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Abstract: In this paper, we bring forward a distributed algorithm for the assignment of a prescribed
Laplacian spectrum for path graphs by means of asymmetric weight assignment. We first describe the
meaningfulness and the relevance of this mathematical setting in modern technological applications,
and some examples are reported, revealing its practical usefulness in a variety of applications. Then,
the solution is derived both theoretically and through an algorithm. Special attention is devoted to a
distributed implementation of the main algorithm, which is a valuable feature for several modern
applications. Finally, the positivity is discussed, which is revealed to be a consequence of the strict
interlacing property.
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1. Introduction

In recent decades, an increasing number of research activities arose studying the
behavior of interacting devices for applications in disparate technological areas, giving rise
to the subject of networked systems [1–4]. Network topology became a fundamental new
design paradigm, and mainly the spectral properties of some graph-related matrices, such
as adjacency or Laplacian matrix, were researched.

The Laplacian matrix of a graph is a potent tool for the theoretical study and design
of many contemporary technological applications where the graph encodes local interac-
tions among agents, thus including [5,6] multi-agent systems, computer networks, sparse
coding, and collaborative robotic networks. In such applications, the spectral properties
of a graph-related matrix, and especially the Laplacian matrix, often play a key role in
explaining some internal structure or condition, such as clustering, partitioning, consensus
or synchronization [5,7,8]. Grounded Laplacian refers to the main submatrix that results
from eliminating the i-th row and column of a Laplacian matrix. The performance of
various applications is also directly correlated with the spectral features of a grounded
Laplacian, which have undergone many studies in recent years as well [9,10]. In this paper,
we shed a light on the class of Laplacian matrices associated with path graphs, which have
the structure of (asymmetric) Jacobi matrices, and they constitute a class of graphs of great
importance which has been widely studied over the years [11–13].

On the one hand, from a mathematical standpoint, this topic comes within the category
of inverse eigenvalue problems, that is, the existence analysis and computation of structured
matrices with assigned eigenstructure [14], which has a long history among mathematicians
and it is still widely debated [15–17]. With reference to such literature, the contribution of
this paper is the derivation of an algorithm, which can be distributed with respect to the
nodes of the path, and this is a fundamental peculiarity for several modern applications,
as detailed in Section 2.

On the other hand, however, the topic of the present paper stems from modern
applications, and this makes the challenge different from the classical mathematical settings,
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as described in [14]. It also has strong connections with control systems theory, and more
specifically, it is close to the pole allocation through feedback [18–20]. As a final remark,
it is worth noting that the knowledge of the Laplacian spectrum allows to monitor the
system evolution and detect any anomaly caused by edge malfunctioning or malicious
behaviors [21,22].

An early short version of this work was presented in [23]. The paper is organized as
follows. In Section 2, after a brief introduction of the notation, we provide some motivating
examples that are strongly related to the mathematical problem. In Section 3, the main
results of the paper are derived; first, a global algorithm solving the stated problem is
deduced using and inductive logic over n, then, it is rearranged to implement it in a
distributed fashion, where each node can compute its own weights based only on data
gathered by its neighborhood. Here, the analysis is thorough, including complete proofs for
all statements. Finally, a discussion on the positivity of the gains provided by the algorithm
closes the paper. Furthermore, this paper contains a much improved comprehensive and
thorough treatment. A final section describes an illustrative example in the distributed
setting for a network of six nodes.

