
Citation: Zhang, W.; Sun, Z.; Liu, J.;

Chen, S. A More Efficient and

Practical Modified Nyström Method.

Mathematics 2023, 11, 2433. https://

doi.org/10.3390/math11112433

Academic Editor: Luca Gemignani

Received: 29 March 2023

Revised: 17 May 2023

Accepted: 22 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A More Efficient and Practical Modified Nyström Method
Wei Zhang 1,* , Zhe Sun 2,3 , Jian Liu 4 and Suisheng Chen 1

1 Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational & Technical College,
Hangzhou 310018, China

2 Post Industry Technology Research and Development Center of the State Posts Bureau (Internet of Things
Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

3 Post Big Data Technology and Application Engineering Research Center of Jiangsu Province,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China

4 College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
* Correspondence: zhw618@hzvtc.edu.cn

Abstract: In this paper, we propose an efficient Nyström method with theoretical and empirical
guarantees. In parallel computing environments and for sparse input kernel matrices, our algorithm
can have computation efficiency comparable to the conventional Nyström method, theoretically.
Additionally, we derive an important theoretical result with a compacter sketching matrix and faster
speed, at the cost of some accuracy loss compared to the existing state-of-the-art results. Faster
randomized SVD and more efficient adaptive sampling methods are also proposed, which have wide
application in many machine-learning and data-mining tasks.
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1. Introduction

The Nyström method is a widely used technique to speed up kernel machines. Its
efficiency in computation has attracted much attention in the past few years [1–8]. Given a
kernel matrix K ∈ Rn×n, the Nyström method tries to approximate the kernel by random
sampling to save computation cost. At the cost of computational efficiency, it suffers from
a relatively large matrix approximation error in real applications [9,10]. Given the target
rank k and target precision parameter 0 < ε ≤ 1, Wang and Zhang [4] gave a theoretical
analysis that, with the Nyström method, it is impossible to obtain a 1 + ε bound relative to
‖K−Kk‖2

F unless the number of sampled columns c > Ω(
√

nk/ε). Here, Kk denotes the
best rank-k approximation to the kernel matrix K. Several modified Nyström methods were
proposed in recent years [3,4,11,12]. In the work of [11], a modified Nyström method just
needs k/ε columns of the kernel matrix to obtain a 1+ ε bound relative to ‖K−Kk‖2

F. To the
best of our knowledge, it is the fastest algorithm, costing O(nk2) + TMultiply(nnz(K) log n)
to achieve a 1+ ε relative error of ‖K−Kk‖2

F, where nnz(K) means the number of non-zero
entries of K. Although these modified Nyström methods are superior in approximation
accuracy, it needs a much higher computational burden compared to the conventional
Nyström method.

In this paper, we propose a much faster modified Nyström method which runs in
O(n 1

2 k3/ε
5
2 ) + TMultiply(O(nnz(K) log n) time to achieve a 1 + ε bound relative to ‖K−

Kk‖2
F. When ε >

√
2− 1, our algorithm will be accelerated to

O(k3) + TMultiply(O(nnz(K) log n),

which is guaranteed by Lemma 3. Our algorithm is given in Algorithm 3. It needs
TMultiply(O(nnz(A) log n)) times to conduct matrix multiplication which is easily imple-
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mented in parallel. The computation complexity of matrix multiplication in Algorithm 3 is
near linear in input sparsity. In addition, for the arithmetic operations which are hard to
implement in parallel, such as SVD, pseudoinverse and QR decomposition, Algorithm 3
needs O(n 1

2 k3/ε
5
2 ) time which is sublinear in the input size n. At the cost of sacrificing

a certain accuracy, O(k3) can be reached with the same computational complexity as the
conventional Nyström method, needing O(k3) arithmetic operations when sampling O(k)
columns. Our empirical studies further validate the efficiency of our algorithm.

In this paper, we improve several key algorithms which constitute a faster modified
Nyström method. We summarized our contributions as follow.

• First and most importantly, we propose an efficient modified Nyström method with
theoretical guarantees.

• Second, a more computationally efficient adaptive sampling method is proposed in
Lemma 2. Adaptive sampling is a cornerstone of column selection, CUR decomposi-
tion and the Nyström method [4,5,11,13], and it is also very popular in other matrix
problems [14].

• Finally, our proposed practical Nyström method can achieve computation efficiency
in real applications, as shown by our experiments.

