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Abstract: Hick’s law describes the time that individuals take to make a preference decision when
presented with a set of possible choices. Basically speaking, the law states that decision time is a
logarithmic function of the number of choices when the choices are equiprobable. However, the
evidence examined here suggests that this, and a variant of the law for non-equiprobable choices
based on Shannon entropy, are not effective at predicting decision reaction times involving structured
sets of alternatives. The purpose of this report is to communicate a theoretical alternative to Hick’s
law that is derived from a mathematical law of invariance for conceptual behavior at the heart
of Generalized Invariance Structure Theory (Vigo, 2013, 2015). We argue that such an alternative
accounts more precisely for decision reaction times on structured sets. Furthermore, we argue that
Hick’s law is a special case of this more general law of choice reaction times for categories with zero
degree of invariance.

Keywords: Hick’s law; choice law; invariance structure theory; computational cognitive model;
choice response times; categorical invariance; subjective complexity
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1. A Context-Sensitive Alternative to Hick’s Law of Choice Reaction Times: Unifying
Conceptual Complexity and Choice Behavior

Given a set of n alternatives, Hick’s law describes the average time it takes for individ-
uals to select any one alternative from the set. The simplest form of Hick’s law [1] states
that, given n equiprobable choices, the average reaction time T required to choose among
the choices is proportional to the logarithm (base two) of the number of choices n, as shown
in Equation (1) below, where b is a constant that can be determined empirically by fitting a
line to measured data.

T = b· log2(n + 1) (1)

It was argued by Hick that his law has a base two logarithmic form because individuals
may be systematically subdividing the total set of alternatives into a pair of categories
at a time. This facilitates eliminating, at each step, one half of the alternatives rather
than requiring the linear-time process of considering each alternative at a time. Thus, the
logarithmic function may be interpreted as describing a depth of a choice tree hierarchy
with a sub-decision at each step that implies that a binary search is performed. The addition
of 1 to the value n does the following: (1) resolves the undefined case of a set without
alternatives (i.e., accounting for the undefined case of log2(·) of zero), and (2) regards the
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possibility of no stimulus signal as an alternative, thereby raising the number of alternatives
to n + 1 alternatives.

A more general version of the law, referred to as Equation (2) below, is more directly
related to Shannon entropy [2,3] in that it predicts reaction times for the case of choices with
unequal probabilities. The law can be generalized as follows, where again b is a constant
that can be determined empirically by fitting a line to measured data and pi refers to the
probability of the i-th alternative yielding the information-theoretic entropy (for details, see
Hick’s original article [1]). Note that, when pi = 1/n, then Equation (2) reduces to the basic
form of the law described by Equation (1).

T = b·
n

∑
i

pi log2

(
1
pi

+ 1
)

(2)

As mentioned, Hick’s law has a base two logarithmic form because the presupposed
processing strategy for selecting an item assumes that people subdivide the total collection
of choices into two categories at a time, eliminating about half of the remaining choices
at each level of analysis. As such, the logarithmic function then reveals the number of
levels of analysis required for a particular choice set. However, this manner of processing
information does not consider the relationship between the features or characteristics of
the items in the choice set, especially if these are partially shared. Furthermore, it was
this very deficit that prompted criticism toward the use of Shannon information theory in
psychological research. For example, Luce [4] points out that:

“However, in my opinion, the most important answer lies in the following incompati-
bility between psychology and information theory. The elements of choice in information
theory are absolutely neutral and lack any internal structure; the probabilities are on a pure,
unstructured set whose elements are functionally interchangeable” (p. 185).

Correspondingly, Donald Laming, whose work in Information Theory of Choice-Reaction
Times [5] represents one of the most ardent attempts at linking information theory and
choice-reaction times, later stated: “This idea does not work. While my own data [5] might
suggest otherwise, there are further unpublished results that show it to be hopeless” [6],
pp. 642. Despite these admissions, Hick’s law has been applied to experimental and applied
cognitive research for decades. Examples include applications to intelligence testing [7],
ergonomics research [8,9], and human–computer interfaces [10–12] (also see Liu et al. [13]
for a contrary view). See Proctor and Schneider [14] for a comprehensive review of the
history of Hick’s law, contemporary models, and additional applications.

