
Citation: Alhajraf, A.; Yousef, A.;

Bozkurt, F. An Analysis of a

Fractional-Order Model of Colorectal

Cancer and the Chemo-

Immunotherapeutic Treatments with

Monoclonal Antibody. Mathematics

2023, 11, 2374. https://doi.org/

10.3390/math11102374

Academic Editors: Roman Parovik,

Kholmat Mahkambaevich

Shadimetov and Abdullo

Rakhmonovich Hayotov

Received: 19 April 2023

Revised: 15 May 2023

Accepted: 16 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Analysis of a Fractional-Order Model of Colorectal Cancer
and the Chemo-Immunotherapeutic Treatments with
Monoclonal Antibody
Ali Alhajraf 1, Ali Yousef 2,3,* and Fatma Bozkurt 4

1 College of Nursing, Public Authority of Applied Education and Training, Safat 13092, Kuwait;
af.alhajraf@paaet.edu.kw

2 Department of Natural Sciences and Mathematics, College of Engineering, International University of Science
and Technology in Kuwait, Ardiya 92400, Kuwait

3 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
4 Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey; fbozkurt@erciyes.edu.tr
* Correspondence: ali.yousef@iuk.edu.kw

Abstract: The growth of colorectal cancer tumors and their reactions to chemo-immunotherapeutic
treatment with monoclonal antibodies (mAb) are discussed in this paper using a system of fractional
order differential equations (FDEs). mAb medications are still at the research stage; however, this
research takes into account the mAbs that are already in use. The major goal is to demonstrate the
effectiveness of the mAb medication Cetuximab and the significance of IL-2 levels in immune system
support. The created model is broken down into four sub-systems: cell populations, irinotecan
(CPT11) concentration for treatment, IL-2 concentration for immune system support, and monoclonal
antibody Cetuximab. We show the existence and uniqueness of the initial value problem (IVP).
After that, we analyze the stability of the equilibrium points (disease-free and co-existing) using
the Routh–Hurwitz criteria. In addition, in applying the discretization process, we demonstrate the
global stability of the constructed system around the equilibrium points based on specific conditions.
In the end, simulation results were carried out to support the theory of the manuscript.

Keywords: stability; existence and uniqueness; colorectal cancer; fractional-order differential equations

MSC: 34A34; 34D20; 39A30; 92B05

1. Introduction

One of the most frequent cancers in the world for both women and men is colorectal
cancer [1]. Apart from various and mixed treatment procedures to minimize and eliminate
the cancerous tissues, the immune system (IS) has an important impact during the treatment.
Within this, additional treatment strategies are involved in cancer therapy, such as using
monoclonal antibody drugs. While there are still many unresolved problems about the
efficiency of monoclonal antibodies and their use, we believe that mixed therapy would be
well understood by establishing mathematical models and analyzing the optimal treatment
process using clinical data that might support theoretical and applied science studies.
Several studies with various treatment strategies looked into tumor cells’ interaction with
the immune system. Some of them are [2–7].

Other research mainly concentrated on the resources and dynamics of CD8+T popula-
tions [8–10], while some clinical and mathematical research explicitly focused on the use of
monoclonal antibodies in vivo and in vitro [5,11,12]. To illustrate the utility and application
of both monoclonal antibody concentrations and immunotherapy, it is important to depict
tumor growth and treatment procedures in applied sciences such as mathematical models.
Thus, by combining theory and application, we may properly comprehend the dynamic of
the biological system.
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De Pillis et al. established in [12] the tumor progression while taking into account the
levels of doxorubicin and IL-2 in the bloodstream as well as the effects of various immune
cells. The study in [2] included the addition of three immunological compartments, one
compartment each measuring tumor density, chemotherapy medication, and concentration
of IL-2. As previously stated in [3], they also address the kinetics of IL-2 and the IL-2
production with biological interactions. Irinotecan, a chemotherapeutic drug, and one of
two monoclonal antibodies—cetuximab, which has FDA approval for colorectal cancer
treatments, and panitumumab, which is still being tested in clinical trials—were modelled
by the authors in [5]. Here, they introduced and simulated a new experimental dosing
schedule that reduced the tumor size efficiently.

The dynamical behavior is expanded in this manuscript in light of the studies on
immunotherapy and monoclonal antibody treatment that were previously mentioned. Since
derivatives and integrals are defined for any real order, fractional calculus is an extension
of conventional calculus. Fractional operators can more effectively depict systems with
high-order dynamics and complicated nonlinear phenomena than standard derivatives and
integrals in particular situations. This is due to two key factors. First, we are not limited
to integer order and are free to choose any order for the derivative and integral operators.
Second, fractional order derivatives are advantageous when the system has a long-term
memory since they depend not only on current circumstances but also on the past [13–16].

Hence, fractional-order differential equations can more accurately depict a variety of
complicated biological processes with nonlinear dynamics and long-term memory that
cannot be theoretically expressed by ODEs. Additionally, the conversion of an ODE model
into an FDE model needs to be precise in terms of differentiation order because even a
small change can have a big impact on how the solutions behave [17–23].

The effectiveness of immunotherapy and monoclonal antibody medications are estab-
lished in the section that follows, which also establishes a system of fractional-order differen-
tial equations that take colorectal cancer growth, irinotecan concentration in chemotherapy,
and other factors into account.

The structure of this manuscript is as follows: A tumor growth of colorectal cancer
and its response to chemo-immunotherapeutic treatment with monoclonal antibody (mAb)
is formulated as a system of fractional order differential equation in Section 2, where we
also prove the IVP’s uniqueness and existence. In Section 3, we analyze the local stability
of both equilibrium points, while Section 4 represents the global stability of the equilibrium
points based on specific conditions. At the end of the study, we used in vivo and in vitro
clinical data to illustrate the simulation results.

2. A Fractional-Order Mathematical Model

In the initiated model, a colorectal cancer malignant cell population is introduced.
The purpose of the study is to examine and present the effectiveness of various immune
system-supporting supplements and the response of cancer tissues to monoclonal antibody
therapy (mAb). In order to go through a painful and protracted therapy, the combined
therapy concentrates on removing the cancer tissues and bolstering the immune system
with supplements.

Thus, the system is defined with seven compartments:

T(t): colorectal cancer cells,
N(t): compartment of natural killer (N.K.),
C(t): the CD8+T cell population,
L(t): lymphocytes population,
D(t): irinotecan concentration,
I(t): IL-2 concentration,
A(t): mAb Cetuximab concentration.

The mAb Cetuximab and the chemotherapeutic medication Irinotecan (CPT11) will be
examined as therapies.

Below is the mathematical system of colorectal cancer with multi-modal therapy.
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Dα(T(t)) = r(1− α1T(t))T(t)− β1N(t)T(t)− γ1D(t)T(t)− δA(t)T(t)− µ1 A(t)N(t)T(t)
ε1+A(t) − θ1C(t)T(t)

ω1T(t)+C(t)

Dα(N(t)) = Λ1C(t) + ρ(1− α2N(t))N(t) + τ I(t)N(t)
ω2+I(t) −

µ2 A(t)N(t)T(t)
ε1+A(t) − β2N(t)T(t)− γ2D(t)N(t)

Dα(C(t)) = (σ1L(t) + σ2N(t))T(t) + θ2C(t)I(t)
ω3+I(t) −

ξL(t)C(t)I(t)
$+I(t) − β3T(t)C(t)− γ3D(t)C(t)

Dα(L(t)) = Λ2 − α3L(t)− γ4D(t)L(t)
Dα(D(t)) = Λ3 − α4D(t)

Dα(I(t)) = Λ4L(t)− α5 I(t) + θ3C(t)I(t)
ω4+I(t)

Dα(A(t)) = Λ5 − α6 A(t) + µ3 A(t)T(t)
ε2+A(t) .

(1)

and

T(0) = T0, N(0) = N0, C(0) = C0, L(0) = L0, D(0) = D0, I(0) = I0 and A(0) = A0, (2)

where the parameters are defined in R+, α ∈ (0, 1], Dα is the Caputo derivative, see [24,25],
and (T, N, C, L, D, I, A) ∈ R7

+. Table 1 illustrates the descriptions of [2,3,11,12,26–28].

Table 1. Parametric explanation.

Notation Description of Parameter Equation

r Growth rate of the cancer cells dT
dt

α1 Capacity rate of the tumor
β1 N − T interaction
γ1 Irinotecan-influence tumor decrease
δ mAb-influence tumor decrease
θ1 Immune system strength coefficient
ω1 Half-maximal CD8+T cell effectiveness
µ1 N.K. induced tumor death through mAb
ε1 Concentration of mAb for a half-maximal increase in Cetuximab
Λ1 Natural killer cell generation from circulating lymphocytes dN

dt
ρ Natural cell turnover rate
α2 Inverse of carrying capacity of N.K. cells
τ IL-2-induced N.K. cell proliferation

ω2 Concentration of IL-2 for half-maximal N.K. cell proliferation
µ2 N.K. cell death due to the tumor-mAb complex interaction
ε1 Concentration of mAb for a half-maximal increase in Cetuximab
β2 N.K. cell death due to interaction with compartment T
γ2 N.K. depletion from chemotherapy toxicity
σ1 NK-lysed tumor cell debris activation of CD8+T cell cells dC

dt
σ2 CD8+T cell production from circulating lymphocytes
θ2 IL-2 induced CD8 +T-cell activation
ω3 Concentration of IL-2 for half-maximal CD8+T cell activation
ξ CD8+T cell self-limitation feedback coefficient

$
Concentration of IL-2 to halve the magnitude of CD8+T cell
self-regulation

β3 CD8+T cell death due to tumor interaction
γ3 CD8+T cell depletion from chemotoxicity
Λ2 Bone marrow lymphocyte synthesis dL

dt
α3 Lymphocyte turnover
γ4 Lymphocyte depletion from chemotherapy
Λ3 Concentration of irinotecan mg/L per day dD

dt
α4 Elimination of chemotherapy
Λ4 IL-2 production: CD4+/naive CD8+T cells dI

dt
α5 IL-2 turnover
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Table 1. Cont.

