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Abstract: Maturation strategies play a key role in the survival and development of populations. In
response to changes in the external environment and human interventions, populations adopt appro-
priate maturation strategies. Different maturation strategies can lead to different birth and mortality
rates. In this paper, we develop and analyze a stage-structured population model with two matura-
tion strategies to obtain conditions for the coexistence of two maturation strategies and conditions for
competitive exclusion. Our results also show that equality of fitness—represented by basic reproduc-
tive numbers being greater than 1 under different maturation strategies—promotes the coexistence
of the two strategies. The reason why a strategy is replaced by another one is that the population
adopting this strategy has weak fitness, which is measured by the basic reproductive number.
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1. Introduction

Maturation, which means the onset of reproduction, is a key life-history transition for
an individual [1]. Maturation strategy plays a crucial role in determining fitness, which
is usually represented by the basic reproductive number (or net reproductive rate), that
is, the expected number of newborn offspring per female per lifetime [2–4]. Different
life-history strategies of individual organisms cause species to display great differences in
their behavior patterns, such as their reproductive development, fecundity, maximum life
span and so on. The dynamics of populations have been studied extensively; however, few
prior studies have considered the strategies of life history in a mathematical model.

Over the last few decades, it has been realized that changes to life-history strategies
have be incorporated among competing populations. Fujiwara et al. [5] analyzed the
mechanism of different but coexisting populations with different life-history strategies by
using two-stage Beverton–Holt models [6]. They showed how demographic biodiversity
can equalize the fitness of two species, thereby promoting their coexistence. A two-stage
Ricker model [7] was analyzed on the assumption that only individuals in the same stage
can compete with each other, but this did not interpret the biological processes for the
outcomes. Recently, Tian and Liu [8] established a competitive model with two populations
who display different life-history strategies in a seasonal environment in order to study
the evolution of maturation time. However, few of studies focus on the coexistence and
replacement of two maturation strategies for the same population. Here, we show how the
life-history strategies influence the fitness so that the same population with two maturation
strategies can coexist or can replace each other.

Fitness is a function of life-history parameters assuming no individual heterogeneity
besides stage difference. Adjusting individuals’ life-history strategies makes the fitness
equalize, hence promoting coexistence. We denote the basic reproductive number by R0,
which can be considered as a measure of Darwinian fitness [9,10] because natural selection
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prompts the optimal life history to maximize the number of surviving offspring. Sometimes,
rates of increase can also be considered as a measure of fitness [11]. Life-history strategies
are the major components of fitness and can vary in response to seasonal environmental
conditions [8], such as temperature, sunlight and so on, or human interventions, such as
harvest, fishing and so on. Seasonality may affect the decision of organism life-history
strategies. Further, harvesting leads to evolutionary responses, in particular, changes to
maturation strategies [12–15]. For example, the phenomenon of age at maturity of Atlantic
cods advancing after over-harvesting has been observed [12]. Hence, not all individuals
employ the same strategies in response to competition [16]. Therefore, in this paper, we
analyze the effect of two different maturation strategies adopted by same population on
the population dynamics and use the adaptive dynamics theory to study the evolution
of maturation strategy. Same populations compete for shared resources, thereby causing
strong competition between the two. Hence, we establish a competitive model to study the
dynamics of populations with different maturation strategies, as shown in Section 2.

2. Two-Strategy Two-Stage Model

In this study, we consider two different maturation strategies adopted by the same
population with a two-stage structure (juveniles and adults). The two maturation strategies
S1, S2 can be adopted by juveniles. Different maturation strategies of juveniles lead to
different birth rates and mortality rates of juveniles and adults. Same populations compete
for shared resources. K is the carrying capacity. Without each other, the adult development
follows logistical growth. The per capita birth rate B(S1) (or B(S2)) denotes the average
newborn juveniles per adult individual under maturation strategy S1 (or S2) per unit of
time. The death rate DJ(Si) or DA(Si) denotes the average death number of juveniles or
adults under maturation strategy Si, i = 1, 2 per unit of time. We denote by Ji, Ai, i = 1, 2
the number of juveniles and adults that adopt maturation strategy Si, respectively, at time
t. The flow chart is shown in Figure 1. Then, we consider the following stage-structured
model with two different maturation strategies:

dJ1

dt
= B(S1)A1(1−

A1 + A2

K
)− S1 J1 − DJ(S1)J1,

dA1

dt
= S1 J1 − DA(S1)A1,

dJ2

dt
= B(S2)A2(1−

A1 + A2

K
)− S2 J2 − DJ(S2)J2,

dA2

dt
= S2 J2 − DA(S2)A2,

(1)

where B(Si), DJ(Si), DA(Si) are continuous non-negative functions of maturation strategy
Si, i = 1, 2. Natural death and mortality due to capture are respectively embodied in the
death terms DJ(Si) and DA(Si), i = 1, 2.

Define the basic reproductive number of the species that adopts maturation strategy
i by

RSi =
SiB(Si)

DA(Si)(Si + DJ(Si))
, i = 1, 2. (2)

For convenience, we also define a related number R0 by R0 = RS1 /RS2 .
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Figure 1. Flow chart of two-strategy two-stage model. Juveniles Ji mature into adults Ai at maturity
rate Si, i = 1, 2. Adults Ai reproduce new offspring in the juvenile stage at per capita birth rate B(Si).
The death rates of juveniles and adults are DJ(Si) and DA(Si), respectively.

2.1. Existence of the Equilibria

System (1) has four equilibria: one trivial equilibrium, two single-strategy boundary
equilibria and one coexisting two-strategy equilibrium. The single-strategy boundary
equilibrium means that only one of two strategies can survive to the end. The coexisting
two-strategy equilibrium means that two strategies can eventually coexist.

Clearly, model (1) has a trivial equilibrium denoted by E0 = (0, 0, 0, 0).
Furthermore, the two single-strategy boundary equilibria are given by

E1 = (J∗1 , A∗1 , 0, 0) = (DA(S1)A∗1/S1, K(1− 1/RS1), 0, 0)

with RS1 > 1 and

E2 = (0, 0, J∗2 , A∗2) = (0, 0, DA(S2)A∗2/S2, K(1− 1/RS2))

with RS2 > 1.
The positive equilibrium Ep = (J∗1 , A∗1 , J∗2 , A∗2), where J∗1 > 0, A∗1 > 0, J∗2 > 0, A∗2 > 0

must satisfy

B(S1)A1(1−
A1 + A2

K
)− S1 J1 − DJ(S1)J1 = 0,

S1 J1 − DA(S1)A1 = 0,

B(S2)A2(1−
A1 + A2

K
)− S2 J2 − DJ(S2)J2 = 0,

S2 J2 − DA(S2)A2 = 0,

or

A∗1 + A∗2 = K(1− 1/RS1),

J∗1 = DA(S1)A∗1/S1,

A∗1 + A∗2 = K(1− 1/RS2),

J∗2 = DA(S2)A∗2/S2.

(3)

Obviously, a positive solution of the above equations is possible only if the
following condition

RS1 = RS2 > 1 (4)

holds.
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Notice that for any positive constant c > 0, we have

A∗1 + A∗2 = K(1− 1/RS1) =

(
1

1 + c
+

c
1 + c

)
K(1− 1/RS1).

Thus, set

A∗1 =
K

1 + c
(1− 1/RS1) > 0, A∗2 =

cK
1 + c

(1− 1/RS2) > 0

is the positive general solution of the following equation

A∗1 + A∗2 = K(1− 1/RS1) = K(1− 1/RS2).

Then, it follows from (3), that System (1) has a cluster of positive equilibria

Ep = (J∗1 , A∗1 , J∗2 , A∗2) =
(

DA(S1)A∗1
S1

,
K(1− 1/RS1)

1 + c
,

DA(S2)A∗2
S2

,
cK(1− 1/RS2)

1 + c

)
(5)

where c > 0 is an arbitrary constant, if condition (4) holds. The coexisting equilibrium can
be biologically meaningful if the two strategies can achieve equal fitness greater than one
at the same time.

Hence, we summarize the existence of the equilibria for System (1) as follows.

