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Abstract: Said-Ball curves and surfaces are extensively applied in the realm of geometric modeling.
Their appearance is only decided by the control points, which produces a great deal of inconvenience
for the shape design of sophisticated products. To overcome this defect, we construct a novel kind
of quartic generalized Said-Ball (QGS-Ball, for short) curves and surfaces, which contain multiple
shape parameters, and the global and local shape can be easily modified via shape parameters. The
specific research contents are as follows: Firstly, the QGS-Ball basis functions carrying multiple
shape parameters are defined, and the correlative properties are proved. Secondly, the QGS-Ball
curve is proposed according to the QGS-Ball basis functions, and the effect of shape parameters on
the curve is discussed. Thirdly, in view of the constructed QGS-Ball curve, we further propose the
combined quartic generalized Said-Ball (CQGS-Ball, for short) curves, and deduce the conditions
of first-order and second-order geometric continuity (namely, G1 and G2 continuity). Finally, the
QGS-Ball surface is defined by tensor product method, and the influence of shape parameters on the
surface is analyzed. The main contribution of this article is to construct the QGS-Ball curve model,
and deduce the G1 and G2 geometric joining conditions of QGS-Ball curves. Combined with some
modeling examples, it further illustrates that the QGS-Ball curve as a new geometric model provides
a powerful supplement for the geometric design of sophisticated form in computer-aided design
(CAD) and computer-aided manufacturing (CAM) systems.

Keywords: quartic generalized Said-Ball curve and surface; three shape parameters; combined
quartic generalized Said-Ball curves; G1 and G2 smooth joining

MSC: 65D07; 65D10; 65D17; 65D18; 68U05; 68U07

1. Introduction

Computer-aided geometric design (CAGD) was first raised by Riesenfeld and Barnhill
at an international conference in 1974, and had a significant impact on the traditional
manufacturing industry once it came out, furthering the development of product appear-
ance design technology [1]. Free-form curves and surfaces are the focus of CAGD, which
have mainly experienced several important development stages, such as Ferguson, Coons,
Bézier, B-spline, and NURBS curves and surfaces. Among them, Bézier curves have many
advantages, such as simple structure, intuitive graphics, and excellent geometric properties,
and have been widely used in CAGD. Similar to Bézier curves and surfaces, Ball curves
and surfaces have also received extensive attention and application in the shape design of
industrial products.

In 1974, the mathematician Ball constructed the rational cubic Ball curve [2–4]. Since
the traditional Ball curve is cubic, it cannot meet the construction requirements of complex
curves in industrial design and other realms. Therefore, Wang proposed a higher-order Ball
curve by expanding the order of the traditional Ball basis functions, called the Wang-Ball
curve [5]. Said constructed the Ball basis functions with arbitrary odd order, and obtained
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the Said-Ball curve, which has many excellent properties [6]. Hu further perfected and
proposed the Said-Ball curve with arbitrary order in 1996 [7]. Later, the Said-Ball curve and
its application were discussed in [8]. In order to further promote the application of Said-Ball
curves, Hu derived the mathematical expressions of the rational cubic and quartic Said-Ball
conic curves, which combined the rational low-order Bézier conic curves and the conversion
formula of the two types of basis functions [9]. On the basis of the characteristics of Wang-
Ball curves and Said-Ball curves, Wu proposed the Said-Bézier/Wang-Said generalized Ball
curves [10]. However, the order of generalized Ball curves and surfaces can be increased or
decreased, and their flexibility and shape adjustability are very limited. When the relevant
Ball basis functions are given, if the geometric appearance of curves and surfaces need
to be modified, we can only adjust their control points. Hence, researchers proposed the
generalized Ball curves and surfaces carrying the shape parameters.

The main feature of generalized Ball curves and surfaces with parameters is that its
shape can be slickly modified via shape parameters. At present, domestic and foreign
scholars have carried out abundant explorative work on the generalized Ball curves and
surfaces to meet the requirements of practical applications. In 2004, Wu defined the
dual basis of a class of generalized Ball curves, which contains a parameter k, and the
corresponding Markov identities, the transformation expressions of the bases, and control
points of different curves were also attained in view of the dual basis [11]. Wang proposed
the quartic Ball basis functions carrying a parameter λ, as well as constructed the quartic
Ball curve in view of the basis functions, and the curve can be modified via λ [12]. Two
types of curves were constructed in 2009; the first is the ninth-order Wang-Ball and Said-Ball
curves and a great deal of curves between them; the second is the ninth-order Said-Ball
and Bézier curves and a great deal of curves between them. They all only have one shape
parameter [13]. In view of the envelope and topological mapping theory, the characteristics
of the quartic Ball curve and the influence of shape parameter λ were studied, and the final
conclusion shows that the shape adjustability of the quartic Ball curve is outstanding [14]. In
addition, Xiong and Guo [15] proposed the n-degree Said-Ball curve containing a parameter,
which further expanded the Said-Ball curves. Meanwhile, Xiong and Guo proposed the
n-degree Wang-Ball curves with a parameter [16]. Cao studied the variational problem of
Ball surface with the minimum energy under control constraints, the hybrid Ball surface
was firstly proposed, and then the Ball surface with minimum energy was obtained by
modifying the unfixed control ball, where w is the shape parameter [17].

Generalized Ball curves and surfaces carrying a parameter have the merit of improv-
ing the shape adjustability, but the defect is that the shape modifiability is very limited,
which cannot meet the needs of people. In 2011, Liu proposed the quartic Q-Ball curve,
which contains two control parameters λ and µ, so the shape adjustability of the curve is
improved [18]. The quartic Wang-Ball curve and surface with α, β were proposed, and
the main characteristic different from the quartic Ball curve and surface is that the curve
and surface can be flexibly adjusted via the parameters α and β [19]. In 2016, Wang and
Chen constructed the shape-adjustable quintic Said-Ball curves and surfaces containing
two parameters, as well as the G1 (i.e., two adjacent curves have the same unit tangent
at the common connection point) and G2 (i.e., two adjacent curves have a common cur-
vature vector at the connection point under the condition of G1 continuity); the joining
conditions of two neighboring quintic Said-Ball curves were further given in [20]. The
quartic generalized Ball surface carrying two parameters has the outstanding features of
the Ball surface, and has the fine property of flexibly controlling the Ball surface shape [21].
Hu and Du constructed a Said-Ball curve with two parameters, discussed its geometric
properties, and studied the relevant algorithms [22]. At this time, although the adaptability
and shape adjustability of the generalized Ball curves and surfaces carrying two parameters
have been widely elevated, the shape adjustability is still restricted, which undoubtedly
limits its application in geometric modeling. Therefore, the generalized cubic Ball basis
functions and the corresponding generalized cubic developable Ball surface containing
multiple shape parameters were proposed, and a boosting marine predator algorithm can
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optimize the developable surface [23]. Unlike the traditional Said-Ball curve, the proposed
2m + 2-order Said-Ball curve carrying multiple shape parameters can modify the curve
by the parameters [24]. Later, Hu et al. constructed the cubic generalized Ball curves via
introducing multiple parameters, and the curves can also be optimized by a hybrid manta
ray foraging optimization algorithm [25].

