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Abstract: Despite the rapid advances in autonomous guidance and navigation techniques for un-
manned aerial vehicle (UAV) systems, there are still many challenges in finding an optimal path
planning algorithm that allows outlining a collision-free navigation route from the vehicle’s current
position to a goal point. The challenges grow as the number of UAVs involved in the mission in-
creases. Therefore, this work provides a comprehensive systematic review of the literature on the
path planning algorithms for multi-UAV systems. In particular, the review focuses on biologically
inspired (bio-inspired) algorithms due to their potential in overcoming the challenges associated with
multi-UAV path planning problems. It presents a taxonomy for classifying existing algorithms and
describes their evolution in the literature. The work offers a structured and accessible presentation of
bio-inspired path planning algorithms for researchers in this subject, especially as no previous review
exists with a similar scope. This classification is significant as it facilitates studying bio-inspired
multi-UAV path planning algorithms under one framework, shows the main design features of the
algorithms clearly to assist in a detailed comparison between them, understanding current research
trends, and anticipating future directions. Our review showed that bio-inspired algorithms have
a high potential to approach the multi-UAV path planning problem and identified challenges and
future research directions that could help improve this dynamic research area.

Keywords: metaheuristics; bio-inspired algorithms; unmanned aerial vehicle; multi-UAV; path
planning; ACO; PSO; genetics algorithms; gray wolf optimization; evolutionary algorithms

MSC: 68-06; 68Q07; 00B25

1. Introduction

The need for small autonomous unmanned aerial vehicles (UAVs) has significantly
increased since such UAVs can handle dull, dirty, and dangerous tasks for humans. They are
applied in many fields [1] including firefighting, precision agriculture, and asset inspection.
UAV operational experience proves that their technology offers great advantages, such as
performing at superior precision, acquiring high-quality data, maneuvering with extreme
capabilities, and reducing operational risk. On the other hand, limited battery lifetime,
slow speed, and light payload are among the main concerns that deter wider adoption of
UAVs by more public and private sectors [2].

To overcome the above limitations, the focus is shifting to collaborative UAV systems.
In fact, most of the UAV applications, such as reconnaissance and disaster response, are
better handled by a multiple UAV (multi-UAV) system. A multi-UAV system is more
efficient and capable to accomplish difficult missions and cover wider areas than a single
UAV system [3]. Additionally, in a single-UAV system, a UAV going down during the
mission represents a failure, while an out-of-control UAV is not a problem for multi-UAV
systems. Thus, a multi-UAV system is more reliable than a system with a single robot,
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as multiple robots provide additional redundancy. Furthermore, using sizable UAVs to
augment a single-UAV system extends area coverage only to a point. Conversely, multi-
UAV systems may quickly expand their operational range [4,5]. Despite these advantages,
multi-UAV systems are associated with more challenges due to the need for coordination
and communication between the fleet members especially while navigating through the
environment to ensure collision-free area coverage [6].

Although the UAV flight control architecture is well established, there are still many
challenges in designing autonomous navigation systems for UAVs that can find the shortest
path between two points while optimizing a set of performance measures. The trade-offs
between feasibility, safety, power consumption, and the computation limitation and highly
non-linear dynamics that characterize these devices are what make the UAV path planning
problem a daunting task [7]. Therefore, a plethora of path-planning algorithms for UAVs
has been proposed, e.g., [8–13], based on classical and bio-inspired approaches.

Bio-inspired approaches are showing a remarkable increase in utilization to overcome
the multi-UAV path planning problem, with a counterpart decrease in classical algorithms’
popularity [9,14]. Classical path planning approaches, such as the cell decomposition
approach [15] and artificial potential field [16], are limited by their high processing cost,
long running time, and inability to respond to environmental uncertainty [9,14]. On the
other hand, bio-inspired heuristics have demonstrated the capacity to overcome these
shortcomings [17,18] since they can learn and adapt similar to biological systems, enabling
them to handle environmental uncertainty [8,9,11], especially in parallel processing en-
vironments [14]. The recent reviews of UAV path planning systems emphasize the fact
that bio-inspiration is one of the main approaches that can give good quality solutions
for complex and dynamic environments while handling UAV’s constraints [13]. However,
previous reviews have not focused on bio-inspired approaches specifically for the UAV
path planning problem. Moreover, most reviews cover various path-planning techniques
for general UAV systems, and only two papers [12,13] addressed multi-UAV path planning
as a distinct problem from single-UAV path planning. These reviews omitted important
aspects of many existing algorithms, such as their scope and mode. To fill these gaps, this
paper presents a systematic review of the literature on the bio-inspired algorithms for the
multi-UAV path planning problem. Table 1 shows a comparison of the previous surveys.

The scope of this paper is limited to bio-inspired algorithms and does not include
other types of algorithms that can support multi-UAV path planning. Additionally, it does
not aim to provide a comprehensive analysis of all the studies related to multi-UAV path
planning using bio-inspired algorithms, but rather to provide a brief overview of each
algorithm, how it works, and how it has been evaluated.

This paper makes several significant contributions. First, it reviews the previous
literature on bio-inspired multi-UAV path planning algorithms and presents a structured
classification of them. This classification is significant as it facilitates studying bio-inspired
multi-UAV path planning algorithms under one framework. Second, it shows the main
design features of the algorithms clearly and assists in a detailed comparison between them.
Third, it helps in understanding current research trends and anticipating future directions.
Fourth, it provides a standard set of terminologies for multi-UAV path planning algorithms
to establish a solid framework for this rapidly evolving area of research.

This review defines the various problems, and algorithms used in bio-inspired multi-
UAV path planning. The research questions that guided this work are:

1. What are the different bio-inspired approaches used in multi-UAV path planning?
2. What are the most commonly considered factors in bio-inspired approaches for multi-

UAV path planning?
3. What are the most frequently used techniques for implementing coordination schemes,

planning modes, and navigation scope in bio-inspired multi-UAV path planning?
4. What are the limitations and challenges of developing and implementing bio-inspired

multi-UAV path planning algorithms?



Mathematics 2023, 11, 2356 3 of 35

5. What key research directions need to be addressed to overcome these limitations
and challenges?

Table 1. Discussion of previous literature reviews.

Ref. Year
Discussion

Focus
Bio-Inspiration Multi-UAV Mission Type

[8] 2020 Only PSO Not considered Not considered

They analyzed the previous work based on Path
length; Optimality; Completeness; Cost efficient;

Time efficient; Energy-efficient; Robustness;
Collision avoidance

[9] 2019 Not considered
Considered
multi-robot

only
Not considered

They analyzed the previous work based on
environment (goal and obstacle), hybrid
approach or not, multi-robot, real-time,

simulation result, and Kinematic analysis

[10] 2020 Not considered Not considered Not considered

They classified the previous work based on task,
centralized/decentralized, environment known

or unknown, real-time, collision avoidance
among UAVs, connectivity, formation,

synchronicity, heading, and coordination

[11] 2018 Not considered Not considered Not considered

They reviewed pertinent research concerning the
various Computational Intelligence algorithms
used in UAV path-planning, the categories of
time domain in UAV path-planning, namely

offline and online, and the types of environment
models, namely 2D and 3D.

[12] 2022 Not considered Consider
multi-UAV Not considered

They discussed different path-planning
approaches in terms of contributions and

limitations only

[13] 2022

PSO, ACO, Artificial Bee
Colony, PIO, GWO,

Differential Evolution
algorithm, GA

Considered
multi-UAV Not considered

They discussed classical methods, heuristics,
meta-heuristics, machine learning, and hybrid

algorithms of path planning. They analyzed the
approaches based on targeted objectives,

considered constraints, and environments

The remainder of this paper is organized as follows. Section 2 describes the multi-UAV
path planning problem and algorithms. In Section 3, we present the proposed systematic
review (SR) methodology. In Section 4, we present the SR of the current literature on
bio-inspired multi-UAV path planning algorithms. Section 5 discusses and analyzes the
current research trends of the surveyed literature, followed by conclusions and future
research directions in Section 6.