The rest of this paper is structured as follows. In Section 2, we provide the notations
used in this study. Section 3, several key algorithms that constitute the modified Nyström
are improved. Section 4 gives our modified Nyström method. We conduct empirical
analysis and comparison in Section 5, and conclude our work in Section 6. All detailed
proofs are omitted except computation complexity analysis.

2. Notation and Preliminaries [15]

Firstly, we introduce the notation and concepts that will be utilized here and hereafter.
Im is used to represent the identity m×m matrix. Sometimes we just use I for simplicity.
We also use 0 to signify a zero vector or a zero matrix with an appropriate size. The number
of non-zero entries in A is indicated by the notation nnz(A).

Let k ≤ ρ and ρ = rank(A) ≤ min{m, n}. The singular value decomposition (SVD) of
A may be expressed as

A =
ρ

∑
i=1

σiuivT
i =

[
Uk Uk⊥

][ Σk 0
0 Σk⊥

][
VT

k
VT

k⊥

]
,

where the top k singular values are represented by Uk (m× k), Vk (n× k) and Σk (k× k). The
best (or closest) rank-k approximation to A is denoted by Ak = UkΣkVT

k . The i-th greatest
singular value of A is denoted by σi = σi(A). The SVD is the same as the eigenvalue
decomposition when A is symmetric positive semi-definite (SPSD), in which case we obtain
UA = VA.

Furthermore, let A† be the Moore–Penrose inverse of A, defined as A† = VρΣ−1
ρ UT

ρ .
When A is non-singular, the matrix inverse is the same as the Moore–Penrose inverse.

The matrix norms are defined in the manner as follows. Assume that the spectral norm
is ‖A‖2 = maxx∈Rn ,‖x‖2=1, ‖Ax‖2 = σ1 and the Frobenius norm is ‖A‖F = (∑i,j a2

ij)
1/2 =

(∑i σ2
i )

1/2.
When given the matrices, A ∈ Rm×n and C ∈ Rm×r with r > k, we explicitly define

matrix Πζ
C,k(A) as the closest representation of A in the column space of C with the rank

of the most k. The function Πζ
C,k(A) minimizes the residual ‖A− Â‖ζ across all Â in the

column space of C. Here, “ζ” denotes either the spectral norm or the Frobenius norm.
When given three matrices, A ∈ Rm×n, X ∈ Rm×p, and Y ∈ Rq×n, the projection of A

onto X’s column space is represented as XX†A = UXUT
XA ∈ Rm×n, and the one onto Y’s

row space is denoted by AY†Y = AVYVT
Y ∈ Rm×n.

We now give the definition of leverage score sampling and subspace embedding,
which are key tools to construct our Nyström algorithm.
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Definition 1 (Leverage score sampling, [13,15]). Allow V ∈ Rn×k to be column orthonormal
with n > k, and vi,∗ to signify the i-th row of V. Allow `i = ‖vi,∗‖2

F/k. Given that the `i are
leverage scores, let r be an integer in the range 1 ≤ r ≤ n. Create the sampling matrix Ω ∈ Rn×r

and the rescaling matrix D ∈ Rr×r as follows. Pick an index i from the set of {1, 2 . . . , n} with
probability `i, for each column j = 1, . . . , r of Ω and D, separately and with replacements. Let
Ωij = 1 and Djj = 1/

√
`ir. The number of operations required by this procedure is O(nk + n).

This procedure is designated as

[Ω, D] = LeverageScoreSampling(V, r).

Definition 2 ([16]). Assuming ε > 0 and δ > 0, define a distribution on `× n matrix S as Π ,
where ` depends on n, d, ε and δ. Assume that, any given n× d matrix A, with a probability of
at least 1− δ, a matrix S chosen from distribution Π is a (1 + ε) `2-subspace embedding for A.
Meaning that, for every x ∈ Rd, ‖SAx‖2

2 = (1± ε)‖Ax‖2
2 with probability 1− δ. After that, we

designate Π as an (ε, δ)-oblivious `2-subspace embedding.

The sparse subspace embedding matrix S and subsampled Hadamard matrix H are the
two most popular subspace embedding matrices. For an n× k matrix A with k dimension
subspace, we can construct a sparse subspace embedding matrix S for A with m = O(k2/ε2)
rows, and the subsampled Hadamard matrix H with m = O(k log k)/ε2 [16]. Combining S
with H still has the property.