In this work, we reconstruct the QGS-Ball basis functions containing three shape
parameters, and propose the shape-modifying QGS-Ball curve and surface, whose global
and local shape can be modified by three shape parameters. In addition, we further define
the CQGS-Ball curves, then the G1 and G2 geometric joining problem of QGS-Ball curves is
discussed. The main highlights of this work are below:

• The QGS-Ball basis functions are proposed by introducing three shape parameters.
• The QGS-Ball curves and surfaces are proposed, and the impact of shape parameters

on the curves and surfaces is discussed.
• The CQGS-Ball curves are defined based on the novel QGS-Ball curves, and the

continuity conditions of G1 and G2 smooth joining of QGS-Bal curves are derived.

The rest of the paper is organized as follows: Section 2 presents the expression and
properties of the QGS-Ball basis functions, and the related properties are proved in detail.
Section 3 displays the definition and properties of QGS-Ball curves, and analyzes the impact
of shape parameters on the curve combining theory and examples. The CQGS-Ball curves
are defined, and the G1 and G2 geometric joining conditions of QGS-Ball curves are derived
in Section 4. Section 5 presents the definition and properties of QGS-Ball surfaces, and
discusses the impact of shape parameters on the surface. The conclusions and future work
are discussed in Section 6.

2. Quartic Generalized Said-Ball Basis Functions

By introducing multiple shape parameters, we construct the quartic generalized Said-
Ball basis functions, and describe the definition and properties in detail.

2.1. Definition of QGS-Ball Basis Functions

Definition 1. For τ ∈ [0, 1], the quartic generalized Said-Ball (QGS-Ball, for short) basis functions
are given by the following equation:

f0,4(τ) = (1− λ1τ)(1− τ)3,
f1,4(τ) = [3− (λ2 + 3)τ + λ1(1− τ)]τ(1− τ)2,
f2,4(τ) = (6 + 2λ2)τ

2(1− τ)2,
f3,4(τ) = [(3 + λ3)τ − λ2(1− τ)]τ2(1− τ),
f4,4(τ) = (1− λ3 + λ3τ)τ3.

(1)

where, λ1, λ2 and λ3 are the shape parameters, λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0].

Figure 1 displays the QGS-Ball basis functions corresponding to different shape parameter
values. For convenience, the shape parameters in Figure 1 are marked as Θ = {λ1, λ2, λ3}.
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Figure 1. QGS-Ball basis functions for various values of the shape parameters. (a) Θ = {1,−1, 1};
(b) Θ = {−1, 0,−1}; (c) Θ = {−2,−2,−2}; (d) Θ = {0, 0, 0}.

2.2. Properties of QGS-Ball Basis Functions

Theorem 1. The QGS-Ball basis functions possess the following properties:

(1) Non-negativity: For τ ∈ [0, 1], there are fi,4(τ) ≥ 0, i = 0, 1, 2, 3, 4, where λ1, λ3 ∈
[−3, 1],λ2 ∈ [−3, 0].

(2) Normality:
4
∑

i=0
fi,4(τ) ≡ 1.

(3) Symmetry under the particular case: When λ1 = λ3, λ2 = 0, the QGS-Ball basis functions
fi,4(τ)i = 0, 1, 2, 3, 4 are symmetric, that is, f0,4(τ) = f4,4(1− τ) and f1,4(τ) = f3,4(1− τ).

(4) Endpoint properties:

fi,4(0) =
{

1, i f i = 0,
0, else,

fi,4(1) =
{

1, i f i = 4,
0, else,

f ′i,4(0) =


−λ1 − 3, i f i = 0,
λ1 + 3, i f i = 1,
0, i f i = 2, 3, 4,

f ′i,4(1) =


−λ3 − 3, i f i = 3,
λ3 + 3, i f i = 4,
0, i f i = 0, 1, 2,

f ′′i,4(0) =


6λ1 + 6, i f i = 0,
−6λ1 − 2λ2 − 18, i f i = 1,
4λ2 + 12, i f i = 2,
−2λ2, i f i = 3,
0, i f i = 4,

f ′′i,4(1) =


0, i f i = 0,
−2λ2, i f i = 1,
4λ2 + 12, i f i = 2,
−6λ3 − 2λ2 − 18, i f i = 3,
6λ3 + 6, i f i = 4.

(2)

(5) Unimodal property: The QGS-Ball basis functions fi,4(τ), i = 0, 1, 2, 3, 4 have only one
maximum value on [0, 1].

(6) Monotonicity of parameters: Consider τ as a constant, f0,4(τ) is a decreasing function about
λ1, f1,4(τ) is an increasing function about λ1 and a decreasing function about λ2, f2,4(τ) is
an increasing function about λ2, f3,4(τ) is a decreasing function about λ2 and an increasing
function about λ3, and f4,4(τ) is a decreasing function about λ3.

(7) Degeneracy: The QGS-Ball basis functions reduce into the traditional quartic Said-Ball basis
functions when λ1 = λ2 = λ3 = 0. It reduces into the quartic Bernstein basis functions
when λ1 = λ3 = 1, λ2 = 0. It reduces into the cubic Bernstein basis functions when
λ1 = λ3 = 0, λ2 = −3.

Proof of Theorem 1.

(1) Because of 0 ≤ τ ≤ 1, λ1, λ3 ∈ [−3, 1] and λ2 ∈ [−3, 0], there are

0 ≤ 1− τ ≤ 1, 0 ≤ (1− τ)3 ≤ 1, 1− λ1τ ≥ 0, that is, f0,4(τ) ≥ 0.
3− (λ2 + 3)τ + λ1(1− τ) = (3 + λ1)(1− τ)− λ2τ ≥ 0, τ(1− τ)2 ≥ 0, that is, f1,4(τ) ≥ 0.
6 + 2λ2 ≥ 0, (6 + 2λ2)τ

2(1− τ)2 ≥ 0, that is, f2,4(τ) ≥ 0.
(3+ λ3)τ ≥ 0, λ2(1− τ) ≤ 0, (3+ λ3)τ− λ2(1− τ) ≥ 0, τ2(1− τ) ≥ 0, that is, f3,4(τ) ≥ 0.
1− λ3 + λ3τ ≥ 0, that is, f4,4(τ) ≥ 0.
Therefore, fi,4(τ) ≥ 0, i = 0, 1, 2, 3, 4.
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(2) According to Equation (1), there are

f0,4(τ) = 1− (λ1 + 3)τ + (3λ1 + 3)τ2 − (3λ1 + 1)τ3 + λ1τ4,
f1,4(τ) = (λ1 + 3)τ − (9 + 3λ1 + λ2)τ

2 + (9 + 3λ1 + 2λ2)τ
3 − (λ1 + λ2 + 3)τ4,

f2,4(τ) = (6 + 2λ2)τ
2 − (4λ2 + 12)τ3 + (6 + 2λ2)τ

4,
f3,4(τ) = −λ2τ2 + (2λ2 + 3 + λ3)τ

3 − (3 + λ2 + λ3)τ
4,

f4,4(τ) = (1− λ3)τ
3 + λ3τ4,

(3)

By summing all the basis functions in Equation (3), we can obtain
4
∑

i=0
fi,4(τ) ≡ 1.