2. Background
2.1. The Multi-UAV Path Planning Problem

Path planning is an important task of any navigation system, which usually encom-
passes three functions: localization, mapping, and path planning [18,19]. In the robotics
context, path planning involves finding a route that enables a robot to move from a starting
location to a goal [9,19]. The problem is an NP-hard problem (nondeterministic polynomial-
time) [18,20]. The multi-robot path planning problem can be defined as follows: given a set
of m robots in a k-dimensional workspace, each with an initial starting configuration (e.g.,
position) and the desired goal configuration, determine the path each robot should take to
reach its goal while avoiding collisions with obstacles and other robots in the workspace [5].
While single-robot path planning finds an optimal or suboptimal path for the robot from the
initial position to the target position based on optimization criteria [21], multi-robot path
planning aims to find a path for each robot, between specific start and goal locations, while
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optimizing the overall system global cost function [22]. The problem grows in complexity
as more robots participate in the mission [22–24]. Furthermore, unlike single-robot path
planning, multi-robot path planning needs to deal with the robot collision problem as a
moving robot might be seen as a dynamic impediment [25].

Since a UAV is viewed as a flying robot, the discussion of multi-robot problems also
applies to multi-UAV systems [26] but with an added layer of complexity due to their
flying and limited resources features. The multi-UAV path planning problem is usually
viewed as a form of the multiple Traveling Salesman Problem (TSP). The TSP with multiple
UAVs can be seen as a task allocation problem to optimize a certain set of performance
measures by assigning each target, or group of targets, to one UAV [27]. Performance can be
measured based on the ability to find the shortest, cheapest, or safest paths to help achieve a
system-wide goal [7]. Another well-known problem that has been extended to multi-UAVs
is Vehicle Routing Problem (VRP). VRP is a generalization of the TSP problem [28]. The TSP
and the VRP are both NP-Hard routing problems [29]. The primary distinction between a
TSP and a VRP is that the salesperson must return to the initial location after visiting several
points [30]. VRP is typically employed when delivering products from a central depot to
consumers who have ordered those products [28]. Some applications consider a hybrid
model that includes ground vehicles to support UAV routes [31] such as the study [32,33].

Figure 1 shows the main parameters that are usually used to describe the multi-UAV
path planning problem which includes:

• Origin/starting point/source: It is also known as the depot in the traveling salesman
problem (TSP) [34,35]. It represents the current location of the UAV or the initial
location from where the UAV should start traveling. A path planning problem for a
single UAV system usually requires one starting location, however, for a multi-UAV
system, there might be a shared starting location or several starting locations.

• Goal/end point/destination/target: It represents the final location where the UAV
should stop. There can be one or more goals. Goals can be known or unknown in
advance. They can be static, i.e., stationary throughout the mission, or dynamic. i.e.,
change their locations over time [4]. The schemes of goals can be one following:

• One shared goal for all UAVs: There is one goal, and all UAVs will have to visit
this goal.

• Multiple goals, one for each UAV(One-for-each): Each UAV is allowed to visit
exactly one goal.

• Multiple goals for each UAV (Multi-for each): There are multiple sets of goals,
and each set can be visited by precisely one UAV. In this case, the sets are assigned
at an initial phase for each UAV [24]. or each UAV searches for its goals set [36,37].
Alternatively, sets of goals can be overlapping, as shown in Figure 2.

• UAVs: A multi-UAV system can be composed of homogenous vehicles, i.e., with
identical features and capabilities, or heterogeneous vehicles, i.e., with different capa-
bilities [38]. A key feature, especially for a multi-UAV system, is collision avoidance
(CA). CA is an important capability when there are obstacles or multiple UAVs in
the environment. However, CA adds a layer of complexity and challenges, hence,
sometimes it is ignored based on certain assumptions [39]. In 3D environments, in par-
ticular, CA is an issue that should be explicitly handled either by an altitude layering
approach which means that each UAV flies at a different altitude [40,41], or through a
safe distance approach where the distance between any two UAVs should not exceed
a safe distance [10].

• Environment (Env.): It is the workspace in which a UAV navigates which can be
embodied in two-dimensional (2D) or three-dimensional (3D) planes. A map repre-
sentation is usually developed for the environment which can be known, unknown,
or partially known [10,42]. A known map accurately represents the environment and
encapsulates all of its details, such as the surrounding area and obstacles, while a
map with approximate or uncertain information is considered partially known. On
the other hand, in an unknown environment, where a UAV can only acquire fur-
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ther knowledge about the surroundings during navigation, the map is considered
unknown [43]. Another primary characteristic of the environment affecting path plan-
ning problems is its evolution which can be static or dynamic [4]. A static environment
comprises unchanging settings while a dynamic environment includes moving objects,
usually obstacles or other UAVs [44], which change the environment geometry [45].
Dynamicity of the environment can be handled by either replanning the initial path
or calculating the probability of the target position in different cells or time frames.
However, replanning the initial path can encounter limitations when certain thresholds
have been exceeded, such as in [46,47].
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2.2. Multi-UAV Path Planning Algorithms

The open challenges related to time efficiency and computational burden associated
with the multi-UAV path planning problem have attracted researchers to set up different
approaches that encompass traditional and bio-inspired techniques. These techniques differ
mainly in the choices of how these techniques implement coordination scheme, planning
mode, navigation scope, and objective function, as shown in Figure 3:

• Mode: The path planning mode can be offline or online. An offline planner constructs
the path before motion begins. In contrast, an online planner incrementally constructs
the plan while the UAV is in motion [48,49]. Typically, it is recommended to combine
the two approaches to maximize their strengths [17].
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• Coordination: The coordination process in a multi-UAV system describes the control
structure and communications scheme between the vehicles.

• Control can occur in a centralized or decentralized manner [50,51]. In centralized
planning approaches, a single control agent acts as a leader to ensure coordina-
tion among the entire team of UAVs [18,51]. This central agent (e.g., a control
station) usually has global knowledge about network status and each robot’s
interactions [18,50]. Decentralized architectures can be further divided into dis-
tributed architectures and hierarchical architectures. In hierarchical coordination,
multiple-leader robots operate as central nodes for smaller groups of robots. Then,
each leader coordinates with other leaders’ space [50,52].

• On the other hand, distributed approaches lack a central agent; instead, the
individual agents plan and adjust their paths. The decisions are distributed on the
robot team’s side, not determined by a base station [18,51–53]. Hence, distributed
systems are more robust and fault-tolerant than centralized approaches [18].
Specific applications follow a hybrid approach to leverage the advantages of both
centralized and distributed methods [53].

• It is worth noting that the terms decentralized and distributed are used inter-
changeably in the literature (e.g., the study [53]), although referring to distinct
elements of the decision-making policy of the system: authority and responsibility.
As a result, we can have a decentralized system in which the responsibility is not
distributed equally but in a hierarchal scheme, as illustrated before.

• Communications allow sharing of information between robots to enhance their
perception of the environment and inform the decision-making required for
motion planning [4]. Communications can be categorized based on how the robots
exchange information to direct/explicit and indirect/implicit communications.
In explicit communications, robots share information directly, which might take
the form of unicast or broadcast messages, while in implicit communications a
robot learns about other robots in the system by observing its environment [50].

• Scope: Based on the information scale considered while generating the path, planners
can be classified as global, local, or hybrid/mixed [19,48]. If information about the
entire environment is used to plan the path, the planners are considered global. Global
planners are known for their efficiency when the environment map is perfectly known
and the environment is static, therefore, they are also known as static planners. In
contrast, local path planners only consider the area surrounding the vehicle, they are
essential when no environment map is available or when the environment is dynamic,
thus they are known as dynamic or reactive planners [3,4,8,9,42]. In hybrid path
planning, both types are used together; a local planner takes the path from a global
planner and then dynamically adjusts it according to obstacles in the environment [54].

• Objective function: An optimization criterion that is defined by the objective function
is required for finding a path. An objective function can be a multi-objective, single-
objective, or single-objective with weights (where multi-objective weights are balanced
and transformed to single-objective weights) function that should be maximized or
maximized [55]. There are many standard optimization objectives in cooperative
path planning, and the common ones: are cost minimization, payoff optimization,
performance optimization, and risk minimization, such as threats or flight altitude.
The objective function may have different formulations in different scenarios [10].
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3. Review Methodology

This study involved a comprehensive search using the Web of Science (WoS) database [56]
to find publications on multi-UAV path planning based on bio-inspired algorithms from 2013
through 2021. We started by retrieving all English publications that include multi-UAV/multi-
drone and path planning/pathfinding among their keywords, as shown in Listing 1.

Listing 1. Query used to retrieve literature studies.

(((ALL = (Multi* AND UAV AND path AND planning)) AND LANGUAGE: (English)) OR
((ALL = (Multi* AND UAV AND path AND finding)) AND LANGUAGE: (English)) OR
((ALL = (Multi* AND drone AND path AND finding)) AND LANGUAGE: (English)) OR
((ALL = (Multi* AND drone AND path AND planning)) AND LANGUAGE: (English)))

Initial search results returned 623 items to which we applied our selection criteria for
the first filtering process. Figure 4 shows our research methods, the review process, and the
filtering procedures. In this figure, we followed the PRISMA guidelines [57].