Notation

We now briefly introduce the notation adopted in this paper and we report some basic
facts of Graph Theory that are useful to understand the following sections. Given A ∈
Rd1×d2 , [A]ij denotes its (i, j)-th entry and [A]i its i-th column, while (A)ij ∈ R(n−1)×(n−1)

is the submatrix obtained by removing the i-th row and j-th column of A. The Laplace
expansion rule for the computation of the determinant of a square matrix A ∈ Rn×n is:
det A = ∑n

j=1(−1)i+j[A]ij det(A)ij.
A nonnegative (positive) matrix A ∈ Rn×n is a matrix with the property [A]ij ≥ 0

([A]ij > 0). A matrix A ∈ Rn×n is combinatorially symmetric [24] or structurally symmetric
when it holds that [A]ij 6= 0 if and only if [A]ji 6= 0. A matrix A ∈ Rn×m is called
generalized row stochastic matrix if there exists a c ∈ R so that ∑n

j=1[A]ij = c for any
i = 1, . . . , n, and zero row sum matrix if such a c is c = 0. In this paper, we deal with zero-row
sum combinatorially symmetric matrices [25]. In the following, we denote by Λ the spectrum
of a matrix A ∈ Rn×n, namely the set of its eigenvalues, and by ρA the spectral radius of A,
i.e., the maximum modulus of its eigenvalues. For a reference book on polynomials, the
reader is referred to the book [26].

A graph G = (V , E) is a mathematical object made of a vertex set V = {1, 2, . . . , n}
and an edge set E ⊂ V × V . A path connecting vertex j1 with jk+1 is a subset of edges
{(j`,`+1 )}|`∈[1,k]

. Given a graph G = (V , E), we define the adjacency matrix A ∈ Rn×n as
[A]ij = 1 if (i, j) ∈ E and [A]ij = 0 if (i, j) /∈ E , and the weighted adjacency matrix as [Aw]ij =
αij with αij > 0 if (i, j) ∈ E and [Aw]ij = 0 if (i, j) /∈ E . Finally, the weighted Laplacian matrix
is defined as [Lw]ij = −[Aw]ij if i 6= j and [Lw]ii = ∑n

j=1,i 6=j[Aw]ij. By construction, Lw1 = 0

for any Lw ∈ Lw, i.e., the Laplacian is a zero-row sum matrix. Finally, the R(n−1)×(n−1)

matrix obtained by removing the `-th row and column of Lw is the so-called grounded
Laplacian matrix (or Dirichlet Laplacian matrix) (see for information [9,27]), which we denote
in the following by L(`)

w .
Conversely, for a graph G, we use the symbol Lw(G) to denote the set of all possible

weighted Laplacian matrices Lw whose graph is G; in other words, Lw(G) denotes the set
of all n× n zero-row sum G-structured square matrices.

2. Motivating Examples

In this section, we provide an abstract multi-agent system setting where the problem af-
forded in this paper is meaningful, and then, we provide some examples of several modern
technological fields where the algorithms provided in this paper can be effectively adopted.
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2.1. Collaborative Multi-Agent Systems and Consensus Networks

In the following, we describe the abstract multi-agent setting [5,28], which is the
mathematical framework of the applications described soon after. Given a set of N variables
xi(t), i ∈ {1, . . . , N} updating as ẋi(t) = ui(t), where ui(t) is an update variable chosen
by each node i. A graph G = {V , E} describes the communication among nodes, namely
two neighbor nodes i, j which are connected through an edge (i, j) ∈ E are able to exchange
their values (that is, node i sends xi(t) to node j and vice versa), so node i can choose
ui(t) = ∑j∈Ni

kij(xj(t)− xi(t)), where kij are set by node i. The resulting dynamics of the
team can be compactly written ẋ(t) = −Lκx(t) using a vector x ∈ RN built as [x]i(t) = xi(t)
for a Lκ , which belongs to the set Lw, and the evolution of the network is governed by
the spectrum of Lκ [29]. In this framework, the design of asymmetric gains was recently
studied [30–32] to increase the convergence rate, which is a key feature; this was recently
explored in [33–35].