Notation Description of Parameter Equation

θ3 IL-2 production: CD8+T cells

ω4
Concentration of IL-2 for half-maximal CD8+T cell IL-2
production

Λ5 Amount of monoclonal antibodies injected mg/l per day dA
dt

α6 Rate of mAb turnover
µ3 Loss of available mAbs to bind to tumor cells
ε2 Concentration of mAbs half-maximal binding

Definition 1 ([24]). Given a function ϕ(t), the fractional integral with order α > 0 is given by
Abdel’s formula as

Iα ϕ(t) =
1

Γ(α)

∫ x

0
(x− t)α−1 ϕ(t)dt, x > 0.

Definition 2 ([24]). Let ϕ : R+ → R be a continuous function. The Caputo fractional derivative
of order α ∈ (n− 1, n),, where n is a positive integer and is defined as

Dα ϕ(t) =
1

Γ(n− α)

∫ t

0

ϕ(n)(s)

(t− s)α+1−n ds.

when α = n, the derivatives are defined to be the usual nth order derivatives.

Definition 3 ([25]). The Mittag-Leffler function of one variable is

Eα(λ, z) = Eα(λzα) = ∑∞
k=0

λkzαk

Γ(1 + αk)
, (λ 6= 0, z ∈ C; Re(α) > 0).

The existence of a positive domain R7
+ =

{
M ∈ R7 :M≥ 0

}
, whereM(t) = (T(t),

N(t), C(t), L(t), D(t), I(t), A(t))T , and the unique solution of an IVP in the same region
R7
+ can be shown using the lemma and theory in [29–31]. The local stability analysis of

both equilibrium points—disease-free and coexisting—will serve as the foundation for our
main research in the following part.

Theorem 1. The solution of the IVP in (1) and (2) is unique, and the solutions are in R7
+.

Proof of Theorem 1. Using the lemma and theory in [29–31], we have to prove that the
domain R7

+ is positively invariant. Thus, we have the following:

DαT(t)|T=0 = 0,

DαN(t)|N=0= Λ1C(t) ≥ 0,

DαC(t)|C=0= (σ1L(t) + σ2N(t))T(t) ≥ 0,

DαL(t)|L=0= Λ2 > 0,

DαD(t)|D=0= Λ3 > 0,

DαI(t)|I=0= Λ4L(t) ≥ 0,

DαA(t)|A=0= Λ5 > 0.

This implies that all the above equations are non-negative, which shows that the
domain R7

+ is positively invariant. �

Let us rewrite the system:
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DαT(t) = k1(T(t), N(t), C(t), L(t), D(t), I(t), A(t))

= r(1− α1T(t))T(t)− β1N(t)T(t)− γ1D(t)T(t)− δA(t)T(t)− µ1 A(t)N(t)T(t)
ε1+A(t) − θ1C(t)T(t)

ω1T(t)+C(t)

DαN(t) = k2(T(t), N(t), C(t), L(t), D(t), I(t), A(t))

= Λ1C(t) + ρ(1− α2N(t))N(t) + τ I(t)N(t)
ω2+I(t) −

µ2 A(t)N(t)T(t)
ε1+A(t) − β2N(t)T(t)− γ2D(t)N(t)

DαC(t) = k3(T(t), N(t), C(t), L(t), D(t), I(t), A(t))

= (σ1L(t) + σ2N(t))T(t) + θ2C(t)I(t)
ω3+I(t) −

ξL(t)C(t)I(t)
$+I(t) − β3T(t)C(t)− γ3D(t)C(t)

DαL(t) = k4(T(t), N(t), C(t), L(t), D(t), I(t), A(t)) = Λ2 − α3L(t)− γ4D(t)L(t)

DαD(t) = k5(T(t), N(t), C(t), L(t), D(t), I(t), A(t)) = Λ3 − α4D(t)

DαI(t) = k6(T(t), N(t), C(t), L(t), D(t), I(t), A(t)) = Λ4L(t)− α5 I(t) + θ3C(t)I(t)
ω4+I(t)

Dα A(t) = k7(T(t), N(t), C(t), L(t), D(t), I(t), A(t)) = Λ5 − α6 A(t) + µ3 A(t)T(t)
ε2+A(t)

(3)

To analyze the stability of (3), we perturb the equilibrium points by εi(t) > 0,
i = 1, 2, 3, 4, 5, 6, 7, that is

T(t)−
−
T = ε1(t), N(t)−

−
N = ε2(t), C(t)−

−
C = ε3(t), L(t)−

−
L = ε4(t),

D(t)−
−
D = ε5(t), I(t)−

−
I = ε6(t) and A(t)−

−
A = ε6(t).

Thus, we have

Dα(ε1(t)) ' k1(χ) +
∂k1(χ)

∂T ε1(t) +
∂k1(χ)

∂N ε2(t) +
∂k1(χ)

∂C ε3(t) +
∂k1(χ)

∂L ε4(t) +
∂k1(χ)

∂D ε5(t) +
∂k1(χ)

∂I ε6(t)+
∂k1(χ)

∂A ε7(t),

Dα(ε2(t)) ' k2(χ) +
∂k2(χ)

∂T ε1(t) +
∂k2(χ)

∂N ε2(t) +
∂k2(χ)

∂C ε3(t) +
∂k2(χ)

∂L ε4(t)+
∂k2(χ)

∂D ε5(t) +
∂k2(χ)

∂I ε6(t) +
∂k2(χ)

∂A ε7(t),

Dα(ε3(t)) ' k3(χ) +
∂k3(χ)

∂T ε1(t) +
∂k3(χ)

∂N ε2(t) +
∂k3(χ)

∂C ε3(t) +
∂k3(χ)

∂L ε4(t)+
∂k3(χ)

∂D ε5(t) +
∂k3(χ)

∂I ε6(t) +
∂k3(χ)

∂A ε7(t),

Dα(ε4(t)) ' k4(χ) +
∂k4(χ)

∂T ε1(t) +
∂k4(χ)

∂N ε2(t) +
∂k4(χ)

∂C ε3(t) +
∂k4(χ)

∂L ε4(t)+
∂k4(χ)

∂D ε5(t) +
∂k4(χ)

∂I ε6(t) +
∂k4(χ)

∂A ε7(t),

Dα(ε5(t)) ' k5(χ) +
∂k5(χ)

∂T ε1(t) +
∂k5(χ)

∂N ε2(t) +
∂k5(χ)

∂C ε3(t) +
∂k5(χ)

∂L ε4(t)+
∂k5(χ)

∂D ε5(t) +
∂k5(χ)

∂I ε6(t) +
∂k5(χ)

∂A ε7(t),

Dα(ε6(t)) ' k6(χ) +
∂k6(χ)

∂T ε1(t) +
∂k6(χ)

∂N ε2(t) +
∂k6(χ)

∂C ε3(t) +
∂k6(χ)

∂L ε4(t)+
∂k6(χ)

∂D ε5(t) +
∂k6(χ)

∂I ε6(t) +
∂k6(χ)

∂A ε7(t),

and

Dα(ε7(t)) ' k7(χ) +
∂k7(χ)

∂T ε1(t) +
∂k7(χ)

∂N ε2(t) +
∂k7(χ)

∂C ε3(t) +
∂k7(χ)

∂L ε4(t) +
∂k7(χ)

∂D ε5(t) +
∂k7(χ)

∂I ε6(t)+
∂k7(χ)

∂A ε7(t),
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where ki(χ) = ki

(−
T,
−
N,
−
C,
−
L,
−
D,
−
I ,
−
A
)

, (i = 1, 2, 3, 4, 5, 6, 7). We use the property that

ki

(−
T,
−
N,
−
C,
−
L,
−
D,
−
I ,
−
A
)
= 0.

Thus, a linearized system about the equilibrium point is obtained, such as

DαV = JV, (4)

where V = (ε1(t), ε2(t), ε3(t), ε4(t), ε5(t), ε6(t), ε6(t)). Moreover, J is the Jacobian matrix
at the equilibrium point, and we have W−1 JW = Q such that Q is the diagonal matrix of
λi(i = 1, 2, 3, 4, 5, 6, 7), while W shows the eigenvectors of J. Thus, we have

Dαψ1 = λ1ψ1
Dαψ2 = λ2ψ2
Dαψ3 = λ3ψ3
Dαψ4 = λ4ψ4
Dαψ5 = λ5ψ5
Dαψ6 = λ6ψ6
Dαψ7 = λ7ψ7

, where ψ =



ψ1
ψ2
ψ3
ψ4
ψ5
ψ6
ψ7


, (5)

and the solutions are given by Mittag-Leffler functions, such as

ψ1(t) = ∑∞
n=0

(λ1)
ntnα

Γ(nα + 1)
ψ1(0) = Eα(λ1tα)ψ1(0)

ψ2(t) = ∑∞
n=0

(λ2)
ntnα

Γ(nα + 1)
ψ2(0) = Eα(λ2tα)ψ2(0),

ψ3(t) = ∑∞
n=0

(λ3)
ntnα

Γ(nα + 1)
ψ3(0) = Eα(λ3tα)ψ3(0),

ψ4(t) = ∑∞
n=0

(λ4)
ntnα

Γ(nα + 1)
ψ4(0) = Eα(λ4tα)ψ4(0),

ψ5(t) = ∑∞
n=0

(λ5)
ntnα

Γ(nα + 1)
ψ5(0) = Eα(λ5tα)ψ5(0),

ψ6(t) = ∑∞
n=0

(λ6)
ntnα

Γ(nα + 1)
ψ6(0) = Eα(λ6tα)ψ6(0),

and

ψ7(t) = ∑∞
n=0

(λ7)
ntnα

Γ(nα + 1)
ψ7(0) = Eα(λ7tα)ψ7(0).

