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Abstract: Pallet detection and tracking using computer vision is challenging due to the complexity
of the object and its contents, lighting conditions, background clutter, and occlusions in industrial
areas. Using semantic segmentation, this paper aims to detect pallets in a logistics warehouse. The
proposed method examines changes in image segmentation from one frame to the next using semantic
segmentation, taking into account the position and stationary behavior of newly introduced objects
in the scene. The results indicate that the proposed method can detect pallets despite the complexity
of the object and its contents. This demonstrates the utility of semantic segmentation for detecting
unrecognized objects in real-world scenarios where a precise definition of the class cannot be given.

Keywords: object detection; semantic segmentation; UPerNet; convolutional neural networks;
background subtraction; warehouse pallet
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1. Introduction

In recent years, the applications of machine learning and computer vision have ex-
tended to encompass a vast array of industries. Specifically, logistics warehouses have
benefited considerably from the deployment of these technologies, as they enhance operat-
ing efficiency and safety. Unfortunately, despite their numerous benefits, these technologies
still struggle to identify and detect unrecognized things in the actual world.

The potential hazard posed by abandoned or misplaced products is one of the most
important concerns in logistics warehouses. These things can pose a serious risk to employ-
ees and impede the warehouse’s general operations. Hence, it is imperative to detect these
unidentified things swiftly and precisely.

To overcome this issue, we offer a novel semantic segmentation method for finding
unknown items in images. Semantic segmentation is a technique that adds a semantic
label to each pixel of an image, indicating the entity to which it belongs. Particularly in
the realm of computer vision, this method has proven to be highly effective for picture
recognition tasks.

Our suggested method identifies freshly introduced objects in a scene based on their
position and their stationary behavior. Using the state-of-the-art UPerNet model, which is
renowned for its remarkable performance in semantic segmentation tasks, we developed a
semantic segmentation mask.

Establishing a baseline by assessing the scene devoid of any items is the first stage in
our methodology. Once a baseline has been constructed, the scene is monitored for any
changes to the semantic segmentation mask. If a new object is added into the scene, its
position and behavior is used to identify it.

To further improve the precision of our system, we classify freshly identified objects
using machine learning methods. This enables our technique to distinguish between
various object kinds, such as pallets and boxes, and label them appropriately.
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The results of testing our proposed strategy in a real-world scenario were really
encouraging. Our technique was able to accurately detect and classify unknown objects in
situations when the object class was not explicitly defined. Existing approaches frequently
struggle to identify unidentified items; therefore, this is a huge advance.

In conclusion, our method illustrates the effectiveness of semantic segmentation in
recognizing unknown objects in real-world circumstances. The combination of position,
stationary behavior, and machine learning techniques enables our system to effectively
detect and classify newly introduced objects, hence enhancing warehouse security and
operating efficiency. We feel that our technology has a great application potential in
businesses where the detection of unidentified objects is a major issue.

The paper’s outline is as follows: We introduce the problem of pallet detection and its
significance in the introduction. Section 2 then reviews the related work on pallet detection.
In Section 3, we discuss the theory of neural network architectures and optimization
techniques, including stochastic gradient descent (SGD), momentum method, and adaptive
gradient descent (AdaGrad). Semantic segmentation and convolutional neural networks
are discussed in this section as well. In Section 4, we present a method for detecting
pallets that consists of background subtraction, tracking, and majority vote. Section 4
explains in detail our proposed algorithm. In Section 5, we discuss performance evaluation
metrics, including the evaluation of semantic segmentation models, and provide dataset
examples. There, we also present experimental results, and in Section 6, we conclude on
the effectiveness of our proposed pallet detection method.

2. Related Work
2.1. Problem Overview

Today, logistics centers surround urban areas and employ a substantial number of
individuals. The need to strengthen safety at these institutions is evident, but sadly, the
expense of doing so is also a factor. Falling palettes from the shelves, lost palettes on
passageways between shelves, and pallets stopping forklifts are some of the primary work
security concerns in these locations.

Existing commercial hardware-based solutions for the first issue are based on infrared
beams. They are extremely dependable but expensive, particularly for large distribu-
tion hubs.

We propose a technique that utilizes the existing monitoring system to detect all of
these issues reliably. To do this, the suggested algorithm must be independent of perspective
or lighting.

2.2. Dataset Problem

Due to the delicate and highly competitive nature of the logistics industry, public
datasets are not readily available. The majority of research in this sector is conducted under
strong nondisclosure agreements (NDAs), so photographs that could expose sensitive
information are not released to the public. As a result, we had to independently acquire
and annotate images. Regrettably, we were also bound by a stringent NDA.

In order to address this issue, we conducted the initial training for the semantic
segmentation on a general purpose dataset and the fine-tuning on a smaller sample from
our own dataset. For the initial step, we chose the ADE20k [1].

The ADE20k dataset is a large-scale dataset for scene parsing consisting of over
20,000 images with more than 150 object categories labeled at the pixel level. The images
in the dataset depict a variety of indoor and outdoor settings including offices, bedrooms,
streets, and parks, among others. The dataset is intended for computer vision tasks
requiring scene comprehension, including object detection, semantic segmentation, and
image captioning. The images in the dataset were gathered from multiple sources, including
Flickr and Google Images, and annotated by humans using an interactive segmentation
tool. Annotations consisting of object labels, object parts, and scene attributes provide
rich and detailed scene information. The ADE20k dataset has been extensively utilized
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in computer vision research, leading to the creation of cutting-edge algorithms for scene
parsing and related tasks.

2.3. Existing Methods

Classic object classification methods such as decision trees, hidden Markov chains, and
support vector machines have been widely used in object classification tasks. Nevertheless,
they cannot be applied in the scenario proposed in this paper. The first issue is the unknown
identity of the objects. The primary purpose of the algorithm is to identify any object that
may represent a risk in the work environment, not just fallen pallets. The classic methods
could not identify any unknown object, regardless of its shape and structure, or without
seeing it before. Further, there are many environmental changes, both regarding the
background movements and the lighting conditions, which lead to unsatisfactory results in
the case of the classic classification methods mentioned previously.

As shown in [2], several algorithms have been implemented and trained to detect
pallets in industrial warehouses. This paper compares three convolutional neural network
architectures to address the pallet detection task.

Faster R-CNN [3] is based on a region proposal concept, which was first introduced
with R-CNN [4]. In 2015, Girshick introduced Fast R-CNN, which generated region
proposals directly on a feature map computed on the whole image. Ren et al. introduced
the region proposal network (RPN), which used a fully convolutional network for feature
extraction that output a feature map of the input image. After ROI pooling, a classifier
determined the class.

SSD [5] and YOLO [6] propose a one-step object detection network that does not
require region proposals. SSD is comprised of a first convolutional extraction network of
the feature map, several convolutional layers that acquire multiscale feature maps, and a
final component that generates the estimated offset and confidence for each class. Redmon
et al. introduced YOLO in 2016, which improved the detection accuracy, but its primary
weakness was its inability to detect small objects.

A CNN evaluation of pallets and pallet pockets was used to select the final pallet
proposals by employing a decision block, as shown in Figure 1. The heuristic rules utilized
by the decision-making phase were as follows: if a detected pallet’s front side exceeds a
threshold area, a pallet proposal is created only if the pallet’s front side contains exactly
two pockets; otherwise, the pallet’s front side is discarded. If the area threshold is fixed
to 150 × 103 pixels, the decision block always accepts the image as a palette, regardless
of whether or not it contains two compartments. This decision rule was motivated by the
necessity of identifying all pallet components in order to perform secure pallet forking
operations on close and approximately frontal pallets. Additionally, it was necessary to
model all potential pallets for AGV navigation.

