epstein system (14). By
adjusting the system’s characteristics and order, we may observe its behavior. We use the
following numerical solution, and the system (14) appears as such:

ui(nh̄) = φ1(xi) +
h̄α

Γ(α) ∑n
j=1

Γ(n− j + α)

Γ(n− j + 1)
[d1

ui+1((j− 1)h̄)− 2ui((j− 1)h̄) + ui−1((j− 1)h̄)
k2

+a− ui((j− 1)h̄)− 4ui((j− 1)h̄)vi((j− 1)h̄)
1 + (ui((j− 1)h̄))2 ],

vi(nh̄) = φ2(xi) +
h̄α

Γ(α) ∑n
j=1

Γ(n− j + α)

Γ(n− j + 1)
[d2

vi+1((j− 1)h̄)− 2vi((j− 1)h̄) + vi−1((j− 1)h̄)
k2

+σb
(

ui((j− 1)h̄)− ui((j− 1)h̄)vi((j− 1)h̄)
1 + (ui((j− 1)h̄))2

)
],

1 ≤ i ≤ m,
n > 0.

(42)

Example 1. To demonstrate our point, consider the following parameter values: (a, b, σ, d1, d2) =
(15, 1, 7, 1, 10), N = 150, h̄ = 0.07, t ∈ [0, 10], x ∈ [0, 20] and the boundary conditions
(u0(t), v0(t)) = (5, 10), (u1(t), v1(t)) = (5, 10). There is thus just one unique positive equilib-
rium (u∗, v∗) = (3, 10). The conditions in Theorem 6 are clearly verified. Figures 1 and 2 depict
the dynamic behavior of the system (14) with the appropriate initial conditions.

φ1(xi) = 5 + 0.3 sin
xi
2

,

φ2(xi) = 5 + 0.6 sin
xi
2

.
(43)

The simulations shown in Figures 1 and 2 show that the positive equilibrium is asymptotically
stable.

1

20

2

3

15 10

u
i(t

)

4

8

x

5

10 6

t

6

45
2

0 0

0

20

5

10

15 10

v
i(t

)

15

8

x

20

10 6

t

25

45
2

0 0

Figure 1. One dimensional concentration ui(t) and vi(t) as a solution of (14) with (a, b, σ, d1, d2) =

(15, 4, 7, 1, 10), N = 100, initial conditions (43), zero periodic boundary conditions, and fractional-
order α = 0.025.
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0 1 2 3 4 5 6 7 8 9 10

t

0

5

10

15

20

25

u(5,t)

v(10,t)

Figure 2. Dynamic behaviors of ui(t) and vi(t) for x = 5 and x = 10, N = 100, (a, b, σ, d1, d2) =

(15, 4, 7, 1, 10), initial conditions (43), zero periodic boundary conditions, and fractional-order α = 0.025.

Example 2. Consider the following parameter values of model (14): N = 150, (a, b, σ, d1, d2) =
(20, 9, 7, 7, 8) h̄ = 0.2, t ∈ [0, 30], x ∈ [0, 25], α = 0.26 and the boundary conditions
(u0(t), v0(t)) = (5, 8), (u1(t), v1(t)) = (5, 8). Figures 3 and 4 show the dynamics of ui and vi
for the initial condition. 

φ1(xi) = 6 + cos
xi
2

,

φ2(xi) = 5 + cos
xi
3

.
(44)

We see that all of our model’s solutions converge at some point to the equilibrium point (u∗, v∗) =
(4, 17). The unique equilibrium is thus asymptotically stable. This numerical conclusion is
consistent with our earlier theoretical results. Figures 3 and 4 display the results mentioned earlier.

3.5

30

4

30

4.5

u
i(t

)

20

5
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20

t

5.5

10
10

0 0

5

30

10

15

30

v
i(t

)

20

20

x

25

20

t

30

10
10

0 0

Figure 3. One dimensional concentration ui(t) and vi(t) as a solution of (14) with (a, b, σ, d1, d2) =

(20, 9, 7, 7, 8), N = 150, initial conditions (44), zero periodic boundary conditions, and fractional-order
α = 0.26.
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0 5 10 15 20 25 30

t

0

5

10

15

20

25

30

u(5,t)

v(8,t)

Figure 4. Dynamic behaviors of ui(t) and vi(t) for x = 5 and x = 8, N = 150, (a, b, σ, d1, d2) =

(20, 9, 7, 7, 8), initial conditions (44), zero periodic boundary conditions, and fractional-order α = 0.26.

Two sets of parameters from both examples were implemented wirh the help of the Matlab
environment, and the fractional discrete reaction–diffusion system (14) was numerically solved
using the numerial solution (42). Table 1 shows the two sets of parameters and initial conditions.

Table 1. Simulation parameters for the discrete fractional-order Lengyel–Epstein model of the CIMA
reaction represented in (14).

a b σ d1 d2 α φ1(xi) φ2(xi) (u∗, v∗) Case

15 4 7 1 10 0.025 5 + 0.3 sin
xi
2

5 + 0.6 sin
xi
2

(3, 10) stable

20 9 7 7 8 0.26 6 + cos
xi
2

φ2(xi) = 5 + cos
xi
3

(4, 17) stable

Remark 2. We noticed that when the fractional-order was below one, a periodic solution in the
standard case became asymptotically stable. This is a significant finding that deserves more exami-
nation and analysis since it gives a new viewpoint on the control and uses of the Lengyel–Epstein
system. We have also shown that the existence of diffusion changes the system’s stability criteria,
which is quite similar to the continuous case. Furthermore, we discovered that the diffusion-driven
stability varies with the fractional-order. Future investigations will closer discuss these findings.

7. Conclusions

In this paper, we investigated the local and global asymptotic stability of a novel
discrete-time fractional-order version of the Lengyel–Epstein system that models the
chlorite-iodide-malonic acid (CIMA) chemical reaction. Using the specific forward dif-
ference operator and an L1 finite difference scheme, we introduce a fractional discrete
version of the well-known Lengyel–Epstein reaction–diffusion system. Then, we provided
sufficient constraints for the unique equilibrium’s local asymptotic stability. Furthermore,
the steady-state solution’s global asymptotic stability was proven using the direct Lya-
punov technique. Finally, the numerical simulations demonstrate all of the theoretical
research’ results. Indeed, the graphs illustrate that the recommended model’s dynamics
are compatible with the performance of continuous version of the system.

The results show that the linearization technique and the Lyapunov functional may
be used to address the problem of stability in discrete fractional-order reaction–diffusion
systems. Furthermore, the study conclusions established in this work may be directly
applied to many different types of discrete fractional spatiotemporal systems with reaction–
diffusion terms.
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