
Citation: Chen, M.; Wang, D.; Feng,

S.; Zhang, Y. Denoising in

Representation Space via

Data-Dependent Regularization for

Better Representation. Mathematics

2023, 11, 2327. https://doi.org/

10.3390/math11102327

Academic Editors: Xiangtao Zheng,

Jinchang Ren and Ling Wang

Received: 11 April 2023

Revised: 11 May 2023

Accepted: 15 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Denoising in Representation Space via Data-Dependent
Regularization for Better Representation
Muyi Chen 1,2,*, Daling Wang 1, Shi Feng 1 and Yifei Zhang 1

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
2 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
* Correspondence: chenmuyi@sylu.edu.cn

Abstract: Despite the success of deep learning models, it remains challenging for the over-parameterized
model to learn good representation under small-sample-size settings. In this paper, motivated by
previous work on out-of-distribution (OoD) generalization, we study the representation learning
problem from an OoD perspective to identify the fundamental factors affecting representation quality.
We formulate a notion of “out-of-feature subspace (OoFS) noise” for the first time, and we link the
OoFS noise in the feature extractor to the OoD performance of the model by proving two theorems
that demonstrate that reducing OoFS noise in the feature extractor is beneficial in achieving better
representation. Moreover, we identify two causes of OoFS noise and prove that the OoFS noise
induced by random initialization can be filtered out via L2 regularization. Finally, we propose a novel
data-dependent regularizer that acts on the weights of the fully connected layer to reduce noise in
the representations, thus implicitly forcing the feature extractor to focus on informative features and
to rely less on noise via back-propagation. Experiments on synthetic datasets show that our method
can learn hard-to-learn features; can filter out noise effectively; and outperforms GD, AdaGrad, and
KFAC. Furthermore, experiments on the benchmark datasets show that our method achieves the best
performance for three tasks among four.

Keywords: deep neural network; representation space; fully connected layer; feature extractor

MSC: 68T07

1. Introduction

Although deep learning has made great progress in recent years, many questions
remain to be answered, such as why some models can generalize well despite the fact that
they are over-parameterized [1], why adversarial examples exist [2], why representations
learned by models are difficult to transfer across various domains [3], and why handling out-
of-distribution (OoD) samples is difficult for models [4]. Thus, the mechanisms underlying
deep learning still require further exploration. In particular, in the small-sample-size
regime, models are more prone to overfitting. In order to achieve better generalization,
careful capacity control is needed via methods such as regularization.

We consider deep neural networks (DNNs) to be a functional composition of the fol-
lowing form: h ◦ ϕ : X → Y = {1, . . . , K} , where ϕ : X → Z denotes a feature extractor
that maps the input into an internal representation space Z and then a linear classifier
h : Z → Y is used to predict the class label. We can infer that, in a small-sample-size
setting, good generalization performance depends more on good representations. However,
most research on generalization [5,6] is based on an assumption that the training and test
samples are from the same distribution, and many studies on representation learning [7,8]
are based on this assumption; however, the theoretical bounds, methods, and experimental
studies based on such an assumption cannot guarantee that the model learns good rep-
resentations, especially in situations where the sample size is small. Specifically, biases

Mathematics 2023, 11, 2327. https://doi.org/10.3390/math11102327 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102327
https://doi.org/10.3390/math11102327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0854-2966
https://doi.org/10.3390/math11102327
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102327?type=check_update&version=2

Mathematics 2023, 11, 2327 2 of 33

of stochastic gradient descent (SGD) and cross-entropy loss might maximize the margins
of the training set [9], which seems beneficial for generalization with sufficient data and
under the i.i.d. assumption. However, for more complex and difficult applications, such as
domain generalization (DG) [3,10,11], open set recognition (OSR) [4,12], or OOD general-
ization [13,14], or in situations with insufficient training samples [15], these representations
may not be sufficient.

Inspired by the questions and research in fields such as OSR and OoD generalization,
here, we study a representation learning problem under a small-sample-size setting via a
broader perspective, i.e., we take both in-distribution generalization and OoD generaliza-
tion performance into consideration to learn better representations. This paper is based
on the following assumption: A good representation should achieve good in-distribution
performance, without compromising OoD performance. Therefore, we argue that good
OoD performance may be an indicator of good representation.

The first questions we ask are as follows: What is a good representation? Or, what
makes a good feature extractor? However, these questions are not easy to answer; hence,
we ask the following questions instead:

What makes a not-so-good feature extractor? Why does the model learn a poor ϕ?
What is the impact of a poor (noisy) ϕ? Additionally, how can we encourage the model to
learn a better ϕ?