The studies in [32,33] proved the stability criteria using the Mittag-Leffler functions.
Thus, if |arg(λi)| > απ

2 (i = 1, 2, 3, 4, 5, 6, 7), then ψi(i = 1, 2, 3, 4, 5, 6, 7) are decreasing,
and therefore we have εi(i = 1, 2, 3, 4, 5, 6, 7) decreasing. In other words, let the solution
V = (ε1(t), ε2(t), ε3(t), ε4(t), ε5(t), ε6(t), ε7(t)) of (2.4) exist. If the solution of (4) is increas-

ing, then the equilibrium point
(−

T,
−
N,
−
C,
−
L,
−
D,
−
I ,
−
A
)

of the system is unstable. Similarly, if

the solution of (4) is decreasing, then the equilibrium point
(−

T,
−
N,
−
C,
−
L,
−
D,
−
I ,
−
A
)

is locally

asymptotically stable.
Hence, we denote the two equilibrium points that will be analyzed in the next section:
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The Disease-free (Extinction of tumor population): χ1 =

(
0,
−
N1,

−
C1,
−
L1,
−
D1,

−
I 1,
−
A1

)
The Co-existing: χ2 =

(−
T2,
−
N2,

−
C2,
−
L2,
−
D2,

−
I 2,
−
A2

)
.

3. Local Stability of the Disease-Free (Extinction) and Positive (Co-Existing)
Equilibrium Points

The local stability analysis of both equilibrium points is investigated in this section
using the Routh–Hurwitz Criterion.

By linearizing system (1) around the disease-free equilibrium point, we derive the
Jacobian matrix:

J(χ1) =



a11 0 0 0 0 0 0
a21 a22 a23 0 a25 a26 0
a31 0 a33 a34 a35 a36 0
0 0 0 a44 a45 0 0
0 0 0 0 a55 0 0
0 0 a63 a64 0 a66 0

a71 0 0 0 0 0 a77


, (6)

where

a11 = Λ1 + r− θ1 − β1
−
N1 − γ1

−
D1 − δ

−
A1 −

µ1
−
N1
−
A1

ε1 +
−
A1

, a12 = a13 = a14 = a15 = a16 = a17 = 0,

a21 = −µ2
−
N1
−
A1

ε1 +
−
A1

− β2
−
N1, a22 = −2α2ρ +

τ
−
I 1

ω2 +
−
I 1

− γ2
−
D1, a23 = Λ1, a24 = 0, a25 = −γ2

−
N1,

a26 =
τω2

−
N1(

ω2 +
−
I 1

)2 , a27 = 0, a31 = σ1
−
L1 + σ2

−
N1 − β3

−
C1, a32 = 0, a33 =

θ2
−
I 1

ω3 +
−
I 1

− ξ
−
I 1
−
L1

$ +
−
I 1

− γ3
−
D1,

a34 = − ξ
−
I 1
−
C1

$+
−
I 1

, a35 = −γ3
−
C1, a36 = θ2ω3

−
C1(

ω3+
−
I 1

)2 −
$ξ
−
L1
−
C1(

$+
−
I 1

)2 and a37 = 0, a41 = a42 = a43 =

a46 = a47 = 0, a44 = −α3 − γ4
−
D1 and a45 = −γ4

−
L1, a51 = a52 = a53 = a54 = a56 =

a57 = 0 and a55 = −α4, a61 = a62 = a65 = a67 = 0, a63 = θ3
−
I 1

ω4+
−
I 1

, a64 = Λ4 and

a66 = −α5 +
θ3ω4

−
C1(

ω4+
−
I 1

)2 , a71 = µ3
−
A1

ε2+
−
A1

, a72 = a73 = a74 = a75 = a76 = 0 and a77 = −α6.

This leads to the following derivation of the characteristic equation of (6):

(a11 − λ)(a22 − λ)(a44 − λ)(a55 − λ)(a77 − λ)
(

λ2 − (a33 + a66)λ + a33a66 − a36a63

)
= 0. (7)
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Theorem 2. Let χ1 =

(
0,
−
N1,

−
C1,
−
L1,
−
D1,

−
I 1,
−
A1

)
be the disease-free equilibrium point of system

(1) and assume that r < θ1,
−
N1 > 1

2α2
and τ <

(
ρ

(
2α2
−
N1−1

)
+γ2

−
D1

)(
ω2+

−
I 1

)
−
I 1

. If

−
C1 >

(
ω4 +

−
I 1

)2
(√

4α5

(
Θ
−
I 1 + γ3

−
D1

)
+ Θ

−
I 1 + γ3

−
D1 + α5

)
θ3ω4

(8)

and

−
L1 >

(
ω4 +

−
I 1

)(
$ +

−
I 1

)2

θ3
−
I 1$ξ



 θ3ω4
−
C1(

ω4+
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

4
−
C1

−
α5

(
Θ
−
I 1 + γ3

−
D1

)
−
C1

+

θ3ω4

(
Θ + γ3

−
D1

)
(

ω4 +
−
I 1

)2


+

θ2ω3

(
$ +

−
I 1

)2

(
ω3 +

−
I 1

)2

$ξ

, (9)

where

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tan−1



√√√√√√4



 $ξ

−
L1(

$+
−
I 1

)2 −
θ2ω3(

ω3+
−
I 1

)2

 θ3
−
I 1

ω4+
−
I 1

−
θ3ω4

(
Θ+γ3

−
D1

)
(

ω4+
−
I 1

)2

−C1 + α5

(
Θ
−
I 1 + γ3

−
D1

)−
 θ3ω4

−
C1(

ω4+
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

Θ
−
I 1 + γ3

−
D1 + α5 − θ3ω4

−
C1(

ω4+
−
I 1

)2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>

απ

2
, (10)

then χ1 is locally asymptotically stable.

Proof of Theorem 2. It can be seen that

(i) λ1 = r− θ1 − β1
−
N1 − γ1

−
D1 − δ

−
A1 − µ1

−
N1
−
A1

ε1+
−
A1

< 0, if r < θ1.

(ii) λ2 = ρ

(
1− 2α2

−
N1

)
+ τ

−
I 1

ω2+
−
I 1

− γ2
−
D1 < 0, if τ <

(
ρ

(
2α2
−
N1−1

)
+γ2

−
D1

)(
ω2+

−
I 1

)
−
I 1

and

−
N1 > 1

2α2
.

(iii) λ4 = −α3 − γ4
−
D1 < 0.

(iv) λ5 = −α4 < 0.
(v) λ7 = −α6.

Moreover, from the characteristic Equation (7), we have to analyze the stability criteria
of the following equation:

λ2 − (a33 + a66)λ + a33a66 − a36a63 = 0. (11)

(a) Let Θ = ξ
−
L1

$+
−
I 1

− θ2

ω3+
−
I 1

. For the inequality

a33 + a66 > 0 =⇒

 θ2

ω3 +
−
I 1

− ξ
−
L1

$ +
−
I 1

−I 1 − γ3
−
D1 − α5 +

θ3ω4
−
C1(

ω4 +
−
I 1

)2 > 0
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we obtain

−
C1 >

{
Θ
−
I 1 + γ3

−
D1 + α5

}(
ω4 +

−
I 1

)2

θ3ω4
for
−
L1 >

θ2

(
$ +

−
I 1

)
ξ

(
ω3 +

−
I 1

) . (12)

(b) If

4


(
−Θ

−
I 1 − γ3

−
D1

)−α5 +
θ3ω4

−
C1(

ω4 +
−
I 1

)2

−
 θ2ω3(

ω3 +
−
I 1

)2 −
$ξ
−
L1(

$ +
−
I 1

)2

 θ3
−
I 1
−
C1

ω4 +
−
I 1

−
 θ3ω4

−
C1(

ω4 +
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

> 0,

then we have

4



 $ξ

−
L1(

$ +
−
I 1

)2 −
θ2ω3(

ω3 +
−
I 1

)2

 θ3
−
I 1

ω4 +
−
I 1

−
θ3ω4

(
Θ + γ3

−
D1

)
(

ω4 +
−
I 1

)2


−
C1 + α5

(
Θ
−
I 1 + γ3

−
D1

)

>

 θ3ω4
−
C1(

ω4 +
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

,

which holds for

−
L1 >

(
ω4 +

−
I 1

)(
$ +

−
I 1

)2

θ3
−
I 1$ξ



 θ3ω4
−
C1(

ω4+
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

4
−
C1

−
α5

(
Θ
−
I 1 + γ3

−
D1

)
−
C1

+

θ3ω4

(
Θ + γ3

−
D1

)
(

ω4 +
−
I 1

)2


+

θ2ω3

(
$ +

−
I 1

)2

(
ω3 +

−
I 1

)2
$ξ

. (13)