In previous works by the first author, entropy-based accounts of psychological phe-
nomena are disputed on similar theoretical grounds to those discussed by Luce [15–18].
More recently, Vigo et al. [18] demonstrated how a theory of concept learning difficulty
derived directly from Shannon entropy [19] does not account for key results in human
conceptual behavior (for a gentle introduction to concepts, see [20]). Here, we extend these
arguments to demonstrate the weaknesses of Hick’s law with respect to structured sets of
object stimuli. Importantly, it is not our aim to simply communicate the shortcomings of
Hick’s law; indeed, Kveraga et al. [21] and Pavão et al. [22], among others [23,24], have
already identified weaknesses with regard to saccades and sequential learning, respectively.
Instead, the aim is to show how an alternative and more general law derived from a theory
of category learning and conceptual behavior can overcome these shortcomings with re-
spect to the general domain of categories (i.e., structured choice sets). While Pavão et al. [22]
introduced a joint entropy model as an alternative to Hick’s law, it was intended explicitly
for sequence learning situations and not for structured sets. As far as we know, this is the
first time that a direct mathematical link between concept learning and decision-making
that successfully accounts for reaction time data has been achieved.

The next two sections contain a brief description of the theory and a simple deriva-
tion of the alternative law. To reach as wide a mathematical readership as possible, this
manuscript is written in a mathematical/computational modeling style, which is typical in
the fields of applied sciences, applied mathematics, and engineering mathematics. In other
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words, derivations are conducted in a natural straightforward manner rather than using the
axiomatic method. Empirical evidence will be used to assess the effectiveness and veracity
of the mathematical candidate laws derived and tested. For more detailed and/or more
formal accounts, the reader is referred to other works by the first author [15–17,25–27] and
the technical appendix located in the Supplementary Materials.

2. GIST and the Law of Invariance

One of the ultimate goals of human categorization research is to determine how diffi-
cult individuals find it to learn different types of categories where a category is construed
as a set of entities with shared dimensions whose dimensional values (i.e., features) are
related in some way. (Whenever all the elements of a category share the same dimensions,
the category is referred to as regular. Whenever different elements share different sets
of dimensions, the category is referred to as irregular. In this paper we focus only on
regular categories.) Accordingly, we also refer to categories as structured sets. The law of
invariance (LOI; [16,17]), a product of Generalized Invariance Structure Theory (GIST; [16,17]),
was designed to make such predictions. Its effectiveness stems from the ability to account
for how humans acquire relational information from the object stimuli of categories, or
in other words, how humans assess the objective relationships that may exist between
the objects that make up categories. A simple example of the relationships that may exist
between objects of a category that is dimensionally defined comes from considering the
space of objects that may be generated by three binary dimensions (e.g., shape, size, and
color). Such a space consists of 2D objects where D is the number of binary dimensions
(which, in this case, is three, each with two possible feature values). Subsets from the
eight objects may then be selected to form categories whose object features are related
in particular ways. For the case of categories containing four objects, there are only six
possible category structures [28]. Examples of such structures are displayed in Figure 1.
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Figure 1. Boolean Cube (A) and Stimulus Representation (B) of the six logically distinct 32[4]
structure types. Each dot on the Boolean Cube (panel A) represents a member of the four-object
categorical stimulus. The three binary dimensions for the stimulus representations in panel (B) are
shape (triangular, circular), size (small, large), and color (white, black). Adapted from “The GIST of
Concepts”, by R. Vigo, 2013, Cognition, 129, p. 142. Copyright 2013 by Elsevier B.V.

Specifically, the LOI, as shown in Equation (3) below, asserts that the subjective degree
of concept learning difficulty ψ of a category of objects X (as measured by the error rates in
classifying its members) is directly proportional to the cardinality of the category (i.e., number of
its elements |X|) and inversely proportional to the square of the exponent of the degree of categorical

invariance
_
Φ(X) of the category X, where

_
Φ

2
(X) stands for

(
_
Φ(X)

)2
. In a nutshell, the

degree of categorical invariance
_
Φ(X) of a category X is obtained by first applying the struc-
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tural manifold operator Λ (defined in the technical appendix located in the Supplementary
Materials to the article) to X, and then applying the Euclidean metric to determine the
psychological distance from the computed structural manifold Λ(X) to the zero structural
manifold. More specifically, the Λ operator extracts invariance pattern information from
the category as a vector of the proportion of perceived dimensional symmetries within (i.e.,
as a structural manifold). It does this via a core cognitive mechanism referred to as “dimen-
sional binding” that is proposed to underlie all human conceptual behavior [16,17]. The
mechanism basically captures a hypothesized process involving the systematic suppression
of dimensions via rapid attention shifting while assessing degrees of partial similarity. This
process captures the fundamental role that relational cognition plays in category learning
and the types of relevant relations (i.e., invariance patterns) between object stimuli that
overcome the limitations encountered by Shannon information as described by Luce [4].