Let’s discussed the computational costs about the matrix operations mentioned above.
Matrix multiplication is an intrinsic parallel operation; hence, it can be easily implemented
in parallel efficiently just as many mathematical software do. However, SVD decomposition
and QR decomposition are much harder to implement in parallel. Hence, we denote the
time complexity of such a matrix multiplication by TMultiply. For a general m×n matrix A
with m ≥ n, computing the full SVD requires O(mn2) flops, whereas computing the trun-
cated SVD of rank k (k < n), requires O(mnk) flops. Additionally, computing A† requires
O(mn2) flops, too. Given a m×m Hadamard–Walsh transform matrix H, TMultiply(Õ(mn))
is the cost for the Hadamard–Walsh transform HA, which is substantially quicker than
TMultiply(O(m2n)) for the typical matrix multiplication. A sparse subspace embedding
matrix S for an n× d matrix A, SA needs TMultiply(O(nnz(A))) arithmetic operations.

3. Main Lemmas and Theorems

In this part, we will outline our principal theorems and lemmas, which are the key tools
to implement Algorithm 3. In addition, these lemmas and theorems are of independent
interest and have wide application.

First, we give a fast randomized SVD method which is depicted in Algorithm 1 which
is the fastest randomized SVD method as far as we know.

Lemma 1. Given matrix A ∈ Rm×n, target rank k and error parameter 0 < ε ≤ 1, Z is returned
from Algorithm 1; then, the following formula holds with high probability.

‖A− ZZTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F

In addition, Z can be computed in Õ(k3/ε5) + TMultiply(O(nnz(A)) + Õ(mk2/ε4 + k3/ε3)).
We denote Algorithm 1 as

Z = SparseSVD(A, k, ε).
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Algorithm 1 Sparse SVD

1: Input: a real matrix A ∈ Rm×n, error parameter ε and target rank k;
2: Compute ART , where R = ΠS ∈ Rc×n with c = O(k log k/ε). S ∈ Rs×n is a sparse subspace

embedding matrix with s = O(k2 + k/ε) and Π ∈ Rc×s is a subsampled randomized Hadamard
matrix with c = O(k log k/ε);

3: Compute an orthonormal basis U for ART by U = ARTC−1, where C is the Cholesky decompo-
sition of RATART ;

4: Compute Γ = UTAWT ∈ Rc×d, where W = HF ∈ Rd×n with d = O(k log k/ε3). F ∈ Rn×t is
a sparse subspace embedding matrix with t = O(k2 log2 k/ε3) and H ∈ Rd×t is a subsampled
randomized Hadamard matrix with d = O(k log k/ε3).

5: Compute the SVD of Γ and let ∆ ∈ Rc×k contain the top k left singular vectors of Γ;
6: Output: Z = U∆.

Proof. Lemma A2 shows that ‖A − UUTA‖2
F ≤ (1 + ε)‖A − Ak‖2

F, where U is of
O(k log k/ε) columns. Applying Lemma A1 and replacing V with U, we can obtain
the result that

‖A− ZZTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F

For computation time analysis, computing ART takes TMultiply(O(nnz(A) + Õ(mk(k +
ε−1))), and then TMultiply(Õ(mk2/ε2 + k3/ε3)) computes the U = AC−1, where C is the
Cholesky decomposition of ATA. Computing UT(AWT) requires TMultiply(O(nnz(A) +

mk2/ε3 + mk2/ε4)). Computing the SVD of Γ requires Õ(k3/ε5). In addition, computing
Z = U∆ requires TMultiply(Õ(mk2/ε3)). Hence, Algorithm 1 takes

Õ(k3/ε5) + TMultiply(O(nnz(A)) + Õ(mk2/ε4 + k3/ε3))

computation complexity.

A faster adaptive sampling, Algorithm 2, is developed based on the work of [13].
Boutsidis and Woodruff [13] tried to compute norms of each column of GB = GA −
GC1C†

1A. To further reduce the computation cost, we introduce the sketched GB̂ =
GA−GC1(RC1)

†(RA) to approximate GB. By such sketching, GC1(RC1)
†(RA) can be

computed more efficiently than GC1C†
1A.