Figure 1. CNN detects the front sides of pallets (yellow boxes) and the pallet pockets (red boxes) [2].

Work in this field has also been done more recently, as highlighted in [7], also based
on SSD and YOLO models.
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The solutions now available in the literature are geared toward assisting forklift opera-
tors and even autonomous forklifts to recognize and manipulate palettes. Our objective is
to detect abandoned, misplaced, or fallen palettes in order to enhance security.

The approaches currently being investigated for palette detection are inapplicable to
our needs, as they rely on clearly detecting and observing the palette structure. Our objec-
tive is to discover the palettes with the surveillance system. This shift in camera position
and perspective necessitates a radical adjustment to the strategy and algorithms employed.

2.4. Challenges in Pallet Detection Using Traditional Methods

Due to the complexity of the objects stacked on top of pallets, traditional object
detection techniques such as you only look once (YOLO) [6] model and region-based
convolutional neural network (R-CNN) [8] are incapable of accurately recognizing pallets
from above. Preliminary investigations demonstrated that these networks did not converge
when trained on such datasets. As shown in Figure 2, pallets are frequently covered with a
variety of objects, such as boxes, barrels, bottles, motorcycles, and more. These objects can
be of varying sizes, shapes, and textures, making it difficult for object detection algorithms
to classify them accurately. In addition, pallets can be partially obscured by other objects
or their surroundings, making it more difficult for object detection techniques to identify
them. As a result, traditional methods may fail to accurately recognize pallets, making their
monitoring and tracking in logistics warehouses difficult.

Figure 2. Pallets with different loads: (a) stacked bags; (b) large bag; (c) stacked boxes; (d) barrels;
(e) stacked bottle cases; (f) stacked water bottles; (g) motorcycle bodies.

The high density of pallets in logistics centers presents a difficulty in detecting [9]
misplaced or tipped-over pallets. Even if conventional object detection methods could
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accurately detect pallets, it is challenging to distinguish between pallets in their designated
locations and those that are not. This emphasizes the need for a specialized algorithm
capable of distinguishing between misplaced or fallen-over pallets and the rest, thereby
enhancing warehouse safety.

3. Theory Overview

In this section, we define the theoretical aspects used throughout the implementation
process of the proposed method. First, we present a detailed description of neural networks
and how they developed from perceptron to convolutional networks. Afterward, we
outline the semantic segmentation process, focusing on the UPerNet model that represents
the foundation of our proposed algorithm.

3.1. Neural Network Architectures

The architecture of an artificial neural network (ANN) [10] defines how the neurons
are arranged and interconnected. Generally, a neural network has three types of layers in
its composition. The first one is the input layer. It receives information from the external
environment. Network inputs are usually scaled to maximum values. The normalization
step increases the numerical precision of the mathematical operations performed by the
network. After the input layer, a network can have one or more hidden layers. Most of the
neural network’s internal processing occurs at the level of these layers. At the end of the
network, it is an output layer responsible for producing and presenting the final outputs of
the network obtained due to the processing performed by the previous layers.

Furthermore, we outline several main architectures depending on how the neurons
are interconnected.

The most straightforward layout is the perceptron [11]. It represents an element with a
certain number of inputs, which calculates their weighted sum. For each entry, the weight
can be either 1 or −1. Finally, this amount is compared with a threshold, and the output y
is obtained according to Equation (1).

y =


1 → ∑N

i=1(βi · xi) ≥ θ

0 → ∑N
i=1(βi · xi) < θ

(1)

where N symbolizes the total number of inputs, xi is the value of each input, βi represents
the value of the weight associated with input i, and θ is the decision threshold. The two
output values are used to distinguish between two different classes. For a perceptron to
classify as well as possible, the weights must be changed, and the threshold must be set to
an appropriate value.

The perceptron is not a complete decision model, being able to distinguish only be-
tween two different classes. For this reason, the need for a complex network of perceptrons
has occurred. These networks, called multilevel perceptron (MLP) networks [12], can
solve classification problems. The perceptrons in the input layer make simple decisions
by applying weights to the input data. In contrast, the ones in the intermediate layers
apply weights to the results generated by the previous layer. In this way, the perceptrons
in the intermediate layers make decisions more complex and abstract than those in the
first layer. As the number of layers increases, the MLP network can make increasingly
sophisticated decisions.

The purpose of MLPs is to approximate a mathematical function of the form

y = f (x; θ), (2)

and the goal of the network is to learn the parameter θ which leads to the best approximation
of the desired function.

The network needs to use a cost function in the training stage [13], which depends on
the values of the weights. The goal of any neural network is to minimize this cost function
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using various optimization methods. The most used optimization methods are described
in the following subsection.

One of the cost functions used is mean squared error (MSE), from (3).

C(w, b) =
1

2n ∑
x
||y(x)− a||2 (3)

where w represents the weights in the network, n is the number of inputs trained, and the
vector a represents the vector of outputs when the vector x is at the network’s input.

3.2. Optimizations Methods

Solving the training problem generally involves a lot of time and resources. Since
this is a fundamental and costly problem, several optimization techniques have been
developed [14]. Mainly, the optimization boils down to finding the parameter θ of the
neural network so that the cost function J(θ) is minimal.

3.2.1. Stochastic Gradient Descent (SGD)

The classic gradient descent (GD) method [15] uses the entire training set to update
the parameters, which involves high costs in terms of time and required computing power.
In contrast, using the SGD algorithm [16] involves using only a few training examples or
even a single example. Thus, this method leads to a smaller required memory and a high
convergence speed.

The GD algorithm updates the θ parameter according to

θ = θ − α · ∇θ · E[J(θ)] (4)

In the case of SGD, the parameters’ gradient is calculated using only some of the
training examples, thus obtaining an update of the form

θ = θ − α · ∇θ · J(θ; x(i), y(i)) (5)

where α represents the learning rate, and x(i), y(i) is a pair from the training set. The
learning rate decreases linearly until iteration τ, then it remains constant, according to
Equation (6).

αk = (1− ε) · α0 + εατ (6)

ε =
k
τ

(7)

where αk represents the value of the learning rate at iteration k, and α0 is the initial value of
the learning rate.

3.2.2. Momentum Method

While the SGD method is popular, it can lead to relatively slow learning. The mo-
mentum method was created to speed up the learning process. The parameter update is
computed according to

v = γ · v +∇θ · J(θ; x(i), y(i)) (8)

θ = θ − v (9)

The momentum method introduces variable v, which represents the velocity vector
that has the same size as the θ vector. The parameter γ determines the rate at which the
contributions of the previous gradients decay exponentially. This parameter belongs to the
range (0, 1].
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3.2.3. Adaptive Gradient (AdaGrad)

The AdaGrad (adaptive gradient) method [17] is an extension of the SGD algorithm. It
adapts the learning rates of all model parameters individually. Unlike the SGD method, the
AdaGrad method scales the learning rates to the root of the sum of all previous gradients.
Let N be the number of examples from the training set used. In the first step, this method
computes the size

g = ∇θ · J(θ; x(i), y(i)) (10)

and updates the sum

r = r + g� g (11)

where � represents the element-by-element multiplication of the two vectors.
Finally, AdaGrad uses an update relation for the parameter θ similar to the one used

by the SGD method in Equation (5):

θ = θ − α

δ +
√

r
· ∇θ · J(θ; x(i), y(i)) (12)

where δ is a small constant that aims to avoid division by zero of the learning rate.
The AdaGrad method performs updates with a more significant step for the less

frequent parameters and a minor step for the more frequent ones.