Assume now that one node, e.g., node 1, takes the role of a leader and it adds a driving
signal v1(t) to its update variable, namely:

u1(t) = ∑
j∈N1

k1j(xj(t)− x1(t)) + v1(t) (1)

to take control of the team evolution [36]. This setting is known as leader follower network, [37–39]
and its dynamics is described by:

ẋ(t) = −Lκx(t) + e1v1(t) (2)

y(t) = eT
1 x(t) (3)

with Lκ ∈ Lw or, equivalently, using the transfer function:

G1(s) = eT
1 (sI + Lκ)

−1e1 =
n(s)
d(s)

where d(s) = det (sI + Lκ) and n(s) = eT
1 Adj(sI + Lκ)e1 = [Adj(sI + Lκ)]11 = det(sI +

L(1)
k ), and hence, the zeros of n(s) and d(s) are the poles and zeros of system (2), (3), so

that their allocation allows to set all the fundamental input-output properties of the team
(such as the zero-pole distance and, in turn, to influence several dynamical properties of
the team driven by a prescribed node, such as controllability and observability of the whole
network from node 1). It is worth remarking that coprimeness between n(s) and d(s) is
necessary for the full control of the team by the leader [40].

2.2. Some Examples of Applications Scenarios

The above setting is applied to several technological modern applications, for example:
(a) Robotic networks. In this application area, the above setting is widely used to perform
global actions (such as rendez-vous, deployment, formation control) without recurring to a
supervisory device [41]. (b) Wireless sensor networks. Several fundamental issues of wire-
less sensor networks are solved using the above setting, for example the synchronization
problem [42,43] and the average value of a measured environmental quantity [44]. (c) Vehi-
cle platooning. The above setting is adopted to model the dynamics of vehicles platoon,
where Laplacian and grounded Laplacian of path graphs are well suited to describe the
common case of bidirectional non-cyclic interactions between the agents [45]. It is worth
remarking that weight asymmetry has already been investigated [46] to improve the team
performances. (d) Electrical power systems. The multi-agent setting is widely adopted
when the numerous challenges of the evolution of the electric grid toward a smart grid are
taken into account [47–49].
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2.3. Problem Statement

Based on the motivating examples introduced so far, we introduce the Problem State-
ment afforded in the following.

Problem 1. Consider a graph G = (V , E), and two polynomials a(s), b(s) having zeros as
λi, µi ∈ R satisfying 0 < µ1 < λ2 < . . . < µn−1 < λn, compute gains αij, such that αij = 0 if

(i, j) /∈ E and αij > 0 if (i, j) ∈ E satisfying det[sI − Lw] = a(s) and det[sI − L(1)
w ] = b(s).

Remark 1. The above Problem Statement is strictly related to the examples in Section 2.2, and does
not include the possibility of overlap between Λ and Λ(1), which is an unfavorable condition in
most applications (as, for example, it implies the loss of controllability and observability by the
leader [50]).

3. Problem Solution

The proposed solution follows an inductive approach over n ∈ N. We start with
the solution of n = 2 and n = 3, then we extend the solution to a generic n through an
iterative algorithm.

3.1. Preliminary Results on n = 2 and n = 3

Consider n = 2, which is described by the following matrices:

A =

[
0 1
1 0

]
, Aw =

[
0 α12

α21 0

]
Lw =

[
α12 −α12
−α21 α21

]
, L(1)

w =
[
α21
]
. (4)

For any 0 < µ1 < λ2, the solution of the problem can be parametrized as:

Lw =

[
λ2 − µ1 µ1 − λ2
−µ1 µ1

]
(5)

We now consider case n = 3 when ` is a leaf, that is:

A =

0 1 0
1 0 1
0 1 0

, Aw =

 0 α12 0
α21 0 α23
0 α32 0

and Lw =

 α12 −α12 0
−α21 α21 + α23 −α23

0 −α32 α32

 (6)

with associated grounded Laplacian L(1)
w =

[
α21 + α23 −α23
−α32 α32

]
.

The computation of the characteristic polynomial shows that:

det[sI − Lw] = (s− α12)φ2(s)− sα21ψ2(s), (7)

det[sI − L(1)
w ] = φ2(s)− α21ψ2(s) (8)

where

φ2(s) = det
[

s− α23 α23
α32 s− α32

]
and ψ2(s) = det

[
s− α32

]
.