Algorithm 2 Adaptive Sampling

1: Input: a real matrix A ∈ Rm×n, C1 ∈ Rm×c1 and the number of selected columns c;
2: Construct B̂ = A− C1(RC1)

†(RA), where R = ΠS ∈ Rt×m with t = 2c1 log c1. S ∈ Rs×m is a
sparse subspace embedding matrix with s = c2

1 + 2c1 and Π ∈ Rt×s is a subsampled randomized
Hadamard matrix;

3: Construct B̃ = GB̂ where G ∈ Rg×m is a normalized Gaussian matrix with g = 9 log n;
4: Compute sampling probabilities pj = ‖b̃j‖2

F/‖B̃‖2
F for j = 1, . . . , n, where b̃j is the j−th column

of B̃ ;
5: Output: Obtain C2 by selecting c columns from A in c i.i.d. trials; in each trial the index j is

chosen with probability pj.

Lemma 2. Given A ∈ Rm×n, C1 ∈ Rm×c1 and V ∈ Rr×n such that rank(V) = rank(AV†V) =
ρ, with ρ ≤ c ≤ n, let C2 ∈ Rm×c2 be returned from Algorithm 2 containing c2 columns of A.
Then, the matrix C = [C1, C2] ∈ Rm×(c1+c2) satisfies that for any integer k > 0, and with a high
probability which is at least 0.9.

‖A− CC†AV†V‖2
F ≤ ‖A−AV†V‖2

F +
40ρ

c2
‖A− C1C†

1A‖2
F.

In addition, this randomized algorithm can be implemented in

Õ(c3
1) + TMultiply(O(nnz(A) log n + Õ(nc2

1 + nc1 log n + c3
1))
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computation time. We denote this randomized algorithm as

C2 = AdaptiveSampling(A, V, C1, c2).

Proof. Let B = A − C1C†
1A be the residual matrix and bi is the i-th column of B. By

Theorem A4, with high probability, it holds that

‖B‖2
F ≤ ‖B̂‖2

F ≤ (1 + 2ε)‖B‖2
F = 2‖B‖2

F‖bi‖2
F ≤ ‖b̂i‖2

F ≤ (1 + 2ε)‖bi‖2
F = 2‖bi‖2

F

Besides, by the JL property of G, we have 1
3‖b̂i‖F ≤ ‖b̃i‖F ≤ 4

3‖b̂i‖F. Hence, after utilizing
the below distribution for sampling,

pi =
‖b̃i‖F

‖B̃‖F
≥ 2

3
· 3

4
·
‖b̂i‖2

F
‖B̂‖2

F
≥ 1

2
· 1

2
·
‖bi‖2

F
‖B‖2

F
=

1
4
‖bi‖2

F
‖B‖2

F

Using Lemma A3, we obtain

E
[
‖A− CC†AV†V‖2

F

]
≤ ‖A−AV†V‖2

F +
4k
c2
‖A− C1C†

1A‖2
F.

Using the Markov inequality, we have that

‖A− CC†AV†V‖2
F ≤ ‖A−AV†V‖2

F +
40ρ

c2
‖A− C1C†

1A‖2
F.

holds with a probability of at least 0.9.
As to the running time, it needs TMultiply(O(nnz(A)) + Õ(nc2

1)) arithmetic opera-
tions to compute RA. To compute RC1 costs TMultiply(O(nnz(C1)) + Õ(c3

1)). To com-
pute (RC1)

†, it requires Õ(c3
1). In addition, computing GA and GC1 require TMultiply

(O(nnz(A) log n)) and TMultiply(mc1 log n), respectively. In addition, to compute
(GC1)(RC1)

†(RA) needs

TMultiply(Õ(nc1 log n + c2 log n))

computation. In addition, GA−GC1(RC1)
†RA needs another TMultiply(O(n log n)) arith-

metic operations. Thus, all these need Õ(c3
1) + TMultiply(O(nnz(A) log n + Õ

(nc2
1 + nc1 log n + c3

1))

Lemma 3 ([15,17]). Given the matrices C ∈ Rm×c, A ∈ Rm×n and R ∈ Rn×r, let’s suppose
that S is the leverage-score sketching matrix of C with s = O(c/ε + c log c) rows, and T is the
leverage-score sketching matrix of R with t = O(r/ε + r log r) columns. Let

U? = C†AR† = argmin
U
‖A− CUR‖F

and
Û = (SC)†SAT(RT)†,

then we can obtain
‖A− CÛR‖F ≤ (1 + ε)‖A− CU?R‖F.

The number of sampled rows in Lemma 3 is independent on the input dimension of A
and is linear to c. By losing some accuracy, a much faster algorithm can be implemented.

