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Abstract: In the paper, the approximation of analytic functions on compact sets of the strip
{s = σ + it ∈ C | 1/2 < σ < 1} by shifts F(ζ(s + iu1(τ)), . . . , ζ(s + iur(τ))), where ζ(s) is the
Riemann zeta-function, u1, . . . , ur are certain differentiable increasing functions, and F is a certain
continuous operator in the space of analytic functions, is considered. It is obtained that the set of
the above shifts in the interval [T, T + H] with H = o(T), T → ∞, has a positive lower density.
Additionally, the positivity of a density with a certain exceptional condition is discussed. Examples
of considered operators F are given.

Keywords: Riemann zeta-function; space of analytic functions; joint universality; weak convergence
of probability measures

MSC: 11M06; 11M99; 33C15

1. Introduction

Let s = σ + it be the complex variable with σ, t ∈ R and let P be the set of all the
primes. The celebrated Riemann zeta-function ζ(s) is defined by

ζ(s) = ∏
p∈P

(
1− p−s)−1

=
∞

∑
m=1

m−s

for σ > 1, where both the Euler product and Dirichlet series are absolutely convergent, and
hence analytic in that right half-plane. It is continued meromorphically over the whole
complex plane with the unique simple pole at s = 1 with residue 1 by way of the functional
equation and the meromorphic continuation in the critical strip {s ∈ C | 0 < σ < 1}. It
is known that ζ(s) has infinitely many zeros in the critical strip, called non-trivial zeros,
which are essentially connected with the distribution of primes. The famous Riemann
hypothesis states that all of the non-trivial zeros lie on the critical line σ = 1

2 , which gives
the best bound for the error term for the prime number theorem. Since the introduction
by Riemann, the function ζ(s) has been the main impetus for the development of analytic
number theory in the area of distribution of primes. The situation has been drastically
changed by S. M. Voronin’s dicovery [1] of universality of ζ(s), i.e., attention has been
drawn to function-theoretic properties. By symmetry (functional equation), it is enough to
consider the right half of the critical strip ∆ := {s ∈ C | 1

2 < σ < 1}. Then, the Voronin
universality means that the zeta shifts ζ(s + iτ) approximate all analytic non-vanishing
functions defined in D. The universality of ζ(s) has been also discovered by A. A. Karatsuba
and S. M. Voronin [2], and developed by S. M. Gonek [3], B. Bagchi [4], J. Steuding [5],
K. Matsumoto [6], J.-L. Mauclaire [7], the first author [8,9], their students, and others. A
wide survey of universality of zeta functions and its applications is given in [10].
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To state the modern version of the Voronin universality theorem, we introduce notation,
which will be used throughout. Let K be a family of compact subsets of ∆ with connected
complements, and let A(K) (with K ∈ K) be the class of continuous functions on K that
are analytic in the interior of K. Let A0(K) denote the subspace of A(K) consisting of
non-vanishing functions. Then, the modern version of the Voronin universality theorem
says (see, for example, [5,8]) that for every K ∈ K, f (s) ∈ A0(K) and ε > 0,

lim inf
T→∞

1
T

mes

{
τ ∈ I | sup

s∈K
| f (s)− ζ(s + iτ)| < ε

}
> 0, (1)

where I = IT := [0, T] and mes{A} means the Lebesgue measure of a measurable set
A ⊂ R. Furthermore, the lower limit may be replaced by a limit for all but at most
countably many ε > 0. This proviso is valid in the Theorems 1–2 and 4–6, and it will
be omitted.

The impact of (1) was enhanced by B. Bagchi’s result [11] that inequality (1) with
f (s) = ζ(s) is equivalent to the Riemann hypothesis that all non-trivial zeros of ζ(s)

(
zeros

in the strip {s ∈ C | 0 < σ < 1}
)

lie on the critical line σ = 1
2 .