Imposing Equations (7) and (8) for given a(s) and b(s) allows to compute the weights
α12, α21, and the two polynomials φ2(s), ψ2(s). In turn, by making use of the solution (5),
it is easy to compute the remaining coefficients α23, α32 from the polynomials φ2(s), ψ2(s)
obtained in the previous step. In the following, we prove that the above procedure can be
extended to a general n ∈ N.
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3.2. A Recursive General Solution When ` Is a Leaf

We are now ready to derive a solution for a generic n ∈ N. It follows an inductive
logic over N and the solution is recursive.

Theorem 1. Let G be a path graph and node 1 a leaf node, and Lw ∈ Lw, L(1)
w ∈ L(1)w be,

respectively, its weighted Laplacian and grounded Laplacian. Take two polynomials a(s) = sn +
an−1sn−1 + . . . + a1s and b(s) = sn−1 + bn−2sn−2 + . . . + b1s + b0 such that their zeros satisfy
the Problem Statement (Section 2.3).

There always exist αij ∈ R such that det[sI − Lw] = a(s) and det
[
sI − L(1)

w

]
= b(s),

and they can be computed using Algorithm 1.

Algorithm 1: Computation of the edge weights as the solution of the Problem
Statement (Section 2.3).

Data: a(s), b(s)
Result: αij, i, j = 1, . . . , n
initialization: φ(n)(s) = a(s), ψ(n)(s) = b(s), αij = 0, for all i, j = 1, . . . , n;
for i = 0, . . . , n− 2 do

αn−i−1,n−i = ψ
(n−i)
n−i−1 − φ

(n−i)
n−i−1;

for j = 1, . . . , n− 2 do

φ
(n−i−1)
j =

ψ
(n−i)
j−1 − φ

(n−i)
j

αn−i−1,n−i
;

end

αn−i,n−i−1 = φ
(n−i−1)
n−i−2 − ψ

(n−i)
n−i−1;

for j = 0, . . . , n− 3 do

ψ
(n−i−1)
j =

φ
(n−i−1)
j − ψ

(n−i)
j

αn−i,n−i−1
;

end
end

Proof. For a path graph, A =


0 1 0 . . .
1 0

. . .
. . . 0 1 0

, Aw =


0 α(n−1,)n 0 . . .

αn,(n−1) 0
. . . α1,2

. . . 0 α2,1 0


and

Lw =


α(n−1),n −α(n−1),n . . .
−αn,(n−1) a(n−1),(n−1)

. . . −α1,2
. . . 0 −α2,1 α2,1

, L(1)
w =


a(n−1),(n−1) −α(n−2),(n−1) . . .

−α(n−1),(n−2)
. . .

−α1,2
. . . 0 α2,1

 (9)

where a(n−1),(n−1) = αn,(n−1) + α(n−2),(n−1). Define:

φn(s) = det[sI − Lw] and ψn(s) = det
[
sI − L(1)

w

]
; (10)
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using the Laplace rule for the determinant along the first line, one can further elaborate:

det[sI − Lw] = (s− α(n−1),n)det


s− a(n−1),(n−1) α(n−2),(n−1) . . .

α(n−1),(n−2)
. . .

α1,2
. . . 0 s− α2,1

−

− α(n−1),nαn,(n−1) det


s− a(n−2),(n−2) α(n−3),(n−2) . . .

α(n−2),(n−3)
. . .

α1,2
. . . 0 s− α2,1

 =

= (s− α(n−1),n)
[
φ(n−1)(s)− αn,(n−1)ψ(n−1)(s)

]
− α(n−1),nαn,(n−1)ψ(n−1)(s)

where φ(n−1)(s) (respectively, ψ(n−1)(s)) is the characteristic polynomial of the Laplacian
(respectively, grounded Laplacian) of the path graph made of (n− 1) nodes once that node
n is removed.