In considering both (12) and (13), we get

−
L1 >

(
ω4+

−
I 1

)(
$+
−
I 1

)2

θ3
−
I 1$ξ



 θ3ω4
−
C1(

ω4+
−
I 1

)2−Θ
−
I 1−γ3

−
D1−α5


2

4
−
C1

−
α5

(
Θ
−
I 1+γ3

−
D1

)
−
C1

+
θ3ω4

(
Θ+γ3

−
D1

)
(

ω4+
−
I 1

)2


+

θ2ω3

(
$+
−
I 1

)2

(
ω3+

−
I 1

)2
$ξ

>
θ2

(
$+
−
I 1

)
ξ

(
ω3+

−
I 1

) ,

(14)

and
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−
C1 >

(
ω4 +

−
I 1

)2
(√

4α5

(
Θ
−
I 1 + γ3

−
D1

)
+ Θ

−
I 1 + γ3

−
D1 + α5

)
θ3ω4

>

{
Θ
−
I 1 + γ3

−
D1 + α5

}(
ω4 +

−
I 1

)2

θ3ω4
, (15)

where

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tan−1



√√√√√√4



 $ξ

−
L1(

$+
−
I 1

)2 −
θ2ω3(

ω3+
−
I 1

)2

 θ3
−
I 1

ω4+
−
I 1

−
θ3ω4

(
Θ+γ3

−
D1

)
(

ω4+
−
I 1

)2

−C1 + α5

(
Θ
−
I 1 + γ3

−
D1

)−
 θ3ω4

−
C1(

ω4+
−
I 1

)2 −Θ
−
I 1 − γ3

−
D1 − α5


2

Θ
−
I 1 + γ3

−
D1 + α5 − θ3ω4

−
C1(

ω4+
−
I 1

)2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>

απ

2
. (16)

�

The Jacobian matrix of the co-existing equilibrium point χ2 =

(−
T2,

−
N2,

−
C2,
−
L2,
−
D2,

−
I 2

)
is given by

J(χ1) =



b11 b12 b13 0 b15 0 b17
b21 b22 b23 0 b25 b26 b27
b31 b32 b33 b34 b35 b36 0
0 0 0 b44 b45 0 0
0 0 0 0 b55 0 0
0 0 b63 b64 0 b66 0

b71 0 0 0 0 0 b77


, (17)

where

b11 = r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 , b12 = −β1
−
T2 − µ1

−
A2
−
T2

ε1+
−
A2

, b13 = − θ1ω1
−
T2

2(
ω1
−
T2+

−
C2

)2 , b14 =

0, b15 = −γ1
−
T2, b16 = 0, b17 = −δ

−
T2 − µ1ε1

−
N2
−
T2(

ε1+
−
A2

)2 , b21 = − µ2
−
N2
−
A2

ε1+
−
A2

− β2
−
N2, b22 = ρ

(
1− 2α2

−
N2

)
+ τ

−
I 2

ω2+
−
I 2

−

µ2
−
A2
−
T2

ε1+
−
A2

− β2
−
T2 − γ2

−
D2, b23 = Λ1, b24 = 0, b25 = −γ2

−
N2,

b26 = τω2
−
N2(

ω2+
−
I 2

)2 , b27 = − µ2ε1
−
N2
−
T2(

ε1+
−
A2

)2 , b31 = σ1
−
L2 + σ2

−
N2 − β3

−
C2, b32 = σ2

−
T2, b33 = θ2

−
I 2

ω3+
−
I 2

− ξ
−
I 2
−
L2

$+
−
I 2

− β3
−
T2−

γ3
−
D2, b34 = σ1

−
T2 − ξ

−
I 2
−
C2

$+
−
I 2

, b35 = −γ3
−
C2, b36 = θ2ω3

−
C2(

ω3+
−
I 2

)2 −
$ξ
−
L2
−
C2(

$+
−
I 2

)2 and b37 = 0,

b41 = b42 = b43 = b46 = b47 = 0, b44 = −α3 − γ4
−
D2 and b45 = −γ4

−
L2,

b51 = b52 = b53 = b54 = b56 = b57 = 0 and b55 = −α4,

b61 = b62 = b65 = b67 = 0, b63 =
θ3
−
I 2

ω4 +
−
I 2

, b64 = Λ4 and b66 = −α5 +
θ3ω4

−
C2(

ω4 +
−
I 2

)2 ,
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b71 =
µ3
−
A2

ε2 +
−
A2

, b72 = b73 = b74 = b75 = b76 = 0 and b77 = −α6 −
µ3ε2

−
T2(

ε2 +
−
A2

)2 .

Under the assumption that in a co-existing tumor population the CD8+T cell produc-
tion is σ2 = 0 and

−
C2 =

σ1
−
L2 + σ2

−
N2

β3
, (18)

we obtain the characteristic equation of the positive equilibrium point, such as

{(b11 − λ)(b77 − λ)− b17b71}{(b33 − λ)(b66 − λ)− b36b63} = 0 (19)

where

λ2 < 0 =⇒ ρ <

µ2
−
A2
−
T2

ε1+
−
A2

− τ
−
I 2

ω2+
−
I 2

+ β2
−
T2 + γ2

−
D2

1− 2α2
−
N2

for
−
N2 <

1
2α2

and τ <

(
ω2 +

−
I 2

)(
µ2
−
A2
−
T2

ε1+
−
A2

+ β2
−
T2 + γ2

−
D2

)
−
I 2

(20)

and

λ4 = −α3 − γ4
−
D2 < 0 and λ5 = −α4 < 0. (21)

Theorem 3. Let χ2 =

(−
T2,

−
N2,

−
C2,
−
L2,
−
D2,

−
I 2

)
be the positive equilibrium point of system (1).

The following statements hold:

(a) Assume that

r > α6 + β1
−
N2 + γ1

−
D2 + δ

−
A2 +

µ1
−
N2
−
A2

ε1 +
−
A2

+
θ1
−
C2

2

(
ω1
−
T2 +

−
C2

)2 ,

and

−
T2 <

r− α6 − β1
−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2

2α1r + µ3ε2(
ε2+

−
A2

)2

. (22)

Then, for the conditions

−
N2 >

(
ε1 +

−
A2

)2

µ1 ε1



(
ε2 +

−
A2

)
r− 2α1r

−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 − α6 − µ3 ε2
−
T2(

ε2+
−
A2

)2


2

+

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3 ε2
−
T2(

ε2+
−
A2

)2




4µ3
−
A2
−
T2

− δ


, (23)

and

δ <

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3ε2
−
T2(

ε2+
−
A2

)2

(ε2 +
−
A2

)

µ3
−
A2
−
T2

, (24)
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we have

tan−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√√√√√√4

 µ3
−
A2

ε2+
−
A2

δ
−
T2 +

µ1 ε1
−
N2
−
T2(

ε1+
−
A2

)2

−
r− 2α1r

−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3 ε2
−
T2(

ε2+
−
A2

)2


−

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 − α6 − µ3 ε2
−
T2(

ε2+
−
A2

)2


2

2α1r
−
T2 + β1

−
N2 + γ1

−
D2 + δ

−
A2 +

µ1
−
N2
−
A2

ε1+
−
A2

+ θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 + α6 +
µ3 ε2

−
T2(

ε2+
−
A2

)2 − r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>

απ

2
(25)

which implies that the T − A compartment compartments are local asymptotic stable.

(b) Assume that Θ = ξ
−
L2

$+
−
I 2

− θ2

ω3+
−
I 2

. If

−
L2 >

(
$ +

−
I 2

)2

$ξ


ω4 +

−
I 2

θ3
−
I 2



 θ3ω4
−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

4
−
C2

−
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
−
C2

+

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
θ3ω4(

ω4 +
−
I 2

)2


+

θ2ω3(
ω3 +

−
I 2

)2


, (26)

and

−
C2 >

(
ω4 +

−
I 2

)2
(

2

√
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
+ Θ

−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

>

(
ω4 +

−
I 2

)2(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

, (27)

where

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tan−1



√√√√√√4



 $ξ

−
L2(

$+
−
I 2

)2 − θ2 ω3(
ω3+

−
I 2

)2

 θ3
−
I 2

ω4+
−
I 2

−

(
Θ
−
I 2+β3

−
T2+γ3

−
D2

)
θ3 ω4(

ω4+
−
I 2

)2

−C2 + α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)−
 θ3 ω4

−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

Θ
−
I 2 + β3

−
T2 + γ3

−
D2 + α5 − θ3 ω4

−
C2(

ω4+
−
I 2

)2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>

απ

2
, (28)

then the compartments of C− I show locally asymptotically stability.

Proof of Theorem 3.

(a) To prove the local stability of the T − A compartment, we have to consider the
following equation:

λ2 − (b11 + b77)λ + b11b77 − b17b71 = 0. (29)

From b11 + b77 > 0, we have

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 −

µ1
−
N2
−
A2

ε1 +
−
A2

− θ1
−
C2

2

(
ω1
−
T2 +

−
C2

)2 − α6 −
µ3ε2

−
T2(

ε2 +
−
A2

)2 > 0,

which implies that

−
T2 <

r− α6 − β1
−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2

2α1r + µ3ε2(
ε2+

−
A2

)2

, (30)
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and r > α6 + β1
−
N2 + γ1

−
D2 + δ

−
A2 +

µ1
−
N2
−
A2

ε1+
−
A2

+ θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 .