4. Practical Modified Nyström Method

We use our new lemmas and theorems developed in Section 3 to implement an efficient
modified Nyström algorithm.
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4.1. Description of The Algorithm

A n× n real symmetric matrix A, an error parameter 0 < ε < 1 and a target rank k
are the inputs of Algorithm 3. Meanwhile, a matrix C ∈ Rn×c with c = O(k/ε + k log k)
columns of A, and a matrix U ∈ Rc×c are the results. There are primarily 3 steps in
Algorithm 3: (i) using the definition of the leverage score sampling, it samples a number
of columns of A to obtain C1 ; and using the adaptive sampling method to obtain C2 and
R2; (ii) it calculates the leverage scores of C using the method in [18]; and (iii) it constructs
the intersection matrix U. Note that Û in Lemma 3 is asymmetric even when A is positive
semi-definite. Thus, when applied to kernel approximation, we need to construct a positive
semi-definite U shown in Algorithm 3.

Algorithm 3 Practical Nyström

1: Input: a real symmetric matrix A ∈ Rn×n, error parameter ε and target rank k;
2: Z = SparseSVD(A, k, 1);
3: [Ω, Γ] = LeverageScoreSampling(Z,O(k log k)) and construct C1 = AΩ;
4: C2 = AdaptiveSampling(A, VT

k , C1,O(k/ε)) and C3 = AdaptiveSampling(A, VT
k , C1,O(k/ε)),

constructing C = [C1, C2, C3] ∈ Rn×O(k/ε+k log k);
5: Compute approximate leverage scores of C using the method of [18] and construct the leverage

sketch matrix S1 and S2 of n× s size, where s = O( c
ε + c log c);

6: Compute Û = (S1C)†S1AST
2 (C

TST
2 )

†.

7: Compute U = ΠHs
+
(Û) by conducting eigenvalue decomposition of Ũ = Û+ÛT

2 and setting the
negative eigenvalues of Û to zero.

8: Output: C and U.

4.2. Analysis of Running-Time

Here, we provide a detailed analysis of the Algorithm 3’s arithmetic operations.

1. The computation complexity of Algorithm 3 is Õ(k3) + TMultiply(O(nnz(A) log n +

Õ(nk2 + nk log n + k3)) to find O(k/ε + k log k) columns of A to construct C.

(a) To obtain Z ∈ Rn×k from Theorem 1, it takes Õ(k3) + TMultiply(O(nnz(A)) +

Õ(nk2 + k3)).
(b) To obtain the leverage score and sample C1 and C2, it takes TMultiply(O(nk)).
(c) To construct C3 and R2 Lemma 2, it takes Õ(k3) + TMultiply(O(nnz(A) log n +

Õ(nk2 + nk log n + k3)).

2. The computation complexity of Algorithm 3 is O(k3/ε4) + TMultiply(O(nk2/ε2) +

Õ(nk2 + k3/ε5)) to construct U when s = O( c
ε + c log c) is the row dimension of S1

and S2 in Algorithm 3.

(a) To obtain the leverage scores of C, it takes O(k3/ε3) + Tmultiply(O(n(k/ε)2 +

Õ(nk2)).
(b) To compute (ST

1 C)† and (ST
2 C)†, it takes Õ(k3/ε4).

(c) To compute matrix multiplication, it takes TMultiply(O(k3/ε5)).
(d) To compute the eigenvalue decomposition of U, it takes Õ(k3/ε3).

The algorithm’s overall asymptotic arithmetic operation is

TMultiply(O(nnz(A) log n + nk2/ε2 + k3/ε5) + Õ(nk2 + nk log n + k3/ε4)).

4.3. Error Bound

Primary approximate result regarding Algorithm 3 is shown as the following theorem.

Theorem 1. Given an error parameter ε and a target rank k, run Algorithm 3, then the below
inequality holds with high probability.

‖A− CUCT‖F ≤ (1 + ε)‖A−Ak‖F
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5. Empirical Study

In this section, we compare our Practical Nyström algorithm with the uniform+adaptive
algorithm [11,19], near-optimal+adaptive algorithm [4,11,13] and conventional Nyström
using just uniform sampling. All algorithms were implemented in Matlab and experiments
were conducted on a workstation with 32 cores of 2G Hz and 24G RAM.