3.3. Convolutional Neural Networks

Convolutional neural networks (CNN) [18] are similar to the previously presented
neural networks. They are composed of several layers of neurons that have various
associated weights. These networks receive input images, leading to a three-dimensional
network architecture. The main difference between fully connected networks and CNNs is
the type of input data they accept.

The input layer receives the pixel values from the image for the three color channels:
R—red, G—green, and B—blue, respectively. The intermediate layers can be of several
types, among which the most important ones, convolutional layers and pooling layers,
are described below. Finally, the last layer is a fully connected type layer. Its purpose is
to calculate the results for each class. Thus, a CNN-type network transforms the pixel
values from the input image into probabilities belonging to all classes. A loss function (for
example, SVM or SoftMax) is applied to the last neural layer and measures the network’s
performances and the outputs’ correctness.

3.3.1. Convolutional Layers

The primary process that takes place in a neural network is affine transformations [19].
The input receives a vector, which is then multiplied by a matrix to produce the output.
This transformation can be applied to any input data. Regardless of their size, data can be
put into a vector before the transformation occurs.

Discrete convolution is a linear transformation that preserves the input data’s structure
and considers how those data are ordered. Only a few units from the input data structure
are used to calculate a unit from the output data structure. In addition, discrete convolution
reuses parameters, with the same weights being applied to multiple units in the input data
structure. The kernels or filters used in the convolution operation are spatially small (along
the width and height of the image) but extend through the entire depth of the input data
volume. At each location, the product of each kernel element and the input element it
overlaps is calculated. All the products are summed, resulting in the output value at the
current location.

The convolution made at the level of these layers can have N dimensions. The
collection of kernels defining a discrete convolution has a form corresponding to one of
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the permutations (n, m, k1..., kN), where n is the number of output feature maps, m is the
number of input feature maps, and k j is the size of the kernel along the j-axis.

A convolution layer results in a whole set of filters, each producing a two-dimensional
feature map. All these maps are stored along the third dimension, depth, and thus produce
the output of the convolutional layer. Neuron connections are local in space but complete
over the entire depth of the input volume. Since the images have large sizes, each neuron
favors being connected to a specific region in the input data volume, thus reducing the
spatial dimensions—width and height. The regions are chosen to have the exact same
dimensions as those of the filter used and are called the neuron’s receptive field. In contrast,
the third dimension remains unchanged. The data’s dimensions at the convolutional layer’s
output are calculated according to (13).

O =
W − F + 2P

S
+ 1 (13)

where W represents the size of the input data, F is the size of the receptive field of the
neurons, which is equivalent to the size of the filters used in the convolution operation, S
represents the step used, and P is the number of padding zeros used.

According to (13), as the step S used has a bigger value, the output produces a smaller
quantity of data. Furthermore, the parameter P allows one to control the quantity of output
data too. In general, a number of zeros is used so that the output data are the same size as
the input data. The values of the parameters S and P should be chosen such that applying
Equation (13) yields an integer value for the size of the output data.

3.3.2. Pooling Layers

In addition to convolution operations, pooling operations form another essential
building block in CNNs. These operations reduce the dimensions of feature maps by using
certain operations to summarize each subregion, such as averaging or the maximum value
in each subregion. These operations work similarly to the convolution relation. A window
of various sizes is hovered over the input data, selecting one subregion at a time. The
content of this region is processed according to a pooling function. In a neural network,
the role of pooling layers is to ensure the invariance to small translations of the input. The
most common pooling operation is to choose the maximum value of each subregion in the
input map.

In general, it is typical to introduce a pooling layer between several consecutive
convolutional layers in a CNN network to reduce the number of required parameters and
the amount of computation in the network. The pooling layer acts independently on each
region in the input data and resizes it spatially. The depth does not change. The most
common form is a set of filters of dimensions 2× 2, applied with a step equal to two. In this
case, the pooling operation is applied to four numbers in each region. Thus, the volume is
reduced by 75%.

At the output of this layer, a volume of data is obtained with the following dimensions:

W =
Wi − F

S
+ 1 (14)

H =
Hi − F

S
+ 1 (15)

D = Di (16)

where Wi, Hi, and Di are the input data sizes, S is the step at which the filters are ap-
plied, and F is the filter size. Equations (14)–(16) show that the third dimension remains
unchanged while the width and height shrink.

Some architectures have no such layers but only use successive convolutional layers.
To reduce the data size, a network can use convolutional layers with larger steps instead of
pooling layers.
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3.4. Residual Neural Networks

As stated in this section, as the number of layers in a network increases, any function
can be approximated, regardless of its complexity. For this reason, vast neural networks
with hundreds of layers have been implemented. One of the main problems of these
networks is the vanishing or exploding gradient.

In the first case, the gradient can decrease exponentially towards zero. In this circum-
stance, optimization methods such as gradient descent evolve slowly toward a solution. In
the second case, the gradient grows exponentially, taking very high values. To address this
problem, residual neural networks were implemented, formed by a series of residual blocks.
The concept of residual networks was first presented in [20] and was later augmented
in [21].

The residual blocks are based on a method called skip-connections. This method
assumes that the input data in the block are not passed through all the layers and are added
directly to the block output. Figure 3 presents different architectures of a residual block.

Figure 3. Architectures of residual blocks.

Figure 3a illustrates the classic architecture of a block, where the input x and the
output F(x) have the same dimensions.

Let x be the input to the residual block and H(x) be the desired output. F(x) represents
the function learned by the neural network and represents the output of the block when
the input is x. In the case of the residual block, the new output is a sum between the input
to the block and the output of the layers, as can be seen from Equations (17)–(20). The
function that the network has to learn is, this time, a residual function computed as the
difference between the desired output and input (Equation (21)).

x → Input (17)

H(x)→ Correct Output (18)

F(x)→ Network Output (19)

H(x) = F(x) + x (20)

F(x) = H(x)− x (21)
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The second architecture shown in Figure 3b is used when the output F(x) and the
input x have different sizes and cannot be summed. To solve the dimensions issue, the
input has to go through one or more layers to reach the required size. In this way, a linear
transformation is applied to the input, which can be achieved by using convolutional layers
or just by filling the input with zeros until it reaches the size of the output F(x). This time,
the new output of the residual block is of the form

H(x) = F(x) + x′ (22)

where x′ = W(x) is the linear transform.
Finally, several residual blocks are combined to obtain a residual neural network.

3.5. Semantic Segmentation

Semantic segmentation is a computer vision task that involves labeling each pixel in
an image with a semantic label. Semantic segmentation aims to comprehend the pixel-level
content of an image, providing a more comprehensive understanding of the scene than
traditional object detection techniques. Deep neural networks, such as convolutional neural
networks (CNNs) that are trained to predict the class of each pixel in an image, are typically
used to perform semantic segmentation. Semantic segmentation results in a dense label
map that assigns a class label to each pixel in the image, providing a comprehensive under-
standing of the scene’s objects and their boundaries. Semantic segmentation has numerous
applications, including autonomous driving, scene comprehension, and medical imaging.

UPerNet [22] is a deep learning model for semantic segmentation that fuses multiscale
contextual information using a top-down and bottom-up mechanism. By employing a
hierarchical feature fusion mechanism that effectively combines the strengths of both top-
down and bottom-up pathways, UPerNet is an improvement over existing models such
as fully convolutional network (FCN) [23]. To generate the final semantic segmentation
map, the UPerNet model employs a deep neural network architecture that combines a
ResNet-style network [20] with an upsampling mechanism. It has been demonstrated that
the UPerNet model produces high-quality results for semantic segmentation, making it a
suitable option for detecting unrecognized objects in images.