Theorem 1. For System (1), when RSi , (i = 1, 2) are as given by (2), we have some results in
the following:

1. There is always a trivial equilibrium E0 = (0, 0, 0, 0) in any situation.
2. If RS1 > 1, there exists a single-strategy boundary equilibrium

E1 = (DA(S1)A∗1/S1, K(1− 1/RS1), 0, 0).

3. If RS2 > 1, there exists a single-strategy boundary equilibrium

E2 = (0, 0, DA(S2)A∗2/S2, K(1− 1/RS2)).

4. If the condition RS1 = RS2 > 1 holds, there exists a cluster of positive equilibria

Ep = (J∗1 , A∗1 , J∗2 , A∗2) =
(

DA(S1)A∗1
S1

,
K(1− 1/RS1)

1 + c
,

DA(S2)A∗2
S2

,
cK(1− 1/RS2)

1 + c

)
.

2.2. Linear Stability Analysis of the Four Equilibria

A linear stability analysis is made in order to determine the behavior of the solution of
System (1) near the equilibrium. The Jacobian matrix at the equilibrium E = (J1, A1, J2, A2)
for System (1) is given by the general form

J|E =


−(S1 + DJ(S1)) B(S1)(1−

2A1 + A2
K

) 0 −B(S1)A1/K

S1 −DA(S1) 0 0

0 −B(S2)A2/K −(S2 + DJ(S2)) B(S2)(1−
A1 + 2A2

K
)

0 0 S2 −DA(S2)

.

The eigenvalues of the Jacobian matrix at the trivial equilibrium E0 = (0, 0, 0, 0) are
(S1 + DJ(S1))(RS1 − 1),−DA(S1), (S2 + DJ(S2))(RS2 − 1),−DA(S2), where RSi , i = 1, 2
are given by (2). Hence, if RS1 < 1 and RS2 < 1, E0 is locally asymptotically stable;
otherwise, (0, 0, 0, 0) is unstable if RS1 > 1 or RS2 > 1.

We apply the Routh–Hurwitz criteria [17–19] to determine the stability of the equilibrium.
In order to analyze the stability of the equilibrium, it is useful to consider the characteristic
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equation for the eigenvalue λ. Herein, PE1(λ), PE2(λ), PEp(λ) are denoted as the characteristic
polynomials of the Jacobian matrix J at equilibria E1, E2, Ep, respectively.

The Jacobian matrix at E1 = (J∗1 , A∗1 , 0, 0) has the form

J|E1 :=


−(S1 + DJ(S1)) B(S1)(1− 2

A∗1
K

) 0 −B(S1)A∗1/K)

S1 −DA(S1) 0 0

0 0 −(S2 + DJ(S2)) B(S2)(1−
A∗1
K

)

0 0 S2 −DA(S2)

.

The characteristic polynomial equation PE1(λ) = det(J|E1 − λI) = 0 can be regrouped
into the form of two factors HS1(λ)HS2(λ) = 0, where

HS1(λ) = (λ + S1 + DJ(S1))(λ + DA(S1))− S1B(S1)(1− 2
A∗1
K

)

= λ2 + (S1 + DJ(S1) + DA(S1))λ + S1B(S1)A∗1/K,
(6)

and

HS2(λ) = (λ + S2 + DJ(S2))(λ + DA(S2))− S2B(S2)(1−
A∗1
K

)

= λ2 + (S2 + DJ(S2) + DA(S2))λ + (S2 + DJ(S2))DA(S2)(1− 1/R0),
(7)

according to the equation

1−
A∗1
K

=
(S1 + DJ(S1))DA(S1)

S1B(S1)
= 1/RS1 . (8)

The second factor HS2(λ) provides two negative eigenvalues or two eigenvalues with
a negative real part when R0 > 1. The first factor HS1(λ) always provides two negative
eigenvalues or two eigenvalues with a negative real part. Based on the polynomial equation
λ2 + a1λ + a2 = 0 and according to the Routh–Hurwitz criteria, the sufficient and necessary
conditions for the eigenvalue or the real part of the eigenvalue to be negative are a1 > 0 and
a2 > 0. Therefore, if R0 > 1, the coefficients are positive; that is, all the eigenvalues or the
real part of the eigenvalues are negative. Thus, E1 = (J∗1 , A∗1 , 0, 0) is locally asymptotically
stable. However, if R0 < 1, then one eigenvalue or the real part of the eigenvalue is positive;
thus, E1 = (J∗1 , A∗1 , 0, 0) is unstable. Analysis of the factors HS1 and HS2 reveals that the
equilibrium E1 cannot undergo a Hopf bifurcation because of the positive coefficients of
the linear terms, thus preventing the eigenvalue from being purely imaginary.