On each data set, we give the approximation error and the execution duration of each
algorithm. The approximation error is

Approximation Error =
‖A− CUCT‖F
‖A‖F

,

where U is the intersection matrix defined in the Nyström method.
On three data sets we test all three algorithms, and the results are listed in Table 1.

We create a RBF kernel matrix A for each dataset, with aij = exp(
‖xi−xj‖2

2
2γ2 ), where xi and

xj are data instances and γ is the parameter of the RBF kernel function. By the definition
of A, the size n of A is the number of instances of the dataset. Thus, the kernel matrices
in our experiments are of large sizes. We set γ different values for each data set as Table 1
describes. However, the effectiveness of our algorithm does not depend on the setting
of γ. For each data set, we set k = 10, 30 and 50. We sampled c = ak columns from A
and a ranges from 8 to 26. We ran each algorithm 5 times and report the average value of
approximation error and running time. All results are illustrated in Figures 1–3.

Table 1. A summary of the datasets for kernel approximation.

Data Set a9a USPS PenDigits

#instance 32,561 11,305 7494

γ 5 4 30

Source UCI TKH96a UCI
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Figure 1. Results of the Nyström algorithms on the a9a dataset. In the first column, we set k = 10,
and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right column,
we set k = 50, and c = ak.
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Figure 2. Results of the Nyström algorithms on the pendigit dataset. In the first column, we set
k = 10, and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right
column, we set k = 50, and c = ak.
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Figure 3. Results of the Nyström algorithms on the usps dataset. In the first column, we set k = 10,
and c = ak with a = 8, . . . , 26. In the middle column, we set k = 30, and c = ak. In the right column,
we set k = 50, and c = ak.

As evidenced by the empirical results in the figures, it is clear that our approach
is efficient. In terms of accuracy, Our approach is comparable to the state-of-the-art
algorithm—the near-optimal+adaptive algorithm [4,11,13]. As to the running time, our
approach is much faster than near-optimal+adaptive algorithm and uniform+adaptive
algorithm. Our algorithm’s running time grows slower than the near-optimal+adaptive
algorithm and uniform+adaptive algorithm. The advantage of the running time of our
algorithm grows as the dimension of kernel matrix A increases. Calculating kernel matrix
A of size 7494× 7494 from the ‘PenDigits’ data set, our alogrithm is twice as fast as the near-
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optimal+adaptive algorithm. As to the ‘a9a’ data set of 32,561 instances, our algorithm is
four times faster than near-optimal+adaptive. In addition, as c increases, the running-time
superiority of our algorithm also increases. Our algorithm also has similar a advantage
over the uniform+adaptive algorithm. Hence, our algorithm is suitable to scale to kernel
matrices of high dimensions.

6. Conclusions

In this paper, we proposed an efficient modified Nyström method with a theoretical
and emperical guarantee. In a high-level parallel-computation environment with sparse
input matrices, our Nyström method can achieve comparable computation efficiency
compared to the conventional Nyström method, theoretically. Hence, our Nyström method
is suitable for machine-learning algorithms in big-data setting. In addition, we give a
sketching generalized matrix approximation which extends the previous work [12]. Faster
randomized SVD and more efficient adaptive sampling methods are proposed which have
wide application in lots of areas. In addition, our modified Nyström algorithm can be easily
extended to CUR decomposition which leads to more efficient CUR decomposition.
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Appendix A. Key Theorems Used in Our Proofs

Theorem A1 ([15,20]). There is t = Θ(ε−2) for matrix A ∈ Rm×n and orthonormal U ∈ Rm×k,
thus, for a t×m leverage-score sketching matrix S for orthonormal U,

P
[
‖ATSTSU−ATU‖2

F < ε2‖A‖2
F‖U‖2

F

]
≥ 1− δ,

for any fixed δ > 0.

Theorem A2 ([15,20]). There is t = O(kε−2 log k), for any rank k matrix A ∈ Rm×n with row
leverage scores, such that leverage-score sketching matrix S ∈ Rt×m is an ε-embedding matrix for
matrix A, i.e.,

‖SAx‖2
2 = (1± ε)‖Ax‖2

2

Theorem A3 ([15,20]). Given that A is a matrix with m rows and C is a matrix with m rows as
well as rank k. S is a subspace embedding for C with error parameter ε0 ≤ 1/

√
2, and it is also the

t×m leverage-score sketching matrix of C with O(k/ε) rows. Then if Ŷ and Y? are respectively
the solutions to

minY = ‖S(CY−A)‖2
F

and
minY = ‖S(CY−A)‖2

F

then, the below two formulas hold with a probability of at least 0.99.