In addition, the inequality 4(b11b77 − b17b71) > (b11 + b77)
2 holds if

4

−
r− 2α1r

−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 −

µ1
−
N2
−
A2

ε1 +
−
A2

− θ1
−
C2

2

(
ω1
−
T2 +

−
C2

)2


α6 +

µ3ε2
−
T2(

ε2 +
−
A2

)2

+
µ3
−
A2

ε2 +
−
A2

δ
−
T2 +

µ1ε1
−
N2
−
T2(

ε1 +
−
A2

)2




>

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 −

µ1
−
N2
−
A2

ε1 +
−
A2

− θ1
−
C2

2

(
ω1
−
T2 +

−
C2

)2 − α6 −
µ3ε2

−
T2(

ε2 +
−
A2

)2


2

, (31)

which exists for the conditions

−
N2 >

(
ε1 +

−
A2

)2

µ1ε1



r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2

(
ω1
−
T2+

−
C2

)2


α6 +

µ3ε2
−
T2(

ε2+
−
A2

)2

(ε2 +
−
A2

)

µ3
−
A2
−
T2

− δ


, (32)

where

δ <

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3ε2
−
T2(

ε2+
−
A2

)2

(ε2 +
−
A2

)

µ3
−
A2
−
T2

, (33)

and

−
N2 >

(
ε1 +

−
A2

)2

µ1 ε1



(
ε2 +

−
A2

)
r− 2α1r

−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 − α6 − µ3 ε2
−
T2(

ε2+
−
A2

)2


2

+

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3 ε2
−
T2(

ε2+
−
A2

)2




4µ3
−
A2
−
T2

− δ


. (34)

Considering both (32) and (34), we obtain the interval of (34). Thus, we have

tan−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√√√√√√4

 µ3
−
A2

ε2+
−
A2

δ
−
T2 +

µ1 ε1
−
N2
−
T2(

ε1+
−
A2

)2

−
r− 2α1r

−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2


α6 +

µ3 ε2
−
T2(

ε2+
−
A2

)2


−

r− 2α1r
−
T2 − β1

−
N2 − γ1

−
D2 − δ

−
A2 − µ1

−
N2
−
A2

ε1+
−
A2

− θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 − α6 − µ3 ε2
−
T2(

ε2+
−
A2

)2


2

2α1r
−
T2 + β1

−
N2 + γ1

−
D2 + δ

−
A2 +

µ1
−
N2
−
A2

ε1+
−
A2

+ θ1
−
C2

2(
ω1
−
T2+

−
C2

)2 + α6 +
µ3 ε2

−
T2(

ε2+
−
A2

)2 − r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>

απ

2
,

which completes the proof of statement (a).

(b) To prove the local asymptotic stability of the compartments C− I, we have to analyze
the following equation:

λ2 − (b33 + b66)λ + b33b66 − b36b63 = 0. (35)
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The condition b33 + b66 > 0, shows that it holds if

−
C2 >

(
ω4 +

−
I 2

)2(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

, (36)

where

Θ =
ξ
−
L2

$ +
−
I 2

− θ2

ω3 +
−
I 2

for
−
L2 >

θ2

(
$ +

−
I 2

)
ξ

(
ω3 +

−
I 2

) . (37)

Moreover, from 4(b33b66 − b36b63) > (b33 + b66)
2, we have

4



 $ξ

−
L2(

$+
−
I 2

)2 − θ2ω3(
ω3+

−
I 2

)2

 θ3
−
I 2

ω4+
−
I 2

−

(
Θ
−
I 2+β3

−
T2+γ3

−
D2

)
θ3ω4(

ω4+
−
I 2

)2

−C2 + α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
>

 θ3ω4
−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

,

which holds for the conditions

−
L2 >

(
$ +

−
I 2

)2

$ξ



ω4 +
−
I 2

θ3
−
I 2



 θ3ω4
−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

4
−
C2

−
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
−
C2

+

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
θ3ω4(

ω4 +
−
I 2

)2


+

θ2ω3(
ω3 +

−
I 2

)2


, (38)

and

−
C2 >

(
ω4 +

−
I 2

)2
(

2

√
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
+ Θ

−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

. (39)

In considering both (37) and (38), we get

−
L2 >

(
$ +

−
I 2

)2

$ξ



ω4 +
−
I 2

θ3
−
I 2



 θ3ω4
−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

4
−
C2

−
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
−
C2

+

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
θ3ω4(

ω4 +
−
I 2

)2


+

θ2ω3(
ω3 +

−
I 2

)2


>

θ2

(
$ +

−
I 2

)
ξ

(
ω3 +

−
I 2

) , (40)

and

−
C2 >

(
ω4 +

−
I 2

)2
(

2

√
α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)
+ Θ

−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

>

(
ω4 +

−
I 2

)2(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2 + α5

)
θ3ω4

, (41)

where
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tan−1



√√√√√√√√4



 $ξ

−
L2(

$+
−
I 2

)2 −
θ2ω3(

ω3+
−
I 2

)2

 θ3
−
I 2

ω4+
−
I 2

−

(
Θ
−
I 2+β3

−
T2+γ3

−
D2

)
θ3ω4(

ω4+
−
I 2

)2


−
C2 + α5

(
Θ
−
I 2 + β3

−
T2 + γ3

−
D2

)−
 θ3ω4

−
C2(

ω4+
−
I 2

)2 −Θ
−
I 2 − β3

−
T2 − γ3

−
D2 − α5


2

Θ
−
I 2 + β3

−
T2 + γ3

−
D2 + α5 −

θ3ω4
−
C2(

ω4+
−
I 2

)2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

>
απ

2
. (42)

�

4. Global Stability of the Equilibrium Points

To demonstrate the global stability of the extinction of the tumor population and
co-existing cases, the discretization technique is used in this section. We like to think of the
system’s global stability (1) as a system of difference equations because various decisions
and actions were taken within discrete time intervals. Let κ =

[ t
x
]
x. The system (1) is

discretized as follows:

Dα(T(t)) = r(1− α1T(κ))T(κ)− β1N(κ)T(κ)− γ1D(κ)T(κ)− δA(κ)T(κ)− µ1 A(κ)N(κ)T(κ)
ε1+A(κ)

− θ1C(κ)T(κ)
ω1T(κ)+C(κ)

Dα(N(t)) = Λ1C(κ) + ρ(1− α2N(κ))N(κ) +
τ I(κ)N(κ)
ω2+I(κ) −

µ2 A(κ)N(κ)T(κ)
ε1+A(κ)

− β2N(κ)T(κ)− γ2D(κ)N(κ)

Dα(C(t)) = (σ1L(κ) + σ2N(κ))T(κ) + θ2C(κ)I(κ)
ω3+I(κ) −

ξL(κ)C(κ)I(κ)
$+I(κ) − β3T(κ)C(κ)− γ3D(κ)C(κ)

Dα(L(t)) = Λ2 − α3L(κ)− γ4D(κ)L(κ)
Dα(D(t)) = Λ3 − α4D(κ)

Dα(I(t)) = Λ4L(κ)− α5 I(κ) + θ3C(κ)I(κ)
ω4+I(κ)

Dα(A(t)) = Λ5 − α6 A(κ) +
µ3 A(κ)T(κ)

ε2+A(κ)
.

Starting with t ∈ [0, h) and t
h ∈ [0, 1), we get

Dα(T(t)) = r(1− α1T0)T0 − β1N0T0 − γ1D0T0 − δA0T0 − µ1 A0 N0T0
ε1+A0

− θ1C0T0
ω1T0+C0

Dα(N(t)) = Λ1C0 + ρ(1− α2N0)N0 +
τ I0 N0
ω2+I0

− µ2 A0 N0T0
ε1+A0

− β2N0T0 − γ2D0N0

Dα(C(t)) = (σ1L0 + σ2N0)T0 +
θ2C0 I0
ω3+I0

− ξL0C0 I0
$+I0

− β3T0C0 − γ3D0C0

Dα(L(t)) = Λ2 − α3L0 − γ4D0L0
Dα(D(t)) = Λ3 − α4D0

Dα(I(t)) = Λ4L0 − α5 I0 +
θ3C0 I0
ω4+I0

Dα(A(t)) = Λ5 − α6 A0 +
µ3 A0T0
ε2+A0

.

The solution of (44) reduces to

T1(t) = T0 +
tα

Γ(α+1)

(
r(1− α1T0)T0 − β1N0T0 − γ1D0T0 − δA0T0 − µ1 A0 N0T0

ε1+A0
− θ1C0T0

ω1T0+C0

)
N1(t) = N0 +

tα

Γ(α+1)

(
Λ1C0 + ρ(1− α2N0)N0 +

τ I0 N0
ω2+I0

− µ2 A0 N0T0
ε1+A0

− β2N0T0 − γ2D0N0

)
C1(t) = C0 +

tα

Γ(α+1)

(
(σ1L0 + σ2N0)T0 +

θ2C0 I0
ω3+I0

− ξL0C0 I0
$+I0

− β3T0C0 − γ3D0C0

)
L1(t) = L0 +

tα

Γ(α+1) (Λ2 − α3L0 − γ4D0L0)

D1(t) = D0 +
tα

Γ(α+1) (Λ3 − α4D0)

I1(t) = I0 +
tα

Γ(α+1)

(
Λ4L0 − α5 I0 +

θ3C0 I0
ω4+I0

)
A1(t) = A0 +

tα

Γ(α+1)

(
Λ5 − α6 A0 +

µ3 A0T0
ε2+A0

)
.