To examine the stability of the equilibrium E2, we obtain the eigenvalues from the
characteristic polynomial equation PE2(λ) = det(J|E2 − λI) = 0, where the Jacobian matrix
at E2 = (0, 0, J∗2 , A∗2) has the form

J|E2 :=


−(S1 + DJ(S1)) B(S1)(1−

A∗2
K

) 0 0

S1 −DA(S1) 0 0

0 −B(S2)A∗2/K −(S2 + DJ(S2)) B(S2)(1− 2
A∗2
K

)

0 0 S2 −DA(S2)

.

This equation can be factorized and rewritten as PE2(λ) = LS1(λ)LS2(λ) = 0, where

LS1(λ) = (λ + S1 + DJ(S1))(λ + DA(S1))− S1B(S1)(1−
A∗2
K

)

= λ2 + (S1 + DJ(S1) + DA(S1))λ + (S1 + DJ(S1))DA(S1)(1− R0),
(9)
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and

LS2(λ) = (λ + S2 + DJ(S2))(λ + DA(S2))− S2B(S2)(1− 2
A∗2
K

))

= λ2 + (S2 + DJ(S2) + DA(S2))λ + S2B(S2)A∗2/K,
(10)

according the equation

1− A∗2
K

=
(S2 + DJ(S2))DA(S2)

S2B(S2)
= 1/RS2 . (11)

Following the analysis scheme discussed earlier, we can obtain that the second factor
LS2 always has two negative eigenvalues or two eigenvalues with a negative real part
but the first factor LS1 has two negative eigenvalues or two eigenvalues with a negative
real part if the condition R0 < 1 holds. However, if R0 > 1, the first factor LS1 has two
eigenvalues, for which one is positive and the other is negative. Hence, the equilibrium E2
is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. Obviously, the two factors
provide no possibility for a Hopf bifurcation due to the strictly positive linear coefficient in
the quadratic polynomial.

In summary, we have the following results on the boundary equilibria.

Theorem 2. Define the basic reproductive number RSi , i = 1, 2, given by (2) under the maturation
strategy Si for System (1); then,

1. If RS1 < 1 and RS2 < 1, E0 = (0, 0, 0, 0) is always locally asymptotically stable;
2. If RS1 > 1, R0 > 1, the boundary equilibrium E1 = (J∗1 , A∗1 , 0, 0) is locally asymptotically

stable;
3. If RS2 > 1, R0 < 1 , the boundary equilibrium E2 = (0, 0, J∗2 , A∗2) is locally asymptotically

stable.

For the positive equilibrium Ep, the Jacobian matrix J at the equilibrium Ep =
(J∗1 , A∗1 , J∗2 , A∗2) has the form

J|Ep :=


−(S1 + DJ(S1)) B(S1)(1−

2A∗1 + A∗2
K

) 0 −B(S1)A∗1/K

S1 −DA(S1) 0 0

0 −B(S2)A∗2/K −(S2 + DJ(S2)) B(S2)(1−
A∗1 + 2A∗2

K
)

0 0 S2 −DA(S2)

.