For a better understanding of the UPerNet model, we define the following terms:

• Top-down and bottom-up mechanisms: UPerNet captures high-level semantic in-
formation and low-level details using a top-down and bottom-up mechanism. The
top-down pathway employs a pyramid pooling module to extract multiscale con-
text information, whereas the bottom-up pathway employs dilated convolutions to
maintain spatial resolution.

• ResNet-style network: UPerNet’s backbone is a ResNet-style network. Pretrained on
the ImageNet dataset, the ResNet-style network provides the model with rich feature
representations that can be tuned for semantic segmentation.

• Upsampling mechanism: To generate the final semantic segmentation map, UPerNet
employs an upsampling mechanism. The upsampling mechanism combines the top-
down and bottom-up features and employs transposed convolutions to improve the
spatial resolution of the features.

• Hierarchical feature fusion: the hierarchical feature fusion mechanism enables UPer-
Net to capture high-level and low-level semantic information, yielding high-quality
semantic segmentation maps.

• Performance: UPerNet has demonstrated state-of-the-art performance on multiple
benchmark datasets for semantic segmentation, including PASCAL VOC [24] and
Cityscapes [25]. This makes UPerNet a suitable option for detecting unidentified
image objects.

The following can be seen in Figure 4.
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Figure 4. UPerNet framework for Unified Perceptual Parsing [22].

Top-left: feature pyramid network (FPN) [26] is a common architecture for object
detection and semantic segmentation. FPN is designed to extract multiscale contextual in-
formation from an image, which is essential for accurately detecting objects of various sizes.

In the FPN architecture, the pyramid pooling module (PPM) [27] is a component that
is added to the final layer of the backbone network. The PPM module effectively captures
both high-level semantic information and low-level details by combining features from
different scales. The PPM module is incorporated into the top-down branch of the FPN
architecture, where it contributes to the final feature maps used for object detection or
semantic segmentation.

The combination of the FPN architecture and the PPM module enables the model to
extract multiscale information from an image, which is essential for accurately detecting ob-
jects of varying sizes. By adding the PPM module to the final layer of the FPN architecture’s
backbone network, the FPN + PPM model is able to effectively capture both high-level
semantic information and low-level details, resulting in enhanced performance for object
detection and semantic segmentation tasks.

This depicts a multihead architecture for semantic segmentation, with each head
designed to extract specific semantic information from an image.

The scene head is attached to the feature map immediately after the pyramid pooling
module (PPM), as information at the image level is more suitable for scene classification.
This head is in charge of recognizing the overall scene and classifying it into various
categories, such as indoor or outdoor scenes.

The object and part heads are affixed to the feature map in which all the layers
generated by the feature pyramid network have been combined (FPN). These heads are
responsible for detecting objects and their parts in the image, respectively. The object head
provides coarse-grained information about the location of an object, whereas the part head
provides fine-grained information about object parts.

The material head is attached to the highest-resolution feature map in the FPN. This
head is responsible for identifying various material properties, including metal, glass,
and cloth.

The texture head is connected to the Res-2 block in the ResNet [20] architecture
and is fine-tuned after the network has completed training for other tasks. This head is
responsible for capturing texture data, such as the roughness, smoothness, and patterns of
image objects.

The use of multiple heads in this architecture enables the model to capture multiple
levels of semantic information, resulting in a more in-depth and thorough comprehension
of the image content.
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4. Proposed Method
4.1. Proposed Algorithm

Using a block diagram, the following section illustrates the proposed algorithm. The
block diagram provides a clear and concise illustration of the algorithm’s various compo-
nents and their interactions. In addition, the section contains a pseudocode implementation
of the algorithm, which describes the algorithm’s operations and decision-making pro-
cedure in detail. The block diagram and pseudocode together provide a comprehensive
understanding of the proposed method and its operation. These visual aids clarify the algo-
rithm’s complex operations and demonstrate its functionality in a concise and clear manner.

As input data, the proposed algorithm works only on videos. While the first part
of the algorithm is applied to the static images extracted from the footage, the following
stages such as tracking are dependent on the temporal component.

In the first step of the proposed algorithm, the input image is preprocessed. This
is achieved by running an image through a background subtraction algorithm [28]. The
mathematical model of this method and its detailed description are presented in the
following subsection. In addition to producing a clean image as input for the semantic
segmentation algorithm, this step extracts the bounding boxes of all moving objects within
the scene. By eliminating the static background, the algorithm is able to concentrate on
the static objects, making them easier to identify and segment. This preliminary step is
essential for ensuring the consistency of the subsequent semantic segmentation process
over time and enhancing the algorithm’s overall performance.

In the second step of the proposed algorithm, it is determined whether or not the
semantic segmentation map needs to be updated. If an update is deemed necessary,
the current image is subjected to the semantic segmentation algorithm, and the mean
segmentation map is updated using a majority vote approach [29]. In this method, the
segmentation result that occurs most frequently for each pixel is selected as the updated
map. If no update is necessary, the algorithm continues without performing the semantic
segmentation. Periodically, the map is revised to ensure that it remains accurate and reflects
the current landscape, by adding a new vote to the majority vote algorithm. The updated
map provides a comprehensive depiction of the floor, as it is routinely revised to maintain
its accuracy and keep up with environmental changes.

In the third step of the proposed algorithm, motion areas detected in the first step
are analyzed using a tracking algorithm. The tracker is responsible for maintaining the
paths of moving objects and identifying which of these paths have remained stationary
and inactive for a predetermined amount of time, such as one minute. Once a stationary
track is identified, it is considered a potential object of interest and sent to the next stage of
the algorithm. This step is essential for reducing false-positive detections by eliminating
tracks that are merely noise or transient motions. Instead, the algorithm focuses on objects
that are potentially significant and remain in the scene for an extended amount of time.
The tracking algorithm is essential for ensuring the accuracy and efficacy of the overall
algorithm, as it identifies objects that require additional analysis and consideration. In
this algorithm, we use the centroid tracking method, which is presented in detail later in
this section.

In the next phase of the proposed algorithm, a potential object of interest is analyzed
further to determine if it is a class that is unknown. On the current image, the semantic seg-
mentation algorithm is applied, and its output map is compared to the historical map. This
comparison, along with the location of the potential object of interest, aids in determining
whether the area of interest belongs to an unknown class or is expected to be present. If an
unknown or unexpected class is detected at the location of the tracked object, it is safe to
assume the presence of the target class.

The comparison of the maps, in conjunction with the location of the potential object
of interest, provides a reliable method for detecting unidentified objects. The detection is
based on the likelihood that unknown objects will be of a different class than the expected
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objects in the scene, and that their position will differ from that of the expected objects on
the historical map.

The proposed algorithm can be implemented through pseudocode (Algorithm 1) and
represented through a block diagram as in Figure 5. The pseudocode provides a clear
and concise description of each step in the algorithm, making it easy to understand and
implement. On the other hand, the block diagram provides a visual representation of the
flow of the algorithm, helping to simplify and clarify the overall process.

The most significant contribution of this paper is the novel application of seman-
tic segmentation techniques to detect objects that were not present during the training
phase of the algorithm. This renders the proposed algorithm extremely resistant to novel
circumstances and environments.