In this paper, we try to explore these questions from a signal-processing perspective.
Specifically, we formulate the notion “out-of-feature subspace (OoFS) noise” for a single-
hidden-layer neural network with the aid of a feature dictionary and employ this notion
to characterize “what makes a poor ϕ”, i.e., when ϕ contains a lot of “OoFS noise”. We
identify two causes of such a noisy ϕ and study the impact of OoFS noise in ϕ on random
OoD samples. Furthermore, we propose a data-dependent regularizer that acts on the
weights of the fully connected layer and rely on the back-propagation scheme to force ϕ to
focus more on signal and to rely less on noise.

The way we consider the representation learning problem is similar to the hypoth-
esis in [16], in which the author tried to explain the success of dropout training as such:
dropout achieves gains much like a marathon runner who practices at altitudes, i.e., once a
model learns to perform well on corrupted training samples, it performs very well on an
uncorrupted test set. In our study, we seek to improve the performance of representation
learning by forcing the model to solve a more difficult problem. Intuitively, we argue that
the OoFS noise in ϕ acts as an indicator of the quality of ϕ and a noisy ϕ hurts generaliza-
tion. Under this assumption, we require the model to seek a solution that contains less
OoFS noise and view this kind of solution as a better solution that may be beneficial for
generalization potentially.

Our contributions are as follows:

(1) Using a data model based on a feature dictionary, we propose the notion of OoFS
noise and argue that OoFS noise is a factor that leads to poor representation and hurts
generalization. To our knowledge, we are the first to propose this notion. Additionally,
we theoretically study OoFS noise in the feature extractor of a single-hidden-layer
neural network and prove two theorems to (probabilistically) bound the output of a
random OoD test point. Moreover, we identify two sources of OoFS noise and prove
that OoFS noise due to random initialization can be filtered out via L2 regularization
(Section 3).

(2) Because both the noises in the data and the model are embedded in the representations,
we propose a novel approach to regularizing the weights of the fully connected layer
in a data-dependent way, which aims to reduce noise in the representation space and
implicitly force the feature extractor to focus more on informative features instead of
relying on noise (Section 4).

(3) We propose a new method to examine the behavior and to evaluate the performance
of a learning algorithm via a simple task. Specifically, we disentangle the model’s

Mathematics 2023, 11, 2327 3 of 33

performance into two distinct aspects and, thus, inspect each aspect individually
(Section 5.1).

The rest of the paper is structured as follows: In Section 2, we review related work.
In Section 3, we consider a data model based on a feature dictionary and a single-hidden-
layer convolutional neural network and present some novel notions under this setting;
then, we study the impact of OoFS noise in the feature extractor on OoD test samples
theoretically. Based on this understanding, in Section 4, we focus on the signals and
noise in the representation space of DNNs and propose a data-dependent regularization
method that acts on the weights of the fully connected layer. In Section 5, we present
the experimental results on synthetic and benchmark datasets. Finally, we provide the
conclusions in Section 6.

2. Related Work

Two lines of previous work are related to our work. The first focuses on the feature
learning process. Among them, the authors of [17] studied a two-layer ReLU network
and proved that the feature learned by each neuron contains a non-robust dense mixture
of the features, and these mixtures are one of the causes of adversarial examples. The
authors suggested that adversarial training is actually a feature purification process. The
authors of [18] designed a multi-view data model and proposed that, when the dataset has
this multi-view structure, a network trained with cross-entropy loss via gradient descent
(GD) quickly picks up a subset of features for each label such that the majority of the
training examples are classified correctly; then, the model memorizes the remaining single-
view data without learning other informative features. The authors of [19] studied how
momentum improves generalization and proved that a model trained via GD initially only
learns the large-margin data and then memorizes the remaining small-margin data. In
contrast, a model trained via GD with momentum accumulates large historical gradients
and, thus, can keep learning features and memorizing less noise. The authors of [20]
considered a linear DNN and proposed that the learning dynamics is closely related to
the singular value decomposition (SVD) of the input–output correlation matrix and that
modes with stronger explanatory power, as quantified by the singular value, are learned
more quickly. The authors of [21] studied the learning dynamics of a single-hidden-layer
ReLU neural network and showed that input norm and the features’ frequency in the
dataset lead to distinct convergence speeds, which might be related to the generalization
performance of the model. They identified a phenomenon named gradient starvation,
where the most frequent features in a dataset prevent the learning of other less frequent but
equally informative features. The authors of [22] defined gradient starvation via the SVD of
the neural tangent random feature (NTRF) matrix to characterize the phenomenon in which
the model minimizes cross-entropy loss by capturing only a subset of features and fails
to discover other predictive features. The authors also provided a theoretical explanation
for this feature imbalance. The authors of [23–26] studied the simplicity bias in DNNs,
i.e., the model can rely on the simplest features and remains invariant to other predictive
complex features. The authors of [27] split the Jacobian spectrum into “information” and
“nuisance” spaces associated with large and small singular values and showed that the
generalization capability of the model is controlled by how well the label vector is aligned
with the information space. Many studies have tried to improve the feature learning
process from an optimization perspective. The authors of [28] proposed the AdaGrad
optimization algorithm; they used historical information of gradients to enable the model
to better learn those highly predictive but rare features that are hard to learn. The authors
of [29] proved that natural gradient descent (NGD) [30] outperforms GD in the misaligned
setting, whereas GD has an advantage when the signal is aligned. The authors showed
that a preconditioned update that interpolates between GD and NGD can be performed to
obtain an optimal empirical risk.