Then, the characteristic equation at the equilibrium Ep is

PEp(λ) = Lp(S1)Lp(S2)− S1S2B(S1)B(S2)A∗1 A∗2/K2 = 0, (12)

where

Lp(S1) = (λ + S1 + DJ(S1))(λ + DA(S1))− S1B(S1)(1−
2A∗1 + A∗2

K
)

= λ2 + (S1 + DJ(S1) + DA(S1))λ + S1B(S1)A∗1/K,

and

Lp(S2) = (λ + S2 + DJ(S2))(λ + DA(S2))− S2B(S2)(1−
A∗1 + 2A∗2

K
))

= λ2 + (S2 + DJ(S2) + DA(S2))λ + S2B(S2)A∗2/K,
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according to the equation

1−
A∗1 + A∗2

K
=

(S1 + DJ(S1))DA(S1)

S1B(S1)
=

(S2 + DJ(S2))DA(S2)

S2B(S2)
,

Equation (12) can be written as

PEp(λ) = λ(λ3 + c1λ2 + c2λ + c3) = 0, (13)

where

c1 = S1 + DJ(S1) + DA(S1) + S2 + DJ(S2) + DA(S2),

c2 = (S1 + DJ(S1) + DA(S1))(S2 + DJ(S2) + DA(S2)) + S1B(S1)A∗1/K + S2B(S2)A∗2/K,

c3 = S1B(S1)A∗1/K(S2 + DJ(S2) + DA(S2)) + S2B(S2)A∗2/K(S1 + DJ(S1) + DA(S1)).

From Equation (13), we have λ1 = 0. According to the Routh–Hurwitz criteria [17,18],
the real parts of these eigenvalues λi, i = 2, 3, 4, are negative. Because of the existence of a
zero eigenvalue, the stability of positive equilibria cannot be decided by the above linearized
system. Therefore, to determine the stability of the positive equilibrium Ep, one should further
calculate the corresponding center manifold and normal form [20].

2.3. The Global Stability of the Boundary Equilibria

For System (1), there are two boundary equilibria: E1 and E2. We have obtained the
local stability of these two boundary equilibria. In this subsection, we analyze the global
stability of the boundary equilibria using the Lyapunov method.

Now, we analyze the global stability of the boundary equilibrium E1 = (J∗1 , A∗1 , 0, 0).
Let

V = J2 +
S2 + DJ(S2)

S2
A2.

Obviously, V > 0 for J2 > 0, A2 > 0 and J1 ≥ 0, A1 ≥ 0, and V ≡ 0 for J2 = A2 = 0.
Differentiating V along (1) gives

V̇ = B(S2)A2(1−
A1 + A2

K
)− S2 J2 − DJ(S2)J2 +

S2 + DJ(S2)

S2
(S2 J2 − DA(S2)A2)

= B(S2)A2(1−
A1 + A2

K
)−

S2 + DJ(S2)

S2
DA(S2)A2

< B(S2)A2(1−
A2
K

)−
S2 + DJ(S2)

S2
DA(S2)A2

= B(S2)A2 −
S2 + DJ(S2)

S2
DA(S2)A2 − B(S2)A2

2/K

= B(S2)A2(1−
(S2 + DJ(S2))DA(S2)

S2B(S2)
)− B(S2)A2

2/K

= B(S2)A2(1− 1/RS2 )− B(S2)A2
2/K.

(14)

It follows from (14) that V̇ < 0 provided that RS2 < 1. Therefore, by the idea of a Lyapunov
function, the solution starting from initial values (J1(0), A1(0), J2(0), A2(0)) with J1(0) ≥ 0,
A1(0) ≥ 0, J2(0) > 0, A2(0) > 0 finally approaches the point in the J1 − A1 plane. Notice
that when J2 = A2 = 0, System (1) becomes a single-strategy model:

dJ1

dt
= B(S1)A1(1−

A1

K
)− S1 J1 − DJ(S1)J1 = f ,

dA1

dt
= S1 J1 − DA(S1)A1 = g.

(15)

The single-strategy model has a zero equilibrium (0, 0) and a unique positive equilibrium
(J∗1 , A∗1). If RS1 > 1, then (0, 0) is unstable, and (J∗1 , A∗1) is locally asymptotically stable
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since tr(J|(J∗1 ,A∗1)
) < 0 and det(J|(J∗1 ,A∗1)

) =
B(S1)A1

K
> 0. Further, let Dulac function D = 1;

we have
∂D f
∂J1

+
∂Dg
∂A1

= −S1 − DJ(S1)− DA(S1) < 0.