From (1) arose an enormous number of new problems. The shifts ζ(s + iτ) in (1) can
be replaced by more general shifts ζ(s + iu(τ)) with a certain function u(τ). In [12], the
function u(τ) = τα(log τ)β, α, β ∈ R, was considered; in [13], a more general differen-
tiable function u(τ) was used. Using generalized shifts also allows one to investigate a
simultaneous approximation of several analytic functions ( f1(s), . . . , fr(s)), say, by r-tuple
of zeta-shifts

(
ζ(s + iu1(τ)), . . . , ζ(s + iur(τ))

)
. For example, in [14], the joint approxi-

mation by shifts
(
ζ(s + ia1τ), . . . , ζ(s + iarτ)

)
, where a1, . . . , ar are real algebraic numbers

linearly independent over the field of rational numbers, was obtained. Moreover, inequality
(1) means that there are infinitely many shifts ζ(s + iτ) approximating a given analytic
function f (s) with accuracy ε. Although, such a theorem claims the existence of shifts
approximating a given analytic function, it does not give any concrete approximating
shift, which is inevitable due to the metrical nature of the assertion. As a rephrase, the
effectivity of universality theorems is interpreted as the specification of the interval IT
containing τ with approximating property. The first attempt to solve this problem was
made by A. Good [15]; R. Garunkštis applied and developed Good’s ideas for the effective
approximation of analytic functions in small discs [16]. The mentioned and other effective
results connected to the universality of zeta-functions can be found in the survey paper [17].
In this regard, we note that (1) is implied by its short interval version, i.e., with IT replaced
by [T, 2T]. This is a standard notion in many aspects of analytic number theory.

From the point of view of effectivity, it is desirable to specify the shortest possible
interval containing τ such that ζ(s + iτ) approximates a given analytic function. Thus,
we arrive at the notion of universality theorems in short intervals IT,H := [T, T + H] with
H = o(T) as T → ∞. A joint universality theorem for a short interval with generalized
shifts has been obtained in [18].

Denote by Ur the class of tuples of real differentiable functions (u1(τ), . . . , ur(τ))
satisfying the following hypotheses:

1◦ u1(τ), . . . , ur(τ) are increasing functions on [T0, ∞], T0 > 0, tending to +∞;
2◦ u1(τ), . . . , ur(τ) have continuous derivatives such that

u′j(τ) = ûj(τ)(1 + o(1)), τ → ∞,

where the functions ûj(τ) are monotonic, j = 1, . . . , r, and, as τ → ∞,

ûj(τ) = o(ûj+1(τ)),

successively, j = 1, . . . , r− 1;
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3◦ the estimates 
ûj(2τ)

ûj(τ)
= O(1) if ûj(τ) is increasing,

ûj(τ)

ûj(2τ)
= O(1) if ûj(τ) is decreasing,

j = 1, . . . , r, are valid.
For (u1, . . . , ur) ∈ Ur, let

ψj(τ) = (uj(τ))
1/3(log uj(τ))

26/15,

H1j(τ) =


ψj(τ)

ûj(2τ)
if ûj(τ) is increasing,

ψj(τ)

ûj(τ)
if ûj(τ) is decreasing, j = 1, . . . , r,

H2j(τ) =


uj(τ)

2ûj(2τ)
if ûj(τ) is increasing,

uj(τ)

2ûj(τ)
if ûj(τ) is decreasing, j = 1, . . . , r,

and H̃(τ) = max16j6r H1j(τ) and ˜̃H(τ) = min16j6r H2j(τ) 6 T. In all subsequent theo-
rems, we assume that H satisfies

H̃(T) 6 H 6 ˜̃H(T). (2)

Then, in [18], the following theorem has been obtained.

Theorem 1. Suppose that (u1, . . . , ur) ∈ Ur and that the length H lies in (2). For j = 1, . . . , r, let
Kj ∈ K and f j(s) ∈ A0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
H

mes

{
τ ∈ IT,H | sup

16j6r
sup
s∈Kj

| f j(s)− ζ(s + iuj(τ))| < ε

}
> 0.

The universality of the Dirichlet series is a very useful property. Therefore, it is natural
to ask if there is a possibility to extend the class of universal functions. One of the ways to
achieve this is by using compositions of universal functions.

