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Abstract: The multinomial distribution is often used in modeling categorical data because it describes
the probability of a random observation being assigned to one of several mutually exclusive categories.
Given a finite or numerable multinomial modelM

(
|n, ppp

)
whose decision is indexed by a parameter

θ and having a cost c
(
θθθ, ppp
)

depending on θ and on ppp, we show that, under general conditions, the
probability of taking the least cost decision tends to 1 when n tends to ∞, i.e., we showed that
the cost decision is consistent, representing a Statistical Decision Theory approach to the concept
of consistency, which is not much considered in the literature. Thus, under these conditions, we
have consistency in the decision making. The key result is that the estimator p̃ppn with components

p̃n,i =
ni
n

, i = 1, · · ·, where ni is the number of times we obtain the ith result when we have a sample
of size n, is a consistent estimator of ppp. This result holds both for finite and numerable models. By
this result, we were able to incorporate a more general form for consistency for the cost function of a
multinomial model.

Keywords: stochastic convergence; decision theory; estimators

MSC: 62F12; 62C05; 60F05

1. Introduction

Classical Statistical Inference (cSI) is centered on minimizing the probabilities of errors,
but in Statistical Decision Theory (SDT), minimizing the decision costs is the goal; see for
instance [1,2]. In minimizing the probability of errors in cSI, or the decision costs in SDT,
a desired property is to have our procedure to be consistent, that is, we would like the
mass of the distribution of the sequence of the sample for the procedure to converge to the
population constant as the sample size gets larger, see [3,4]. As far as we have searched
prior to the writing of this manuscript, not many studies have been conducted on the
consistency of decision costs for SDT as compared to that of the error probabilities in the
case of cSI.

Multinomial distribution is often used in modeling categorical data because it de-
scribes the probability of a random observation being assigned to one of several mutually
exclusive categories. Thus, having n independent realizations of experiments with a finite
or numerable set of incompatible results with probabilities pi, i = 1, · · · , ∞, the probabili-
ties of obtaining Ni = ni times the ith result, i = 1, · · · follows the multinomial distribution
denoted asM

(
|n, ppp

)
with parameters n and ppp. The probability density function of this

distribution is

P
[

∞⋂
i=1

(Ni = ni)
∣∣ppp] =

n!
∏∞

i=1 ni!

∞

∏
i=1

pni
i (1)
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where 00 = 1, ppp =
(

p1, · · · , pi, · · ·
)

and n =
∞
∑

i=1
ni, see [5,6]. To avoid repetitions, we give

the expression for the numerable case since the particularization to the finite set is direct.
In what follows, we take a double approach in the treatment of Multinomial Mod-

els, both classical and decision theory approaches. In our classical approach, we show

that p̃pp =
(

p̃1, · · · , p̃i, · · ·
)
, with p̃n,i =

ni
n

, i = 1, · · · , is a consistent estimator of

ppp =
(

p1, · · · , pi, · · ·
)
. This result will play a central part in our paper. We point out that

we use a finite sample to obtain a numerable family
{

p̃n,i, i = 1, · · ·
}

of jointly consistent
estimators. We thus have consistent results in the fold of classical statistical inference.

Now considering a decision problem, let there be a family of possible decisions. For
each of these decisions, we have a cost that depends on the results of the experiment. These
results will have probabilities pi, i = 1, · · · . We thus have for the ith result the costs
ci(d), d ∈ D, i = 1, · · · . The average cost for decision d ∈ D will be

c···(d) = ∑
i=1

pici(d), d ∈ D. (2)

Assuming the ci(d), d ∈ D, i = 1, · · · is known, we can use the estimators

p̃n,i =
ni
n

, i = 1, · · · , (3)

where ni, i = 1, · · · is the number of times that in n independent realizations of the
experiment, we get the ith result with cost ci(d), d ∈ D, i = 1, · · · . We have the estimators
for the costs as

c̃n,···(d) = ∑
i=1

p̃n,i ci(d), d ∈ D.

We will show that p̃n,i, i = 1, · · · , are jointly consistent even when we have a
numerable set of possible results, thus the c̃n,···(d) will also be consistent, d ∈ D.