According to the Bendixson–Dulac theorem, there exists no closed orbit. Thus, the unique
positive equilibrium (J∗1 , A∗1) is globally asymptotically stable for two-dimensional sub-
system (15). This, together with the conclusion that the solution of the four-dimensional
system (1) starting from initial values (J1(0), A1(0), J2(0), A2(0)) with J1(0) ≥ 0, A1(0) ≥ 0,
J2(0) > 0, A2(0) > 0 finally approaches the point in the J1 − A1 plane, implies that the
boundary equilibrium (J∗1 , A∗1 , 0, 0) is globally asymptotically stable for RS2 < 1 < RS1 .

Next, we analyze the global stability of the boundary equilibrium E2 = (0, 0, J2, A2). Let

V = J1 +
S1 + DJ(S1)

S1
A1.

Similar to the above analysis, we also have V̇ < 0 with the condition RS1 < 1. Hence,
System (1) has a globally asymptotically stable boundary equilibrium E2 if the condition
RS1 < 1 < RS2 holds.

In summary, we have the following results.

Theorem 3. Define the basic reproductive number RSi , i = 1, 2, given by (2) under the maturation
strategy Si for System (1); then,

1. If RS1 > 1 > RS2 , the boundary equilibrium E1 = (J∗1 , A∗1 , 0, 0) is globally asymptotically
stable;

2. If RS2 > 1 > RS1 , the boundary equilibrium E2 = (0, 0, J∗2 , A∗2) is globally asymptotically
stable.

2.4. Numerical Results

In this section, we use numerical methods to verify our theoretical results. We show
concrete functions B(S1), B(S2), DJ(S1), DJ(S2), DA(S1), DA(S2) as follows: B(S1) = c1e−S1 ,
B(S2) = c2e−S2 , DJ(S1) = DA(S1) = eS1 , DJ(S2) = DA(S2) = eS2 , where S1 and S2 are
one-dimensional variables. The parameters are given in four imaginary cases:

(1) The extinction of the two strategies: Let S1 = 0.141, S2 = 0.3799, c1 = 0.6,
c2 = 0.5118, k = 10; hence, we have RS1 = 0.0494 < 1 and RS2 = 0.0494 < 1. The numerical
result is shown in the upper left part of Figure 2.

(2) The coexistence of the two strategies: Let S1 = 0.4, S2 = 0.8, c1 = 15, c2 = 26.694,
k = 10; hence, we have RS1 = 1.425 > 1 and RS2 = 1.425 > 1. The numerical result is
shown in the upper right part of Figure 2.

(3) The strategy S1 over S2: Let S1 = 0.4, S2 = 0.8, c1 = 18, c2 = 26.694, k = 10; hence,
we have RS1 = 1.7101 > 1, RS2 = 1.425 > 1 and R0 = RS1 /RS2 = 1.2 > 1. The numerical
result is shown in the lower left part of Figure 2.

(4) The strategy S2 over S1: Let S1 = 0.4, S2 = 0.8, c1 = 14, c2 = 28, k = 10; hence, we
have RS1 = 1.3301 > 1, RS2 = 1.4948 > 1 and R0 = RS1 /RS2 = 0.8898 < 1. The numerical
result is shown in the lower right part of Figure 2.
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Figure 2. Time plots of population dynamics.

3. The Adaptive Dynamical System

In this section, we analyze the evolution of maturation strategies for successful inva-
sion of invasive populations. As mentioned in Section 2, the invasive population with an
invasion strategy S2 can invade the resident population with a resident strategy S1 if and
only if R0 = RS1 /RS2 < 1 or RS2 > RS1 . Thus, the fitness function of the invasion strategy
S2 can be defined as

W(S2, S1) = S2B(S2)DA(S1)(S1 + DJ(S1)− S1B(S1)DA(S2)(S2 + DJ(S2)). (16)

With the assumption of small mutation steps, the derivation of invasion fitness
W(S2, S1) with respect to invasion strategy S2 can be obtained as follows:

∂W(S2, S1)

∂S2
|S2=S1 = [B(S1) + S1B′(S1)]DA(S1)(S1 + DJ(S1))− S1B(S1)[D′A(S1)