Denote by A(G) the space of analytic G ⊂ C functions that has the topology of
uniform convergence on compacta, and let Ar(G) be the direct product of r-copies of A(G).
Hence, every element of Ar(G) is the r-dimensional vector g = (g1, · · · , gr). Moreover, let
SG = {g ∈ A(G) | g(s) 6= 0} ∪ {0}, where {0} is the zero-map, let S r

G be the direct product
of r-copies of SG, and let A(K) be as above. In [18], one theorem on the approximation of
analytic functions by shifts F(ζ(s + iu1(τ)), . . . , ζ(s + iur(τ))) for some classes of operators
F : Ar(∆)→ A(∆) was obtained.

Moreover, we will use the vector notation u(τ) = (u1(τ), . . . , ur(τ)) to mean the
r-tuple of admissible shifts, and let

F(ζ(s + iu(τ))) = F(ζ(s + iu1(τ)), · · · , ζ(s + iur(τ))).

Theorem 2. Suppose that u(τ) ∈ Ur; the length H lies in (2), and F : Ar(∆)→ A(∆) is a contin-
uous operator subject to the condition that, for every polynomial p = p(s), the set (F−1{p}) ∩ S r

∆
is non-empty. Let K ∈ K and f (s) ∈ A(K). Then, for every ε > 0,

lim inf
T→∞

1
H

mes

{
τ ∈ IT,H | sup

s∈K
| f (s)− F(ζ(s + iu(τ)))| < ε

}
> 0. (3)
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Theorem 2 is theoretical; it is difficult to present examples of the operators F. The aim
of the paper is to give other sub-classes of the operators in Theorem 2. We start with a
modified Lipschitz class. Let α1, . . . , αr be fixed positive numbers, and let α = (α1, . . . , αr).

Definition 1. The operator F : Ar(∆) → A(∆) belongs to the class Lip(α) if the following
hypotheses are satisfied:

1◦ For every polynomial p = p(s) and any sets Kj ∈ K, j = 1, . . . , r, the r-dimensional vector
g = (g1, . . . , gr) ∈ F−1{p} ⊂ Ar(∆) exists such that gj(s) 6= 0 for s ∈ Kj;

2◦ For every K ∈ K and gk = (gk1, . . . , gkr) ∈ Ar(∆), k = 1, 2, a constant c > 0 and sets
K1, . . . , Kr ∈ K exists such that

sup
s∈K
|F(g1)− F(g2)| ≤ c sup

16j6r
sup
s∈Kj

∣∣g1j(s)− g2j(s)
∣∣αj .

Theorem 3. Suppose that u(τ) ∈ Ur; the length H lies in (2), and F ∈ Lip(α). Let K ∈ K and
f (s) ∈ A(K). Then, for every ε > 0 inequality (3) is valid.

It is very important is to be able to provide concrete examples of the investigated
operators F, for F ∈ Lip(α); it is not difficult.

Example 1. Let c1, . . . , cr ∈ C \ {0}, m1, . . . , mr ∈ N, and g
(mj)

j denote the mjth derivative of gj.
Define the operator F : Ar(∆)→ A(∆) by

F(g) =
r

∑
j=1

cjg
(mj)

j , g = (g1, . . . , gr) ∈ Ar(∆).

Now, we take an arbitrary polynomial

p(s) =
l

∑
k=0

aksk, ak 6= 0,

and sets K1, . . . , Kr ∈ K. We may take one of the components whose derivative coincides with p(s),
e.g., set

(g1, . . . , gr) = (1, . . . , 1, gr), (4)

where

gr(s) =
1
cr

l

∑
k=0

ak
(k + 1) · · · (k + mr)

sk+mr + C.

where the constant C ∈ C is chosen so that gr(s) 6= 0 for s ∈ Kr. Hence, g in (4) satisfies the
condition 1◦ in Definition 1.

To check condition 2◦, we apply the Cauchy integral theorem. Let K ∈ K. Then, there exists
an open set U and K̂ ∈ K such that K ⊂ U ⊂ K̂. We take a simple closed contour C lying in K̂ \U
and enclosing K. Then, the Cauchy integral formula shows that, for gk = (gk1, . . . , gkr) ∈ Ar(∆),
k = 1, 2,

|F(g1)− F(g2)| =

∣∣∣∣∣∣
r

∑
j=1

mj!cj

2πi

∫
C

g1j(z)− g2j(z)

(z− s)mj+1 dz

∣∣∣∣∣∣.
This can be bounded by c sup16j6r sups∈Kj

∣∣g1j(s)− g2j(s)
∣∣ for some constant c > 0. Thus,

the condition 2◦ holds with αj = 1 and Kj = K̂, j = 1, . . . , r. Hence, F ∈ Lip(α).