The above computation shows that the following iterative relations hold:

φn(s) =(s− α(n−1),n)φ(n−1)(s)− sαn,(n−1)ψ(n−1)(s) (11)

ψn(s) =φ(n−1)(s)− αn,(n−1)ψ(n−1) (12)

Let now a(s) = sn + an−1sn−1 + . . . + a1s and b(s) = sn−1 + bn−2sn−2 + . . . + b1s + b0
be two polynomials having {0, λ2, . . . , λn} and {µ1, µ2, . . . , µn−1} as zeros, respectively.
Forcing φn(s) = a(s) and ψn(s) = b(s) into Equations (11) and (12), one has:{

a(s) = (s− α(n−1),n)φ(n−1)(s)− sαn,(n−1)ψ(n−1)(s)

b(s) = φ(n−1)(s)− αn,(n−1)ψ(n−1)(s)
(13)

and, exploiting their expanded form, namely φ(n−1)(s) = s(n−1) + φ̄n−2s(n−2) + . . . + p̄1s
and ψ(n−1)(s) = s(n−2) + ψ̄n−3s(n−3) + . . . + ψ̄1s + ψ̄0, it is possible to elaborate further
(13) as:

a(s) = sn + (φ̄n−2 − α(n−1),n − αn,(n−1))s
(n−1) + (φ̄n−3 − α(n−1),nφ̄n−2 − αn,(n−1)ψ̄n−3)s(n−2)+

+ · · ·+ (φ̄1 − α(n−1),nφ̄2 − αn,(n−1)ψ̄1)s2 + (−α(n−1),nφ̄1 − αn,(n−1)ψ̄0)s,

b(s) = s(n−1) + (φ̄n−2 − αn,(n−1))s
(n−2) + (φ̄n−3 − αn,(n−1)ψ̄n−3)s(n−2)+

+ · · ·+ (φ̄1 − αn,(n−1)ψ̄1)s− αn,(n−1)ψ̄0

(14)

and to see that it is possible to have the desired polynomials if the weights α(n−1),n, αn,(n−1)
and the coefficients φ̄i ψ̄i satisfy:

φ̄n−2 − α(n−1),n − αn,(n−1) = an−1

φ̄n−3 − α(n−1),nφ̄n−2 − αn,(n−1)ψ̄n−3 = an−2

... =
...

and

φ̄n−2 − αn,(n−1) = bn−2

φ̄n−3 − αn,(n−1)ψ̄n−3 = bn−3

... =
...
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Consider now the first two equations. Inserting the second into the first one gives
bn−2 − α(n−1),n = an−1, so that we choose to set:

α(n−1),n = bn−2 − an−1. (15)

Consider now the two equations at the second line. Inserting the second relation
into the first one has bn−3 − α(n−1),nψ̄n−3 = an−2, and considering the previous choice of

α(n−1),n we obtain φ̄n−2 =
bn−3 − an−2

bn−2 − an−1
and, proceeding iteratively backwards:

φ̄j =
bj−1 − aj

bn−2 − an−1
for j = 1, . . . , n− 2. (16)

Substituting these values into the second column, one obtains:

αn,(n−1) =
bn−3 − an−2

bn−2 − an−1
− bn−2 (17)

and, in turn, with the above choices, it is possible to compute:

ψ̄j =
φ̄j − bj

αn,(n−1)
for j = 0, . . . , n− 3 (18)

as functions of the coefficients of a(s) and b(s).
The above procedure allows us to compute the edge weights α(n−1),n and αn,(n−1)

together with the two polynomials φ(n−1)(s) (respectively, ψ(n−1)(s)) of the path graph of
(n− 1) nodes obtained by removing node n.

Iterating recursively the previous procedure allows computing all coefficients αi,j,
as follows.