In the first filtering process, the resulting records or publications were revised and
excluded from our survey based on the following criteria:

• The article was published between 2013 and 2021.
• Conference papers, posters, or demos as these publications do not provide adequate

information about contributions due to a lack of supplied content to evaluate.
• Articles with an unavailable full text through WoS.

The first revision cycle ended with 287 search results. Then, we carried out a second
screening procedure in which we manually reviewed each research paper to exclude articles.
From the resulting list, publications encompassing one or more of the following criteria
were excluded:

1. Survey papers.
2. Articles that do not consider UAVs as an agent in the system.
3. The proposed algorithm is not a bio-inspired algorithm or any algorithm that is

hybridized with a bio-inspired algorithm.
4. The article did not include path planning as the main topic or one of the achieved

contributions.
5. Articles focusing on UAV hardware—The paper’s contribution is limited to UAV

manufacturing, i.e., the design of hardware, mechanical, and electronic components
of UAVs.

6. Articles focusing on single-UAV path planning. The paper contributes only to single-
path planning systems.
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7. Articles focusing on navigation functions other than path planning, such as mapping
or localization techniques.

8. Articles focusing only on developing a simulation tool or a framework for UAVs.
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After scanning article titles, abstracts, keywords, and conclusions during the second
revision round, we were left with 287 articles. Next, we screened the remaining papers
again in a fine-grained stage, this time reading the entire body. Finally, we read the full
text of the remaining 38 articles in the third revision cycle. We eliminated 10 more articles
because we found that one or more of the exclusion criteria above applied to them. The
remaining 28 articles were considered for review. At this point, data was extracted from
each relevant publication based on the main factors described in Section 1 and archived
according to the format shown in Table 2. For each publication, we recorded the article
title and publication date, the given name of the proposed algorithm, and its acronym if
any. Additionally, for each algorithm, we specified whether it is an original algorithm or an
enhancement of an original algorithm, or a hybridization from different algorithms. We
also noted the considered application domain whether civil, military, or other.
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Table 2. Data archiving format for each publication.

Attribute Value/Description

Paper info
Title The paper title

Year The year when the paper was published in WoS

Proposed approach

Name The specific title and acronym used in the paper to
refer to the proposed approach.

Type Original, enhanced, or hybrid

Application domain The context in which the path planning was applied in
the proposed approach

Problem

Origin One or multiple

Goal

One or multiple

Known or unknown or probability known

Static or dynamic

UAVs

Team Homogeneous or heterogeneous

CA

With UAVs
With obstacles

With both UAVs and obstacles
None

Environment

Representation 2D or 3D

Map Known, unknown, or partially known

Evolution
Static, dynamic, or hybrid

Dynamic element (obstacles, other UAVs, or both)

Algorithm

Coordination
Communication Explicit or implicit

Control Centralized, decentralized, or distributed

Scope Local, global, or hybrid

Planning mode Online, offline or hybrid

Objective function

Type Single, single with weighted-sum or multi

Criteria Minimize or maximize

Constraints List of problem constraints

Evaluation

Approach Real system or simulation

Benchmarks List of benchmark algorithms used in the evaluation
against the paper’s proposed approach

Performance measures The indicators used to assess the achievements of the
proposed approach

After that, we focused on more detailed information about each examined path plan-
ning problem including whether the considered UAV team is homogeneous or heteroge-
neous and do UAVs fly from a shared starting point and arrive at a shared goal or instead
there are multiple sources or destinations. Whether the environment is static or dynamic
has also been recorded. We considered environmental dynamics if the targets or obstacles
changed positions or new targets or obstacles were added during the execution of the mis-
sion; otherwise, the environment was considered static. We also noted dynamic elements
such as obstacles or targets changing position and moving. Information about collision
avoidance features has also been considered and whether it included collisions with both
other UAVs and obstacles or only one of them.

Additionally, for each study, we recorded whether the approach is conducted in a 2D
or 3D environment. In the case of a 3D environment, we examined the method for handling
the z coordinate. The factors related to the algorithm which include its coordination
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approach (i.e., centralized versus distributed), the planning approach (online, offline, or
hybrid), and whether the algorithm scope was local, global, or hybrid have also been
studied. Moreover, we noted the objective function. We classified objective functions as
multi-objective, single-objective, and single-objective with weights (where multi-objective
weights are balanced and transformed to single-objective weights). We also recorded the
values to be minimized or maximized with the objective function. Furthermore, we listed
any constraints included in the problem formulation. We also recorded any tools used
in the paper for implementation and whether the authors conducted simulation or/and
real-life experiments using physical UAVs. Moreover, we listed the benchmark algorithm
used in evaluating the approach.

4. Bio-Inspired Multi-UAV Path Planning Algorithms

Although many bio-inspired algorithms were introduced decades ago, such as the
basic genetic algorithm (GA) which was coined in the 1960s, they were not applied to
multi-robot path planning systems until 2013 [8]. Undoubtedly, fewer studies have applied
these algorithms to the multi-UAV path planning problem. Interestingly, some bio-inspired
algorithms, such as ant colony optimization (ACO), and pigeon-inspired optimization
(PIO), were initially proposed for the path planning problem in particular.

Our survey revealed that the entire retrieved collection of bio-inspired multi-UAV
path planning algorithms originated from eight algorithms: particle swarm optimization
(PSO), genetic algorithms (GA), gray wolf optimization (GWO), ant colony optimization
(ACO), pigeon-inspired optimization (PIO), fruit fly optimization (FOA), life-cycle swarm
optimization (LSO), and intelligent water drops (IWD). We called these algorithms original
algorithms since they have been applied to the multi-UAV path planning problem without
tailoring them to this specific problem and to distinguish them from the initial proposals of
the algorithms regardless of their application area which we referenced as basic algorithms.
The other algorithms are either a variant of one of the above eight algorithms proposed
to better deal with the complexity of the multi-UAV path planning problem, we called
them enhanced algorithms or hybridization of two or more algorithms from previous
work, we called this group hybrid algorithms. However, a small set of algorithms has not
followed any the of aforementioned approaches, we called them others. Figure 5 shows
our categorization of the reviewed bio-inspired multi-UAV path planning algorithms.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 37 
 

 

 
Figure 5. Classification of the reviewed bio-inspired multi-UAV path planning algorithms. 

4.1. PSO and Its Variants 
PSO algorithm is a stochastic population-based metaheuristic algorithm developed 

by Eberhart and Kennedy [58,59] in 1995 to simulate social and cognitive behaviors. The 
algorithm is inspired by the social behavior of fish schools or bird flocks. While searching 
for food, the behavior of each member in these groups, referred to as a particle, is affected 
by its past experiences and by the group member nearest to the food. The group reaches 
its end goal, i.e., food sources, by communicating its search findings. Due to its effective-
ness, PSO has become a fast-growing optimization method for handling various problems 
in science and engineering, including the path planning problem. However, it suffers from 
two disadvantages where it can easily stuck into local optima and it has a low convergence 
rate [60,61]. Although PSO has a simple structure, few parameters, and is easy to imple-
ment [62], it is not suitable for discrete problems [63]. For discrete PSO, new forms of 
“motion” and “velocity” are required [63]. Additionally, in the PSO search space, there is 
no mechanism for significant rapid movement which leads to leading to poor performance 
[60]. 

4.1.1. Original PSO 
Interestingly, the original PSO algorithm was only applied in multi-UAV path plan-

ning after some improved versions of it had been already used. Original PSO was first 
applied, in 2020, by Teng et al. [64] during a surveillance mission to detect illegal drones. 
A multi-UAV centralized surveillance system was developed to generate optimal 3D tra-
jectories using a single-objective function, which considers energy consumption, flight 
risk, and area priorities with the associated cost for each component. A simulation study 
was conducted using several UAVs to show that the fitness value converges to a stable 
value as the number of iterations and particles increases. Figure 6 presents the main steps 
in the PSO algorithm which comprises a group of particles in which each particle is a 
possible solution. Initially, the particles are set to random candidate solutions, and the 
PSO algorithm allows global information sharing. Therefore, each particle’s movement is 
guided by its own best-known position (local) in the search space and the global best-
known position [65]. 

Figure 5. Classification of the reviewed bio-inspired multi-UAV path planning algorithms.