For a given B > 0, denote the finite part of ∆ with imaginary parts being bounded
by B, i.e., ∆B = {s ∈ ∆ | |t| < B}. Denote by KB the class of compact subsets of ∆B with
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connected complement, and by A(KB) the class of continuous on KB functions that are
analytic in the interior of KB (KB ∈ KB).

Theorem 4. Suppose that u(τ) ∈ Ur; the length H lies in (2); and F : Ar(∆B) → A(∆B) is a
continuous operator so that for every polynomial p = p(s), the set (F−1{p}) ∩ S r

B is not empty.
Let K ∈ KB and p(s) ∈ A(∆B). Then, the same statement as in Theorem 2 holds true.

Example 2. Define the operator F : Ar(∆B)→ A(∆B) by

F(g) =
r

∑
j=1

gj.

For a given polynomial p = p(s), let

(g1, . . . , gr) = (0, . . . , 0,−C, p + C).

If C ∈ C is with a large enough |C|, then the latter collection lies in Sr
∆B

, and F(g) = p. Thus,
F satisfies the hypothesis of Theorem 4.

Now, we will approximate the functions from certain subsets of A(∆). Let aj,
j = 1, . . . k be distinct complex numbers, and

Ak(∆) =
{

g ∈ A(∆) | g(s) 6= aj, j = 1, . . . , k
}

.

Theorem 5. Suppose that u(τ) ∈ Ur; the length H lies in (2), and F : Ar(∆) → A(∆) is
a continuous operator such that F(S r) ⊃ Ak(∆). For k = 1, let K ∈ K, f (s) ∈ A(K) and
f (s) 6= a1 on K. For k ≥ 2, let K be an arbitrary compact subset of ∆, and f (s) ∈ Ak(K). Then,
the same statement as in Theorem 2 holds true.

Example 3. Let k = 2, a1 = 1, a2 = −1, and

F(g) = cosh
r

∑
j=1

gj.

For brevity, denote w =
r
∑

j=1
gj, and consider the equation

ew + e−w

2
= f , f ∈ A2(∆).

Since cosh−1 f = log
(

f +
√

f 2 − 1
)
= w, taking gr = log

(
f +

√
f 2 − 1

)
with other

components gj = 0, j = 1, . . . r− 1, we have that F(g) = F(0, . . . 0, w) = f with g ∈ S r. This
shows that F(S r) ⊃ A2(∆); therefore, the operator F satisfies the condition of Theorem 5.

The last theorem is on the approximation of analytic functions from the set F(S r).

Theorem 6. Suppose that u(τ) ∈ Ur; the length H lies in (2), and F : Ar(∆) → A(∆) is a
continuous operator. Let K ⊂ ∆ be a compact set, and f (s) ∈ F(S r). Then, the same statement as
in Theorem 2 holds true.

Proofs of Theorems 4–6 are of a probabilistic character, while that of Theorem 3 is
direct and based on properties of the class Lip(α). Moreover, as we mentioned above, in
all of these theorems, the lower limit can be replaced with the limit for all but at most
countably many ε > 0, and we will prove it.
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2. Proof of Theorem 3

For convenience, we start by recalling the Mergelyan theorem on the approximation
of analytic functions by polynomials [19].

Lemma 1. Suppose that K ⊂ C is a compact set with a connected complement and that g(s) is a
continuous function on K and analytic in the interior of K. Then, for every ε > 0, a polynomial
p(s) exists such that

sup
s∈K
|p(s)− g(s)| < ε.