If there is a decision d◦ with least average cost and d̃◦n is the one with the least estimated
average cost where there are n realizations of the experiment, we will show that

Pr
(
d̃◦n = d

)
−−−→
n→∞

1

so that, see [7], we will have consistency in decision taking into the setup of experiments
with finite or numerable set of incompatible results.

In the subsequent sections, we consider the multinomial model and its estimator in
Section 2, where by limits distributions we show that the estimators of the multinomial
model are consistent. In Section 3, we develop the cost function by statistical decision theory
for multinomial models and again show that this function has the property of consistency.
A further extension for the cost function is presented in Section 4.

2. Multinomial Models and Estimators

In this section, we obtain and consider estimators for the multinomial model. By limit
distributions, see [8], we show that the estimators are consistent.

In X , the space of vectors vvv =
(
v1, · · · , vi, · · ·

)
with numerable sets of components

such that ∥∥∥vvv
∥∥∥

1
=

∞

∑
i=1

∣∣∣vi

∣∣∣ < +∞. (4)

We can consider
∥∥vvv
∥∥

1 as a norm, see [9]. The sub-space Γ of X constituted by the
vectors ppp with non-negative components that add up to 1 will be bounded since

∥∥ppp
∥∥

1 = 1.
Given ppp1, ppp2 ∈ Γ, we have ∥∥∥ppp1 − ppp2

∥∥∥
1
≤ 2, (5)
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and if ∥∥∥pppn − vvv
∥∥∥

1
−−−→
n→∞

0 (6)

we have vvv ∈ Γ since the components of vvv will be non-negative and add up to 1. Thus, Γ is
compact since it is bounded and closed.

Let us put 
p(m) =

m
∑

i=1
pi

pc(m) = 1− p(m)
(7)

as well as
ppp(m) =

(
p1, · · · , pm + pc(m), 0 · · ·

)
(8)

in order to get ∥∥∥ppp− ppp(m)
∥∥∥

1
= pc(m) +

∞

∑
i=m+1

pi

= 2pc(m).

(9)

Besides this, we have the vector

p̃ppn =
(

p̃n,1, · · · , p̃n,m, · · ·
)

(10)

whose components are the estimators p̃n,i =
ni
n

, i = 1, · · · . Let us put


p̃n(m) =

m
∑

i=1
p̃n,i

p̃c
n(m) = 1− p̃n(m)

(11)

as well as
p̃ppn(m) =

(
p̃n,1, · · · , p̃n,m + p̃c

n(m), 0, · · ·
)

(12)

so that ∥∥∥p̃ppn − p̃ppn(m)
∥∥∥

1
= 2p̃c

n(m). (13)

With
m̃n = min

{
h : 0 = p̃n,h+1 = p̃n,h+2 = · · ·

}
, (14)

for m ≥ m̃n, we get∥∥∥(p̃ppn − p̃ppn(m))− (ppp− ppp(m))
∥∥∥

1
=
∥∥∥ppp− ppp(m)

∥∥∥
1
= 2pc(m) (15)

since p̃ppn = p̃ppn(m) when m ≥ m̃n. We also get∥∥∥p̃ppn − p̃ppn(m)
∥∥∥

1
≤ 2

∥∥∥ppp− ppp(m)
∥∥∥

1
≤ 4pc(m). (16)

Now, by representing stochastic convergence by s−−−→
n→∞

, we establish Proposition 1:

Proposition 1. The estimator p̃ppn is said to be a consistent estimator for ppp since

p̃ppn
s−−−→

n→∞
ppp, (17)
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that is according to the Weak Law of Large numbers, see [10,11].

Proof. Taking
m
(
ε
)
= min{m : pc(m) ≤ ε}, ∀ε > 0. (18)

so that for m > m
(
ε
)
, we have

P
(

pc
n
(
m
)
≤ 2ε

) s−−−→
n→∞

1, (19)

as well as
P
(∥∥p̃ppn − p̃ppn(m)

∥∥
1 ≤ 4pc(m)

)
s−−−→

n→∞
1, (20)

since ∥∥∥p̃ppn − p̃ppn(m)
∥∥∥

1
≤ 2pc(m). (21)

Now ∥∥∥p̃ppn(m)− ppp(m)
∥∥∥

1

s−−−→
n→∞

0, (22)

since see [7,8,12], √
n(p̃ppn(m)− ppp(m))

D−→ N
(
000, U

(
ppp(m)