4.1. PSO and Its Variants

PSO algorithm is a stochastic population-based metaheuristic algorithm developed
by Eberhart and Kennedy [58,59] in 1995 to simulate social and cognitive behaviors. The
algorithm is inspired by the social behavior of fish schools or bird flocks. While searching
for food, the behavior of each member in these groups, referred to as a particle, is affected
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by its past experiences and by the group member nearest to the food. The group reaches its
end goal, i.e., food sources, by communicating its search findings. Due to its effectiveness,
PSO has become a fast-growing optimization method for handling various problems
in science and engineering, including the path planning problem. However, it suffers
from two disadvantages where it can easily stuck into local optima and it has a low
convergence rate [60,61]. Although PSO has a simple structure, few parameters, and is
easy to implement [62], it is not suitable for discrete problems [63]. For discrete PSO, new
forms of “motion” and “velocity” are required [63]. Additionally, in the PSO search space,
there is no mechanism for significant rapid movement which leads to leading to poor
performance [60].

4.1.1. Original PSO

Interestingly, the original PSO algorithm was only applied in multi-UAV path planning
after some improved versions of it had been already used. Original PSO was first applied,
in 2020, by Teng et al. [64] during a surveillance mission to detect illegal drones. A multi-
UAV centralized surveillance system was developed to generate optimal 3D trajectories
using a single-objective function, which considers energy consumption, flight risk, and area
priorities with the associated cost for each component. A simulation study was conducted
using several UAVs to show that the fitness value converges to a stable value as the number
of iterations and particles increases. Figure 6 presents the main steps in the PSO algorithm
which comprises a group of particles in which each particle is a possible solution. Initially,
the particles are set to random candidate solutions, and the PSO algorithm allows global
information sharing. Therefore, each particle’s movement is guided by its own best-known
position (local) in the search space and the global best-known position [65].
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4.1.2. Enhanced PSO

In 2017, Liu et al. [37] studied the problem of using multiple UAVs to search for
moving targets with sensing capabilities in an uncertain 2D environment. They developed
a coverage search path planning optimization model and a hybrid PSO to tackle the problem
to optimize the opportunity for cumulative target discovery. In the enhanced algorithm, the
particles not only update their speeds and positions but also undertake pairwise crossover
operations to make offspring particles and replace the present particles. For information
sharing and path coordination, an explicit approach was followed where all UAVs utilize
the same search map to display current environment data, and continually update the
search map. A simulation study was conducted to compare the enhanced PSO with the
original PSO which found that the enhanced version revealed more targets than the original
algorithm under the same conditions.
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In 2019, Liu et al. [66] proposed another enhanced PSO algorithm to improve the
original PSO and overcome the disadvantages of local optima and slow convergence.
The enhanced algorithm generates 4D paths for multiple UAVs sharing the exact arrival
time at a shared destination. The objective function considers multiple factors including
obstacle and threat avoidance, estimated arrival time (ETA), safety distance, and UAV
self-constraints. The influence of UAVs number on path length and the distance between
UAVs was examined using a simulation study which revealed that the proposed approach
provides better results as the number of UAVs increases when compared to the A star
(A*) [67], and Tau Theory [68] algorithms.

In the same year, Yan et al. [69] used multiple heterogeneous UAVs carrying different
resources to perform search and attack missions where several UAVs (coalition) can attack
a target simultaneously. They addressed the coupled task allocation and path planning
problems by a distributed cooperative PSO algorithm. The algorithm generates flyable and
safe trajectories for a UAV coalition to achieve simultaneous arrival. The particles of each
subpopulation of the PSO algorithm distribute their values so that other subpopulations
can modify the fitness of their particles accordingly. They used weights to balance the
reward of the target and the cost of the UAV coalition to maximize the system’s utility.

Zhen et al. [70], in 2020, proposed another PSO enhancement on a multi-UAV path
planning mission from a shared source to a shared target point based on a multi-objective
function, optimizing the length, height, and turning angle of the path. The proposed algo-
rithm enhanced the original PSO by adding a vibration function to avoid collisions between
UAV paths and improving the selection of the global best position using a reference point
method. A 3D modeling method that combines the polar coordinates with a continuous 2D
path planning method was developed to reduce the particle dimension and the number of
iterations. The simulation experiments that were conducted to compare the performance of
the proposed approach with other enhanced PSO algorithms, the multi-objective PSO [71]
and the nondominated sorting genetic algorithm [72], showed the superior performance of
the proposed algorithm.

4.1.3. Hybrid PSO

Shen et al. [46] developed a PSO-based multi-UAV path planning algorithm for de-
tecting ship air pollution in a dynamic environment. To minimize the challenges in such a
dynamic environment, the algorithm considered a 2D world, neglected collision avoidance,
and used a threshold to decide whether to replan the path. The algorithm incorporated
a tabu table and a minimum ring method into PSO to improve its optimization ability.
A single-objective cost function with weights was used to minimize the total cost of the
flight electricity for the UAV fleet and the time of each UAV’s formation detection. The
main considered constraints include the consumed power by a UAV should not exceed its
remaining power, and the remaining power should enable it to fly to the nearest charging
point. The proposed approach achieved better optimization than the original PSO in a
simulated environment of three UAVs.

Shao et al. [65] evaluated an improved PSO (IPSO) when combined with Gauss pseudo-
spectral method (GPM). They developed a hierarchical hybrid optimization scheme where
the first layer uses IPSO to find a feasible path with the shortest possible length. The
IPSO proposed three main improvements to the original PSO, which include adaptive
adjustments to acceleration coefficients, maximum velocity, and particle positions. The
second layer utilizes GPM to plan a trajectory for each UAV with the minimum flying
time and considering the constraints involved in collision avoidance between UAVs and
obstacle avoidance with no-fly zones. Numerical simulation using the three UAVs showed
that both PSO and IPSO could guarantee viable paths, however, the IPSO fitness value
was smoother and converged faster than that of the original PSO. Additionally, trajectories
generated by IPSO-GPM are all flyable and have better obstacle avoidance than the original
GPM. Furthermore, the proposed schemes have faster running times when compared to
the original schemes.



Mathematics 2023, 11, 2356 13 of 35

Ahmed et al. [73] proposed a distributed trajectory planner based on PSO and the
Bresenham algorithm [74] to generate optimal trajectories for a multi-UAV surveillance
system. The PSO was used to generate the optimal trajectories, while the Bresenham
algorithm ensured full coverage of the operational area.

In an attempt to further hybridize PSO to enhance its performance, Wang and Liu [75]
merged PSO with the artificial potential field algorithm [76] to study the hybrid mode of
path planning for a multi-UAV monitoring mission after an earthquake based on virtual
reality technology. In their method, the environment constituted a 3D flight space and
multi-degree freedom navigation. The initial path planning took place with the Dijkstra
algorithm before its optimization using the hybrid PSO. The evaluation of the proposed
hybrid algorithm against the multitarget tracking algorithm and ACO showed its efficiency.
Table 3 summarizes reviewed path planning approaches for multi-UAV systems based on
the PSO algorithm and its variants.

4.2. GA and Its Variants

GAs are one of the oldest search-based optimization algorithms [40]. This algorithm
has a population that includes individuals characterized by genes. Each individual is set to
a fitness value given an objective function. The best individuals are chosen according to
their fitness value, and a crossover between these individuals occurs. The crossover process
allows the best individuals to pass their genes, and a mutation process is added to ensure
diversity in the new generation of individuals. Despite the known advantages of GA, such
as parallel capabilities, global optimization, and application to a wide range of functions, it
has some limitations, such as no guarantee of an optimal solution and a low convergence
rate [9,77], which wastes time and makes it unsuitable for optimizing multi-UAV path
planning applications [78]. However, GA has potential due to its parallel nature. It provides
a wide range of possibilities for acceleration over several cores or machines and can take
advantage of enormous quantities of capacity when available, as demonstrated in recent
research articles [79].

Table 3. Comparison of the reviewed multi-UAV bio-inspired algorithms.
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Ori: Original; En: enhanced; Hd: hybrid; M: multiple; M/E: multiple goals for each UAV; 1/E: one goal for
each UAV; M/E/O: multiple goals for each UAV with overlapping; S: static; D: dynamic; P: probability known;
UK: unknown; K: known; PK: partially known; HO: homogeneous; HT: heterogeneous; O: Obstacles; U: UAV;
U + O: UAVs and Obstacles; E: explicit; I: implicit; C: centralized; Dist: distributed; Off: offline; On: online; SGL:
single-objective; S-WS: single-objective (weighted sum); Sim: simulation; “-“: not mentioned.