ψ(X) = |X| exp
(
−k

_
Φ

2
(X)
)

(3)

The scaling parameter k ≥ 0 (where k is a real number) plays the role of a struc-
ture discrimination parameter that, in the version without free parameters shown in
Equation (4), is substituted by the index D0/D to characterize this discrimination capacity.
In the index, D0 stands for the minimum number of dimensions needed to non-trivially
describe a category of objects, namely two, and D ≥ 2 is the number of dimensions that
define the categorical stimulus. More specifically, the parameter k indicates the overall abil-
ity of an observer to discriminate structures from a zero-invariance structure as a function
of the number of dimensions that define the category, thus summarizing concept learning
performance. This parameter is intended to capture the ability of an observer to extract
invariance patterns at different dimensional levels of analysis, with higher values denoting
superior discrimination. It should be acknowledged that the parameter k does not convey
much useful information unless the overall law supplies fairly accurate fits to the data.
The single free parameter in this parametric version also makes it possible to account for
individual differences in concept learning capacity and performance between humans.

Results from experiments conducted by several researchers, including the authors,
have corroborated both variants of the law. For example, the LOI without free parameters
and with one free-parameter accounts for about 90% of the variance in data from 84 types of
category structures sampled from 5100 distinct categories [16,17]. In addition, the LOI has
accounted for over 90% of the variance in results from experiments by Shepard et al. [28],
Nosofsky and Palmeri [29], Vigo and colleagues [18,30,31], and many others.

ψ(X) = |X| exp
(
−
[

D0

D

]
_
Φ

2
(X)
)

(4)

3. Derivation of the Invariance-Based Choice Reaction Times Law

The conceptual-choice principle, introduced by Vigo [17], allows us to quantitatively
define a relationship between choice behavior and concept learning: for any two finite choice
sets X and Y consisting of the same number of object stimuli defined over the same set of dimensions,
if the degree of concept learning difficulty of X ≥ Y, then the degree of choice difficulty Cd in
choosing a preferred item r from X is less than or equal to the degree of choice difficulty Cd in
choosing a preferred item s from Y. This is stated formally as follows:Cd( r|X) ≤ Cd( s|Y). We
can infer from this principle that, under the same assumptions, the amount of time required
to choose a preferred item r from X is less than or equal to the time it takes to choose a
preferred item s from Y; that is, CRT( r|X) ≤ CRT( s|Y). More generally see Equation (5),

CRT(r |X ) ∝
1

ψ(X)
(5)
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which predicts that the choice reaction time (CRT) associated with any preferred item r
being chosen from any choice set X is inversely proportional to the subjective degree of
concept learning difficulty of X (note that capital letters of the English alphabet are used to
represent arbitrary dimensionally defined sets of objects or, equivalently, categorical stimuli;
for more formal details, see the technical appendix located in the Supplementary Materials
to the article). This naturally follows because, as shown in Equation (3), the learnability
of a concept increases as the degree of categorical invariance of the category from which
it is learned increases. However, essentially, categorical invariance is a measure of the
degree of perceived logical coherence of a category. Thus, although categorical coherence
has a beneficial side in that it makes it easier to learn and grasp concepts by facilitating the
assessment of object stimuli interactions and featural/dimensional level diagnosticity, it
also increases the likelihood of confusing object stimuli in the category with one another.
Consequently, for structured choice categories defined on the same dimensional space, as
is the case above, choices from those that are relatively more difficult to learn, on average,
take less time due to a corresponding reduction in the object confusability resulting from
their lower coherence.

Although the inverse 1/ψ(X) adequately approximates choice reaction times, accord-
ing to Vigo [17], the influence of category cardinality (i.e., the number of items in the
category) is diminished by taking the inverse of ψ, and it is therefore not the most accurate
characterization (that is, it does not yield the most accurate and most meaningful predic-
tions). To obtain a more meaningful and more accurate characterization, the inverse of
the degree of categorical invariance and the cardinality of the set must both significantly
influence choice RTs. However, the ideal approach is not to formulate choice RTs as directly
proportional to the inverse of the degree of categorical invariance of a choice set and to
its cardinality because the aim is to formulate an expression in terms of ψ (recall that
the original objective per Vigo [17] was to establish a direct connection between concept
learning via the law of invariance ψ and decision-making reaction times).