Figure 5. Proposed method.
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Algorithm 1 Proposed method

I ← InputImage
BG, MM← BackgroundSubtraction(I)
VM ← GetBoundingBoxes(MM)
if i ≤ th1|now− tm < th2 then

TmpMap ← SemanticSegmentation(BG)
Map← MajorityVote(TmpMap)
FlorMap← LabelFilter(Map)

end if
Tracks← ObjectTracking(VM, now)
StopedTracks← GetStopedTraks(Tracks, now)
if len(StopedTracks) > 0 then

Map← SemanticSegmentation(I)
FlorMaptmp ← LabelFilter(Map)
FlorChange = FlorMap− FlorMaotmp
n← 0
while n < len(StopedTracks) do

Nz = CountNonZeros(StopTracks(n), FlorChange)
if ( then Nz > 0)

ObjectO f Interest← StopTracks(n)
end if
n← n + 1

end while
end if

4.2. Background Subtraction

The background subtraction method (BSM) represents one of the most used algorithms
for detecting moving objects in a video stream. After applying this method, a mask of the
foreground objects is obtained. This mask has the exact dimensions as the input image,
with the foreground objects being white and the background black. The mathematical
formulation of background subtraction can be described as follows:

Let I(x, y) be the current frame and Ibg(x, y) be the estimated background model. The
goal of background subtraction is to find the pixels that correspond to the foreground
object. This can be achieved by subtracting the background model from the current frame:

F(x, y) = |I(x, y)− Ibg(x, y)| (23)

where F(x, y) is the difference between the current frame and the background model.
Finally, a thresholding function can be applied to F(x, y) to segment the foreground object:

B(x, y) =

{
255 if F(x, y) > T
0 otherwise

(24)

where B(x, y) is the binary segmentation, with the foreground object in white and the
background in black, and T is the threshold value. The choice of threshold value affects the
performance of the background subtraction algorithm, with higher values leading to fewer
false positives and lower values leading to fewer false negatives (Figure 6).

There are several ways to perform background subtraction. All the methods start
from an estimated background model that is updated over time. Each method updates the
background model differently.
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Figure 6. Background subtraction method.

One of the simplest and most frequently used techniques is frame differencing. In this
case, the absolute difference of two consecutive frames is used to detect moving objects.
Initially, the estimated background model is the first frame of the input video, and then, it
is considered to be the previous frame. Mathematically it can be written as

F(x, y) = |It(x, y)− It−1(x, y)| (25)

Frame difference is a relatively simple technique, sensitive to its threshold value.
Although it is a technique that does not involve high costs in terms of computing power,
other more complex methods of updating the background model were necessary.

One of the most well-known techniques is the mixture of Gaussians (MoG) technique.
This background subtraction method was also used in this proposed method. The Gaussian
model is a probabilistic model that starts from the hypothesis that a mixture of Gaussian
distributions with unknown parameters can generate all pixel values. In practice, between
three and five Gaussian distributions are used. The mathematical model is described
as follows:

The multivariate Gaussian distribution is:

N(x|µ, Σ) =
1

(2π)D/2
1

|Σ|1/2 e−
1
2 (x−µ)TΣ−1(x−µ) (26)

At any time t, we know the history of each pixel (x0, y0):

X1, . . . , Xt = {I(x0, y0, i) : 1 ≤ i ≤ t} (27)

The history of each pixel is considered to be a mixture of k Gaussian distributions, accord-
ing to

P(Xt) =
K

∑
i=1

ωi,t ∗ N(Xt|µi,t, Σi,t) (28)

where ωi,t is the weight at time t, corresponding to the ith distribution, while µi, t and Σi,t
are the mean and, respectively, the standard deviation of the ith distribution, at time t.

When a new frame appears, at time t + 1, each pixel in the frame is compared with the
Gaussian distributions by calculating the Mahalanobis distance:

((Xt+1 − µi,t)
Tσ−1

i,t (Xt+1 − µi,t))
0.5 < 2.5 · σi,t (29)

Two situations are possible:

1. If the pixel value Xt+1 matches one of the distributions, that distribution is updated
according to the relations (30) and (31).

µi,t+1 = (1− ρ)µi,t + ρXt+1 (30)

σ2
i,t+1 = (1− ρ)σ2

i,t + ρ(Xt+1 − µi,t+1)
2 (31)
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where

ρ = αN(t + 1|µi,t, σ2
i,t) (32)

and α represents the learning rate.
Finally, the weights are updated for all the distributions according to:

ωi,t+1 = (1− α)ωi,t + α(Mi,t+1) (33)

where Mi,t+1 = 1 only for the matching distribution, and zero in all other cases.

2. If the pixel value does not match any of the distributions, the least likely Gaussian
distribution is replaced with a new one with high variance, low weight, and mean
µt+1 = Xt+1.

Finally, all distributions are ordered by the ω/σ value. The first B distributions are
chosen as the background models, while the rest are foreground models, where

B = argminb(
b

∑
i=1

ωi > T) (34)

and T represents the threshold.

4.3. Tracking

Centroid tracking [30] is a prevalent object tracking algorithm that uses the center of an
object’s bounding box as a representative feature for tracking its position over time. Given
an initial set of bounding boxes, the algorithm modifies the position of each bounding
box in subsequent frames based on the centroid position. The centroid of a bounding
box is the average position of all pixels contained within the box. In other words, the
centroid of a bounding box is the average of the x and y coordinates of all pixels within the
bounding box.

Mathematically, the centroid of a bounding box can be expressed as:

(xc, yc) =
1
N

N

∑
i=1

(xi, yi) (35)

where N is the number of pixels within the bounding box, (xi, yi) are the x and y coordinates
of pixel i, and (xc, yc) is the centroid position. The position of the centroid in subsequent
frames is updated by using the same formula, with the updated set of pixels within the
bounding box. This information can be used to update the position of the bounding box
and track the object over time.

4.4. Majority Vote

The majority vote method is a straightforward and effective method for combining
multiple results into a single, more precise result. It is commonly employed in computer
vision and image processing for semantic segmentation tasks. The basic idea behind this
method is to use the result that occurs most frequently for each pixel as the updated result.

Mathematically, let Si,j be the segmentation results for each pixel (i, j), and k be
the number of segmentation results being combined. The majority vote method can be
expressed as:

Ŝi,j = argmaxk
c=1 Ni,j(c) (36)

where Ŝi,j is the final segmentation result for pixel (i, j), and Ni,j(c) is the number of times
class c was assigned to the pixel (i, j) across the k segmentation results.
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4.5. Parameters Used in the Proposed Method

Several parameters were used to implement the proposed method. These parameters
directly affected the final performance of the algorithm, both in terms of detection accuracy
and the number of false alarms it generated. These parameters are described below.

The diagram from Figure 5 presents two parameters marked th1 and th2, respectively.
Parameter th1 is a preset number of frames after which the floor mask is updated; similarly,
th2 is a preset time after which the same action is taken. One of the two parameters must
have a set value for the method to work. Their purpose is to decide when the reference map
of the floor is updated. Both parameters can take values in the range [0, ∞). If values are set
for both parameters, the algorithm updates the map according to the smallest parameter.
In the proposed method, we determined that triple the time to trigger an alarm was a good
value for these thresholds. We used the following th2 parameter:

th2 = 3 · 60 s (37)

Depending on the value of these parameters, false alarms can be prevented if a pallet
is moved to a shelf and it changes the floor map. As the value of the parameters decreases
toward 0, the map is continuously updated, and the algorithm does not generate any alarm.
Otherwise, if the value of the parameters is too high, the map is no longer updated, and the
system generates an increasing number of false alarms.

Another important parameter is the time to trigger an alarm. This parameter was set,
in our case, to

∆t = 60 s; (38)

this parameter represents the time interval from when a track is considered stationary until
an alarm is generated. If movement is detected, the timer resets.