4.2.1. Original GA

The original GA follows the same steps as the basic GA. However, the original en-
codes the UAVs’ serial numbers or numbers in the chromosome representation. The best
chromosomes are found at the last generation of mutation and crossover, representing
the UAVs’ paths. Figure 7 shows a flow chart of the path planning GA algorithm for
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multi-UAV applications [81]. A couple of original GA studies were proposed. In 2017,
Wilhelm et al. [81] developed a path planner for a heterogeneous multi-UAV system based
on GA to search for a target of interest (TOI) in a surveillance mission. A multi-objective
function was adapted to maximize the covered distance while ensuring that the inspection
of POIs was well distributed. Simulation scenarios with different numbers of UAVs and
TOI locations results indicated that the proposed GA-based algorithm provided additional
surveillance of the TOI while reducing the overall mission time. However, the proposed
algorithm was not evaluated against other path planning algorithms.

In 2019, Cao et al. [84] proposed a GA-based path planning algorithm for cooperative
reconnaissance missions of multiple UAVs. They considered the problem when each UAV
has a different base, i.e., start point, and used graph theory to transform this problem
into the shortest path combinatorial optimization problem. The objective function was to
minimize the residence time for effective detection of enemy radars. The suggested scheme
was tested in a simulated reconnaissance mission of sixty-eight targets, eight UAVs, and
four bases to demonstrate its efficiency. However, all of the survey work based on the
original GA did not consider obstacle avoidance in the system. Moreover, the benchmarking
of the studies falls short in terms of the algorithms considered for evaluation against the
proposed algorithm.
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4.2.2. Enhanced GA

Three studies proposed enhancing GA to approach the multi-UAV path planning
problem. In 2014, Ergezer et al. [36] introduced an enhanced GA for path planning in a multi-
UAV system that visits desired regions to collect images while avoiding forbidden regions
in a 3D environment. The enhanced GA defines evolutionary operators as innovative
mutation operators and uses a single-objective function with a weighted sum to maximize
visual information collected from the desired region, minimize the distance to the final point,
minimize the dissipated energy, and minimize the collision penalty with undesired regions.
The approach underwent testing using simulation and showed that it could generate
feasible paths while avoiding undesired regions. Nevertheless, no assessment of the effect
of changing different variable values on the system performance has been conducted.
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In 2016, Cakici et al. [80] modified the approach in [36] to include a real-world platform
and more realistic flying pathways. They evaluated their approach using simulation
scenarios and real experiments using small UAVs. Their evaluation section showed that the
proposed approach proved beneficial for multi-UAV missions to maximize the collected
amount of information from the desired regions. However, both approaches have not
considered benchmarking with other known path planning algorithms.

In another enhancement based on GA, Wu, and Cui [82], in 2018, introduced a planning
algorithm for a fleet of heterogeneous UAVs to execute sequential operations, including
classification, attack, and verification on several known targets. They modified the genes
of the chromosome of the original GA [94] to adapt to the heterogeneous characteristic of
UAVs. The objective function involved finding the minimum time for UAVs to accomplish
the required tasks on all targets attached to the cost function and the total length of
generated trajectories. They conducted real experiments and compared their proposal with
a centralized GA [95] and found that the enhanced algorithm could find good feasible
solutions, improve the operating rate and avoid single-point failures.

4.2.3. Hybrid GA

One of the first GA hybrids approaches for multi-UAV path planning was in 2018 when
Lee et al. developed a mini-drone and proposed a genetic vector field (GVF) algorithm
for multi-agent path planning [83] with collision avoidance with neighboring agents or
surrounding obstacles. The GVF uses a modified GA to globally optimize target assignment
and utilizes a vector field algorithm [96] to generate a collision-free path to the target. The
proposed path planning algorithm was evaluated based on real experiments using four
agents in an outdoor environment. The findings indicated that the GVF can generate
optimal paths for each agent.

In 2021, motivated by the poor convergence speeds of many influential algorithms,
Pan et al. [78] developed a multi-UAV path planning algorithm to visit several distributed
sensor nodes in challenging scenarios. They proposed a deep learning algorithm (DL)
trained by a GA. The DL-GA algorithm produces an optimized path based on an objective
function that minimizes the total distance of all UAVs. The numerical experiments showed
that DL-GA could successfully design paths for multi-UAVs at a reduced total distance,
solving time, and the number of required UAVs for the mission. Table 3 summarizes
existing path planning approaches for multi-UAV systems based on GA and its variants.

4.2.4. Other Evolutionary Algorithms

Evolutionary algorithms are metaheuristics that rely on natural selection and genetic
variation to solve problems. This type of metaheuristic is used to solve a problem through
the processes of breeding and mutation. Du et al. [93] proposed an approach to solving
multi-UAV path planning for a missing tourist mission using a new hybrid evolutionary
algorithm. Specifically, multiple UAVs search the target area to find missing tourists. They
formulated a UAV search problem for minimizing the time required to detect missing
tourists and proposed a method for estimating tourist location probabilities that changed
with topographic features, weather conditions, and time. Furthermore, they extended a
hybrid evolutionary algorithm to include sub-algorithms for optimizing the UAV paths in
each solution. The sub-algorithm produces a search path using NEH heuristics and tabu
search methods for an individual UAV.

Figure 8 shows how the main algorithm evolves the solutions using migration and mu-
tation operators. The migration operator, inspired by the biogeography-based optimization
metaheuristic, used a propagation operator similar to that of the water wave optimization
metaheuristic. The authors conducted a computational complexity analysis of their algo-
rithm. Additionally, unlike the majority of approaches in the literature, they evaluated
the performance of their approach against multiple benchmarks. These benchmarks com-
prised greedy, a partially observable Markov decision process-based heuristic, a method
based on a Gaussian mixture model and receding horizon control, ACO, PSO-GA, the
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artificial bee colony algorithm, a hybrid max-min ant system combined with tabu search,
and a symbiotic organism search optimization algorithm. According to their findings,
the expected detection times proved significantly shorter, validating the proposed search
planning framework’s effectiveness and efficiency in solving the problem. Additionally,
their proposed framework produced the shortest median expected detection time. Table 3
summarizes existing methods that used evolutionary algorithms and their variants to
approach the multi-UAV path planning problem.
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4.3. GWO and Its Variants

GWO is a swarm intelligence-based algorithm created by Mirjalili et al. [97] in 2014.
The GWO algorithm took its inspiration from gray wolves, which constantly seek the most
efficient technique to hunt prey. A GWO algorithm employs the same method, following
a group hierarchy to organize the various functions within a wolf group. GWO classifies
group members into four categories based on the wolf’s involvement in progressing the
hunting process. Alpha, beta, delta, and omega comprise the four groups, with alpha
constituting the best solution for hunting. The basic GWO research divides the population
into four groups to reflect the natural dominance order of gray wolves. The optimal fitness
solution is denoted by the symbol alpha (α). Beta (β) is the second-best fitness solution,
and delta (∆) is the third. Omega (ω) is the final fitness solution. The top three fitness
solutions direct all optimization processes; omega wolves seek the global optimum by
sticking to these three wolves [83]. The four wolf packs and their locations are established,
and the distances to the target prey are determined. Then, the three best solutions are found:
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alpha, beta, and delta. Moreover, each omega wolf participates in the search process by
guiding the three best solutions and updating their positions. Each wolf is associated with a
potential solution and receives updates throughout the search process. Additionally, GWO
employs operations regulated by two parameters to sustain exploration (searching for the
target) and exploitation (converging on the target) to avoid trapping in local optima [98,99].