Proof of Theorem 3. Suppose that F ∈ Lip(α). In view of the condition 1◦ in Definition 1,
for sets Kj ∈ K, j = 1, . . . , r, and a polynomial p(s), the r-dimensional vector g ∈ F−1{p}
exists with gj(s) 6= 0, s ∈ Kj. Let the sets Kj, j = 1, . . . , r correspond to the set K in condition
2◦ of Definition 1, and

A(τ) := sup
1≤j≤r

sup
s∈Kj

∣∣gj(s)− ζ(s + uj(τ))
∣∣ < ( ε

2c

) 1
α ,

where α = min1≤j≤r αj. Then, by Theorem 1,

lim inf
T→∞

1
H

mes
{

τ ∈ IT,H : τ ∈ A(τ)
}
> 0. (5)

The condition in Definition 1 implies that, for τ ∈ A(τ),

sup
s∈K

∣∣p(s)− F(ζ(s + u(τ))
∣∣ = sup

s∈K

∣∣F(g)− F(ζ(s + u(τ))
∣∣

≤ c sup
1≤j≤r

sup
s∈Kj

∣∣gj(s)− ζ(s + uj(τ))
∣∣αj ≤ c

ε

2c
. (6)

Using Lemma 1, choose the polynomial p(s) such that

sup
s∈K
|p(s)− f (s)| < ε

2
. (7)

Since the expression (6) is bounded by A(τ)α, we conclude that

sup
s∈K

∣∣ f (s)− F(ζ(s + u(τ)))
∣∣ < ε

with (7). This and inequality (5) prove the theorem.

3. Proofs of Theorems 4–6

We will use limit theorems on the weakly convergence of probability measures in the
space of analytic functions to prove Theorems 4–6.

Denote by B(X ) the Borel σ-field of the topological space X . Let l denote the unit
circle on C, and let l = lp for all p ∈ P. Define the set

T = ∏
p∈P

lp.

By Tikhonov theorem (see [8] Theorem 5.1.4), the torus T is a compact topological
Abelian group. Let T r be the direct product of Tj, where Tj = T for all j = 1, . . . , r.
Then, again, T r is a compact topological Abelian group. Thus, on (T r,B(T r)) we can
define the probability Haar measure µH . This fact allows us to construct the probability
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space (T r,B(T r), µH). Denote by w = (w1, . . . , wr) the elements of T r, and on the latter
probability space, define the Ar(∆)-valued random element ζ(s, w) by

ζ(s, w) = (ζ(s, w1), . . . , ζ(s, wr)),

where

ζ(s, wj) = ∏
p∈P

(
1−

wj(p)
ps

)−1

, j = 1, . . . , r.

Let Pζ be the distribution of an element ζ(s, w), i. e.,

Pζ(A) = µH{w ∈ T r | ζ(s, w) ∈ A}, A ∈ B(Ar(∆)).

Then, in [18], the following statement (Theorem 4, Lemma 5) has been obtained.
We will use one more notation to formulate this and other statements below. Let PT

and P be probability measures defined on (X ,B(X )). The weak convergence of PT to P as
T → ∞; we will denote by PT

w−−−→
T→∞

P.

Lemma 2. Suppose that u(τ) ∈ Ur and the length H lies in (2). Define

PT,H(A) :=
1
H

mes{τ ∈ IT,H | ζ(s + iu(τ)) ∈ A}, A ∈ B(Ar(∆)),

where, as before,
ζ(s + iu(τ)) = (ζ(s + iu1(τ)), . . . ζ(s + iur(τ))).

Then, PT,H(A)
w−−−→

T→∞
Pζ . Moreover, the support of the measure Pζ is the set S r

∆.

In what follows, a property of preservation of weak convergence of probability mea-
sures under certain mappings will be useful. Let P be a probability measure on (X1,B(X1)),
and v : X1 → X2 a (B(X1),B(X2))-measurable mapping, i.e., v−1B(X2) ⊂ B(X1). Then,
the measure P induces on (X2,B(X2)) the unique probability measure Pv−1 given by

Pv−1(A) = P(v−1 A), A ∈ B(X2).

Moreover, every continuous mapping is (B(X1),B(X2))-measurable, and the follo-
wing statement is valid.

Lemma 3. Suppose that Pn and P, n ∈ N are probability measures on (X1,B(X1)), and Pn
w−−−→

n→∞
P.