First note that Equations (11) and (12) can be written in a general form for a Path
Graph with V = {1, . . . , j} choosing j as grounded node, namely:{

φj(s) =(s− α(j−1),j)φ(j−1)(s)− sαj,(j−1)ψ(j−1)(s)

ψj(s) =φ(j−1)(s)− αj,(j−1)ψ(j−1)
(19)

for 3 ≤ j ≤ n and ψ2(s) = s− α2,1, φ2(s) = s2 − (α1,2 + α2,1)s, which extend Equations (11)
and (12).

Put the polynomials φ(n−1)(s), ψ(n−1)(s) computed in the previous step as reference
polynomials into the two Equation (19) for j = n− 1. This allows to compute α(n−2),(n−1)
α(n−1),(n−2) together with φ(n−2)(s) and ψ(n−2)(s). Iterating this logic using (19) backwards
until j = 1 allows effectively to obtain all αij, and it can be effectively encapsulated into an
algorithm, as Algorithm 1.

It is worth noting that Algorithm 1 must be iterated a finite number of steps, equal to
the eccentricity of the leader node (namely, the length of a longest shortest path starting at
the leader node). This makes the proposed algorithm well suited as a preliminary routine
to be run before the main application.

4. A Distributed Implementation of Algorithm 1

One key remark for modern engineering and technological applications is that Algorithm 1
is suited to be implemented in a distributed fashion. In such a case, each node can retrieve the
weights of its algorithm by processing data received by its neighbor only.

To achieve this goal, the leader should:

• Compute the polynomials a(s) and b(s) starting from the desired zeros and set them
as reference polynomials.
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• Compute:
α(n−1),n = bn−2 − an−1

to obtain the value of its own weight and the polynomial φ(n−1)(s) = s(n−1) +

φ̄
(n−1)
n−2 sn−2 + . . . + φ̄

(n−1)
1 s through the computation of its coefficients:

φ̄
(n−1)
j =

bj−1 − aj

bn−2 − an−1
for j = 1, . . . , n− 2.

• Transmit α(n−1),n, φ(n−1)(s) and b(s) to node n− 1.

When node n ends the above elaboration, based on the received data, node n− 1 can
trigger its elaboration as follows:

• Retrieve αn,(n−1) and ψ(n−1)(s) = s(n−2) + ψ̄
(n−1)
n−3 s(n−3) + . . . + ψ̄

(n−1)
1 s + ψ̄

(n−1)
0 by

performing the following elaboration:

αn,(n−1) = φ̄
(n−1)
n−2 − bn−2

ψ̄
(n−1)
j =

φ̄j − bj

αn,(n−1)
for j = 0, . . . , n− 3.

(20)

• Then:

α(n−2),(n−1) = ψ̄
(n−1)
n−3 − φ̄

(n−1)
n−2

φ̄
(n−2)
j =

ψ
(n−1)
j−1 − φ

(n−1)
j

ψ̄
(n−1)
n−3 − φ̄

(n−1)
n−2

for j = 1, . . . , n− 3.
(21)

• Transmit α(n−2),(n−1), φ(n−2)(s) = s(n−2) + φ̄
(n−2)
n−3 s(n−3) + . . . + φ̄

(n−2)
1 s and ψ(n−1)(s)

to node n− 2.

Based on the above elaboration, node n− 1 is able compute its own weights αn,(n−1)
and α(n−2),(n−1) through an elaboration on the received data only. The above steps can be
generalized using (19), and hence, it is possible to organize the algorithm so that it can
be executed in a distributed fashion, as follows. Consider a node ` = 2, . . . , n− 1; upon
receipt of α`,`+1, φ(`)(s) and ψ(`+1)(s) from node (`+ 1), node ` should:

• Retrieve α(`+1),` and ψ(`)(s) = s(`−1) + ψ̄
(`)
`−2s(`−2) + . . . + ψ̄

(`)
1 s + ψ̄

(`)
0 by performing

the following elaboration:

α(`+1),` = φ̄
(`)
`−1 − ψ̄

(`+1)
`−1

ψ̄
(`)
j =

φ̄
(`)
j − ψ̄

(`+1)
j

α(`+1),`
for j = 0, . . . , `− 2

(22)

• Then:

α(`−1),` = ψ̄
(`)
`−2 − φ̄

(`)
`−1

φ̄
(`−1)
j =

ψ̄
(`)
j−1 − φ̄

(`)
j

ψ̄
(`)
`−2 − φ̄

(`)
`−1

for j = 1, . . . , n− 3.
(23)

• Transmit α(`−1),`, φ(`−1)(s) = s`−1 + φ̄
(`−1)
`−2 s`−2 + . . . + φ̄

(`−1)
1 s and ψ`(s) to node

`− 1.

The above procedure allows each node ` to compute its own gains α(`+1),`, α(`−1),`
through an elaboration of local information only (namely, data received from its neighbor).
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The technical requirement to achieve this is that each node j should be able to send two
vectors encoding the coefficients of the two polynomials φ(j−1)(s), ψ(j)(s).

The architecture of the distributed implementation of Algorithm 1 is depicted in
Figure 1. Finally, it is worth remarking that the algorithm has finite time execution equal
to n time steps so that it can be run as a preliminary routine before other operations
in applications.

n

↵(n�1),n

n � 1

↵n,(n�1)

↵(n�2),(n�1)

↵(i+1),i
↵(i�1),i

1 2

↵2,1 ↵1,2
↵3,2

a(s), b(s)

b(s)

Node Node

i
Node

Node Node

�(n�1)(s)
�(n�2)(s)
 (n�1)(s)

�(i)(s)

 (i+1)(s)

 (i)(s)
�(i�1)(s)

 (2)(s)  (3)(s)

�(2)(s)�(1)(s)

Figure 1. Sketch of the distributed architecture of Algorithm 1. Each node receives its reference
polynomials, computes its own gains, and transmit the remainder polynomials to its neighbor.

5. A Final Remark on the Solution of Algorithm 1

In this section, we discuss the sign of the weights obtained as solutions of Algorithm 1,
and it is revealed that the condition αi,j ≥ 0 is a consequence of the relative location of λi, µi
in the complex plane. In other words, if the interlacing property is set for λi, µi beforehand,
then the solution of Algorithm 1 always has the property αi,j ≥ 0.

Theorem 2. Let φ(s) = sn + φn−1sn−1 + φn−2sn−2 + . . . φ1s and ψ(s) = sn−1 + ψn−2sn−2 +
. . . ψ1s+ψ0 be two polynomials satisfying the Problem Statement (Section 2.3). Then, Algorithm 1 always
provides positive weights αi,j ∈ R+ satisfying det[sI − Lw] = φ(s) and det[sI − L(1)

w ] = ψ(s).

Proof. Algorithm 1 provides αi,j by solving recursively Equation (13), so we prove the state-
ment by showing that, if a(s) and b(s) satisfy the interlacing property, then the solutions
of Equation (13) are positive weights α(n−1,)n αn,(n−1) and a pair of polynomials φ(n−1)(s),
ψ(n−1)(s), which in turn satisfy the interlacing property between themselves. This allows
to trigger a recursive logic, which proves that all αi,j are positive.

From Equation (13), it is possible to obtain a(s)− sb(s) = −α(n−1),nφ(n−1)(s) so that
αn−1,n = an−1− bn−2 and, considering that an−1 = −∑n−1

i=1 λi and analogously for bn−2, we
obtain ∑n

i=1 λi −∑n−1
i=1 µi = ∑n−1

i=1 λi+1 − µi, which is positive under the strict interlacing
condition between {λi} and µi provided by the Problem Statement. Consider now φ̂(s) =
a(s)− sb(s)
−α(n−1),ns

, which is a monic polynomial of degree n − 1. Computing φ̂(s) at several

points s = λi and s = µi, one has: φ̂(λn) =
b(λn)