4.3.1. Original GWO

Original GWO follows the steps of the basic GWO. In the original GWO, the basic
GWO search process creates a random population of gray wolves for each UAV. At the
end of iterations of the search process for each UAV, the best gray wolf agent is retrieved,
representing each UAV’s optimized path. Figure 9 shows multi-UAV path planning using a
GWO algorithm [85]. From the proposals of basic GWO in the multi-UAV path planning
problem, two can be considered original. In 2018, Radmanesh et al. [85] applied GWO to
multi-UAV path planning in a 2D world. They proposed a novel approach utilizing the
formulation of dynamic Bayesian, DBVF, and GWO to solve path planning and collision
avoidance problems in multi-UAV missions in the presence of fixed and moving obstacles
in an uncertain environment. The UAVs sought to reach a shared goal position using the
shortest and safest path obtained through GWO. The objective is to minimize the total
weight of the path, which comprised a combination of the distance from the goal position
and the risk of collisions with intruder aircraft. Radmanesh et al.’s work rank among the
few studies in this review that considered a dynamic environment and a large number
of UAVs.
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In 2019, Dewangan et al. [86] applied GWO to a multi-UAV path planning problem
in a 3D world. The primary purpose involved finding an optimal trajectory with minimal
path length cost for each UAV while avoiding static obstacles. Intensive benchmarking
was conducted to evaluate the proposed approach against Dijkstra, A*, D*, the intelligent
BAT algorithm [100], Biogeography-based optimization [101], PSO, glow-worm swarm
optimization [102], whale optimization algorithm [103], and the sine cosine algorithm [104].
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The simulation results found that GWO converges faster than the other algorithms, es-
pecially in complex maps. It also can avoid local optima and utilizes a smaller number
of parameters. Both studies, [85], evaluated the influence of different variables on the
execution time or the time needed to find a solution.

4.3.2. Enhanced GWO

An enhancement to GWO was developed in 2020 by Xu et al. [87] who presented an
optimized multi-UAV cooperative path planning method under a complex confrontation
environment to execute a strike mission where UAVs take off from different areas to go
to a mission area. The enhancement includes improving population initialization and
updating the decay factor and the individual position formula. It also includes introducing
a multi-constraint objective optimization model for multiple UAVs to capture the different
constraints, such as space and time, threat, and fuel consumption modeling. It associ-
ated weights with radar threat cost, missile threat cost, terrain threat cost, and fuel cost.
The summation of all previous factors with their weights represented the cost function
the algorithm sought to minimize. When benchmarked against GA, PSO, and original
GWO the simulation results demonstrated the effectiveness of the enhanced algorithm
in path planning for multi-UAV missions and its speedy convergence which outpaced
the benchmarks.

4.3.3. Hybrid GWO

In 2020, Yang [88] introduced a multi-population chaotic GWO (MP-CGWO) as an
enhanced GWO for path planning in a multi-UAV mission that undertakes a cooperative
strike on a known target. The enhancement involves modifying the original GWO ini-
tialization phase to an equal rather than random division of coordinates and adding a
chaotic local search to prevent local optima. The multi-objective cost function includes fuel
consumption, maximum climb/slide angle, peak threat, flying altitude, and multi-UAV
cooperation time. A 3D digital elevation model was used to represent the world and
conduct simulation experiments to evaluate the approach against differential evolution
(DE) [105], PSO, and GWO algorithms. The results verified the effectiveness of MP-CGWO
in realizing multi-UAV cooperative path planning with better stability and search accuracy.
Table 3 summarizes existing path planning approaches for multi-UAV systems based on
the GWO algorithm and its variants.

4.4. ACO and Its Variants

The ACO algorithm is an intelligent population-based algorithm developed in 1992 by
Dorigo [9,106] to approach combinatorial optimization problems. The basic ACO algorithm
took its inspiration from the ability of ants to find the shortest path between food sources
and their nest. Each ant leaves a trail of pheromones on the path to a food source, and
later, other ants follow this trail to maximize their chance of finding food. The intensity of a
deposited pheromone is inversely proportional to the path length, meaning that the ant
with the shortest path will leave a high concentration of pheromone, leading other ants to
follow it. In the ACO algorithm, the first step involves setting the main parameters, and the
initial pheromone value is set. Next, the algorithm iterates until the termination condition is
reached. During each iteration, ants search for a solution, and the pheromone concentration
updates at the end of the loop. The updating process will involve increasing or decreasing
the amount of pheromone. The latter reportedly reflects the evaporation of the pheromone,
and it is applied to paths not taken by any ant during the iteration. In each step of the
search, each ant has a transition probability that balances exploration (ignoring a path’s
pheromone and following a greedy mechanism) and exploitation (following paths with
high pheromone concentration). Since its introduction, the ACO algorithm has been applied
in various fields of science and engineering, including job-shop scheduling, vehicle routing,
quadratic assignment problems, and graph coloring [9]. Despite the known advantages
of ACO, such as parallelism and rapid feedback [107], it suffers from slow convergence
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speed, which wastes time and makes it unsuitable for optimizing multi-UAV path planning
applications [108].

4.4.1. Original ACO

The multi-UAV path planning ACO algorithm [9,108], presented in Figure 10, follows
a similar approach to basic ACO to generate the best-found trajectory for all UAVs. The
main difference is that each ant will construct a solution considering one UAV. Each ant has
its trajectory, and all possible UAV trajectories form the ant population. Each population of
ants has the same position, navigation, vision, communication, and interaction capabilities
as the UAV platform [108]. Initially, each ant will begin from the UAV start locations. During
the solution construction phase for a specific UAV, each ant will simulate the movement of
the UAV and move according to a transition rule. After iterating through the UAVs, each
ant will construct a solution. Once the entire population of ants has completed this process,
the best solutions obtained within the present population are identified and preserved.
Following this, the pheromone updating process occurs. Finally, the ACO algorithm returns
the best global solution if the main loop reaches an end condition. However, we could not
locate a study that applied the original multi-UAV path planning ACO.
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4.4.2. Enhanced ACO

Several papers enhanced ACO for the multi-UAV path planning problem. In 2018,
Perez-Carabaza et al. [89] enhanced ACO to address the path planning problem of multi-
UAV with moving targets and straight-segment trajectories. The enhancement included
a new heuristic function specifically designed for minimum time search (MTS) problems.
The approach did not consider obstacles or UAV collision avoidance. However, it consid-
ered both dynamic and static goals assuming that the probability distribution function
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models the available target location information before the search begins. The objective
function involved minimizing each trajectory’s expected target (ET) detection time. For the
evaluation, several scenarios ranging from static to complex dynamic were implemented.
Additionally, statistical comparisons with other techniques for MTS (ad hoc heuristics,
cross-entropy optimization, a Bayesian optimization algorithm, and a GA) were conducted.
The comparisons show that the proposed approach outperformed the other approaches.

In 2018, Ziyang et al. used an enhanced online ACO, to implement a multi-UAV coop-
erative search-attack mission [90]. The UAVs executing the algorithm were heterogeneous,
and some UAVs executed search missions while others executed attack missions. When
executing a search mission, each UAV aimed to find more targets and search more grids.
When executing an attack mission, each UAV preferred to attack targets with higher values.
The paper divided the global optimization problem into local optimization problems. The
planning process comprises two phases: waypoint generation and path generation. In the
first phase, an improved distributed ACO algorithm generates waypoints. The connected
waypoints generate a flyable path in the second phase. However, if a threat is discovered
during flight, the algorithm replans the path to avoid the threat. The authors analyzed the
convergence performance of their algorithm against a distributed search-attack mission
self-organization algorithm, basic intelligent self-organized algorithm, and intelligent self-
organized algorithm. Additionally, they analyzed the external responsiveness and internal
scalability of their algorithm and found that the convergence rate was higher or similar to
the benchmarks and had suitable internal scalability and external responsiveness.

4.4.3. Hybrid ACO

In 2020, Zhang et al. [24] addressed the issue of cooperative mission planning for
several UAVs on a battlefield by implementing a three stages approach that generates
complete paths for multiple UAVs. First, targets are clustered into subgroups. Then, a fuzzy
ACO algorithm calculates the global path between the target subgroups. Last, the fuzzy
ACO generates the local paths for a single-target subgroup. A cooperative communication
method was used to reduce the number of UAVs performing a task. The objective function
minimizes the total distances traveled by the UAVs and the detention time for all UAVs. The
evaluation section indicated the effectiveness of the proposed fuzzy ACO when simulated
based on two UAVs considering different numbers of ants, targets, and iterations. Table 3
summarizes existing path planning approaches for multi-UAV systems based on ACO
and variants.