For t ∈ [h, 2h), t
h ∈ [1, 2) we obtain
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T2(t) = T1 +
(t−h)α

Γ(α+1)

(
r(1− α1T1)T1 − β1N1T1 − γ1D1T1 − δA1T1 − µ1 A1 N1T1

ε1+A1
− θ1C1T1

ω1T1+C1

)
N2(t) = N1 +

(t−h)α

Γ(α+1)

(
Λ1C1 + ρ(1− α2N1)N1 +

τ I1 N1
ω2+I1

− µ2 A1 N1T1
ε1+A1

− β2N1T1 − γ2D1N1

)
C2(t) = C1 +

(t−h)α

Γ(α+1)

(
(σ1L1 + σ2N1)T1 +

θ2C1 I1
ω3+I1

− ξL1C1 I1
$+I1

− β3T1C1 − γ3D1C1

)
L2(t) = L1 +

(t−h)α

Γ(α+1) (Λ2 − α3L1 − γ4D1L1)

D2(t) = D1 +
(t−h)α

Γ(α+1) (Λ3 − α4D1)

I2(t) = I1 +
(t−h)α

Γ(α+1)

(
Λ4L1 − α5 I1 +

θ3C1 I1
ω4+I1

)
A2(t) = A1 +

(t−h)α

Γ(α+1)

(
Λ5 − α6 A1 +

µ3 A1T1
ε2+A1

)
.

In repeating the discretization process n times, we get

Tn+1(t) = Tn +
(t−nh)α

Γ(α+1)

(
r(1− α1Tn)Tn − β1NnTn − γ1DnTn − δAnTn − µ1 An NnTn

ε1+An
− θ1CnTn

ω1Tn+Cn

)
Nn+1(t) = Nn +

(t−nh)α

Γ(α+1)

(
Λ1Cn + ρ(1− α2Nn)Nn +

τ In Nn
ω2+In

− µ2 An NnTn
ε1+An

− β2NnTn − γ2DnNn

)
Cn+1(t) = Cn +

(t−nh)α

Γ(α+1)

(
(σ1Ln + σ2Nn)Tn +

θ2Cn In
ω3+In

− ξLnCn In
$+In

− β3TnCn − γ3DnCn

)
Ln+1(t) = Ln +

(t−nh)α

Γ(α+1) (Λ2 − α3Ln − γ4DnLn)

Dn+1(t) = Dn +
(t−nh)α

Γ(α+1) (Λ3 − α4Dn)

In+1(t) = In +
(t−nh)α

Γ(α+1)

(
Λ4Ln − α5 In +

θ3Cn In
ω4+In

)
An+1(t) = An +

(t−nh)α

Γ(α+1)

(
Λ5 − α6 An +

µ3 AnTn
ε2+An

)
.

Finally, for t ∈ [nh, (n + 1)h), where t→ (n + 1)h and α→ 1 , we obtain

Tn+1 = Tn +
hα

Γ(α+1)

(
r(1− α1Tn)Tn − β1NnTn − γ1DnTn − δAnTn − µ1 An NnTn

ε1+An
− θ1CnTn

ω1Tn+Cn

)
Nn+1 = Nn +

hα

Γ(α+1)

(
Λ1Cn + ρ(1− α2Nn)Nn +

τ In Nn
ω2+In

− µ2 An NnTn
ε1+An

− β2NnTn − γ2DnNn

)
Cn+1 = Cn +

hα

Γ(α+1)

(
(σ1Ln + σ2Nn)Tn +

θ2Cn In
ω3+In

− ξLnCn In
$+In

− β3TnCn − γ3DnCn

)
Ln+1 = Ln +

hα

Γ(α+1) (Λ2 − α3Ln − γ4DnLn)

Dn+1 = Dn +
hα

Γ(α+1) (Λ3 − α4Dn)

In+1 = In +
hα

Γ(α+1)

(
Λ4Ln − α5 In +

θ3Cn In
ω4+In

)
An+1 = An +

hα

Γ(α+1)

(
Λ5 − α6 An +

µ3 AnTn
ε2+An

)
.

(43)

Lemma 1. Assume that {X(n)}∞
n=0 = {(T(n), N(n), C(n), L(n), D(n), I(n))}∞

n=0 be a positive
solution to the system (43). Then the following conditions hold.

(i) If 

r(1− α1Tn)Tn − β1NnTn − γ1DnTn − δAnTn − µ1 An NnTn
ε1+A1

− θ1CnTn
ω1Tn+Cn

> 0

Λ1Cn + ρ(1− α2Nn)Nn +
τ In Nn
ω2+In

− µ2 An NnTn
ε1+An

− β2NnTn − γ2DnNn > 0

(σ1Ln + σ2Nn)Tn +
θ2Cn In
ω3+In

− ξLnCn In
$+In

− β3TnCn − γ3DnCn > 0
Λ2 − α3Ln − γ4DnLn > 0
Λ3 − α4Dn > 0
Λ4Ln − α5 In +

θ3Cn In
ω4+In

> 0

Λ5 − α6 An +
µ3 AnTn
ε2+An

> 0

(44)

Then the positive solution {X(n)}∞
n=0 of system (43) is monotonic increasing.
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(ii) If 

r(1− α1Tn)Tn − β1NnTn − γ1DnTn − δAnTn − µ1 An NnTn
ε1+A1

− θ1CnTn
ω1Tn+Cn

< 0

Λ1Cn + ρ(1− α2Nn)Nn +
τ In Nn
ω2+In

− µ2 An NnTn
ε1+An

− β2NnTn − γ2DnNn < 0

(σ1Ln + σ2Nn)Tn +
θ2Cn In
ω3+In

− ξLnCn In
$+In

− β3TnCn − γ3DnCn < 0
Λ2 − α3Ln − γ4DnLn < 0
Λ3 − α4Dn < 0
Λ4Ln − α5 In +

θ3Cn In
ω4+In

< 0

Λ5 − α6 An +
µ3 AnTn
ε2+An

< 0

(45)

Then the positive solution {X(n)}∞
n=0 of system (43) is monotonic decreasing.

Proof of Lemma 1. The following computation is obtained in analyzing the monotonic
behavior of the solution in system (48), such as



Tn+1 − Tn = hα

Γ(α+1)

(
r(1− α1Tn)Tn − β1NnTn − γ1DnTn − δAnTn − µ1 An NnTn

ε1+A1
− θ1CnTn

ω1Tn+Cn

)
Nn+1 − Nn = hα

Γ(α+1)

(
Λ1Cn + ρ(1− α2Nn)Nn +

τ In Nn
ω2+In

− µ2 An NnTn
ε1+An

− β2NnTn − γ2DnNn

)
Cn+1 − Cn = hα

Γ(α+1)

(
(σ1Ln + σ2Nn)Tn +

θ2Cn In
ω3+In

− ξLnCn In
$+In

− β3TnCn − γ3DnCn

)
Ln+1 − Ln = hα

Γ(α+1) (Λ2 − α3Ln − γ4DnLn)

Dn+1 − Dn = hα

Γ(α+1) (Λ3 − α4Dn)

In+1 − In = hα

Γ(α+1)

(
Λ4Ln − α5 In +

θ3Cn In
ω4+In

)
An+1 − An = hα

Γ(α+1)

(
Λ5 − α6 An +

µ3 AnTn
ε2+An

)
.

(46)

Thus, it can be seen that for the conditions in (i), system (43) shows

Tn+1 > Tn, Nn+1 > Nn, Cn+1 > Cn, Ln+1 > Ln, Dn+1 > Dn, In+1 > Inand An+1 > An, (47)

and, based on the conditions in (ii), we have

Tn+1 < Tn, Nn+1 < Nn, Cn+1 < Cn, Ln+1 < Ln, Dn+1 < Dn, In+1 < Inand An+1 < An, (48)

�

Theorem 4. Let χ1 be the disease-free equilibrium point of system (43). Assume that the local
stability conditions and Lemma 1/(ii) hold. If

h1 <

 2TnΓ(α + 1)(
β1NnTn + γ1DnTn + δAnTn +

µ1 An NnTn
ε1+A1

+ θ1CnTn
ω1Tn+Cn

− r(1− α1Tn)Tn

)
 1

α

,

h2 <

 2
(

Nn −
−
N1

)
Γ(α + 1)(

µ2 An NnTn
ε1+An

+ β2NnTn + γ2DnNn −Λ1Cn − ρ(1− α2Nn)Nn − τ In Nn
ω2+In

)


1
α

,

h3 <

 2
(

Cn −
−
C1

)
Γ(α + 1)(

ξLnCn In
$+In

+ β3TnCn + γ3DnCn − (σ1Ln + σ2Nn)Tn − θ2Cn In
ω3+In

)


1
α

, h4 <

 2
(

Ln −
−
L1

)
Γ(α + 1)

(α3Ln + γ4DnLn −Λ2)


1
α

,
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h5 <

2
(

Dn −
−
D1

)
Γ(α + 1)

(α4Dn −Λ3)


1
α

, h6 <

 2
(

Ln −
−
L1

)
Γ(α + 1)(

α5 In −Λ4Ln − θ3Cn In
ω4+In

)


1
α

and h7 <

 2
(

An −
−
A1

)
Γ(α + 1)(

α6 An −Λ5 − µ3 AnTn
ε2+An

)


1
α

,

where Nn >
−
N1,Cn >

−
C1, Ln >

−
L1, Dn >

−
D1, Ln >

−
L1 and An >

−
A1, then the equilibrium

point χ1 is global asymptotically stable.

Proof of Theorem 4. Let us consider a Lyapunov function L(n) defined by

L(n) = (X(n)− χ1)
2, n = 0, 1, 2, . . . (49)

where X(n) = (T(n), N(n), C(n), L(n), D(n), I(n)) and χ1 =

(
0,
−
N1,

−
C1,
−
L1,
−
D1,

−
I 1,
−
A1

)
.