Let v : X1 → X2 be a continuous mapping. Then, Pnv−1 w−−−→
n→∞

Pv−1 as well.

A proof of the lemma can be found, for example, in [20], Theorem 5.1.

Lemmas 2 and 3 imply the following lemma. For A ∈ B(Ar
∆B
), set

PT,H,B(A) :=
1
H

mes
{

τ ∈ IT,H | ζ(s + iu(τ)) ∈ A
}

and
Pζ,B(A) = µH{w ∈ T r | ζ(s, w) ∈ A}.

Lemma 4. Suppose that u(τ) ∈ Ur and the length H lies in (2). Then, PT,H,B
w−−−→

T→∞
Pζ,B, and the

support of the measure Pζ,B is the set S r
B.
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Proof. Let the mapping vB : Ar(∆)→ Ar(∆B) be given by

vB(g) = (g1(s), . . . , gr(s)) |s∈∆B , g ∈ Ar(∆).

Then, vB is continuous, and PT,H,B = PT,Hv−1
B . Therefore, in view of Lemmas 2 and 3,

PT,H,B
w−−−→

T→∞
Pζ v−1

B . Then, Pζ v−1
B = Pζ,B.

Let g ∈ S r
B and an open neighbourhood G of g be arbitrary. Since vB is continuous,

the set v−1
B G is open as well and contains an element g1 ∈ S r

∆. Therefore, Pζ(v−1
B G) > 0.

Thus, by Lemma 2,
Pζ,B(G) = Pζ v−1

B (G) = Pζ(v−1
B G) > 0. (8)

Moreover, since vB(S r
∆) ⊂ S r

∆B
and Pζ(S r

∆) = 1, we have

Pζ,B(S r
∆B
) = Pζ v−1

B (S r
∆B
) ≥ Pζ(v−1

B (S r
∆)) = Pζ(S r

∆) = 1.

This and (8) show that the support of Pζ,B is the set S r
∆B

.

Lemma 5. Define

PT,H,B,F(A) :=
1
H

mes{τ ∈ IT,H | (ζ(s + iu(τ))) ∈ A}, A ∈ B(A(∆B)).

Under hypotheses of Theorem 4, PT,H,B,F(A)
w−−−→

T→∞
Pζ,BF−1, and the support of Pζ,BF−1 is

the whole space A(∆B).

Proof. Since the operator F is continuous, PT,H,B,F
w−−−→

T→∞
Pζ,BF−1 follows from the Lemma 4.

Let g ∈ A(∆B) and its open neighbourhood G be arbitrary. Then, the preimage F−1G is
also an open set. Suppose that F−1G contains an element of the set S r

B. Then, the Lemma 4
implies that

Pζ,BF−1(G) = Pζ,B(F−1G) > 0.

Since Pζ,BF−1(A(∆B)) = 1, this proves that the support of Pζ,BF−1 is A(∆B). Thus, it
remains to show that the hypothesis (F−1{p})⋂ S r

B 6= ∅ of the theorem implies that, for
an open set G ⊂ A(∆B), (F−1G)

⋂
Sr

B 6= ∅ as well.
Recall the metric in A(∆B) describing its topology of uniform convergence on com-

pact sets. There is a sequence of embedded compact subsets {Kl} ⊂ ∆ with connected

complements such that
∞⋃

l=1
Kl = ∆, and every compact set K ⊂ ∆ is contained for some set

Kl . Then, for g1, g2 ∈ A(∆B),

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
,

gives the desired metric in A(∆B).
Fix ε > 0 and k0 ∈ N satisfying

∞

∑
k>k0

2−k <
ε

2
. (9)

Let g ∈ A(∆B) and G be its open neighbourhood. Since K1 ⊂ K2 ⊂ · · · ⊂ Kk0 , by
Lemma 1, we can choose a polynomial p = p(s) such that

sup
s∈Kk

|p(s)− g(s)| < ε

2
, k = 1, . . . , n0.
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This, together with (9), shows that ρ(p, g) < ε. Therefore, if ε > 0 is small enough,
the polynomial p(s) belongs to G, and its preimage lies in S r

B and lies in F−1G. Hence,
(F−1G)

⋂ S r
B 6= ∅. The lemma is proved.