Based on this reasoning, Vigo [17] devised the desired precise quantitative connection
between the inverse of degree of concept learning difficulty and choice reaction time by
formulating Equation (6) (found below) in terms of degree of concept learning difficulty.
The equation states that choice reaction times are determined by the sum of the square of
the degree of categorical invariance (also known as degree of logical coherence or logical
homogeneity) of X and the natural logarithm of the cardinality of X. Taking the natural
logarithm reveals the precise additive relationship sought between the influence of structure

as measured by degree of invariance
_
Φ, set “size” |X| (where |X| stands for the cardinality

or number of items in X), and choice RT.

CRT(r |X ) ∝ loge

(
|X|2
ψ(X)

)
= loge

(
|X|2

|X|e−k
_
Φ

2
(X)

)
= loge

(
|X|ek

_
Φ

2
(X)
)
=

k
_
Φ

2
(X) + loge(|X|)

(6)

Equation (6) above can be reformulated without free parameters as follows:

CRT(r |X ) ∝ loge

(
|X|2
ψ(X)

)
= loge

(
|X|2

|X|e−(
D0
D )

_
Φ

2
(X)

)
= loge

(
|X|e(

D0
D )

_
Φ

2
(X)
)

=
(

D0
D

)_
Φ

2
(X) + loge(|X|)

(7)

Note that, in Equations (6) and (7), when the degree of categorical invariance
_
Φ of

the category in question is zero, the equation reduces to the simple variant of Hick’s law
but features e as the base of the logarithm instead. Furthermore, note that the above
equations assume that the categories are non-empty (i.e., X 6= φ) and that the num-
ber of dimensions attributable to the set of items is at least two (i.e., D ≥ 2). (How-
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ever, to account for empty categories, one could modify the derived final expressions in
Equations (6) and (7) above by replacing |X|with |X| + 1) Equation (6) is henceforth referred
to as the Invariance-based Choice RT law (ICRT), and Equation (7) is its counterpart without
free parameters (ICRT-NP).

4. Empirical Support

Empirically, the present study tests and compares the two variants of Hick’s law, as
shown in Equations (1) and (2), and the two variants of the ICRT. Both ICRT variants
(with and without the single free parameter) are based on the inverse of the degree of
concept learning difficulty ψ, and it is hypothesized in this manuscript, as in Vigo [17]
and in Vigo and Doan [32], that increases in categorical invariance (i.e., internal coherence)
among alternatives of a choice set increase the degree of choice difficulty and thus lead to
longer choice reaction times. Furthermore, it is shown in this section that the ICRT, with its
structure-sensitive basis, outperforms both variants of Hick’s law. Data for our tests were
derived from Vigo and Doan [32], a study where we presented to participants categories
of object stimuli (i.e., categorical stimuli) conforming to different category structure types.
Participants were then instructed to select the item they most preferred from each displayed
categorical stimulus. Next, we describe the study in greater detail, along with model fit
tests for both variants of Hick’s law and both variants of the ICRT. Importantly, the cross-
validation and bootstrapping analyses that we report represent new analysis methods as
applied to the Vigo and Doan [32] data that help further differentiate the performance
across the tested models.

As described above, Vigo and Doan [32] conducted a large-scale experiment whereby
they compared reaction times for participants to select their preferred item from among
a set of related items (categorical stimulus). Given that this 2015 experiment involved
participants choosing objects from structured choice sets, we have extracted the RT data to
test both iterations of Hick’s law as well as the ICRT and its non-parametric variant. Each
categorical stimulus varied in terms of its dimensionality (three- or four-dimensional struc-
ture) and the number of alternatives from which participants could select their preferred
item (two, three, four, five, six, or twelve alternatives). In addition, the researchers assessed
the robustness of preferential decisions for these category structure types by assessing three
different stimulus sets (realistic clocks, shoes, and t-shirts; see Figure 2 for examples) and
up to four different structure instances for each category structure per participant. Accord-
ingly, the study allowed for a repeated measures statistical analysis and, by extension, less
inherent variation and more than sufficient power for detecting differences between the
structure types.

The first experiment involved assessing choice behavior for the well-known 32[4] structure
types across 48 participants, with each structure consisting of four alternatives (denoted: [4])
defined over three binary-valued (denoted: 32) stimulus dimensions [16,25,28,33–36]. Due
to their cognitive tractability, these structures have been repeatedly studied regarding
their learning difficulty in categorization tasks, and this learning difficulty (in terms of
increasing number of classification errors) is highly replicable across the six structure types
(e.g., I < II < [III, IV, V] < VI) [28]. Regarding preferential decision making, participants
made 10 choices per structure type and per stimulus type (only the shoe and t-shirt stimuli),
resulting in analyses across ~960 choices per structure type.