The change along the solutions of the system is

∆L(n) = L(n + 1)− L(n)
= (X(n + 1)− χ1)

2 − (X(n)− χ1)
2

= (X(n + 1)− X(n))(X(n + 1) + X(n)− 2χ1).
(50)

From the first equation of system (43), we have

∆L1(n) = (T(n + 1)− T(n))(T(n + 1) + T(n)) (51)

Using Lemma 1/(ii), we can see that T(n + 1) < T(n). Thus, we need to show only that

T(n + 1) + T(n) > 0, (52)

which holds for

h1 <

 2TnΓ(α + 1)(
β1NnTn + γ1DnTn + δAnTn +

µ1 An NnTn
ε1+A1

+ θ1CnTn
ω1Tn+Cn

− r(1− α1Tn)Tn

)
 1

α

. (53)

Thus, we obtain ∆L1(n) < 0. Similar to the previous computations, we can analyze

∆L2(n) = (N(n + 1)− N(n))
(

N(n + 1) + N(n)− 2
−

N1

)
. (54)

From Lemma 1/(ii), we can show that ∆Li(n) < 0 for i = 2, . . . , 7, if

h2 <

 2
(

Nn −
−
N1

)
Γ(α + 1)(

µ2 An NnTn
ε1+An

+ β2NnTn + γ2DnNn −Λ1Cn − ρ(1− α2Nn)Nn − τ In Nn
ω2+In

)


1
α

for Nn >
−
N1, (55)

h3 <

 2
(

Cn −
−
C1

)
Γ(α + 1)(

ξLnCn In
$+In

+ β3TnCn + γ3DnCn − (σ1Ln + σ2Nn)Tn − θ2Cn In
ω3+In

)


1
α

for Cn >
−
C1, (56)
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h4 <

 2
(

Ln −
−
L1

)
Γ(α + 1)

(α3Ln + γ4DnLn −Λ2)


1
α

for Ln >
−
L1, (57)

h5 <

2
(

Dn −
−
D1

)
Γ(α + 1)

(α4Dn −Λ3)


1
α

for Dn >
−
D1, (58)

h6 <

 2
(

Ln −
−
L1

)
Γ(α + 1)(

α5 In −Λ4Ln − θ3Cn In
ω4+In

)


1
α

for Ln >
−
L1, (59)

and

h7 <

 2
(

An −
−
A1

)
Γ(α + 1)(

α6 An −Λ5 − µ3 AnTn
ε2+An

)


1
α

for An >
−
A1. (60)

�

Theorem 5. Let χ2 be the co-existing (positive) equilibrium point of system (43). Moreover, asuume
that the local stability conditions and Lemma 1/(ii) hold. If

h1 <

 2
(

Tn −
−
T2

)
Γ(α + 1)(

β1NnTn + γ1DnTn + δAnTn +
µ1 An NnTn

ε1+A1
+ θ1CnTn

ω1Tn+Cn
− r(1− α1Tn)Tn

)


1
α

,

h2 <

 2
(

Nn −
−
N2

)
Γ(α + 1)(

µ2 An NnTn
ε1+An

+ β2NnTn + γ2DnNn −Λ1Cn − ρ(1− α2Nn)Nn − τ In Nn
ω2+In

)


1
α

,

h3 <

 2
(

Cn −
−
C2

)
Γ(α + 1)(

ξLnCn In
$+In

+ β3TnCn + γ3DnCn − (σ1Ln + σ2Nn)Tn − θ2Cn In
ω3+In

)


1
α

, h4 <

 2
(

Ln −
−
L2

)
Γ(α + 1)

(α3Ln + γ4DnLn −Λ2)


1
α

,

h5 <

 2
(

Dn−
−
D2

)
Γ(α+1)

(α4Dn−Λ3)


1
α

, h6 <

 2
(

Ln−
−
L2

)
Γ(α+1)(

α5 In−Λ4Ln−
θ3Cn In
ω4+In

)


1
α

, and h7 <

 2
(

An−
−
A2

)
Γ(α+1)(

α6 An−Λ5−
µ3 AnTn
ε2+An

)


1
α

,
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where Tn >
−
T2, Nn >

−
N2, Cn >

−
C2, Ln >

−
L2, Dn >

−
D2, Ln >

−
L2 and An >

−
A2, then χ2 is

globally asymptotically stable.

Proof of Theorem 5. It is similar to the proof of Theorem 4. Hence, it is skipped. �

5. Simulation Results

We simulate the IVP (1) and (2) using the data obtained in Table 2. The developed
model consists of tumor cells, components of the host’s immune response, and therapies
such as irinotecan and Cetuximab, a monoclonal antibody concentration that has been
FDA-approved for the treatment of colorectal cancer and is designed to bind to particular
proteins. The literature for the study, which includes both in vivo and in vitro research on
colorectal cancer, is thoroughly examined. It is seen that Cetuximab was applied with and
without irinotecan to therapies to raise the survival rate and the condition of life [34].

Table 2. Parametric values.

Notation Value References

r 2.31× 10−1 [35]
α1 2.146× 10−10 [36]
β1 5.156× 10−14 [2]
γ1 0− 8.1× 10−1 [37]
δ 0− 3.125× 10−2 [38]
θ1 [1.3–2.1] [2]
ω1

[
4× 10−3 − 3× 10−2] [2]

µ1 6.5× 10−10 [39]
ε1 1.25× 10−6 [39]
Λ1 0.3 [2]
ρ 1× 10−2 [2]
α2 1.146× 10−10 theoretical finding
τ 5.13× 10−2 [2]

ω2 2.5036× 105 [2]
µ2 6.5× 10−10 [39]
ε1 1.25× 10−6 [39]
β2 5.156× 10−14 [2]
γ2 9.048× 10−1 [40]
σ1 5.156× 10−12 [2]
σ2 1× 10−15 [2]
θ2 2.4036 [2]
ω3 2.5036× 103 [2]
ξ 3.1718× 10−14 [2]
$ 2.5036× 103 [2]
β3 5.156× 10−17 [2]
γ3 4.524× 10−1 [40]
Λ2 1.89× 105 [2]
α3 6.3× 10−3 [2]
γ4 5.7× 10−1 [40]
Λ3 2.3869 [2]
α4 4.077× 10−1 [40]
Λ4 1.788× 10−7 [2]
α5 11.7427 [2]
θ3 7.88× 10−2 [2]
ω4 2.5036× 103 [2]
Λ5 2.7859× 106 [2]
α6 1.386× 10−1 [2]
µ3 8.9× 10−14 [41]
ε2 4.45× 10−5 [41]
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We use the constructed model to explore the expected responses of the therapy for
specific tumor cell populations. According to body mass, the person is a male who weighs
77 kg and has a chronic illness that has to be supported with additional nutrients to maintain
a healthy immune system.

According to Table 2, the parameter values were obtained from in vivo and in vitro
studies.

As a result, we first simulated the case of a disease-free equilibrium point, which can be
assumed in the early detection of tumor density. In (I-a), we consider the treatment without
irinotecan, and in (I-b), we add 30 mg/m2 once every 21 days. To see the simulation results
more precisely, we multiplied the initial conditions by 10−8.

(I-a)

T(0) = 1.1× 10−4, N(0) = 3.333, C(0) = 2.271× 10−4, L(0) = 3× 101, D(0) = 0,

I(0) = 4.892× 10−7,A(0) = 2.5× 10−9,

where we avoid the chemotherapy effect,
(I-b)

T(0) = 1.1× 10−4, N(0) = 3.333, C(0) = 2.271× 10−4, L(0) = 3× 101,

D(0) = 3× 10−10, I(0) = 4.892× 10−7,A(0) = 2.5× 10−9,

where the effect of irinotecan is included.

For this scenario, the clinical data showed extinction of the tumor density for cases
(I-a) and (I-b).

As analyzing the stability of a coexisting equilibrium point implies that the tumor
has already attained a significant density, we make the following assumption with the
following initial condition:

(II-a)

T(0) = 2.67× 10−1, N(0) = 3.333× 108, C(0) = 5.2671× 10−3, L(0) = 3× 101,

D(0) = 0, I(0) = 4.892× 10−7,A(0) = 4× 10−9,

where we focus on the immunotherapy and mAb,
(II-b)

T(0) = 2.67× 10−1, N(0) = 3.333, C(0) = 5.2671× 10−3, L(0) = 3× 101,

D(0) = 3× 10−10, I(0) = 4.892× 10−7,A(0) = 4× 10−9,

where all treatment supplements (including irinotecan) are involved.
(II-c)

T(0) = 2.67× 10−1, N(0) = 3.333, C(0) = 5.2671× 10−3, L(0) = 3× 101,

D(0) = 6× 10−10, I(0) = 4.892× 10−7, A(0) = 4× 10−9,

where all treatment supplements (including irinotecan) are involved.

In this scenario, the clinical data illustrate an increase in the tumor density for (II-a),
meaning that IL-2 treatment and the concentration of Cetuximab were insufficient to
control the growth of the tumor cell population. Case (II-b) showed that growth decreases
if all treatment supplements are involved in the therapy. By increasing the dosage of the
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chemotherapeutic drug to 60 mg/m2 once every 21 days, the tumor cell population is
rendered extinct.