(3) When λ1 = λ3, λ2 = 0, Equation (1) can be written as

f0,4(τ) = (1− λ1τ)(1− τ)3,
f1,4(τ) = [3− 3τ + λ1(1− τ)]τ(1− τ)2,
f2,4(τ) = 6τ2(1− τ)2,
f3,4(τ) = (3 + λ1)τ

3(1− τ),
f4,4(τ) = (1− λ1 + λ1τ)τ3.

(4)

It can be seen from Equation (4) that f0,4(τ) = f4,4(1− τ), f1,4(τ) = f3,4(1− τ), so the
symmetry is verified in the particular case.

(4) The endpoint properties can be obtained by simple calculation of fi,4(τ), i = 0, 1, 2, 3, 4.
(5) The unimodality of QGS-Ball basis functions can be verified by derivation. f3,4(τ)

and f4,4(τ) have unimodality according to the property (3), so it is only necessary to
prove that f0,4(τ), f1,4(τ) and f2,4(τ) have unimodality.

(6) If τ is regarded as a constant, f0,4(τ) is a decreasing function about λ1, f1,4(τ) is an in-
creasing function about λ1 and a decreasing function about λ2, f2,4(τ) is an increasing
function about λ2, f3,4(τ) is a decreasing function about λ2 and an increasing function
about λ3, and f4,4(τ) is a decreasing function about λ3, property (6) is proved.

(7) When λ1 = λ2 = λ3 = 0, then the QGS-Ball basis functions can be written as

f0,4(τ) = (1− τ)3,
f1,4(τ) = 3τ(1− τ)3,
f2,4(τ) = 6τ2(1− τ)2,
f3,4(τ) = 3τ3(1− τ),
f4,4(τ) = τ3,

(5)

which are the traditional quartic Said-Ball basis functions.
When λ1 = λ3 = 1, λ2 = 0, then the QGS-Ball basis functions can be written as

f0,4(τ) = (1− τ)4,
f1,4(τ) = 4τ(1− τ)3,
f2,4(τ) = 6τ2(1− τ)2,
f3,4(τ) = 4τ3(1− τ),
f4,4(τ) = τ4,

(6)

which are the traditional quartic Bernstein basis functions.
When λ1 = λ3 = 0, λ2 = −3, then the QGS-Ball basis functions can be written as

f0,3(τ) = (1− τ)3,
f1,3(τ) = 3τ(1− τ)2,
f2,3(τ) = 3τ2(1− τ),
f3,3(τ) = τ3,

(7)

which are the traditional cubic Bernstein basis functions. �
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The QGS-Ball basis functions not only inherit the excellent properties of the traditional
quartic Said-Ball basis functions, but also, because the QGS-Ball basis functions contains
multiple shape parameters, changing the value of the shape parameters will change the
QGS-Ball basis involved in the calculation. Therefore, even if the control vertices are fixed,
the shape of the corresponding curve will still change.

Theorem 2. Considering λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0], τ ∈ [0, 1], the QGS-Ball basis functions
{ fi,4(τ)}4

i=0 are a set of canonical total positive bases in the function space T.

Proof of Theorem 2. The QGS-Ball basis functions with shape parameters { fi,4(τ)}4
i=0 can

be represented linearly by traditional quartic Bernstein basis functions in the following
matrix form:

f = HB, (8)

H =


1 1−λ1

4 0 0 0
0 λ1+3

4 − λ2
6 0 0

0 0 λ2+3
3 0 0

0 0 − λ2
6

λ3+3
4 0

0 0 0 1−λ3
4 1

. (9)

where, f = ( f0,4(τ), f1,4(τ), · · · , f4,4(τ))
T , B = (B0,4(τ), B1,4(τ), · · · , B4,4(τ))

T ,
and {Bi,4(τ)}4

i=0 are the quartic Bernstein basis functions, λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0],
and H is referred to as the transformation matrix.

In order to prove that { fi,4(τ)}4
i=0 are a set of canonical total positive bases in function

space T := span{B0,4(τ), B1,4(τ), B2,4(τ), B3,4(τ), B4,4(τ)}, it is only necessary to prove that
the conversion matrix H is a total positive matrix, taking into account that {Bi,4(τ)}4

i=0 are
the normalized B-basis of the polynomial space T.

Obviously, all the first-order subformulas of H are non-negative, and |H| ≥ 0 when
λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0]. The second-order subformulas of H are

H12,12 = H25,25 = λ1+3
4 ≥ 0, H12,13 = H14,13 = H25,35 = H45,35 = −λ2

6 ≥ 0,

H12,23 = H14,23 = −λ2(1−λ1)
24 ≥ 0, H13,13 = λ2+3

3 ≥ 0, H13,23 = (1−λ1)(λ2+3)
12 ≥ 0,

H14,14 = H45,45 = λ3+3
4 ≥ 0, H14,24 = (1−λ1)(λ3+3)

16 ≥ 0, H15,14 = 1−λ3
4 ≥ 0,

H15,15 = 1, H15,24 = (1−λ1)(1−λ3)
16 ≥ 0, H15,25 = 1−λ1

4 ≥ 0, H23,23 = (λ1+3)(λ2+3)
12 ≥ 0,

H24,23 = −λ2(λ1+3)
24 ≥ 0, H24,24 = (λ1+3)(λ3+3)

16 ≥ 0, H24,34 = −λ2(λ3+3)
12 ≥ 0,

H25,34 = −λ2(1−λ3)
12 ≥ 0, H34,34 = (λ2+3)(λ3+3)

12 ≥ 0, H35,34 = (λ2+3)(1−λ3)
12 ≥ 0,

H45,34 = −λ2(1−λ3)
24 ≥ 0.