(S1 + DJ(S1)) + DA(S1)(1 + D′J(S1))].
(17)

Furthermore, the second-order derivation of invasion fitness W(S2, S1) with respect to
invasion strategy S2 can be obtained as follows:

∂2W(S2, S1)

∂S2
2

= [2B′(S1) + S1B′′(S1)]DA(S1)(S1 + DJ(S1))− S1B(S1)[D′′A(S1)

(S1 + DJ(S1)) + 2D′A(S1)(1 + D′J(S1)) + DA(S1)D′′J (S1)].
(18)

The assumption H1: The existence condition for a single species that adopts maturation
strategy S1 is RS1 > 1. We assume that RS1 − 1 > 0 when S1 ∈ (τ1, τ2), where τ1 and τ2 are
two solutions of the equation RS1 − 1 = 0.

A singular strategy S∗ is a local ESS, meaning that no nearby strategy can invade [21].
Thus, in other words, once the strategy has been established in a population, no further
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evolutionary change is possible by small mutations. A strategy S∗ is a local ESS if and only
if the following conditions hold:

∂W(S2, S1)

∂S2
|S2=S1=S∗ = 0

∂2W(S2, S1)

∂S2
2

|S2=S1=S∗ < 0.

The above two conditions of (19) can easily be achieved since there exists a local
strategy S∗, where S∗ ∈ (τ1, τ2), such that

d
dS1

RS1 |S1=S∗ = 0.

d2

dS2
1

RS1 |S1=S∗ < 0.

Hence, there exists a local ESS S∗ located in the interval (τ1, τ2) if the assumption H1
holds.

Next, we show the proof of the uniqueness of the ESS S∗. Along the line l : S1 = S2,
the directional derivative function ∂W/∂S2 at the point (S1, S2) = (S∗, S∗) is provided
as follows:

∂
∂W(S2, S1)

∂S2
∂l

|(S∗ ,S∗)

=
{
[B(S2) + S2B′(S2)][D′A(S1)(S1 + DJ(S1)) + DA(S1)(1 + D′J(S1))]

− [B(S1) + S1B′(S1)][D′A(S2)(S2 + DJ(S2)) + DA(S2)(1 + D′J(S2))]
}

cos α|(S∗ ,S∗)

+
{
[2B′(S2) + S2B′′(S2)]DA(S1)(S1 + DJ(S1))− S1B(S1)[D′′A(S2)(S2 + DJ(S2))

+ 2D′A(S2)(1 + D′J(S2)) + DA(S2)D′′J (S2)]
}

sin α|(S∗ ,S∗),

where α is the direction angle of the line, and thus, cos α = sin α =
√

2/2.
It is easy to see that the difference between the two terms in the first curly bracket is 0;

hence, the above equation is simplified as follows:

∂
∂W(S2, S1)

∂S2
∂l

|(S∗ ,S∗)

=
{
[2B′(S2) + S2B′′(S2)]DA(S1)(S1 + DJ(S1))− S1B(S1)[D′′A(S2)(S2 + DJ(S2))

+ 2D′A(S2)(1 + D′J(S2)) + DA(S2)D′′J (S2)]
}

sin α|(S∗ ,S∗).

Since in the assumptions for H1, we mention that RS1 > 1 or S1B(S1)− DA(S1)(S1 +
DJ(S1)) > 0, thus
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∂
∂W(S2, S1)

∂S2
∂l

|(S∗ ,S∗)

=
{
[2B′(S2) + S2B′′(S2)]DA(S1)(S1 + DJ(S1))− S1B(S1)[D′′A(S2)(S2 + DJ(S2))

+ 2D′A(S2)(1 + D′J(S2)) + DA(S2)D′′J (S2)]
}

sin α|(S∗ ,S∗)

< DA(S∗)(S∗ + DJ(S∗))
{
[2B′(S2) + S2B′′(S2)]− [D′′A(S2)(S2 + DJ(S2))

+ 2D′A(S2)(1 + D′J(S2)) + DA(S2)D′′J (S2)]
}

sin α|(S∗ ,S∗)
< 0.