The second experiment was more comprehensive and involved replicating the results
of the first experiment with new participants and fewer trials per structure type (four
trials; N = 45 participants) while also assessing choice behavior on 50 other logically
distinct three- and four-dimensional category structures and a new stimulus type (realistic
clocks). To accommodate the increase in tested structure types, we divided the fifty-six
structure types into three groups of approximately equal size (E1 received the eighteen
three-dimensional structure types, including the six 32[4] structure types; E2 received the
nineteen 42[4] structure types; E3 received the nineteen 42[12] structure types). Each of
these three groups of structure types involved assessing reaction times across a different



Mathematics 2023, 11, 2422 7 of 15

sample of participants (N = 45, 44, and 41 for E1, E2, and E3, respectively). Next, we
report first on the aggregate results for the six 32[4] structure types (study 1 + relevant
data from E1) before discussing the results from the other two groups of participants (E2
and E3). Although we only report results from samples of moderate size, our extensive
cross-validation and bootstrapping analyses suggest that the fits are stable across the three-
and four-dimensional structure types.
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Vigo and Doan [32]. The leftmost column displays the degree of categorical invariance associated
with each of the six structure types, whereas the average values provided thereafter refer to the
average reaction times across participants for each of the six structure types for the first experiment
conducted by Vigo and Doan [32]. The three stimulus dimensions for the shoes were (size: small,
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5. Reaction Times for the Six 32[4] Category Structures

Vigo and Doan [32] first investigated differences in choice reaction times for each of
the six 32[4] category structure types. They extended upon robust categorization learning
results by showing that they also vary in the time it takes participants to select their
preferred item from such sets. Across 93 participants and ~9000 trials (~1500 trials per
structure), they found that the structure types that were most difficult to learn from a
conceptual standpoint (e.g., VI) are the same structure types from which it is easiest to
select one’s preferred item, whereas the opposite held true for the least difficult to learn
from a conceptual standpoint (e.g., I and II). This pattern of choice reaction times held for
all three stimulus types (clocks/shoes/t-shirts). The leftmost column of Figure 3 displays
these differential reaction times for these six structure types aggregated across the three
stimulus types, and how accurately Hick’s law, Hick’s entropy, and the ICRT-NP account
for these reaction times. As can be seen, the ICRT-NP accounts for 97% of the variance in the
32[4] reaction times and outperforms both Hick’s law and Hick’s entropy, which account
for only 0% and 20% of the variance respectively. (We calculated Hick’s entropy for each
category structure by first assessing the selection probabilities for all objects for each unique
category instance. Then, we used Equation (2) and summed these probabilities across each
instance to get the predicted time to select an object for that category instance. Because
there were four tested category instances for each category structure, we then averaged
these four times to get a final average predicted time for that category structure. This
procedure was applied across the six category structures belonging to the 32[4] structure
family and the nineteen category structures belonging to the 42[4] structure family.)



Mathematics 2023, 11, 2422 8 of 15

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

structure), they found that the structure types that were most difficult to learn from a con-
ceptual standpoint (e.g., VI) are the same structure types from which it is easiest to select 
one’s preferred item, whereas the opposite held true for the least difficult to learn from a 
conceptual standpoint (e.g., I and II). This pattern of choice reaction times held for all three 
stimulus types (clocks/shoes/t-shirts). The leftmost column of Figure 3 displays these dif-
ferential reaction times for these six structure types aggregated across the three stimulus 
types, and how accurately Hick’s law, Hick’s entropy, and the ICRT-NP account for these 
reaction times. As can be seen, the ICRT-NP accounts for 97% of the variance in the 32[4] 
reaction times and outperforms both Hick’s law and Hick’s entropy, which account for 
only 0% and 20% of the variance respectively. (We calculated Hick’s entropy for each cat-
egory structure by first assessing the selection probabilities for all objects for each unique 
category instance. Then, we used Equation (2) and summed these probabilities across each 
instance to get the predicted time to select an object for that category instance. Because 
there were four tested category instances for each category structure, we then averaged 
these four times to get a final average predicted time for that category structure. This pro-
cedure was applied across the six category structures belonging to the 32[4] structure fam-
ily and the nineteen category structures belonging to the 42[4] structure family.) 

 
Figure 3. Linear regression fits to choice reaction times associated with the four-object three-dimen-
sional, four-dimensional, and combined 3D/4D category structures assessed by Vigo and Doan [32]. 
The two k-parameters for the ICRT (rightmost plot, top row) and the two b-parameters for Hick’s 
entropy (rightmost plot, middle row) were estimated using the solver add-in in Excel using the GRG 
non-linear solving method. 