(10)

The remaining not listed are all 0, where the sign Hij,kl represents the subformula
formed by the I and j rows, k and l columns of the matrix H. The third-order subformula of
H is either 0, or can be expressed as a positive multiple of the second-order subformula
above, so the all third-order subformulas of H are non-negative, and the fourth-order
subformulas of H are non-negative, similarly. Therefore, H is a totally positive matrix.
Thus, Theorem 2 is proved. �

The QGS-Ball basis functions can be expressed as the product of the traditional quartic
Bernstein basis functions and a transformation matrix H. Since H is a nonsingular totally
positive matrix, it is proven that the QGS-Ball basis functions are the totally positive basis,
which means that the curve defined by the QGS-Ball basis functions can better simulate the
shape of the control polygon.
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3. Quartic Generalized Said-Ball Curve

The quartic generalized Said-Ball curve containing multiple parameters is constructed
based on the QGS-Ball basis functions, and the global and local shape of the curve can be
modified via the parameters flexibly. In this section, the definition of the quartic generalized
Said-Ball curve is depicted and the related theories are studied.

3.1. Definition and Properties of QGS-Ball Curve

Definition 2. For a series of control points Pi(i = 0, 1, 2, 3, 4), the quartic generalized Said-Ball
(QGS-Ball, for short) curve can be expressed as

l(τ; Θ) =
4

∑
i=0

Pi fi,4(τ), (11)

where Θ = {λ1, λ2, λ3}(λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0]) are the shape parameters, and
{ fi,4(τ)}4

i=0 are the QGS-Ball basis functions.

Obviously, the QGS-Ball curve reduces into the classical quartic Said-Ball curve when
λ1 = λ2 = λ3 = 0. It reduces into the quartic Bézier curve when λ1 = λ3 = 1, λ2 = 0. It
reduces into the cubic Bézier curve when λ1 = λ3 = 0, λ2 = −3.

Theorem 3. The QGS-Ball curve possesses the following properties:

(1) Endpoint properties: For λ1, λ3 ∈ [−3, 1], λ2 ∈ [−3, 0] and τ ∈ [0, 1], the QGS-Ball
curve l(τ; Θ) at the endpoints satisfy

l(0; Θ) = P0, l(1; Θ) = P4. (12)

The first and second derivatives of the curve at the endpoints satisfy

l
′
(0; Θ) = (λ1 + 3)(P1 − P0),

l
′
(1; Θ) = (λ3 + 3)(P4 − P3).

(13)

l
′′
(0; Θ) = 6λ1(P0 − P1) + 2λ2(2P2 − P1 − P3) + 6(P0 − 3P1 + 2P2), (14)

l
′′
(1; Θ) = 6λ3(P4 − P3) + 2λ2(2P2 − P1 − P3) + 6(P4 − 3P3 + 2P2). (15)

(2) Symmetry under the particular case: When λ1 = λ3, λ2 = 0, the shape of the QGS-Ball
curve with P0P1P2P3P4 as the control polygon and the shape of the QGS-Ball curve with
P4P3P2P1P0 as the control polygon are the same, but the direction is opposite, i.e.,

l(τ; Θ) =
4

∑
i=0

Pi fi,4(τ) =
4

∑
i=0

P4−i fi,4(1− τ) = l(1− τ; Θ). (16)

(3) Convexity: The QGS-Ball curve is involved in the convex hull of the control polygon.
(4) Geometric invariability and affine invariability: Because the QGS-Ball basis functions satisfy

the normalization, the affine transformation is performed on the QGS-Ball curve l(τ; Θ), the
new curve is obtained by using the linear transformation M and the translation c, that is,

l∗(τ; Θ) = Ml(τ; Θ) + c = M
4
∑

i=0
fi,4(τ)Pi + c

4
∑

i=0
fi,4(τ)

=
4
∑

i=0
M fi,4(τ)Pi +

4
∑

i=0
c fi,4(τ) =

4
∑

i=0
(MPi + c) fi,4(τ) =

4
∑

i=0
P∗i fi,4(τ).

(17)

It is the QGS-Ball curve corresponding to the new control points P∗i = MPi + c
(i = 0, 1, 2, 3, 4), which is obtained by the same affine transformation for Pi (i = 0, 1, 2, 3, 4).
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(5) Shape adjustability: The global and local shape of the QGS-Ball curve can be modified via
the parameters.

Theorem 4. A QGS-Ball curve with control points Pi (i = 0, 1, 2, 3, 4) and shape parameters
Θ can be expressed as a traditional quartic Bézier curve, that is,

l(τ; Θ) =
4

∑
i=0

Pi fi,4(τ) =
4

∑
i=0

TiBi,4(τ), (18)

and its control points Ti (i = 0, 1, 2, 3, 4) are determined by

T0 = P0,

T1 = 1−λ1
4 P0 +

λ1+3
4 P1,

T2 = − λ2
6 P1 +

λ2+3
3 P2 − λ2

6 P3,

T3 = λ3+3
4 P3 +

1−λ3
4 P4,

T4 = P4.

(19)

Proof of Theorem 4. Let P = (P0, P1, P2, P3, P4), T = (T0, T1, T2, T3, T4), and substituting
Equation (8) into Equation (18), we have

l(τ; Θ) =
4

∑
i=0

Pi fi,4(τ) = Pf = PHB =
4

∑
i=0

TiBi,4(τ) = TB, (20)

From Equation (20), we can obtain T = PH, i.e.,
T0
T1
T2
T3
T4

 =


1 0 0 0 0

1−λ1
4

λ1+3
4 0 0 0

0 − λ2
6

λ2+3
3 − λ2

6 0
0 0 0 λ3+3

4
1−λ3

4
0 0 0 0 1




P0
P1
P2
P3
P4

. (21)

Thereby, Theorem 4 is proved. �

Theorem 4 indicates that the control points and shape parameters of QGS-Ball curves
are given, and the control points of quartic Bézier curves can be determined according to
Equation (19), so the accurate conversion from the QGS-Ball curves to the quartic Bézier
curve is realized. Figure 2 illustrates the conversion from a QGS-Ball curve to a traditional
quartic Bézier curve, and Figure 2a,b display the resulting curves corresponding to the
shape parameters Θ = {−1,−0.5, 0.5} (red dash-dotted line) and Θ = {0.5,−1, 0} (blue
dash-dotted line), respectively.

Remark 1. It can be seen from Theorems 3 and 4 that the QGS-Ball curve and the quartic Bézier
curve possess similar properties, and they can be converted to each other. However, the QGS-Ball
curves with shape parameters presents several advantages in geometric modeling compared with the
quartic Bézier curve, such as the following:

• When five control points are given, only one unique quartic Bézier curve can be generated,
while the QGS-Ball curve containing multiple shape parameters defines a family of curves.

• Because the QGS-Ball curve contains multiple shape parameters, the curves can be modified
flexibly via the parameters while keeping the control points unchanged.