In order to eliminate small objects that can generate false alarms, the proposed method
filters the detections according to their size. Therefore, the algorithm eliminates all the
objects with a size smaller than

∆a = 0.005 · w · h (39)

where w represents the width of the input frame, while h is the height of the frame.
The last parameter used is the threshold from the background subtraction phase. This

parameter can have values in the interval [0, 255]. The choice of this threshold affects the
performance of the background subtraction stage and, implicitly, the overall performance
of the algorithm. As the threshold value decreases, the method generates more false alarms.
Contrarily, as the value increases, the algorithm starts to miss moving objects, which may
lead to a reduced performance of the method. As a compromise, we determined that the
most optimal value for this threshold was

thbg = 16 (40)

5. Evaluation and Results

In order to test the final performances of the proposed algorithm, we designed several
testing stages. This section presents the metrics used in the testing phase and describes
the scenarios and the results obtained. The first step was to test several neural models
to identify the most suitable neural network for the presented scenario. In this sense, we
compared the existing methods from the point of view of efficiency and cost in terms of the
time and computing power required.

Later, after we chose the most optimal neural network, a series of tests were imple-
mented to determine the performance of the proposed method.
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5.1. Performance Evaluation Metrics

In order to correctly determine the performance of the proposed algorithm, we used
several evaluation metrics in addition to the method’s accuracy [31]. Computed indi-
vidually, the accuracy is vague for determining a method’s capabilities [32]. Different
performance metrics are employed to quantify an algorithm’s precision and efficacy during
its evaluation. We computed the evaluation metrics characteristic of classification methods,
such as mAP [33], recall [34], or F-score [35]. The metrics specific to segmentation methods,
such as mIoU, were also used in the testing stage.

In order to be able to calculate the presented evaluation metrics, it is necessary to
define four elementary theoretical concepts used in any classification system. These are
presented in Table 1.

Table 1. Elementary concepts used in performance evaluation.

Elementary
Concept Abbreviation Description

True positives TP It occurs when a detection annotated as belonging to
class C is classified correctly by the system

True negatives TN
It occurs when a detection annotated as belonging to a
class other than class C is also classified by the system

as not belonging to class C

False positives FP
It occurs when a detection annotated as belonging to a
class other than class C is classified incorrectly by the

system as belonging to class C

False negatives FN
It occurs when a detection annotated as belonging to

class C is classified incorrectly by the system as
belonging to a class other than class C

• Accuracy. Accuracy is the most frequently used metric in determining the performance
of a detection and classification system. It provides a measure of the correctness of the
classification, representing the ratio between valid detections and the total number of
detections that the system generates. The accuracy is calculated according to

acc =
TP + TN

TP + TN + FP + FN
(41)

This metric can take values in the range [0, 1]. The purpose of a classification system
is to maximize the value of accuracy. As false positive and false negative detections
decrease, the accuracy value approaches one, and the system is considered more effi-
cient.

• Mean average precision (mAP). The mAP metric is considered a direct measure of
the accuracy of a classifier. Its value is directly proportional to the accuracy value of
the algorithm. It is a subunit value in the range [0, 1], computed according to

mAP =
TP

TP + FP
(42)

As can be seen, the mAP value is directly impacted by the number of true positives and
false positives detections. The higher number of false positive detections the algorithm
generates, the lower the mAP value is, which leads to a system with low accuracy.

• Recall or true positive rate (TPR). Recall is the proportion of true positive detections
to the total number of ground truth objects (TP + FN). It measures the percentage of
correctly detected objects relative to the total number of ground truth objects. Recall
can be expressed mathematically as

recall =
TP

TP + FN
(43)
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Also named the TPR metric, the recall quantifies the number of predictions the system
makes correctly, representing a measure of the positive predictions it misses. The
recall value decreases when the system generates more false negative detections.

• F1-score. The F1-score is calculated according to Equation (44) and represents the
weighted average between the previously presented evaluation metrics, mAP and
recall. Like the other two metrics, it can take values in the range [0, 1]. Its value
increases as the system generates fewer false positive and false negative detections.

F− score = 2 · mAP · recall
mAP + recall

(44)

Using the F1 score metric for evaluating the model’s performance leads to a compro-
mise between the system’s precision and recall. It is a suitable metric for systems
where it is not expected to maximize only one of the metrics.

• Mean intersection over union (mIoU). The global IoU score, namely, the mIoU, repre-
sents an average of the IoU score for the entire segmentation model, and it is computed
in two steps. First, we calculate the IoU value associated with each class separately,
according to (45). Afterward, we compute an average of the previously calculated
scores for all the classes that can be classified using the model.

IoU =
AT ∩ AP
AT ∪ AP

(45)

where AT represents the area of ground truth, AP represents the area of predicted
objects, while ∩ refers to the intersection operation, and ∪ refers to the union operation.
The intersection between two areas is formed by all the pixels belonging to both the
predicted and annotated objects. On the other hand, the union of the two areas
represents the set of pixels that belong to the predicted object or the ground truth. The
value of each IoU practically measures the number of common pixels between the two
areas of interest, divided by the total number of pixels present in the two objects.

By calculating these performance metrics, we can gain a better understanding of the
algorithm’s strengths and weaknesses and identify areas for future improvement.

5.2. Evaluating Semantic Segmentation Models

A semantic segmentation network is a crucial component of the proposed approach.
In order to select the optimal one for our needs, we evaluated several of them to establish
which had the optimal balance of accuracy, frames per second, and model size.

Due to the fact that anything could be present in a logistics warehouse, for validation,
we chose a dataset that contained a large number of classes in a variety of scenarios: the
ADE20K dataset [1].

In Table 2, we give the results obtained by each model. In the following subsection,
we compare these methods and select the most appropriate model.

We represented the data from Table 2 in a scatter plot, indicating the method, the
model’s size in gigabytes, the inference time, and the mIoU, for easy visualization. Figure 7
demonstrates that none of the models are clearly superior to the others; however, when
real-world constraints are considered, one emerges.

In order for our proposed algorithm to be applicable in the real world, it must utilize
as few computing resources as possible while maintaining a high FPS and a good mIoU.
Currently, it is reasonable to expect a standard graphics card to have at least 10 GB of RAM,
so this was our first limitation. For the FPS, we determined that a minimum of 20 was
acceptable, and a minimum of 40 was also acceptable for the mIoU.
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Table 2. Tested semantic segmentation methods done on the ADE20K dataset [1].

Method Backbone Crop Size Lr schd Mem (GB) Inf Time (fps) mIoU mIoU (ms + flip)