  

Figure 3. Linear regression fits to choice reaction times associated with the four-object three-
dimensional, four-dimensional, and combined 3D/4D category structures assessed by Vigo and
Doan [32]. The two k-parameters for the ICRT (rightmost plot, top row) and the two b-parameters for
Hick’s entropy (rightmost plot, middle row) were estimated using the solver add-in in Excel using
the GRG non-linear solving method.

6. Reaction Times for the Nineteen 42[4] Category Structures

In addition to these six structure types, Vigo and Doan also assessed ~10,032 reaction
times across 44 participants for the nineteen four-dimensional structure types that also
consist of four alternatives (the 42[4] family of category structures; ~528 trials per structure).
Similar to the three-dimensional results, they found that structure types that were harder
and easier to learn were also the ones from which participants selected their preferred
item in less and more time, respectively. These results, along with how well each model
accounts for them, are shown in the middle column in Figure 3. The rightmost column
of Figure 3 displays how well each model accounts for choice reaction times when both
structure families are considered together (32[4] and 42[4]). Again, the ICRT-NP accounts
for more of the reaction time variability among the four-dimensional structures (middle
column; 59%), while the ICRT accounts for more of the reaction time variability when
considering both the three- and four-dimensional four-object category structures (32[4] and
42[4]; 68%).

7. Reaction Times across 56 Logically Distinct Three- and Four-Dimensional
Category Structures

Finally, Vigo and Doan extended their investigation beyond four-item choice sets by
also presenting two-, three-, four-, six-, and twelve-item choice sets to participants (all were
three-dimensional binary-valued structures except for the twelve-item sets). There were
12 logically distinct three-dimensional sets, and participants made a total of ~540 choices
per set (~6480 total choices), divided evenly across the three separate stimulus types
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(clocks/shoes/t-shirts). For the 19 logically distinct four-dimensional sets, 41 participants
made a total of ~492 choices per set (~9348 total choices). Consistent with the above
results for the four-item sets, they again found converging evidence that sets which are
more difficult to learn conceptually are easier to select from preferentially (and vice versa).
Figure 4 displays how well each of the current models accounts for these additional
structures and for the 32[4] and 42[4] structures, with the ICRT accounting for 87% of the
variance in choice reaction times and Hick’s law accounting for 76% of the variance in
choice reaction times. The fact that the ICRT is able to achieve the fits displayed in Figures 3
and 4 without the incorporation of any free parameters demonstrates that a considerable
proportion of the variation in choice RTs can be attributed to the core predictors of the
model: the size of a choice set and its degree of internal coherence (i.e., invariance). Hick’s
law cannot account for the latter.
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Figure 4. Linear regression fits of the ICRT and Hick’s law to the choice reaction times associated
with the 56 category structures (three- and four-dimensional) assessed by Vigo and Doan [32]. Model
fit statistical results (e.g., R2) are provided within each plot in the first column, while Shapiro–Wilk
statistical results for the distribution of the standardized residuals are provided within each plot in
the second column.

8. Bootstrapping Results

In addition to accounting for the average reaction times across the 56 category struc-
tures, we performed a bootstrapping analysis for the three- and four-dimensional structures
that each consist of four alternatives (i.e., the six 32[4] structure types and the nineteen 42[4]
structure types). This analysis was performed in R [37] and at three different levels, for
10,000 bootstrapped samples of sizes 15, 20, and 25 structures, where the latter assessment
involved sampling the structures with replacement. Upon sampling each of 15, 20, and
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25 structures, we assessed how well Hick’s entropy and the ICRT-NP fit the sampled data
by computing the R2 and RMSE for each linear model fit.

As shown in the top panel of Figure 5, the ICRT-NP accounts for a median value of 69%
of the variance in reaction times for samples of size 15, whereas Hick’s entropy accounts
for 4% of the variance in reaction times. The middle and bottom panels reveal a similar
pattern of results across both models, with the ICRT-NP accounting for 69% and 68% of
the variance in reaction times for samples of size 20 and 25, respectively. Supplementing
the linear fits, we also assessed the normality of the residual distributions for each of the
10,000 samples across the three different sample sizes. For the ICRT-NP, we found the
median Shapiro–Wilk values (p-values) of 0.94 (0.40), 0.95 (0.39), and 0.92 (0.11), whereas,
for Hick’s entropy, we found the median Shapiro–Wilk values (p-values) of 0.81 (0.005),
0.78 (<0.001), and 0.83 (0.002). In sum, the ICRT-NP generally provides a more accurate and
stable fit of the data across all three bootstrapped sample sizes when compared to Hick’s
entropy-based law for non-equiprobable choices.
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Figure 5. Bootstrapped linear regression analysis of the ICRT-NP and Hick’s entropy-based law
to account for choice reaction times associated with the four-object three-dimensional and four-
dimensional category structures. The median R2 and RMSE values are provided for each model
within each plot, and the y-axis represents the cumulative proportion of R2 values for each of the
tested models. ECD = Empirical Cumulative Distribution.
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9. Discussion