• Since the QGS-Ball curve contains shape parameters, shape optimization can be performed on
the curves.
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Figure 2. Accurate conversion from a QGS-Ball curve to a traditional quartic Bézier curve.
(a) Θ = {−1,−0.5, 0.5}; (b) Θ = {0.5,−1, 0}.

3.2. Impact of Shape Parameters on the QGS-Ball Curve

To analyze the impact of shape parameters for the QGS-Ball curve l(τ; Θ), Equation (11)
is rewritten as

l(τ; Θ) = E0(τ)P0 + E1(τ)P1 + E2(τ)P2 + E3(τ)P3 + E4(τ)P4
+K1(τ; λ1)(P1 − P0) + K2(τ; λ2)(P2 − P1)− K2(τ; λ2)(P3 − P2)
+K3(τ; λ3)(P4 − P3),

(22)

where

E0(τ) = (1− τ)3, E1(τ) = 3τ(1− τ)3, E2(τ) = 6τ2(1− τ)2, E3(τ) = 3τ3(1− τ),
E4(τ) = τ3, K1(τ; λ1) = λ1τ − 3λ1τ2 + 3λ1τ3 − λ1τ4,
K2(τ; λ2) = λ2τ2 − 2λ2τ3 + λ2τ4, K3(τ; λ3) = λ3τ4 − λ3τ3.

(23)

Here, Ei(τ) (i = 0, 1, 2, 3, 4) expresses the traditional quartic Said-Ball basis functions.
Based on Equation (22), the QGS-Ball curve is a linear function for each shape parame-

ter, and there are
∂l(τ; Θ)

∂λ1
= τ(1− τ)3(P1 − P0), (24)

∂l(τ; Θ)

∂λ2
= τ2(1− τ)2(P2 − P1) + τ2(1− τ)2(P2 − P3), (25)

∂l(τ; Θ)

∂λ3
= τ3(τ − 1)(P4 − P3). (26)

Obviously, there is no relationship between ∂l(τ; Θ)/∂λ1 and λ1, ∂l(τ; Θ)/∂λ2 and λ2,
∂l(τ; Θ)/∂λ3 and λ3. For a given τ and the control points Pi(i = 0, 1, 2, 3, 4), the change of
each shape parameter value will result in the linear variation of the points on the QGS-Ball
curve. For τ ∈ [0, 1], K1(τ; λ1) is an increasing function about λ1, the QGS-Ball curve shifts
in the identical direction as the control edge P1 − P0 when λ1 increases (see Figure 3a).
Conversely, the QGS-Ball curve shifts in the contrary direction to the control edge P1 − P0
when λ1 decreases. Similarly, the QGS-Ball curve shifts in the identical direction as the
control edges P2 − P1 and P2 − P3 when λ2 increases (see Figure 3b). The QGS-Ball curve
shifts in the same direction as the control edge P3 − P4 when λ3 increases (see Figure 3c).
The QGS-Ball curve shifts in the identical direction as the control edges P1−P0 and P3−P4
when λ1 and λ3 increase simultaneously (see Figure 3d). From the above discussion, it can
be concluded that Θ = {λ1, λ2, λ3} are the local shape parameters.
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Figure 3. The effect of shape parameters on the QGS-Ball curve. (a) Θ = {(−3,−2,−1, 0), 0, 0};
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Figure 3 reflects the influence of shape parameters Θ = {λ1, λ2, λ3} on the QGS-
Ball curve when the control points are given, and we can see that the variation of shape
parameters will make the QGS-Ball curve approach (or move far from) the control polygon.
It is worth noticing that the values in the bracket signal the corresponding change values of
the shape parameter Θ = {λ1, λ2, λ3}, and the values in the parentheses correspond to the
QGS-Ball curve from the black dotted line to the magenta solid line in turn. Moreover, the
red star points in each figure represent the same point on different curves. When altering
the shape parameter value, the curve track is depicted through a straight line joining the
red star points, so the impact of shape parameters on the QGS-Ball curve is intuitive.

3.3. Performance Comparison of QGS-Ball Curves and Other Ball Curves

In this section, we compare the performance of the QGS-Ball curve with different types
of Ball curves proposed in [9,10,15,20], and the comparison results are shown in Table 1.

Table 1. Performance comparison of QGS-Ball curves and other Ball curves.

Property QGS-Ball
Curves

Rational
Cubic/Quartic

Said-Ball Conics [9]

Generalized Ball
Curves [10]

Said-Ball
Curves [15]

Generalized
Said-Ball

Curves [20]

Same

End-point properties
√ √ √ √ √

Convex hull property
√ √ √ √ √

Symmetry
√ √ √ √ √

Affine invariability
√ √ √ √ √

Different
Computational complexity Low High Low Low Low

Number of shape parameters 3 * 0 2 2
Shape adjustability Global and local Global × Global Global

Extra degree of freedom
√ √

×
√ √

* The weights in [9] possess an effect for adjusting the shape of the curves.
√
→ satisfy, ×→ dissatisfy.
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From the comparison results in Table 1, it can be seen that, compared with the previ-
ously proposed Ball curves in [9,10,15,20], the QGS-Ball curve has better shape adjustability,
and can be adjusted globally and locally without increasing the computational complexity.

4. Smooth Joining of Combined Quartic Generalized Said-Ball Curves

In the field of industrial design, it is often difficult to use a QGS-Ball curve to design
the shape of complex products. Therefore, we present the relative definition and theory of
combined quartic generalized Said-Ball curves.

Definition 3. Given n + 1 nodes, which satisfy r0 < r1 < r2 < · · · < rj < rj+1 < · · · < rn−1 < rn,
and the step length is dj = rj − rj−1, the combined quartic generalized Said-Ball (CQGS-Ball, for
short) curves are expressed as

L(r) =



l1(
r−r0

d1
; Θ1), r ∈ [r0, r1],

...
lj(

r−rj−1
dj

; Θj), r ∈ [rj−1, rj],
...
ln(

r−rn−1
dn

; Θn), r ∈ [rn−1, rn],

(27)

where the parameters on the j-th curve are expressed by Θj =
{

λ
j
1, λ

j
2, λ

j
3

}
, j = 1, 2, . . . , n.

Equation (27) can be denoted as

Π̃ : lj(
r− rj−1

dj
; Θj) =

4

∑
i=0

Pi,j fi,4(
r− rj−1

dj
; Θj), (28)

Here, the control points are Pi,j(i = 0, 1, 2, 3, 4; j = 1, 2, · · · , n), subscript j denotes the
j-th curve, and subscript i denotes the i-th control point.

Based on the CQGS-Ball curves represented by Equation (28), the G1 and G2 joining
conditions of two adjacent curves are discussed.