FCN [36] R-50-D8 512 × 512 80,000 8.5 23.49 35.94 37.94

FCN R-101-D8 512 × 512 80,000 12 14.78 39.61 40.83

FCN R-50-D8 512 × 512 160,000 - - 36.1 38.08

FCN R-101-D8 512 × 512 160,000 - - 39.91 41.4

PSPNet [37] R-50-D8 512 × 512 80,000 8.5 23.53 41.13 41.94

PSPNet R-101-D8 512 × 512 80,000 12 15.3 43.57 44.35

PSPNet R-50-D8 512 × 512 160,000 - - 42.48 43.44

PSPNet R-101-D8 512 × 512 160,000 - - 44.39 45.35

DeepLabV3 [38] R-50-D8 512 × 512 80,000 8.9 14.76 42.42 43.28

DeepLabV3 R-101-D8 512 × 512 80,000 12.4 10.14 44.08 45.19

DeepLabV3 R-50-D8 512 × 512 160,000 - - 42.66 44.09

DeepLabV3 R-101-D8 512 × 512 160,000 - - 45 46.66

PSANet [39] R-50-D8 512 × 512 80,000 9 18.91 41.14 41.91

PSANet R-101-D8 512 × 512 80,000 12.5 13.13 43.8 44.75

PSANet R-50-D8 512 × 512 160,000 - - 41.67 42.95

PSANet R-101-D8 512 × 512 160,000 - - 43.74 45.38

DeepLabV3+ [40] R-50-D8 512 × 512 80,000 10.6 21.01 42.72 43.75

DeepLabV3+ R-101-D8 512 × 512 80,000 14.1 14.16 44.6 46.06

DeepLabV3+ R-50-D8 512 × 512 160,000 - - 43.95 44.93

DeepLabV3+ R-101-D8 512 × 512 160,000 - - 45.47 46.35

UPerNet [22] R-18 512 × 512 80,000 6.6 24.76 38.76 39.81

UPerNet R-50 512 × 512 80,000 8.1 23.4 40.7 41.81

UPerNet R-101 512 × 512 80,000 9.1 20.34 42.91 43.96

UPerNet R-18 512 × 512 160,000 - - 39.23 39.97

UPerNet R-50 512 × 512 160,000 - - 42.05 42.78

UPerNet R-101 512 × 512 160,000 - - 43.82 44.85

NonLocalNet [41] R-50-D8 512 × 512 80,000 9.1 21.37 40.75 42.05

NonLocalNet R-101-D8 512 × 512 80,000 12.6 13.97 42.9 44.27

NonLocalNet R-50-D8 512 × 512 160,000 - - 42.03 43.04

NonLocalNet R-101-D8 512 × 512 160,000 - - 44.63 45.79

EncNet [42] R-50-D8 512 × 512 80,000 10.1 22.81 39.53 41.17

EncNet R-101-D8 512 × 512 80,000 13.6 14.87 42.11 43.61

EncNet R-50-D8 512 × 512 160,000 - - 40.1 41.71

EncNet R-101-D8 512 × 512 160,000 - - 42.61 44.01

DANet [43] R-50-D8 512 × 512 80,000 11.5 21.2 41.66 42.9

DANet R-101-D8 512 × 512 80,000 15 14.18 43.64 45.19

DANet R-50-D8 512 × 512 160,000 - - 42.45 43.25

DANet R-101-D8 512 × 512 160,000 - - 44.17 45.02

APCNet [44] R-50-D8 512 × 512 80,000 10.1 19.61 42.2 43.3

APCNet R-101-D8 512 × 512 80,000 13.6 13.1 45.54 46.65
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Table 2. Cont.

Method Backbone Crop Size Lr schd Mem (GB) Inf Time (fps) mIoU mIoU (ms + flip)

APCNet R-50-D8 512 × 512 160,000 - - 43.4 43.94

APCNet R-101-D8 512 × 512 160,000 - - 45.41 46.63

CCNet [45] R-50-D8 512 × 512 80,000 8.8 20.89 41.78 42.98

CCNet R-101-D8 512 × 512 80,000 12.2 14.11 43.97 45.13

CCNet R-50-D8 512 × 512 160,000 - - 42.08 43.13

CCNet R-101-D8 512 × 512 160,000 - - 43.71 45.04

DMNet [46] R-50-D8 512 × 512 80,000 9.4 20.95 42.37 43.62

DMNet R-101-D8 512 × 512 80,000 13 13.88 45.34 46.13

DMNet R-50-D8 512 × 512 160,000 - - 43.15 44.17

DMNet R-101-D8 512 × 512 160,000 - - 45.42 46.76

ANN [47] R-50-D8 512 × 512 80,000 9.1 21.01 41.01 42.3

ANN R-101-D8 512 × 512 80,000 12.5 14.12 42.94 44.18

ANN R-50-D8 512 × 512 160,000 - - 41.74 42.62

ANN R-101-D8 512 × 512 160,000 - - 42.94 44.06

GCNet [48] R-50-D8 512 × 512 80,000 8.5 23.38 41.47 42.85

GCNet R-101-D8 512 × 512 80,000 12 15.2 42.82 44.54

GCNet R-50-D8 512 × 512 160,000 - - 42.37 43.52

GCNet R-101-D8 512 × 512 160,000 - - 43.69 45.21

FastFCN [49] +
DeepLabV3 R-50-D32 512 × 512 80,000 8.46 12.06 41.88 42.91

FastFCN +
DeepLabV3 R-50-D32 512 × 512 160,000 - - 43.58 44.92

FastFCN + PSPNet R-50-D32 512 × 512 80,000 8.02 19.21 41.4 42.12

FastFCN + PSPNet R-50-D32 512 × 512 160,000 - - 42.63 43.71

FastFCN + EncNet R-50-D32 512 × 512 80,000 9.67 17.23 40.88 42.36

FastFCN + EncNet R-50-D32 512 × 512 160,000 - - 42.5 44.21

ISANet [50] R-50-D8 512 × 512 80,000 9 22.55 41.12 42.35

ISANet R-50-D8 512 × 512 160,000 9 22.55 42.59 43.07

ISANet R-101-D8 512 × 512 80,000 12.562 10.56 43.51 44.38

ISANet R-101-D8 512 × 512 160,000 12.562 10.56 43.8 45.4

OCRNet [51,52] HRNetV2p-
W18-Small 512 × 512 80,000 6.7 28.98 35.06 35.8

OCRNet HRNetV2p-
W18 512 × 512 80,000 7.9 18.93 37.79 39.16

OCRNet HRNetV2p-
W48 512 × 512 80,000 11.2 16.99 43 44.3

OCRNet HRNetV2p-
W18-Small 512 × 512 160,000 - - 37.19 38.4

OCRNet HRNetV2p-
W18 512 × 512 160,000 - - 39.32 40.8

OCRNet HRNetV2p-
W48 512 × 512 160,000 - - 43.25 44.88

DNLNet [53] R-50-D8 512 × 512 80,000 8.8 20.66 41.76 42.99
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Table 2. Cont.

Method Backbone Crop Size Lr schd Mem (GB) Inf Time (fps) mIoU mIoU (ms + flip)

DNLNet R-101-D8 512 × 512 80,000 12.8 12.54 43.76 44.91

DNLNet R-50-D8 512 × 512 160,000 - - 41.87 43.01

DNLNet R-101-D8 512 × 512 160,000 - - 44.25 45.78

After applying these constraints to Table 2 and selecting the model with the highest
mIoU, we concluded that the UPerNet model with the R-101 backbone was the optimal
model, with an mIoU of 43.85.

Figure 7. The method, the model’s size in gigabytes, the inference time, and the mIoU.

5.3. Examples from Datasets

A dataset containing 120 h of video footage (at 24 fps, 10,368,000 images) from three in-
dustrial logistics warehouses was used to rigorously test the proposed algorithm. The
dataset included a wide variety of scenarios, such as varying lighting conditions, different
types of objects on the pallets, and various camera angles. This exhaustive testing allowed
us to evaluate the algorithm’s performance and identify areas for enhancement. Training
was done on 75%, testing on 20%, and the validation on 5%.

In order to evaluate the performance of the proposed method, the dataset included
three kinds of events: “Pallet,” “Forklift,” and “Fallen Material”—referring to any substan-
tial object that falls from a shelf or from a moving pallet. These events were marked as
present if any of the specified objects remained stationary in the video sequence.

In Figure 8, two events are depicted. If we examine Figure 8b, we can see that when
an object is removed from the scene, the algorithm does not generate an alarm, but it
does when something new and improperly placed is removed. The image demonstrates
the system’s ability to accurately identify and distinguish objects of interest from their
surroundings. Combining the outputs of multiple algorithms, including the background
subtraction, tracking, and semantic segmentation algorithms, enabled the detection. The
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outcome is a clear and accurate representation of the target object, demonstrating the
efficacy of the proposed method in detecting unidentified or misplaced objects within an
industrial logistics warehouse.