Hick’s law was one of many attempts during the early development of Cognitive Sci-
ence to apply Shannon information theory and its ubiquitous entropy measure to cognitive
phenomena. Perhaps the most influential of these attempts may be found in the work on
short-term memory by Miller [38] and the work on choice reaction times by Laming [5,6].
Yet, Laming later admitted the inadequacy of this approach with respect to his own work [6],
while Miller’s approach was found equally lacking [39,40]. Remarkably, despite these fail-
ures, even today’s researchers continue to resort to Shannon entropy to account for complex
high-level cognitive capacities. For example, most recently, Pape et al. [19] intrepidly at-
tempted to account for concept learning difficulty orders using Shannon entropy. However,
Vigo et al. [18] revealed multiple objective flaws with their approach.

What these failures suggest is the need for a new type of information theory that is
suitable for psychological research. Undoubtedly, information is a powerful construct in its
generality and relevance to cognitive research. However, reliance on a probabilistic and
statistical notion of information that was originally intended for the analysis of communica-
tion between electronic devices does not serve the goal of describing the organic character
of information and communication with respect to human observers. This forced approach
conforms to the proverbial fallacy of fitting the square peg into the round hole. For this
reason, Vigo [15,17,26] developed a new type of information theory better suited to the
needs of cognitive research where context, as determined by the relationships between
the object stimuli of categories, is of paramount importance. Similar to the ICRT, the
theory—known as Representational Information Theory (RIT, and its generalized form as
Generalized Representational Information Theory or GRIT)—is derived from the law of
invariance in Generalized Invariance Structure Theory. Additionally, although there has
been some research linking representational information to reaction times, it has been with
respect to saccadic data as it pertains to classification behavior. Thus, the determination of
a general connection between representational information and choice reaction times on
structured sets warrants further research.

Instead, with the ICRT as an alternative to Hick’s law, we have established a direct
and natural link between the degree of concept learning difficulty of structured sets (i.e.,
categories) and choice reaction times that is supported by empirical results and that is
not dependent on probability theory. This is important for several reasons: First, such
a connection with respect to structured sets had never been established before, let alone
non-probabilistically. Indeed, the structure-insensitive assumptions underlying probability
theory and statistical modeling that have been inherited by Shannon information, as
observed by Luce [4], are largely responsible for the failures of Shannon information
with respect to psychological research. Accordingly, the key core construct in the ICRT
law (i.e., degree of invariance) may be regarded as the non-probabilistic and structure-
sensitive counterpart to Shannon entropy. This is because the degree of invariance of a
category indicates its degree of orderliness from the standpoint of the relationships between
its components (in other words, its logical coherence). Thus, zero degree of invariance
indicates complete disorder on its corresponding deterministic scale.

Secondly, the underlying fundamental constructs of invariance, time, and category
are unified under the banner of conceptual behavior—again, a first. Third, the scope and
breadth of such integration speaks to its generality. Indeed, any situation that is analyzable
in terms of categories (or categorization) may be linked to the choice reaction times on their
elements. Fourth, the concept learning cognitive mechanism explaining the connection
between choice reaction times and category structures has been precisely specified in
previous work and provides a low-level causal link to decision-making phenomena. Fifth,
GIST, the theory on which the ICRT and ICRT-NP are based, has been empirically tested
on multiple occasions using historical data from well-known researchers (see [16,18,25,30])
and has been used by several researchers to inform their own work (see [41–43]).

Due to the generality of the ICRT-NP and the ICRT, their applications are far reaching.
In the realm of cognitive psychology and decision sciences, predicting choice reaction
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times holds paramount importance—as do the possible mechanisms that explain choice
reaction times. It is assumed that such predictions, if successful, may provide a greater
understanding of the workings of the human mind, human brain, and everyday decision-
making behavior. This greater understanding may, in turn, reveal ways of predicting human
decisions with respect to different domains, including problem-solving. Accordingly,
predicting reaction times may increase our understanding of the limits of human decision-
making as a baseline for developing systems capable of emulating human intelligence.