4.1. Continuity Conditions of G1 Smooth Joining of QGS-Ball Curves

Theorem 5. For CQGS-Ball curves L(r), the sufficient and necessary conditions for two adjacent
QGS-Ball curves to meet G1 smooth joining at the joining point rj are

P0,j+1 = P4,j,

P1,j+1 = h
dj+1(λ

j
3+3)

dj(λ
j+1
1 +3)

(P4,j − P3,j) + P4,j,
(29)

where h > 0 represents an any constant.

Proof of Theorem 5. To make two QGS-Ball curves meet G1 continuity at the joining point,
G0 continuity should be satisfied first, that is, L(r−j ) = L(r+j ) (r−j means that r approaches

rj from the left, r+j means that r approaches rj from the right). By calculating, we can obtain

P4,j = P0,j+1. (30)

Secondly, it is necessary to have the tangential vectors in the same direction at the
joining point, that is,

hl
′
j(rj) = l

′
j+1(rj). (31)
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Combining the endpoint properties of QGS-Ball curves, we have

l
′
j(rj) =

1
dj
(λ

j
3 + 3)(P4,j − P3,j), (32)

l
′
j+1(rj) =

1
dj+1

(λ
j+1
1 + 3)(P1,j+1 − P0,j+1). (33)

Substituting Equations (32) and (33) into Equation (31), we can obtain Equation (34):

P1,j+1 = h
dj+1(λ

j
3 + 3)

dj(λ
j+1
1 + 3)

(P4,j − P3,j) + P4,j. (34)

The sufficient and necessary conditions of G1 smooth joining can be obtained by
Equations (30) and (34) for two adjacent QGS-Ball curves, so Theorem 5 is proved. Obvi-
ously, it is the C1 smooth joining conditions when h = 1. �

4.2. Continuity Conditions of G2 Smooth Joining of QGS-Ball Curves

Theorem 6. For CQGS-Ball curves L(r), the sufficient and necessary conditions for two adjacent
QGS-Ball curves to meet G2 smooth joining at the joining point rj are

P0,j+1 = P4,j,

P1,j+1 = h
dj+1

(
λ

j
3+3

)
dj

(
λ

j+1
1 +3

) (P4,j − P3,j
)
+ P4,j,

P2,j+1 = 1
S

{[
T +

2h2λ
j+1
2 +12h2

d2
j+1

+
6λ

j
3+6
d2

j
−

hz
(

3+λ
j
3

)
dj

]
P4,j +

[
hz
(

3+λ
j
3

)
dj

− T − 6λ
j
3+2λ

j
2+18

d2
j

]
P3,j

+
4λ

j
2+12
d2

j
P2,j −

2λ
j
2

d2
j

P1,j +
2λ

j+1
2 h2

d2
j+1

P3,j+1

}
,

(35)

In which, z is an any constant, h > 0, T =
6h3λ

j+1
1 (3+λ

j
3)+2h3λ

j+1
2 (3+λ

j
3)+18h3(3+λ

j
3)

djdj+1(3+λ
j+1
1 )

, and

S =
h2(4λ

j+1
2 +12)

d2
j+1

.

Proof of Theorem 6. To make two QGS-Ball curves meet G2 continuity at the joining point,
G1 continuity should be satisfied first, that is,

P0,j+1 = P4,j,

P1,j+1 = h
dj+1(λ

j
3+3)

dj(λ
j+1
1 +3)

(P4,j − P3,j) + P4,j,
(36)

The binormal vectors of two adjacent QGS-Ball curves at r = rj are Wj and Wj+1,
respectively, i.e., {

Wj = l′j(rj; Θj)× l′′j (rj; Θj),
Wj+1 = l′j+1(rj; Θj+1)× l′′j+1(rj; Θj+1),

(37)

where the operation × represents the vector product.
Secondly, G2 continuity requires the two curves to have the same direction of the

binormal vectors at the joining point. It can be seen from Equations (36) and (37) that
l′j(rj; Θj), l′′j (rj; Θj), l′j+1(rj; Θj+1), and l′′j+1(rj; Θj+1) are coplanar, thus

l′′j (rj; Θj) = ml′′j+1(rj; Θj+1) + zl′j+1(rj; Θj+1), (38)

where m > 0 is an unknown constant to be solved, and z is an arbitrary constant.
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Assuming that the curvature values of two adjacent QGS-Ball curves at the joining
point rj are vj(rj; Θj) and vj+1(rj; Θj+1), respectively, that are

vj
(
rj; Θj

)
=

∣∣∣l′j(rj ;Θj)×l′′j (rj ;Θj)
∣∣∣∣∣∣l′j(rj ;Θj)

∣∣∣3 ,

vj+1
(
rj; Θj+1

)
=

∣∣∣l′j+1(rj ;Θj+1)×l′′j+1(rj ;Θj+1)
∣∣∣∣∣∣l′j+1(rj ;Θj+1)

∣∣∣3 ,

(39)

Since G2 continuity also requires that the curvature values of the two curves at the joining
point are equal, we can obtain Equation (40) by combining Equations (36), (38), and (39).

vj+1
(
rj; Θj+1

)
=
|l′j+1(rj ;Θj+1)×(ml′′j (rj ;Θj)+zl′j(rj ;Θj |

|l′j+1(rj ;Θj+1)|3

=
|hl′j(rj ;Θj)×(ml′j(rj ;Θj)+zl′j(rj ;Θj|

|hl′j(rj ;Θj)|3

=
m|l′j(rj ;Θj)×l′′j (rj ;Θj)|

h2
∣∣∣l′j(rj ;Θj)

∣∣∣3 ,

(40)

We can obtain m = h2 according to vj+1(rj; Θj+1) = vj(rj; Θj). Therefore, Equation (38)
can be rewritten as

l′′j (rj; Θj) = h2l′′j+1(rj; Θj+1) + zl′j+1(rj; Θj+1), (41)

Finally, on the basis of the endpoint properties of QGS-Ball curves, we have

l′′j (rj; Θj) = (
1
dj
)2[6λ

j
3(P4,j−P3,j)+ 2λ

j
2(2P2,j−P1,j−P3,j)+ 6(P4,j− 3P3,j + 2P2,j)], (42)

l′′j+1(rj; Θj+1) = ( 1
dj+1

)
2
[6λ

j+1
1 (P0,j+1 − P1,j+1) + 2λ

j+1
2 (2P2,j+1 − P1,j+1 − P3,j+1)

+6(P0,j+1 − 3P1,j+1 + 2P2,j+1)].
(43)

Combining Equations (32), (33), (42), and (43), Equation (41) can be simplified as

P2,j+1 = 1
S

{[
T +

2h2λ
j+1
2 +12h2

d2
j+1

+
6λ

j
3+6
d2

j
− hz(3+λ

j
3)

dj

]
P4,j +

[
hz(3+λ

j
3)

dj
− T − 6λ

j
3+2λ

j
2+18

d2
j

]
P3,j

+
4λ

j
2+12
d2

j
P2,j −

2λ
j
2

d2
j

P1,j +
2λ

j+1
2 h2

d2
j+1

P3,j+1

}
,

(44)

where T =
6h3λ

j+1
1 (3+λ

j
3)+2h3λ

j+1
2 (3+λ

j
3)+18h3(3+λ

j
3)

djdj+1(3+λ
j+1
1 )

, S =
h2(4λ

j+1
2 +12)

d2
j+1

, z is an any constant, and

h > 0. �

The sufficient and necessary conditions of G2 smooth joining can be obtained by
Equations (36) and (44) for two adjacent QGS-Ball curves, so Theorem 6 is proved. Obvi-
ously, it is the C2 smooth joining conditions when h = 1, z = 0.