The definition of weak convergence of probability measures has equivalents in terms
of various sets. We will use these equivalents in terms of some classes of sets, and we will
present them in the following lemma (the proof of these given statements can be found, for
example, in [20] Theorem 2.1). Denote by bd(A) the boundary of a set A. We say that A is
a continuity set of P if P(bd(A)) = 0.

Lemma 6. Let P and Pn, n ∈ N be probability measures defined on (X ,B(X )). Then, the following
statements are equivalent:

1◦ Pn
w−−−→

n→∞
P;

2◦ lim inf
n→∞

Pn(G) > P(G), for every open set G ⊂ X ;

3◦ lim
n→∞

Pn(A) = P(A), for every continuity set A of P.

Proof of Theorem 4. By Lemma 1, we can choose a polynomial p(s) such that inequality (7)
holds. In view of Lemma 5, the polynomial p(s) is an element of the support of the measure
Pζ,BF−1. Hence,

Pζ,BF−1(Jε) > 0. (10)

where

Jε =

{
g ∈ A(∆B)| sup

s∈K
|p(s)− g(s)| < ε

2

}
.

Since Jε is an open set, by Lemma 5, and 1◦ and 2◦ of Lemma 6, we have

lim inf
T→∞

PT,H,B,F(Jε) > Pζ,BF−1(Jε).

This, the definitions of PT,H,B,F and Jε, and (10), (7) prove the inequality (3) in Theorem 4.
To replace “lim inf” by “lim” in the inequality (3) of the theorem, we observe that

Ĵε =

{
g ∈ A(∆B) | sup

s∈K
| f (s)− g(s)| < ε

}

is a continuity set of the measure Pζ,B for all but at most countably many ε > 0. Actually,
the boundary bd(Ĵε) lies in the set{

g ∈ A(∆B) | sup
s∈K
| f (s)− g(s)| = ε

}
.

Therefore, for different positive ε1 and ε2, bd(Ĵε1) and bd(Ĵε2) do not intersect. Hence,
Pζ,B(bd(Ĵε)) > 0 for at most countably many ε > 0, that is, the set Ĵε is a continuity set of
the measure Pζ,B for all but at most countably many ε > 0. Hence, by Lemma 5, and 1◦ and
3◦ of Lemma 6,

lim
T→∞

PT,H,B,F(Ĵε) = Pζ,BF−1(Ĵε) (11)

for all but at most countably many ε > 0. Moreover, (7) shows that Jε ⊂ Ĵε. Thus,
Pζ,BF−1(Ĵε) > 0 by (10). This, (11), and the definitions of PT,H,B,F and Ĵε prove the
assertion on density for at most countably many ε > 0.

For A ∈ B(A(∆)) and F : Ar(∆)→ A(∆), define

PT,H,F(A) =
1
H

mes
{

τ ∈ I | F(ζ(s + iu(τ))) ∈ A
}

.
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Lemma 7. Under hypotheses of Theorem 5, PT,H,F
w−−−→

T→∞
Pζ F−1. Moreover, the closure of the set

Ak(∆) lies in the support of Pζ F−1.

Proof. Lemmas 2 and 3, and the continuity of the operator F show that PT,H,F
w−−−→

T→∞
Pζ F−1.

We take an arbitrary element g ∈ F(S r
∆) and any open neighbourhood J of g. Since F

is continuous, F−1J is an open neighbourhood of some element of the set S r
∆. By Lemma 2,

the set S r
∆ is the support of the measure Pζ . Therefore, Pζ(F−1J ) > 0. Thus, Pζ F−1(J ) > 0.

Moreover,
Pζ F−1(F(S∆)) = Pζ(F−1F(S∆)) = Pζ(S∆) = 1.

Furthermore, the support of Pζ F−1 is a closed set; this shows that the support of Pζ F−1

is the closure of the set F(S∆). By the hypothesis of the theorem, F(S r
∆) ⊃ Ak(∆). Therefore,

the closure of the set Ak(∆) lies in the support of Pζ F−1.