4.5. PIO and Its Variants

PIO is a relatively new algorithm proposed in 2014 by H. Duan and P. Qiao [109].
The basic PIO algorithm was initially proposed to solve the path planning problem of a
single air robot. The homing behavior of pigeons, including their perception of the Earth’s
magnetic field by altering the map in their brains through magnetoreception, inspired the
algorithm. Pigeons use the altitude of the sun as a compass to modify their direction. When
pigeons fly close to their target, they rely on nearby landmarks: they will fly directly to
their destination if they recognize the landmarks. Pigeons far from their destination will
follow other pigeons familiar with the current location. Specifically, they utilize a map and
compass operator model based on the magnetic field and the sun. PIO implements virtual
pigeons that adjust their velocity and position vectors in each iteration. The algorithm
utilizes randomness and the current global position to update its information [6]. The
PIO is known for its superiority in task assignment and path planning over other swarm
intelligence optimization methods. However, it suffers from a short population search span
and fast prematurity [47].
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4.5.1. Original PIO

Figure 11 shows the original PIO algorithm for the multi-UAV path planning problem.
However, our review revealed that no previous work has applied the original PIO to
approach the multi-UAV path planning problem.
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4.5.2. Enhanced PIO

For enhancing PIO, in 2018, Zhang and Duan [6] introduced the social-class pigeon-
inspired optimization (SCPIO) as an enhancement to address some of the basic PIO short-
comings, such as a lack of diversity and prematurity. SCPIO was developed to address
the multi-UAV path planning problem in an assault mission where UAVs take off from
a base and arrive at a designated location simultaneously to collaboratively execute an
attack task against a specific target. The objective is to minimize the overall cost which
includes the total threats and coordination cost. For evaluation, a time stamp segmentation
(TSS) technique was developed to provide references for multi-UAV coordination such as
the desired velocity and motion time. The evaluation results against the original PIO and
PSO algorithms show the reliability and efficiency of the proposed system when simulated
with four UAVs in a 3D complex environment. The results also demonstrated its enhanced
convergence capabilities.
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In a recent enhancement of PIO, Duan et al. [47], in 2021, proposed a dynamic discrete
PIO algorithm (D2PIO) to solve the cooperative path planning problem in a multi-UAV
search-attack mission that aimed to find and destroy as many targets as possible with vari-
ous constraints. The original PIO was improved by adding a response threshold sigmoid
model and an information fusion method to construct a probability map to guide UAV
movements. The above improvements were combined with an integrated centralized task
assignment and a distributed path creation phase which allowed the algorithm to respond
to dynamic changes. The extensive evaluation framework of the proposed algorithm
experimented through numerical and visual simulations considered various numbers of
UAVs, up to fifteen, and four benchmarks, which include basic PSO (BPSO) [58,59], basic
PIO (BPIO) [109], dynamic PSO (DPSO) [110], and modified particle swarm optimization
(MPSO) [111]. The results proved the improved optimization capability of D2PIO where
it showed less time consumption for search-attack mission planning. Both of the above
studies on enhanced PIO, [6,47], presented computational complexity analysis of their
proposed methods. Table 3 summarizes existing path planning methods using the PIO
algorithm and variants.

4.6. FOA and Its Variants

The FOA is a simple global optimization method [112] introduced in 2012 by Wen-
Tsao based on the fruit fly’s foraging behavior [59,112]. Among all species, the fruit fly is
distinguished by its sensing and perception, especially in apheresis and vision. A fruit fly
can easily locate a food source by distinguishing food scents, exploiting its excellent vision,
and targeting the flocking location of other fruit flies [113]. Among the main advantages
of FOA are the clear principles and simple operation. However, FOA does not work
well in high-dimensional nonlinear optimization problems and it can easily relapse into
local optima [114]. Additionally, despite its few parameters, these parameters need to be
manually set [113].

4.6.1. Original FOA

According to the simple idea presented in the previous section, the original FOA,
shown in Figure 12, repeatedly searches for the optima, which represents a food source [91].
The algorithm iterates as long as a new path has a superior fitness value. In the context
of multi-UAV path planning, each UAV will have a swarm of fruit flies representing a
candidate path. Each algorithm iteration searches for an optimal flight path for the UAVs.
The algorithm terminates whenf the results remain mostly unchanged and ultimately, the
optimal flight path for each UAV is returned. However, none of the previous work has
considered applying the original FOA. Instead, several enhanced versions were proposed
as presented in Section 4.6.2.

4.6.2. Enhanced FOA

In 2020, Kun et al. approached the multi-UAV path planning problem with an im-
proved FOA algorithm based on the optimal reference point (ORPFOA) [91]. They consid-
ered an oilfield inspection mission with online changing tasks in a 3D environment. The
algorithm generates an optimal initial path for each UAV to traverse task points, then reop-
timizes this initial path to consider the changing task problem. The cost function comprises
the weighted sum of the average height of the UAVs, time consumption, and total power
consumption. A convergence analysis was conducted which proved that the algorithm
converges to the optimal global solution. To highlight the algorithm’s effectiveness, it was
compared with six other swarm intelligence optimization algorithms: FOA, predator–prey
PIO [115], PIO, PSO gravitational search algorithm (PSOGSA) [60], PSO, and GWO. The
study of the cost function value and running time showed that the proposed algorithm had
the best convergence and optimization performance (both the smallest cost function value
and shortest running time). Table 3 summarizes existing methods using FOA and variants
to approach the multi-UAV path planning problem.



Mathematics 2023, 11, 2356 24 of 35

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 37 
 

 

assignment and a distributed path creation phase which allowed the algorithm to respond 
to dynamic changes. The extensive evaluation framework of the proposed algorithm ex-
perimented through numerical and visual simulations considered various numbers of 
UAVs, up to fifteen, and four benchmarks, which include basic PSO (BPSO) [58,59], basic 
PIO (BPIO) [109], dynamic PSO (DPSO) [110], and modified particle swarm optimization 
(MPSO) [111]. The results proved the improved optimization capability of D2PIO where 
it showed less time consumption for search-attack mission planning. Both of the above 
studies on enhanced PIO, [6,47], presented computational complexity analysis of their 
proposed methods. Table 3 summarizes existing path planning methods using the PIO 
algorithm and variants. 

4.6. FOA and Its Variants 
The FOA is a simple global optimization method [112] introduced in 2012 by Wen-

Tsao based on the fruit fly’s foraging behavior [59,112]. Among all species, the fruit fly is 
distinguished by its sensing and perception, especially in apheresis and vision. A fruit fly 
can easily locate a food source by distinguishing food scents, exploiting its excellent vi-
sion, and targeting the flocking location of other fruit flies [113]. Among the main ad-
vantages of FOA are the clear principles and simple operation. However, FOA does not 
work well in high-dimensional nonlinear optimization problems and it can easily relapse 
into local optima [114]. Additionally, despite its few parameters, these parameters need 
to be manually set [113]. 

4.6.1. Original FOA 
According to the simple idea presented in the previous section, the original FOA, 

shown in Figure 12, repeatedly searches for the optima, which represents a food source 
[91]. The algorithm iterates as long as a new path has a superior fitness value. In the con-
text of multi-UAV path planning, each UAV will have a swarm of fruit flies representing 
a candidate path. Each algorithm iteration searches for an optimal flight path for the 
UAVs. The algorithm terminates whenf the results remain mostly unchanged and ulti-
mately, the optimal flight path for each UAV is returned. However, none of the previous 
work has considered applying the original FOA. Instead, several enhanced versions were 
proposed as presented in Section 4.6.2.  

 

Figure 12. Multi-UAV path planning using original FOA.

4.7. LSO and Its Variants

The LSO was introduced by Krink and Lovbjerg [116] in 2002 as a novel adaptive
search heuristic inspired by the biological lifecycle. In biology, individuals pass through
four stages: birth, growth, reproduction, and death. The transition from one stage to the
next is often triggered by environmental factors and leads to drastic transformations of the
species to give them a stronger ability to adapt to a particular environment, interestingly,
the genome remains unchanged within each cell [117]. In a similar approach, individuals
(candidate solutions and their fitness) in the LSO begin as PSO particles and evolve into
GA individuals, solitary stochastic hill climbers (HC), and eventually back to particles,
as shown in Figure 13. The motivation behind the proposal of LSO was that each search
approach (GA, PSO, and hill-climbers) has distinct benefits and disadvantages. However,
the evaluation studies of LSO show its fast convergence speed although it is a bit slower
than the basic PSO and its solution does not match the quality of the original GA [116].