‖CŶ−A‖F ≤ (1 + ε)‖CY? −A‖F
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‖C(Ŷ− Y∗)‖F ≤ 2
√

ε‖CY∗ −A‖F

Theorem A4 ([15,20]). Given that A is a matrix with m rows, and C is a matrix with m rows as
well as rank k, where R = ΠS ∈ Rt×n with t = 2k log k/ε. Π ∈ Rt×s is a subsampled randomized
Hadamard matrix and S ∈ Rs×m is a sparse subspace embedding matrix with s = k2 + 2k/ε. Then
if Ŷ and Y? are respectively the solutions to

minY = ‖R(CY−A)‖2
F

and
minY = ‖R(CY−A)‖2

F

then, the below two formulas hold with a probability of at least 0.99.

‖CŶ−A‖F ≤ (1 + ε)‖CY? −A‖F

‖C(Ŷ− Y∗)‖F ≤ 2
√

ε‖CY∗ −A‖F

Lemma A1 ([13,15]). Let A ∈ Rm×n and V ∈ Rm×c. Assume that given a particular rank
parameter k and an accuracy parameter 0 < ε < 1,

‖A−ΠF
V,k(A)‖2

F ≤ ‖A−Ak‖2
F.

V is a QR-decomposition, and let V = QY where Q ∈ Rm×c and Y ∈ Rc×c. Let Γ =
QTAWT ∈ Rc×`, where WT ∈ Rn×` is a sparse subspace embedding matrix, and ` = O(c2/ε2).
Let ∆ ∈ Rc×k contain the top k left singular vectors of Γ. Then, it holds that

‖A−Q∆∆TQTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

with high probability.

Lemma A2 ([16]). Given matrix Rm×n, R = ΠS ∈ Rc×n is a subspace embedding matrix with
c = O(k log k/ε). S ∈ Rn×s is a sparse subspace embedding matrix with s = O(k2 + k/ε) and
Π ∈ Rc×s is a subsampled randomized Hadamard matrix with c = O(k log k/ε). Let U be the
orthonormal basis of ART . Then, it holds that

‖A−UUTA‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

with high probability.

Lemma A3 ([4,15,16]). Given A ∈ Rm×n, R1 ∈ Rr1×n and C ∈ Rm×c such that

rank(C) = rank(CC†A) = ρ,

with ρ ≤ c ≤ n, given R1 ∈ Rr1×n and the defined residual

B = A−AR†
1R1 ∈ Rm×n.

For i = 1, . . . , m, let pi be the probability distribution such that for each i:

pi ≥ α‖bi‖2
F/‖B‖2

F,

where bi is the i-th row of B. Sample r2 rows from A in c2 i.i.d. trials, where in each trial the
i-th column is chosen with probability pi. Let R2 ∈ Rr2×n contain the r2 sampled rows and let
R = [RT

1 , RT
2 ]

T . Then

E‖A− CC†AR†R‖2
F ≤ ‖A− CC†A‖2

F +
ρ

αr2
‖A−AR†R‖2

F.
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Theorem A5 ([13,15]). Given three matrices C ∈ Rm×c, A ∈ Rm×n and R ∈ Rr×n, we have

C†AR† = argmin
U
‖A− CUR‖F

Theorem A6 ([15,21]). Given a matrix A = AZZT + E ∈ Rm×n, where ZTZ = Ik and Z ∈
Rn×k, let S ∈ Rn×t be any matrix such that rank k = (ZTS). Let C = AS ∈ Rm×r. Then

‖A− CC†A‖2
ζ ≤ ‖A−Πζ

C,k(A)‖2
ζ

≤‖A− C(ZTS)†ZT‖2
ζ ≤ ‖E‖2

ζ + ‖ES(ZTS)†‖2
ζ .

Appendix B. Theorem 1 Proof

We first provide an essential lemma before proving the theorem.

Lemma A4 ([15]). Given any Z ∈ Rm×p, C ∈ Rm×q and A ∈ Rm×n, assumeR(Z) ⊆ R(C) ⊆
R(A). Let X ∈ Rn×n be a projection matrix. Then

‖A− CC†AX‖F ≤ ‖A− ZZ†AX‖F.

Now we start to prove Theorem 1.