))
(23)

where D−→ indicates convergence in distribution in this case to the normal distribution with
null mean vector and covariance matrix

U
(
ppp(m)

)
= D

(
ppp(m)

)
− ppp(m)ppp(m)t, (24)

where D
(
ppp(m)

)
is the diagonal matrix whose principal elements are the components of

ppp(m). Thus
P
(∥∥p̃ppn − p̃ppn(m)

∥∥
1 ≤ ε

)
s−−−→

n→∞
1, (25)

and so
P
[(∥∥p̃ppn − p̃ppn(m)

∥∥
1 ≤ 4ε

)⋂(∥∥p̃ppn(m)− ppp(m)
∥∥

1 ≤ ε
)]

s−−−→
n→∞

1, (26)

as well as
P
(∥∥p̃ppn − ppp(m)

∥∥
1 ≤ 5ε

)
s−−−→

n→∞
1, (27)

whenever m > m(ε).
Now, we also have ∥∥∥ppp− ppp(m)

∥∥∥
1
= 2pc

n ≤ 2ε, (28)

if m > m(ε), then
P
(∥∥p̃ppn − ppp

∥∥
1 ≤ 7ε

)
s−−−→

n→∞
1, (29)

which establishes the thesis.

Corollary 2. If w(ppp) is a continuous function of ppp, we have

w(p̃ppn)
s−−−→

n→∞
w(ppp). (30)

The thesis follows from Proposition 1 and the Slutsky theorem, see [13,14].

Corollary 3. With dddh(vvv) the vector of the indexes of the h largest components of vvvn ∈ X , we have
see [10]

dddh(p̃ppn)
s−−−→

n→∞
dddh(ppp) (31)

if the h + 1 largest components of ppp are distinct.
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Proof. When the h + 1 largest components of ppp are distinct, ppp will be a continuity point of
dddh(···) and the thesis follows from Corollary 3.

The results in this section belong to the study of consistency in classical Statistical
Inference (cSI). These classical inferences are, in most instances, made without regard to the
use to which they are to be put. In the next section, we go into consistency for Statistical
Decision Theory.

3. Cost Function for Multinomial Models

In Statistical Decision Theory (SDT), the goal is to incorporate more than just sample
data in order to arrive at the optimal decision, unlike cSI. The knowledge of the possible
consequences of a decision is much incorporated and this knowledge is quantified as the
cost incurred for each possible decision that is taken. According to [15], Abraham Wald was
the first person to thoroughly examine the inclusion of a cost function in statistical analysis.

The cost function represents the costs associated with taking a particular decision. It
is a function that maps every possible decision and outcome to a real-valued cost. The
cost function is used to evaluate the performance of various decision rules in terms of their
expected cost. The goal of statistical decision theory is to identify the decision rule that
minimizes the expected cost, see [16].

Now, we go back to the decision problem we presented in the Introduction and
consider the cost function for multinomial models.

Let c(ppp, p̃ppn, d), d ∈ D, be the cost for decision d ∈ D, where ppp is the vector of
probabilities and p̃n are the estimated probabilities of the n results. We will assume that
this cost is the sum of two components, both non-negative, c0(ppp, d), that in a given decision
d ∈ D, depends only on ppp, the vector of probabilities, and c1(ppp, p̃ppn, d) that depends on the
estimation errors. Namely, we take

c
(
ppp, p̃ppn, d

)
= c0

(
ppp, d
)
+ kd

(∥∥p̃ppn − ppp
∥∥

1

)
, d ∈ D (32)

with kd > 0, d ∈ D, so

c0(ppp, d) = min
{

c
(
ppp, p̃ppn, d

)}
, d ∈ D

since, as we saw
p̃ppn

s−−−→
n→∞

ppp

we will have
c(ppp, p̃ppn, d) s−−−→

n→∞
c0(ppp, d), d ∈ D. (33)

Thus, for every d ∈ D, the limit cost will be c0(ppp, d). It is now easy to see that if there
is d(ppp) such that

c0
(
ppp, d0(ppp)

)
≤ c0(p, d), d ∈ D,

with d̃0
n(ppp) as the decision with the least estimated cost. We have

Pr
(
d̃0

n(ppp) = d0(ppp)
) s−−−→

n→∞
1

Proposition 4. We have consistency for the cost function given by Equation (32) whenever
Equation (33) holds.