α(n−1),n
=

∏n−1
i=1 (λn−µi)
α(n−1),n

> 0 because (λn− µi) > 0

and α(n−1),n > 0 under (13), and φ̂(µn−1) = a(µn−1)
−α(n−1),n

= ∏n
i=2(µn−1−λi)
−α(n−1),n

> 0, φ̂(λn−1) =

b(λn−1)
α(n−1),n

=
∏n−1

i=1 (λn−1−µi)
α(n−1),n

< 0, and φ̂(µn−1) =
a(µn−1)
−α(n−1),n

= ∏n
i=2(µn−1−λi)
−α(n−1),n

< 0, so that, if νn−1

denotes the largest zero of φ̂(s), then νn−1 ∈ (λn−1, µn−1). If νi contains any zero of φ̂(s),
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the computation of φ̂(λi) and φ̂(µi) backwards (iterating the above reasonings from i− 2
to 0) allows to obtain νi ∈ (λi, µi).

Consider now the second of Equation (13), which can be written as b(s)− φn−1(s) =
−αn,n−1ψn−1(s) and the zeros of b(s), φn−1(s) satisfy 0 < ν1 < µ1 < · · · < νn−1 < µn−1.
For the same reasons as before, αn,n−1 = ∑n−1

i=1 (µi − νi) > 0. Building the polynomial

ψ̂(s) =
b(s)− φn−1(s)
−αn,(n−1)

and defining υi as the zeros of ψ̂(s), it is possible to prove analo-

gously that 0 < υ1 < ν1 < · · · < υn−2 < νn−1.

6. An Illustrative Example

In this section, we provide an illustrative example on the distributed implementation
of the Algorithm on a network of six nodes.

Consider that a leaf of a path graph of six nodes starts the algorithm setting a(s) =
s(s− 2)(s− 4)(s− 6)(s− 8)(s− 10) = s6 − 30s5 + 340s4 − 1800s3 + 4384s2 − 3840s and
b(s) = (s− 1)(s− 3)(s− 5)(s− 7)(s− 9) = s5 − 25s4 + 230s3 − 950s2 + 1689s− 945.

According to Section 4, it computes α56 = b5 − a4 = 5 and φ(5)(s) = s5 − 22s4 +
170s3 − 539s2 + 579s. Finally, it sends α56, φ(5)(s) and b(s).

Once that node 5 receives its data, it computes: α65 = 3, ψ(5)(s) = s4 − 20s3 + 137s2 −
370s + 315, and then, α45 = 2, φ(4)(s) = s4 − 16.5s4 + 84.5s2 − 132s. It sends α45, φ(4)(s)
and ψ(5)(s) to node 4.

The Algorithm prosecutes at node 4 with the values α54 = 3.5, ψ(4)(s) = s3 − 15s3 +
68s2 − 90, and then, α34 = 1.5, φ(3)(s) = s3 − 11s2 + 28s. It sends data to node 3, which
computes α43 = 4, ψ(3)(s) = s2 − 10s + 22.5, and then, α23 = 1, φ(2)(s) = s2 − 5.5s, and
sends data to node 2, which in turn computes α32 = 4.5, ψ(2)(s) = s − 5.5, and then,
α12 = 5.

The resulting Laplacian matrix is as follows:

L =



5 −5 0 0 0 0
−0.5 5 −4.5 0 0 0

0 −1 5 4 0 0
0 0 −1.5 5 −3.5 0
0 0 0 −2 5 −3
0 0 0 0 −5 5

.

7. Conclusions

This paper proposes an algorithm for the assignment of the Laplacian eigenvalues
by a suitable choice of edge gains. An iterative algorithm is derived first, after which a
distributed implementation is sought, and its usefulness is also shown using an illustrative
example. Several research directions are currently under investigation, which includes
more complex kinematics models, such as [51], as well as the analysis of several different
graph topologies [1].
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