Figure 1 illustrates the graph of system (1) for each compartment with the initial
conditions given in (I-a). The tumor cell population is low and represents an early detected
case of colorectal cancer. Considering now the in vivo and in vitro studies of [5,34], it
is emphasized that the IL− 2 concentration and the mAb drug of Cetuximab would be
sufficient for the treatment to shrink the tumor density.

Mathematics 2023, 11, 2374 19 of 28 
 

 

As analyzing the stability of a coexisting equilibrium point implies that the tumor 

has already attained a significant density, we make the following assumption with the 

following initial condition: 

(II-a) 

𝑇(0) = 2.67 × 10−1, 𝑁(0) = 3.333 × 108, 𝐶(0) = 5.2671 × 10−3, 𝐿(0) = 3 × 101,   

𝐷(0) = 0, 𝐼(0) = 4.892 × 10−7, 𝐴(0) = 4 × 10−9,   

where we focus on the immunotherapy and mAb,  

(II-b) 

 𝑇(0) = 2.67 × 10−1, 𝑁(0) = 3.333, 𝐶(0) = 5.2671 × 10−3, 𝐿(0) = 3 × 101,   

𝐷(0) = 3 × 10−10, 𝐼(0) = 4.892 × 10−7, 𝐴(0) = 4 × 10−9,   

where all treatment supplements (including irinotecan) are involved.  

(II-c) 

 𝑇(0) = 2.67 × 10−1, 𝑁(0) = 3.333, 𝐶(0) = 5.2671 × 10−3, 𝐿(0) = 3 × 101,  

𝐷(0) = 6 × 10−10, 𝐼(0) = 4.892 × 10−7, 𝐴(0) = 4 × 10−9,   

where all treatment supplements (including irinotecan) are involved. 

In this scenario, the clinical data illustrate an increase in the tumor density for (II-a), 

meaning that IL-2 treatment and the concentration of Cetuximab were insufficient to con-

trol the growth of the tumor cell population. Case (II-b) showed that growth decreases if 

all treatment supplements are involved in the therapy. By increasing the dosage of the 

chemotherapeutic drug to 60 mg/m2 once every 21 days, the tumor cell population is ren-

dered extinct. 

Figure 1 illustrates the graph of system (1) for each compartment with the initial con-

ditions given in (I-a). The tumor cell population is low and represents an early detected 

case of colorectal cancer. Considering now the in vivo and in vitro studies of [5,34], it is 

emphasized that the 𝐼𝐿 − 2 concentration and the mAb drug of Cetuximab would be suf-

ficient for the treatment to shrink the tumor density.  

For system (1) and the initial conditions in (I-a), it is seen that the tumor density is 

extinct. There is no need to provide irinotecan with this appropriate therapy because it 

already reaches every region of the body through the bloodstream; this indicates that 

𝐷(0) = 0.  

  
(a) (b) 

Mathematics 2023, 11, 2374 20 of 28 
 

 

  
(c) (d) 

  
(e) (f) 

 

 

(g)  

Figure 1. (a) Dynamics of the tumor density for 𝑇(0) = 1.1 × 10−4, (b) Dynamics of N.K. for 𝑁(0) =

3.333,  (c) Dynamics of CD8+ T-cell for 𝐶(0) = 2.271 × 10−4,  (d) Dynamics of lymphocytes for 

𝐿(0) = 3 × 101,  (e) Dynamics of irinotecan for 𝐷(0) = 0 , (f) Dynamics of IL-2 for 𝐼(0) =

4.892 × 10−7, (g) Dynamics of Cetuximab for 𝐴(0) = 2.5 × 10−9. 

Figure 2 shows the graph of system (1) with the initial conditions of (I-b). In this ex-
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support the body with additional supplements that keep the immune system strong in-

stead of increasing the variation of the drugs. 

Figure 1. (a) Dynamics of the tumor density for T(0) = 1.1 × 10−4, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8+T-cell for C(0) = 2.271× 10−4, (d) Dynamics of lymphocytes for
L(0) = 3× 101, (e) Dynamics of irinotecan for D(0) = 0, (f) Dynamics of IL-2 for I(0) = 4.892× 10−7,
(g) Dynamics of Cetuximab for A(0) = 2.5× 10−9.

For system (1) and the initial conditions in (I-a), it is seen that the tumor density is
extinct. There is no need to provide irinotecan with this appropriate therapy because
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it already reaches every region of the body through the bloodstream; this indicates that
D(0) = 0.

Figure 2 shows the graph of system (1) with the initial conditions of (I-b). In this exam-
ple, irinotecan is included in the treatment, and a similar result to (I-a) is obtained. Figure 2
is a vital graph emphasizing that not all mixed therapies should include chemotherapy.
In the case of both (I-a) and (I-b), the tumor density decreases, while in (I-b), one should
notice that the chemotherapeutic drug also destroys normal tissues and affects the immune
system. Therefore, considering the whole dynamic of the system, it is notable to support
the body with additional supplements that keep the immune system strong instead of
increasing the variation of the drugs.
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Figure 2. (a) Dynamics of the tumor density for T(0) = 1.1 × 10−4, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8+T-cell for C(0) = 2.271× 10−4, (d) Dynamics of lymphocytes
for L(0) = 3 × 101, (e) Dynamics of irinotecan for D(0) = 3 × 10−10, (f) Dynamics of IL-2 for
I(0) = 4.892× 10−7, (g) Dynamics of Cetuximab for A(0) = 2.5× 10−9.
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When the tumor has already achieved a certain density, as in Figure 3, only the IL-2
concentration can assist the immune system, and the dosage of mAb is insufficient. The
tumor has a cell population of T(0) = 1.4× 107. While the tumor density expanded quickly,
we also noticed that the natural killers were interacting heavily.
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Figure 3. (a) Dynamics of the tumor density for T(0) = 2.67 × 10−1, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8+T-cell for C(0) = 5.2671× 10−3, (d) Dynamics of lymphocytes for
L(0) = 3× 101L, (e) Dynamics of irinotecan for D(0) = 0, (f) Dynamics of IL-2 for I(0) = 4.892× 10−7,
(g) Dynamics of Cetuximab for A(0) = 4× 10−9.

To observe the system’s dynamic response, we now add 30 mg of irinotecan under
the identical supposition as in Figure 3. Figure 4 represents the immune-chemotherapeutic
treatment with the monoclonal antibody cetuximab and a successful result of a decrease in
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the tumor compartment. Since the aim is to keep the immune system strong and to avoid
any destruction of the normal tissue, we believe, as is also mentioned in the references of
Table 2, that for this tumor density, the dosage is enough to reach the desired outcome.
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Figure 4. (a) Dynamics of tumor density for T(0) = 2.67 × 10−1, (b) Dynamics of N.K. for
N(0) = 3.333, (c) Dynamics of CD8+T-cell concentration for C(0) = 5.2671× 10−3, (d) Dynam-
ics of lymphocytes for L(0) = 3× 101, (e) Dynamics of irinotecan for D(0) = 3× 10−10, (f) Dynamics
of IL-2 for I(0) = 4.892× 10−7, (g) Dynamics of Cetuximab for A(0) = 4× 10−9.

In addition, we want to increase the dosage of the chemotherapeutic drug to D(0) = 0.06
to show the side effect on the human body.
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As expected, we see in Figure 5 that the normal cells are also affected by the drug,
which destroys the immune system. Thus, the patient can be attacked by any other chronic
or non-chronic disease, which would lead to unexpected results.
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ics of lymphocytes for L(0) = 3× 101, (e) Dynamics irinotecan for D(0) = 6× 10−10, (f) Dynamics of
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6. Conclusions

Fractional calculus is an extension of traditional calculus because derivatives and
integrals are defined for any real order. In some cases, fractional operators are superior to
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traditional derivatives and integrals for representing systems with high-order dynamics
and complex nonlinear processes.

To describe the dynamical behavior of colorectal cancer following immune chemother-
apy with mAb-Cetuximab, we proposed a system of fractional order differential equations.
The study’s goal is to investigate and present the efficacy of various immune system-
supporting supplements and the way that cancer tissues react to monoclonal antibody
therapy (mAb). The combined therapy focuses on eliminating the cancerous tissues and
boosting the immune system with supplements rather than putting the patient through
a painful and drawn-out treatment. Thus, in Section 2 we defined the system with seven
compartments: T(t), colorectal cancer cells; N(t), compartment of natural killer (N.K.);
C(t), the CD8+T-cell population; L(t), the lymphocytes population; D(t), the irinotecan
concentration; I(t), the IL-2 concentration; A(t), the mAb Cetuximab concentration.

The local stability of the disease-free and co-existing equilibrium points was theo-
retically demonstrated in Section 3. Section 4 showed the condition of global stability,
where discretization processes were applied to analyze the discrete treatment in an ex-
panded interval. We proved theoretically and numerically how important it is to apply both
immunotherapy and mAb treatment in order to prevent the negative effects of chemothera-
peutic medications based on the early diagnosis of the tumor and the significant density
of the cancer cells. Furthermore, it is emphasized that the need for irinotecan is essential
in further stages of tumor density. The amount of this prescription (irinotecan), how-
ever, has a damaging power to natural killers, which affects the human body’s immune
system—particularly when the person has a chronic illness and needs intense immune
system support. As a result, the timing should be carefully planned, taking into account
the ideal concentration required to reduce the tumor density.

In Section 5, we provided several early detection and tumor density stage scenarios to
demonstrate the findings. We observed that different treatment approaches are required
given the tumor density and the immune system’s supplementation requirements. As a
result, it is seen that alternative treatment strategies have to be applied in considering the
density of the tumor and the necessity of optimal dosage in the therapy.
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