If the h + 1 largest components of ppp are obtained, as an alternative to Equation (32),
we may take

c
(
ppp, p̃ppn

)
= c0

(
ppp
)
+ c1

(∥∥dddh(p̃ppn)− dddh(ppp)
∥∥

1

)
, (34)
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reobtaining Proposition 4, since∥∥∥dddh(p̃ppn)− dddh(ppp)
∥∥∥

1

s−−−→
n→∞

0 (35)

and so we continue to have
c(ppp, p̃ppn)

s−−−→
n→∞

c0(ppp). (36)

We may also take
c1
(
p̃ppn − ppp

)
=
(
p̃ppn − ppp

)tMMM
(
p̃ppn − ppp

)
(37)

with MMM a positive definite matrix, see [8,9], or

c1
(
p̃ppn − ppp

)
=
(
dddh(p̃ppn)− dddh(ppp)

)tMMM
(
dddh(p̃ppn)− dddh(ppp)

)
. (38)

Thus, there is a wide range of possible cost functions, namely, with ggg(···), a continuous
function

γ̃γγn = ggg(p̃ppn) (39)

will, according to the Slutsky theorem, be a consistent estimator of γγγ = ggg(ppp).
Moreover, if we have a cost function

c
(
γγγ, γ̃γγn

)
= c0(γγγ) + c1

(∥∥γ̃γγn −γγγ
∥∥

1

)
, (40)

where c0(γγγ) is the cost that depends on γγγ and c1(···) is continuous and such that c1(0) = 0,
we can use again the Slutsky theorem, to get

c
(
γγγ, γ̃γγn

) s−−−→
n→∞

c0(γγγ). (41)

We thus extended our previous results on ppp to any parameter given by a continuous
function of ppp, such as the cost function.

4. Extension on Cost Functions

In this section, we develop an extension for the previous Section 3 to incorporate a more
general form of our results on consistency for the cost function for multinomial models.

For instance, we consider
γ(ϕ) = ∑

j∈ϕ

pj (42)

the sum of the probabilities of the results with indexes in ϕ. These results may be of interest
and so we are led to consider their joint probability. A direct extension of this case is
given by

γ(ϕ1, · · · , ϕk) =
k

∑
l=1

al ∑
j∈ϕl

pj (43)

where we consider k sets of results. The coefficients a1, · · · , ak value the relevances of the
corresponding sets of results.

In general, let us have a succession
{

YYYn
}

of observation vectors whose distributions
depend on a parameter θθθ for which we have a consistent estimator θ̃θθn. Then, if we have a
cost function

c
(
θθθ, θ̃θθn

)
= c0

(
θθθ
)
+ c1

(∥∥θ̃θθn − θθθ
∥∥

1

)
(44)

with c0(θθθ) a continuous function of θθθ and c1(···) also continuous, and such that

min
{

c1(‖z‖1)
}
= c1(0) = 0, (45)

we have
c
(
θθθ, θ̃θθn

) s−−−→
n→∞

c0(θθθ) (46)
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which implies consistency for the cost functions. Thus, the two consistent features dis-
play the relation we had already found for multinomial models. Namely, we obtain the
following result:

Proposition 5. If we have a consistent estimator θ̃θθn for a parameter θθθ, we have consistency for cost
functions

c
(
θθθ, θ̃θθn

)
= c0

(
θθθ
)
+ c1

(∥∥θ̃θθn − θθθ
∥∥

1

)
where c1(···) is continuous with minimum c1(0).

The extension behind this proposition, and getting consistent estimators for a nu-
merable set of parameters, the components of ppp, from a finite sample are maybe the most
interesting features of our discussion.

5. Final Remark

In this study, based on limit distribution, by considering the vector of probabilities for
the multinomial model, we showed, using classical Statistical Inference, that the estimators
for the vector of probabilities are consistent. Due to the limitation of classical Statistical
Inference but not incorporating the knowledge of the possible consequences of a decision,
we used a Statistical Decision Theory approach to quantify the cost incurred for each
possible decision by obtaining a cost function for the vector of probabilities. We showed
that the estimators of cost function are consistent.

Our results on having consistency for the estimator of probabilities leads to consistency
of decision function; in this, we hope to have opened an interesting line of work on
multinomial and other models using Statistical Decision Theory.
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