In 2020, Liu et al. [92] proposed an enhanced hybrid LSO to address the problem of
task allocation and trajectory planning with obstacle avoidance for a team of heterogeneous
UAVs. The algorithm considered a multi-target, multi-base, collaborative combat mission
in a complex 3D mountain environment. The algorithm varies the number of individuals in
the population to improve the basic LSO, then it combines the basic LSO with the Rapidly
exploring random tree algorithm (RRT) to generate an optimized path. The main objective
is to find the shortest trajectory and the minimum threat cost which can be achieved by the
weighted sum of the UAV track length and the cost of the track threatened by radar. The
simulation results of 21 UAVs and two benchmark algorithms, the original PSO and the
whale optimization algorithm (WOA) showed that ILSO had a faster convergence speed and
better convergence accuracy than the benchmarks. Table 3 summarizes existing methods
using the LSO algorithm and variants to approach the multi-UAV path planning problem.
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5. Discussion

Our search queries in this literature review retrieved studies, published between 2013
and 2021, related to multi-UAV path planning based on biological inspirations. Figure 14
displays the number of applications of each reviewed algorithm from 2013 to 2021 where GA
applications were the earliest but stayed stable over the period while interests in applying
algorithms, such as LSO and FAO have just started recently, during 2020. The chart shows
that PSO is the most used heuristic for multi-UAV route planning and its applications
have risen in recent years which highlights its superior advantages and efficiency over
the other bio-inspired methods. This conforms to the findings in [87,118,119] where PSO
was identified as the most influential reference algorithm among bio-inspired algorithms
followed by GA.

We observed that most of the studies fall within the category of enhanced algorithms,
as shown in Figure 15 which suggests that original bio-inspired algorithms require en-
hancement to tackle the specific challenges associated with the multi-UAV path planning
problem, such as collision avoidance and high dynamicity of the environment.
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When analyzing the considered environment in previous studies by comparing studies
that regarded dynamic environments versus those that regarded static environments, we
noticed that the majority of studies worked with a static environment. Specifically, 77%
of the environments were static, while only 23% were dynamic, as depicted in Figure 16.
This finding is justified by the level of complexity in a dynamic setting, especially with
multiple UAVs [59]. Another key factor that we have analyzed concerning the environment
is whether it is a 2D or 3D environment. Figure 16 shows that most studies focus on 3D en-
vironments, which is predictable as, normally, a UAV navigates through a 3D environment.
We have also investigated the correlation between the environment representation and its
evolution in Figure 16 which indicates that 3D applications concentrate on static environ-
ments. This observation can be attributed to the need to manage the level of complexity
in 3D environments, in contrast to the 2D studies which face fewer challenges, and thus
equally explored static and dynamic environments.
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As CA is a crucial issue that multi-UAV missions should deal with, we have examined
how it is affected by the environment model, whether 2D or 3D. We could not find any
significant trends when 2D environments are considered. For instance, the number of
2D studies with and without CA is comparable. In contrast, in 3D environments, CA is
usually explicitly handled, as Figure 17 indicates that 80% of the studies managed collision
avoidance between UAVs. Among these studies, 48% implemented an altitude layering
approach, while 41% followed the safe distance method. The remaining 11% of studies
applied other approaches to handle CA within the objective function or as a constraint.
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Additionally, we have analyzed the CA feature with obstacles, as well as other UAVs.
Figure 18 shows that most 3D proposals with CA worked on collisions with both UAVs
and obstacles. Therefore, in Figure 19, we examined further how this choice affected the
path planning scope, where we found that global path planning is more common than local
planning due to the challenges of managing collisions without global knowledge about
the environment.
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Figure 19. How CA affects the path planning scope.

Similarly, we analyzed studies of a dynamic environment to determine the focus on the
goal or obstacle dynamicity. Figure 20 shows that most studies on dynamic environments
assume dynamic obstacles with static goals. Along with the earlier statement about the
challenges in the dynamic environment, only one study assumed dynamic goals and obsta-
cles together [75]. Due to the complexity that comes with uncertainty in the environment,
the situation of having unknown goals and obstacles was rare. Only one study worked
with unknown goals and obstacles [90]; all other studies assumed either goals or obstacles
were unknown, not both.

We were interested in determining how the planning mode is affected by the amount
of uncertainty in the world. Figure 21 shows the number of studies using known ob-
stacles/goals versus unknown obstacles/goals in each path planning mode. The figure
suggests that most research studying partially known environments used either online or
hybrid path planning, as handling unknown aspects of the environment “on the fly” is
more efficient than regenerating a path each time new data arrives.
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To analyze the specific application where the proposed path planning method was
applied, we grouped the literature, as shown in Table 4, into four classes: First, general
path planning where the work introduced a path planning approach without considering
the context of a specific mission, most of the reviewed work fall into this category. Second,
in searching missions, such as surveillance missions, remote sensing, and finding targets
within points of interest, fewer approaches come under this group. The third and fourth
categories include search and rescue and search and attack missions respectively, with
the latter receiving the least attention which suggests that military applications might not
always be the main driver for advances in UAV technologies. Additionally, our review
found that the above categories show no major differences in the path planning tactics
except for certain constraints, such as including radar range as a threat in search and attack
missions or a survivor critical lifetime window for search and rescue missions.
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Table 4. A summary of application areas considered by the reviewed papers.

Mission Studies

General path planning [36,65,66,70,78,80,83,85,86,88,91,108]
Search mission [24,37,46,64,73,75,81,89]

Search and attack mission [6,47,69,82,87,90,92]
Search and rescue mission [93]

Another significant aspect of multi-UAV applications is the number of UAVs; thus,
we examined the maximum number of UAVs used to assess each approach. In general,
most studies tested their approach with fewer than eight UAVs, and only three approaches
considered ten or more UAVs. The Maximum number of UAVs used for evaluation in each
approach is shown in Table 5.

Table 5. Maximum number of UAVs used for evaluation in each approach.

Number of UAVs (Up to) Studies

2 [64,80,90]
3 [24,46,65,81,89,91]
4 [6,36,66,73,83,87]
5 [78,86]
6 [37,69,88]
8 [82,84,93]
10 [47]
24 [92]

200 [85]

When characterizing the studies that handled the communications between UAVs,
we found that only a few surveillance applications and search and attack missions, such
as [46,64] have considered this aspect which suggests that non-military applications are less
concerned about the communication side although it has a massive impact on the mission’s
success [120].

Examining the evaluation methodologies used in the reviewed literature reveals
several key findings. Firstly, most approaches were evaluated using simulation experiments,
with only a few studies (such as [82,83]) involving real experiments. However, this limited
the level of complexity that could be considered, as these studies were conducted in
known, static environments based on an offline planning mode. Secondly, there is a
lack of reference implementations of bio-inspired algorithms, which is consistent with
previous related reviews (such as [59]). Furthermore, there are considerable limitations in
environmental and mission models, such as the availability of reference maps and mission
settings at different levels of complexity that can be used to benchmark new proposals. It is
important to note that benchmark maps typically used with mobile robots are insufficient,
as UAVs usually operate in 3D environments. Thirdly, while reducing running time is
one of the main goals of path planning [7] (particularly in multi-UAV problems [121]),
most evaluation frameworks overlook the running time of proposed approaches or merely
benchmark them against brute force approaches (such as [78,83]). Only a few applications
considered benchmarking against previous proposals (such as [86]).

6. Conclusions

This review examined the literature studies on the multi-UAV path planning problems
and focused on bio-inspired algorithms. These algorithms can address challenges such
as collision avoidance and high environmental dynamicity. According to the review, PSO
is the most popular heuristic for multi-UAV route planning and its applications have
grown in recent years, demonstrating its superior advantages and efficiency over other
bio-inspired methods. The majority of studies belong to the enhanced algorithm category,
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which suggests that original bio-inspired algorithms need to be enhanced in order to deal
with the specific challenges associated with multi-UAV path planning, including collision
avoidance and high environmental dynamicity. There is a greater tendency for global
path planning than local planning since it is more difficult to manage collisions without
knowledge of the environment at a global level. Similarly, most studies considered dynamic
environments with dynamic obstacles and static goals. To handle the challenges of partially
known environments researchers apply either online or hybrid path planning, as handling
unknown aspects of the environment “on the fly” is more efficient than regenerating a path
each time new data arrives.

Among the important findings of this review is that a significant lack of reference
implementations of bio-inspired algorithms is alarming, which is consistent with previous
reviews, e.g., [59] and considerable limitations exist in environmental and mission models,
for example, reference maps and mission settings at various complexity levels are not
available for benchmarking new proposals. In view of the fact that UAVs primarily operate
in 3D environments, benchmark maps used for mobile robots are insufficient.

Some possible future research directions that are suggested based on this study include:

• Developing new bio-inspired algorithms that can tackle the specific challenges associ-
ated with the multi-UAV path planning problem, such as collision avoidance and high
dynamicity of the environment.

• Investigating the use of local path planning to manage collisions without global
knowledge about the environment.

• Investigating the use of hybrid path planning to handle partially known environments
more efficiently.

• Developing reference maps and mission settings at different complexities that can be
used to benchmark new proposals.

• Developing benchmark maps that are specifically designed for UAVs operating in
3D environments.
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