Therefore, when S1 = S2 = S∗, the function ∂W/∂S2 = 0 has a unique strategy S∗.
In fact, the ESS S∗ is also convergence stable [22]. A singular strategy S∗ that is

convergence stable is an evolutionary attractor, which means that a population that adopts
a nearby strategy can be invaded by those strategies that are even closer to S∗.

According to the results of Geritz et al. [23], a sufficient condition ∂2W(S∗, S∗)/∂S2
1 >

∂2W(S∗, S∗)/∂S2
2 is needed to make a strategy S∗ convergence stable.

Obviously, we have

∂W(S∗, S∗)/∂S1 = −∂W(S∗, S∗)/∂S2

and
∂2W(S∗, S∗)/∂S2

1 = −∂2W(S∗, S∗)/∂S2
2.

Hence,
∂2W(S∗, S∗)

∂S2
1

− ∂2W(S∗, S∗)
∂S2

2
= −2

∂2W(S∗, S∗)
∂S2

2
> 0. (19)

A strategy is called continuously stable if it is both ESS and convergence stable [24].
As above, we have shown that there exists an ESS S∗, and it is also continuously stable
under the assumption H1.

In conclusion, we summarize these results in the following theorem.

Theorem 4. If assumption H1 holds, there exists a unique local ESS S∗ that belongs to the interval
(τ1, τ2) and is both convergence stable and, thus, continuously stable.

4. Conclusions

Due to environmental changes such as climate, temperature, and, in particular, har-
vesting and so on, life-history strategies change accordingly. Maturation strategy plays a
crucial role in life-history evolution since it affects the reproduction and survival of the
population. Therefore, in order to analyze the effect of the maturation strategy on popula-
tion dynamics, two different maturation strategies are considered in our research. Juveniles
adopt either a fast maturation strategy or a delayed maturation strategy in response to
the change to the environment. These two different maturation strategy may result in
changes to the birth rate and the death rate of the population due to the tradeoffs. In this
paper, we establish a two-strategy evolutionary model with a two-stage structure (juveniles
and adults). From this model, we analyze the existence and stability of the coexistence
equilibrium and single-strategy equilibrium for the same population with two different
maturation strategies and summarize them as following:

(1) Extinction of two strategies: The fitness is represented by the basic reproductive
number in this paper. The existence and extinction of the strategy only depend on its fitness.
If the basic reproductive number is greater than 1 without competition, the population
that adopts this strategy will persist; otherwise, this population will go to extinction.
For example, in Figure 3, Region I means that both strategies would be extinct.
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(2) Competitive exclusion of the two strategies: If competition between two strate-
gies occurs, one will be dominant and the other one will go to extinction, which means
competitive exclusion of the two strategies. For example, in Figure 3, Region II describes
the situation in which the population that adopts strategy S1 wins the competition, and
the population that adopts strategy S2 is excluded. Similarly, Region III is the competition
exclusion region where S2 wins and S1 vanishes.

(3) Two-strategy coexistence: In order to achieve the coexistence of populations with
different strategies, the basic reproductive numbers RS1 and RS2 must be equal and be
greater than 1. In a biological sense, if two different mature strategies achieve the same level
of benefits for the same population, then both of the populations with the two strategies
can coexist at the same time or both populations with the two strategies can become extinct.
In other words, when two strategies have equal fitness with the basic condition of the
fitness being greater than 1, coexistence occurs. For example, in Figure 3, the solid line
between Region II and III is the coexistence of two strategies.

Figure 3. Partition area according to the stability conditions of the equilibrium. I Region: only E0

exists and is globally asymptotically stable; II Region: only E1 is locally asymptotically stable; III
Region: only E2 is locally asymptotically stable; The solid line between II Region and III Region: only
Ep exist, but the stability is unclear because of the existence of a zero eigenvalue.

By adjusting the life-history parameters, for example, the maturation rate, the popula-
tion can change competitive strength and maximize its fitness.

Seasonality plays a crucial role in the maturation strategy [8]. In future research,
we will consider a seasonality factor to formulate a mathematical model of maturation
strategies. More-realistic complex factors can also be included in the model.
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