Proof of Theorem 5. Let k = 1. By Lemma 1, we find a polynomial p(s) such that

sup
s∈K
|p(s)− f (s)| < ε

4
. (12)

By the hypothesis of the theorem, for s ∈ K, f (s) 6= b1. Therefore, p(s) 6= b1 for s ∈ K.
Thus, an application of Lemma 1 once more implies that we can choose a polynomial p̂(s)
such that

sup
s∈K

∣∣∣ep̂(s) + b1 − p(s)
∣∣∣ < ε

4
. (13)

The function gb1(s) := ep̂(s) + b1 ∈ A1(∆). Thus, by Lemma 7, the closure of A1(∆)
lies in the support of Pζ F−1, and the function gb1(s) belongs to the support of Pζ F−1.
Hence, taking

Jε =

{
g ∈ A(∆) | sup

s∈K
|gb1(s)− g(s)| < ε

2

}
,

we have Pζ F−1(Jε) > 0. This, Lemma 7, and 1◦ and 2◦ of Lemma 6 together with (12)
and (13) prove the assertion on lower density of the theorem in the case k = 1.

Let

J̃ε =

{
g ∈ A(∆) | sup

s∈K
| f (s)− g(s)| < ε

}
.

Then, similarly as in the case of Ĵε in the proof of Theorem 4, we have that J̃ε is a
continuity set of the measure Pζ F−1 for all but at most countably many ε > 0. Moreover,
inequalities (12) and (13) show that Jε ⊂ J̃ε. Thus, Pζ F−1(J̃ε) > 0. This; Lemma 7; and 1◦

and 3◦ of Lemma 6 prove the assertion on density of the theorem in the case k = 1.
Now, let k ≥ 2. Since f (s) ∈ Ak(∆), we have by Lemma 7 that the set J̃ε is an open

neighbourhood of an element of the support of the measure Pζ F−1. Thus, Pζ F−1(J̃ε) > 0.
Therefore, by the first part of Lemma 7 and 1◦, 2◦ of Lemma 6,

lim inf
T→∞

PT,H,F(J̃ε) = Pζ F−1(J̃ε) > 0,

and the definitions of PT,H,F and J̃ε prove the assertion in the case of lower density of
the theorem.

For the proof of the second assertion of the theorem, it suffices to observe that the set
J̃ε is a continuity set of the measure Pζ F−1 for all but at most countably many ε > 0. This;
Lemma 7; and 1◦, 3◦ of Lemma 6 give the assertion in the case of density of the theorem.

Proof of Theorem 6. We use Lemmas 6 and 7 and repeat the arguments of the proof of
Theorem 5 in the case k ≥ 2.
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4. Concluding Remarks

The universality in the approximation of classes of analytic functions is a property
of Dirichlet series. However, the theorems of the paper show that the class of universal
functions can be extended significantly by using the compositions of universal functions
with certain operators F in the space of analytic functions. Moreover, some new aspects of
approximation by shifts

F
(
ζ(s + iu1(τ)), . . . , ζ(s + iur(τ))

)
(14)

are introduced. First, in approximation the shifts of only one function ζ(s) are used. Secon-
dly, generalized shifts ζ(s + iuj(τ)) with a certain class of tuples (u1, . . . , ur) are applied.
However, the most important new feature of approximation is investigation of the density
of approximating shifts (14) in short intervals [T, T + H], i.e., with H smaller than T.

The universality theorems of the present paper as well as of [18] are of the continuous
type because τ in shifts can take arbitrary real values. Additionally, the discrete type of
universality in approximation of analytic functions when τ takes values from some discrete
sets is known. This type of universality was introduced in [21], and, in the case of ζ(s), the
shifts ζ(s + ikh), k ∈ N were used, with a fixed h > 0. We have a plan in subsequent papers
to obtain universality theorems in short intervals for shifts

ζ(s + iu(k)) =
(
ζ(s + iu1(k)), . . . , ζ(s + iur(k))

)
, k ∈ N,

for some functions (u1, . . . , ur), as well as for compositions F(ζ(s + iu(k)) with certain
operators F in the space of analytic functions. We note that in the discrete case, some
additional problems connected to the mean square estimates for ζ(s) arise.
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