Proof. According to Theorem A6, we have

‖A− C1C†
1A‖2

F ≤ ‖A−ΠF
C1,k(A)‖2

F ≤ ‖E‖2
F + ‖ES(ZTS)†‖2

F.

Let S = ΩΓ and E = A−AZZT , then we have

‖E‖2
F ≤ 2‖A−Ak‖2

F (A1)

because of Lemma A1 with error parameter ε = 1. In addition, ST is a row leverage score
sketching matrix of Z, where Γ, Ω and Z are calculated in Algorithm 3. Additionally, ST is
also a subspace embedding matrix of Z with error parameter ε0 = 1/2. Inferring from the
fact that (ZTS)† = (ZTS)T(ZTSSTZ)−1, we obtain

‖ES(ZTS)†‖2
F = ‖ESSTZ(ZTSSTZ)−1‖2

F

≤ ‖ESSTZ‖2
F‖(ZTSSTZ)−1‖2

2 (A2)

≤ 1
4k log k

‖E‖2
F‖Z‖2

F‖(ZTSSTZ)−1‖2
2 (A3)

≤ 1
log k

‖E‖2
F, (A4)

where Equation (A2) follows from the fact that ‖AB‖F ≤ ‖A‖2‖B‖F, and Equation (A3)
follows from Theorem A1 with error parameter ε = 4k log k and EZ = A(I− ZZT)Z = 0.
Due to Theorem A2 with error parameter ε0 = 1/2, Equation (A4) can be obtained. Because
we have

‖STZ‖2
2 = (1± ε0)‖Z‖2

2 = (1± ε0).

therefore,
‖(ZTSSTZ)−1‖2

2 ≤ (1− ε0)
−2 = 4.

Due to Theorem A2, S needs t = 4k log k columns as a subspace embedding matrix of
Z with error parameter ε0 = 1/2. Theorem A2 also leads to ε = 4k log k in the proof of
Equation (A3). Now we have

‖A− C1C†
1A‖2

F ≤ ‖E‖2
F +

1
log k

‖E‖2
F ≤ 4‖A−Ak‖2

F, (A5)
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where the last inequality follows from Equation (A1) and 1/ log k ≤ 1.
Using Lemma 2, we need to sample O( k

ε ) columns from A such that Ĉ = [C1, C2] has
the property

‖A− ĈĈ†A‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

Lemma A1 shows that there exists an othonormal matrix Qk with rank k in the range
of Ĉ such that

‖A−QkQT
k A‖2

F ≤ (1 + ε)‖A− ĈĈ†A‖̂2
F. (A6)

[C3] = AdptiveSampling(A, Qk, C1, k/ε), and we define C̃ = [C1, C3], then by Lemma A3,
it holds that

‖A− C̃C̃†AQT
k Qk‖2

F

≤‖A−QkQT
k A‖2

F + ε‖|A− C1C†
1A‖2

F

≤(1 + ε)‖A− ĈĈ†A‖2
F + 4ε‖A−Ak‖2

F

≤(1 + ε)2‖A−Ak‖2
F + 4ε‖A−Ak‖2

F

=(1 + 6ε)‖A−Ak‖2
F.

By rescaling the ε, we can obtain a (1 + ε) relative error bound. Since R(Qk) ⊆ R(Ĉ) ⊆
R(A), Lemma A4 leads to

‖A− C̃C̃†A(Ĉ†)TĈT‖2
F ≤ ‖A− C̃C̃†AQT

k Qk‖2
F ≤ (1 + ε)‖A−Ak‖2

F.

Inferring from the fact that R(Ĉ) ⊆ R(C) ⊆ R(A) and R(C̃) ⊆ R(C) ⊆ R(A),
utilizing Lemma A4 twice, we reach the result that

‖A− CC†A(C†)TCT‖2
F ≤ ‖A− C̃C̃†A(Ĉ†)TĈT‖2

F ≤ (1 + ε)‖A−Ak‖2
F.

S is a leverage-score sketching matrix of C, when s = O( c
ε + c log c) is the row

dimension of S; by Theorem 3 of [12], we have,

‖A− CUCT‖2
F ≤ ‖A− CÛC>‖2

F ≤ (1 + ε)‖A− CC†A(C†)TCT‖2
F.

By rescaling ε, we achieve the final result that

‖A− CUCT‖F ≤ (1 + ε)‖A−Ak‖F.
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