Admittedly, a great deal of machine learning has focused on systems that can find
optimal solutions without much concern for the types of limits on computational resources
exhibited by the human brain (see [44,45]). However, an understanding of the cognitive
processing limits associated with choice reaction times may facilitate the creation and
characterization of resourceful intelligent agents that may be capable of processing small
datasets more efficiently and in more humanly meaningful ways than any existing machine
learning algorithm (for a discussion, see [18,26,45]).

10. Conclusions and Future Directions

In this paper, we have shown that the ICRT law and the ICRT-NP law account for
choice reaction time data from Vigo and Doan [32] more accurately than both variants
of Hick’s law. The findings from both Figures 3 and 4 show the influence of relational
information processing, independent of value-judgments or idiosyncratic preferences, on
choice behavior. In other words, the fits using the ICRT and ICRT-NP laws suggest that
the degree of categorical invariance that exists between category members captures the
nature of the relational information processing underlying juxtaposed complex stimuli as
is the case with these structured sets. These increases in degrees of categorical invariance
between categories are reflected in Figures 3 and 4 by the increasing ICRT and ICRT-NP
predictions on the x-axes.

Ecologically, this influence of relational information processing on choice behavior is
ubiquitous in our daily lives in the sense that it is likely influential for any situation where
one must compare a set of alternatives across a number of related dimensions or features.
For example, when deciding which bag of coffee (or, more generally, any item) to purchase
at the local supermarket, one must first compare each alternative across a finite number of
relevant dimensions (e.g., brand, cost, roast type, size, etc.). Certainly, prior decisions and
established preferences can influence decisions in such contexts. However, the invariance-
based relational information processing that we suggest influences decision-making in
our daily lives helps to establish these initial preferences, and then modifies them as new
alternatives and/or dimensions are introduced into the decision-making situation.

Despite the ecological significance, there are some potential limitations with respect
to the ICRT laws that should be noted. To start with, the laws have not been tested
for structured sets or categories of objects defined over continuous dimensions. Second,
the laws, in their current form, are probably most effective when, for any category X,
|X| > 2 or D > 2. This is because the influence of meaningful interrelatedness or logical
coherence between the features (and hence dimensions) of the object stimuli in a category—
as measured by categorical invariance—increases as the number of object stimuli and/or
the number of dimensions increase. This is the case at least until the number of objects or
dimensions becomes intractable to process for a human observer. Thus, beyond just the
number of objects (as Hick’s law suggests) and/or the number of stimulus dimensions, the
automatic and inevitable perceived key interactions between the objects of the category (as
discovered by the proposed invariance pattern detection mechanism) also play a significant
role in determining how long it takes to make a selection. Likewise, entropy-based models
contemporary to Hick’s and based on principles of probability theory are often ill-equipped
to handle these perceived inter-object relations and will struggle to capture the conceptual
character of choice reaction time.

Notably, these interactions are often too simple to influence the selection processing
speed in a significant way, as in the case of choosing between only two alternatives with
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only two relevant dimensions. At this simplest level, an additional level of processing may
occur that is purely based on subjective preferences and that involves the dimensions of
quality, cost, utility, value, and so on that are typically proposed in applied decision-making
theories. Building a bridge between such multiple levels of analysis is our current goal.

Finally, and importantly, both versions of the ICRT used in this paper were greatly
handicapped in that they do not include potential free parameters to be found in the
cognitive mechanism used to compute degree of invariance (see the definition of the lambda
operator in the Supplementary Technical Materials). These potential free parameters–the
tau discrimination threshold(s) and the invariance sensitivity/bias weights–were not used
to account for group-level performance but may be used to meaningfully account for
individual differences in choice reaction times between people. Given the basic goals of
this paper, we did not include an analysis of individual differences. In a planned follow-up
paper, we aim to demonstrate the effectiveness of the ICRT in accounting for individual
differences. Indeed, based on the fairly accurate group level predictions achieved by the
non-parametric ICRT, we expect that its free-parameter enriched counterpart will yield at
least similarly accurate individual level predictions.

In conclusion, we demonstrated how reaction times from structured choice sets are
well accounted for by an invariance-based law of conceptual behavior. In addition, we
showed how Hick’s law and the entropy-based application of Hick’s law provide less
accurate fits to the reaction time data. Although the evidence considered was only from
one study, the study did involve the systematic and rigorous testing of over fifty logically
distinct category structures across different groups of participants and assessed hundreds
of reaction times per each of the category structures. Ultimately, we look forward to further
testing the effectiveness and generality of the ICRT laws and continuing to build a bridge
between conceptual behavior and decision-making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11112422/s1. References [46–49] are cited in the supplemen-
tary materials.
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