According to Definition 3, the CQGS-Ball curves are formed of n segment QGS-Ball
curves. Figures 4 and 5 show the shape adjustment of two adjacent QGS-Ball curves under
the G1 and G2 smooth joining when n = 2, respectively. The first QGS-Ball curve is marked in
red, the second QGS-Ball curve is marked in blue, and every QGS-Ball curve contains three
shape parameters, Θj = {λ

j
1, λ

j
2, λ

j
3}, where j = 1, 2 are denoted as the shape parameters

located in the j-th curve. Among them, Figure 4a shows the G1 smooth joining of two
adjacent QGS-Ball curves, and Figure 4b,c display the appearance change of the CQGS-Ball
curves via altering the shape parameter λ1

1 and λ2
1. The shape parameter values from the

red (blue) double-dash line to the red (blue) solid line are both (−3,−2,−1, 0). Figure 4d
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shows the shape variety of the CQGS-Ball curves by altering λ1
1 and λ2

1 simultaneously,
and the parameter values and line types are consistent with Figure 4b. In addition, the
modifications of shape parameters and the corresponding changes of lines in Figure 5 are
the same as those in Figure 4. The CQGS-Ball curves with shape parameters have superior
global and local shape adjustability from Figures 4 and 5, which further indicates that the
CQGS-Ball curves have wider applicability and practicability.
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Figure 4. G1 continuous joining of two adjacent QGS-Ball curves. (a) Θj = {0, 0, 0}, j = 1, 2;
(b) λ1

1 = (−3,−2,−1, 0), λ1
2 = λ1

3 = 0, j = 1; (c) λ2
1 = (−3,−2,−1, 0), λ2

2 = λ2
3 = 0, j = 2;

(d) λ
j
1 = (−3,−2,−1, 0), λ

j
2 = λ

j
3 = 0, j = 1, 2.
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Figure 6 shows the heart-shaped graphs designed by three QGS-Ball curves under
the continuity conditions of G1 smooth joining when n = 3, and Figure 7 shows the spatial
spiral graph designed by three QGS-Ball curves under the continuity conditions of G2

smooth joining. In addition, all QGS-Ball curves are distinguished by different colors in
Figures 6 and 7. In Figure 6a, the shape parameter values are taken as {1,−3, 1} for each
QGS-Ball curve, which are shown in the icon corresponding to Figure 6a. Similarly, the
shape parameter values in Figure 6b–d are given in the same way; the shape change cases
of heart-shaped graphs can be distinctly perceived from Figure 6. Moreover, Figure 7a
displays the whole G2 continuous spatial spiral graph, and Figure 7b shows the torsion
curves of the spatial spiral graph, where the three colors of the torsion curves correspond
to the colors of the three QGS-Ball curves in Figure 7a.
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4.3. Examples of CQGS-Ball Curves

Figures 8 and 9 are animal graphs designed by CQGS-Ball curves. Among them,
Figure 8a–d show the ducks composed of six QGS-Ball curves under the different parameter
values, Figure 9a–d show the dolphins composed of seven QGS-Ball curves under the differ-
ent parameter values, and the icon of each figure shows the corresponding shape parameter
values, and all QGS-Ball curve segments marked in the Figures 8 and 9 are distinguished by
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different colors. From Figures 8 and 9, we can draw a conclusion that designers can slightly
modify the shape of graphics via the shape parameter in daily graphic design.
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Figure 8. The duck composed of six QGS-Ball curves. (a) Θj = {0, 0, 0}, j = 1, 2, . . . , 6;
(b) Θj = {−1, 0, 0}, j = 1, 2, . . . , 6; (c) Θj = {0,−1, 0}, j = 1, 2, . . . , 6; (d) Θj = {0, 0,−1},
j = 1, 2, . . . , 6.
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j = 1, 2, . . . , 7.
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5. Quartic Generalized Said-Ball Surface

Stemming from the proposed QGS-Ball curve, the quartic generalized Said-Ball surface
carrying multiple shape parameters is further constructed by the tensor product method;
its relevant definitions and properties are given, and the effect of shape parameters on the
surface is analyzed.

5.1. Definition and Properties of the QGS-Ball Surface

Definition 4. For a series of control mesh vertices Qi,j(i, j = 0, 1, 2, 3, 4), the shape parameters

are denoted as Θ = {λ1, λ2, λ3},
~
Θ = {λ̃1, λ̃2, λ̃3}, and the quartic generalized Said-Ball

(QGS-Ball, for short) surface is expressed as

S
(

u, v; Θ,
~
Θ

)
=

4

∑
i=0

4

∑
j=0

fi,4(u) f j,4(v)Qi,j, (45)

where fi,4(u) and f j,4(v) are the QGS-Ball basis functions with shape parameters Θ and
~
Θ ,

respectively, defined by Equation (1).

Obviously, the QGS-Ball surface reduces to the traditional quartic Said-Ball surface

when Θ = {0, 0, 0},
~
Θ = {0, 0, 0}. It reduces to the quartic Bézier surfaces when

λ2 = λ̃2 = 0, λ1 = λ3 = λ̃1 = λ̃3 = 1. It reduces to the bicubic Bézier surfaces when
λ1 = λ3 = λ̃1 = λ̃3 = 0, λ2 = λ̃2 = −3.

Theorem 7. The QGS-Ball surface possesses the following excellent properties:

(1) Corner interpolation: The four corners of the QGS-Ball surfaces S(u, v; Θ,
~
Θ) are interpolated

to the four corners of the surface’s control mesh, that are
S(0, 0; Θ,

~
Θ) = Q0,0,

S(1, 0; Θ,
~
Θ) = Q4,0,

S(0, 1; Θ,
~
Θ) = Q0,4,

S(1, 1; Θ,
~
Θ) = Q4,4,

(46)

(2) Boundary property: For the QGS-Ball surfaces S(u, v; Θ,
~
Θ), four boundary curves are the

QGS-Ball curves generated by their corresponding outermost control points, respectively, that are

S(u, 0; Θ,
~
Θ) =

4
∑

i=0
fi,4(u)Qi,0,

S(u, 1; Θ,
~
Θ) =

4
∑

i=0
fi,4(u)Qi,4,

S(0, v; Θ,
~
Θ) =

4
∑

j=0
f j,4(v)Q0,j,

S(1, v; Θ,
~
Θ) =

4
∑

j=0
f j,4(v)Q4,j.