Figure 8. Events from the system: (a) image before the event in (b); (b) event; (c) image before the
event in (d); (d) event.

In the image depicting a system detection, the event is displayed as the last track
position from the object tracking, as opposed to the actual detected region. Displaying the
last track position is more helpful in a production environment, so this design decision
was made for practical reasons. The image was chosen to illustrate the varied contents of a
pallet and the potential for a forklift to be abandoned in an unclear location.

In addition to these events, in Figure 9, we illustrate the fact that the algorithm is
robust and capable of running from different angles. In subimage b from Figure 9, the small
size of the detected object is notable.

The delicate nature of the images in the dataset necessitates the strictest secrecy and
discretion. In order to prevent these photographs from falling into the wrong hands, it is
vital that we take the required safeguards. As a result, a tiny, separate room was made
available for the presentation of events from the dataset. This area was outfitted with all
the tools and resources necessary for the secure handling and exhibition of photographs.
By showing the happenings from this room, we can reassure the participating logistics
businesses that their data are being treated with the highest care. It is critical that we
maintain the highest levels of security and confidentiality when dealing with sensitive
material, and the availability of a separate space for the presentation of such information is
a crucial step in attaining this goal.
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Figure 9. Alarms from different testing angles.

5.4. Experimental Results

As stated in Section 2, the existing methods do not apply to our scenario, so it is hard
to compare those approaches and our proposed method directly. In order to present the
novelty brought by the proposed method and to outline its benefits, we designed a two-part
testing scenario.

The first testing phase was implemented to compare the existing semantic segmenta-
tion model and was described in the previous section. Those tests demonstrated that the
UPerNet model was the most suitable in terms of semantic segmentation (Table 2).

In the second part of the testing stage, our primary goal was to outline the benefits
of each new component added according to the diagram presented in Figure 5. In order
to evaluate the effectiveness of our suggested strategy and its components, we report the
outcomes of each iteration. First, we tested the proposed method only using the semantic
segmentation block, which consisted of the UPerNet model. Second, we added a tracker to
see how it affected the overall performance of the proposed algorithm. Finally, we added
the last processing block, the majority vote. Each partial architecture was evaluated using
the same dataset to compare their performance in the same circumstances. The obtained
experimental results are presented in this section.

The initial version of the system relied solely on semantic segmentation and triggered
an event if an object obscured the floor. As seen in Table 3, the outcomes of this method were
not optimal, as false alarms were produced by each moving object traversing the image.

The tracker was introduced to reduce the high number of false alarms. This prevented
alerts from being activated by moving objects. As shown in Table 4, this significantly
improved the outcomes, yet they were still unacceptable.

At this point, the fact that the reference floor map did not adapt over time was the
cause of most of the issues. By adding a majority vote update system to the reference map,
the results were greatly improved, as seen in Table 5.
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Table 3. Results after testing the proposed method: semantic segmentation.

Site Human
Label TP TN FP FN mAP Recall F-Score Accuracy

1 Pallet 57 228 250 0 0.18 1 0.31 0.53
1 Forklift 3 423 73 0 0.03 1 0.07 0.85

1 Fallen
material 6 38 88 0 0.06 1 0.12 0.33

2 Pallet 31 233 156 0 0.16 1 0.28 0.62
2 Forklift 0 368 61 0 0 - - 0.85

2 Fallen
material 0 51 129 0 0 - - 0.28

3 Pallet 30 354 91 0 0.24 1 0.39 0.80
3 Forklift 0 226 88 0 0 - - 0.71

3 Fallen
material 17 1 110 0 0.13 1 0.23 0.14

Total Pallet 118 1112 497 0 0.19 1 0.32 0.71
Total Forklift 3 652 222 0 0.01 1 0.02 0.74

Total Fallen
material 23 581 327 0 0.06 1 0.12 0.64

Overall - 144 2345 1046 0 0.12 0.95 0.21 0.70

Table 4. Results after testing the proposed method: semantic segmentation + tracking.

Site Human
Label TP TN FP FN mAP Recall F-Score Accuracy

1 Pallet 57 404 72 0 0.44 1 0.61 0.86
1 Forklift 3 437 59 0 0.48 1 0.09 0.88

1 Fallen
material 6 94 32 0 0.15 1 0.27 0.75

2 Pallet 31 338 51 0 0.37 1 0.54 0.87
2 Forklift 0 383 46 0 0 - - 0.89

2 Fallen
material 0 123 57 0 0 - - 0.68

3 Pallet 30 376 69 0 0.30 1 0.46 0.85
3 Forklift 0 281 33 0 0 - - 0.89

3 Fallen
material 16 20 91 1 0.14 0.94 0.25 0.28

Total Pallet 114 1118 192 0 0.37 1 0.54 0.86
Total Forklift 3 1101 138 0 0.02 1 0.04 0.88

Total Fallen
material 20 237 179 1 0.10 0.95 0.18 0.58

Overall - 143 2456 509 1 0.21 0.99 0.35 0.83

Due to the minuscule size of fallen objects, the proposed algorithm exhibited limita-
tions in detecting them. In some instances, dropped objects were overlooked because they
were obscured by the shelves’ pallets. The missed pallets nearly completely overlapped
with the pallets stored on the shelves, making it difficult to distinguish and detect them
with the current method.

This algorithm is notable due to the fact that it operates in real time with a mean
of 45 frames per second, although this is dependent on the hardware used (in our case,
NVIDIA’s 1080 GPU). This indicates that it is capable of producing results quickly and
without significant delay. This application requires the ability to process data in real time
because it contains time-sensitive information.
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Table 5. Results after testing the proposed method: semantic segmentation + tracking + majority
vote.

Site Human
Label TP TN FP FN mAP Recall F-Score Accuracy

1 Pallet 55 474 4 2 0.93 0.96 0.94 0.98
1 Forklift 3 496 2 0 0.6 1 0.75 0.99

1 Fallen
material 5 125 0 1 1 0.83 0.90 0.99

2 Pallet 31 389 3 0 0.93 1 0.96 0.99
2 Forklift 0 429 1 0 - - - 0.99

2 Fallen
material 0 180 0 0 - - - 1

3 Pallet 28 443 3 2 0.93 0.93 0.93 0.98
3 Forklift 0 314 0 0 - - - 1

3 Fallen
material 15 109 0 2 0.88 0.88 0.88 0.98

Total Pallet 114 1306 10 4 0.93 0.96 0.94 0.99
Total Forklift 3 1239 3 0 1 1 1 0.99

Total Fallen
material 20 414 0 3 1 0.86 0.92 0.99

Overall - 137 2959 13 7 0.91 0.95 0.92 0.99

6. Conclusions

The proposed algorithm for detecting misplaced or fallen pallets within a logistics
warehouse demonstrated promising results. Utilizing a semantic segmentation and a
majority vote approach, a map of the warehouse floor was created to accurately detect and
track objects. On 120 h of video from an industrial logistics warehouse, the algorithm was
evaluated using evaluation metrics such as true positive, false negative, and recall.

While the system was able to detect the majority of pallets within the warehouse, some
smaller fallen objects and overlapping pallets were missed. However, these limitations
were outweighed by the algorithm’s success in detecting the vast majority of pallets and
improving the overall warehouse operations’ efficiency.

In conclusion, the proposed algorithm significantly enhances the capability of de-
tecting and tracking pallets within a logistics warehouse. Its ability to accurately detect
misplaced or fallen pallets provides logistics companies with valuable information, enhanc-
ing workplace safety and efficiency. Future success will be even greater as a result of the
algorithm’s continued development and refinement, which will enhance its performance.
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