(47)

(3) Tangent planarity of corners: For the QGS-Ball surfaces S(u, v; Θ,
~
Θ), the tangent planes at the

four corners are determined by Q0,0Q0,1Q1,0, Q0,3Q0,2Q1,3, Q3,0Q2,0Q3,1, and Q3,3Q2,3Q3,2,
respectively.

(4) Symmetry: If the given control mesh vertices are symmetric, the QGS-Ball surfaces are also symmetric.
(5) Convexity: The QGS-Ball surface is located in the convex hull of its control mesh.



Mathematics 2023, 11, 2369 18 of 21

(6) Geometric invariability and affine invariability: Given the shape parameters Θ and
~
Θ, the QGS-Ball

surfaces S(u, v; Θ,
~
Θ) are only related to the control vertices Qi,j (i, j = 0, 1, 2, 3, 4).

(7) Shape adjustability: Given the control vertices Qi,j(i, j = 0, 1, 2, 3, 4), the global and local

shape of QGS-Ball surfaces can be modified via the parameters Θ and
~
Θ.

5.2. Impact of Shape Parameters on the QGS-Ball Surfaces

(1) Given the control vertices Qi,j(i, j = 0, 1, 2, 3, 4) and the shape parameters
~
Θ, the

QGS-Ball surfaces S(u, v; Θ,
~
Θ) move in the same direction as the control vertices Qi,0,

Qi,1, Qi,2, Qi,3, Qi,4 by altering the shape parameters Θ, that is, the shape parameters
Θ affect the local surface shape around the control vertices Qi,0, Qi,1, Qi,2, Qi,3, Qi,4. In

addition, the shape of borderline curves S(u, 0; Θ,
~
Θ) and S(u, 1; Θ,

~
Θ) is changed, while

the shape of borderline curves S(0, v; Θ,
~
Θ) and S(1, v; Θ,

~
Θ) is not changed (see Figure 10).
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Figure 10. The effect of λ1 on the QGS-Ball surface. (a) Θ = {−3,−3,−3},
~
Θ = {−3,−3,−3};

(b) Θ = {−2,−3,−3},
~
Θ = {−3,−3,−3}; (c) Θ = {−1,−3,−3},

~
Θ = {−3,−3,−3}; (d) Θ = {0,−3,−3},

~
Θ = {−3,−3,−3}.

(2) Given the control vertices Qi,j(i, j = 0, 1, 2, 3, 4) and the shape parameters Θ, the

QGS-Ball surfaces S(u, v; Θ,
~
Θ) move in the same direction as the control vertices Q0,j,

Q1,j, Q2,j, Q3,j, Q4,j by altering the shape parameters
~
Θ, that is, the shape parameters

~
Θ affect the local surface shape around the control vertices Q0,j, Q1,j, Q2,j, Q3,j, Q4,j.

In addition, the shape of borderline curves S(0, v; Θ,
~
Θ) and S(1, v; Θ,

~
Θ) is changed,

while the shape of borderline curves S(u, 0; Θ,
~
Θ) and S(u, 1; Θ,

~
Θ) is not changed

(see Figure 11).
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Figure 11. The influence of λ̃1 on the QGS-Ball surface. (a) Θ = {−3,−3,−3},
~
Θ = {−3,−3,−3};

(b) Θ = {−3,−3,−3},
~
Θ = {−2,−3,−3}; (c) Θ = {−3,−3,−3},

~
Θ = {−1,−3,−3}; (d) Θ = {−3,−3,−3},

~
Θ = {0,−3,−3}.

(3) Given the control vertices Qi,j(i, j = 0, 1, 2, 3, 4), if the shape parameters Θ and
~
Θ

are increased (or decreased) at the same time, the QGS-Ball surfaces S(u, v; Θ,
~
Θ) will

approach (or move far from) its control mesh.

Keeping the control vertices unchanged, Figures 10 and 11 show the shape change
of the QGS-Ball surface when altering λ1 and λ̃1, respectively. From Figures 10 and 11,
we conclude that the QGS-Ball surface approaches the control mesh in the same direction
as the control vertices Q1,0, Q1,1, Q1,2, Q1,3, Q1,4, and the shape of borderline curves

S(u, 0; Θ,
~
Θ) and S(u, 1; Θ,

~
Θ) is changed when λ1 is increased. The QGS-Ball surface

approaches the control mesh in the same direction as the control vertices Q0,1, Q1,1, Q2,1,

Q3,1, Q4,1, and the shape of borderline curves S(0, v; Θ,
~
Θ) and S(1, v; Θ,

~
Θ) is changed

when λ̃1 is increased.

6. Conclusions

In this work, the QGS-Ball basis functions containing three shape parameters were
firstly defined, and we discussed and proved their properties. Secondly, the QGS-Ball
curves were constructed on the basis of the proposed basis functions, the expression and
properties of QGS-Ball curves were given, and the impact of three shape parameters on
the curve was discussed. Since complex curves cannot be generated by a single QGS-Ball
curve, we further defined the CQGS-Ball curves and derived the geometric continuity
conditions of G1 and G2 smooth joining of QGS-Ball curves. Finally, the QGS-Ball surfaces
were proposed by tensor product method, and the effect of shape parameters on the surface
was further studied. In general, the constructed QGS-Ball curves and surfaces have the
following merits: (1) The QGS-Ball curves and surfaces have better global and local shape
adjustability compared with the traditional quartic Said-Ball curves and surfaces. (2) The
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construction method of CQGS-Ball curves is simple and effective, and the G1 and G2

geometric joining conditions are prone to realization, which is suitable for complex product
shape design. (3) The modeling examples show that the designers can easily modify the
shape of curves and surfaces by changing the shape parameters in daily graphic design,
thereby making the graphic expression more aesthetically pleasing.

The future research content can be considered from two aspects. One is that this paper
only discusses the theory and properties of QGS-Ball curve and surface containing multiple
shape parameters, and the construction, properties, and related algorithms of higher-order
generalized Said-Ball curve and surface with multiple parameters are worthy of further
study [26,27]. The second is that we can use the highly efficient and improved chameleon
swarm algorithm (MCSA) in [28] to optimize the QGS-Ball curve and surface, so as to
construct the ideal shape of the curve and surface.
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