The second line related to our work is the capacity control based on explicit or implicit
regularization. Among them, weight decay is widely used, and it has been proven that,

Mathematics 2023, 11, 2327 4 of 33

for SGD, weight decay is equivalent to L2 regularization with a specific regularization
coefficient [31]. It is well known that, for underdetermined least square problems, GD
converges to the minimum Euclidean norm solution, and for logistic regression problems,
GD converges to the L2 maximum margin separator [9]. However, the bias towards the
minimum Euclidean norm or the max-margin solution is not necessarily optimal. The
authors of [32] proposed that this bias is one of the failure modes of OoD generalization.
The authors of [33] proved that max-margin bias induces bias towards non-robust networks.
The authors of [34,35] suggested that capacity control based on L2 norm is not necessarily
well linked to generalization performance. The authors of [36] studied a linear predictor
for the ridgeless least square problem and provided a bias-variance decomposition of the
prediction risk, where the bias term was expressed by a matrix norm with respect to the
covariance of the data; this hints at the generalization being related to the geometry of
the data. The authors of [37] identified a regularization effect induced by a dynamical
alignment of the neural tangent kernel (NTK) along a small number of task-relevant
directions and showed that meaningful norm-based capacity control is closely related to
the geometry of features and labels. The authors of [38] proved that, for matrix completion,
dropout induces a data-dependent regularizer that directly controls the complexity of the
underlying class of DNNs. The authors of [39] showed that dropout can be viewed as
a low-rank regularizer with data-dependent singular-value thresholding. The authors
of [40] considered a single-hidden-layer linear neural network, and showed that, as a
regularizer, dropout is closely related to path regularization. The authors of [41] showed
that dropout can be viewed as a form of adaptive regularization and is related to AdaGrad,
and that the dropout regularizer is first-order equivalent to an L2 regularizer applied
after scaling the features using an estimate of the inverse diagonal Fisher information
matrix. The authors of [42] considered the cross-domain generalization problem and
proposed a method that iteratively challenges the dominant features to force the network
to activate remaining features. The authors of [43] proposed a Jacobian regularizer to
increase the margins of a model under input perturbations. Moreover, many studies
regularized activations in the latent space to improve generalization. The authors of [44]
proposed a regularizer to encourage diverse representations by minimizing the cross-
covariance of hidden activations. The authors of [45] proposed performing class-wise
regularization to minimize the pairwise distances between representations of a class. Finally,
the authors of [15] proposed a topological regularizer that acts on the samples drawn from
the probability measure of the representation space and proved the existence of a mass
concentration effect, which is beneficial for generalization.

3. Theoretical Analysis of the Noise in Hidden Neurons

When training and test data are sampled from the same underlying distribution and
when the amount of data is sufficient, things are, in some sense, controllable most of the
time; a noisy model may still achieve good performance because neurons can cooperate to
cancel noise for the in-distribution input. However, things can change wildly under more
complex settings, such as, for OoD samples, the model extrapolating arbitrarily and the
noise hurting generalization in an unpredictable manner. In small-sample-size learning,
we face a similar problem. In this paper, we argue that to achieve good performance when
data are insufficient, understanding the signal and noise in the model is crucial, and this
knowledge can be incorporated into the learning algorithm as a means of capacity control.

Therefore, in this section, we focus on the signal and noise in the model theoretically;
in particular, we consider the noise in the OoF subspace (we refer to it as “OoFS noise”
for simplicity in the following) in the hidden neurons. We first introduce the data model
and the neural network model; then, we present some notions and theoretical analyses.
Specifically, we bound the impact of the OoFS noise in the model on random Gaussian OoD
test samples using Theorem 1 and Theorem 2, thus linking OoFS noise to generalization.
We also identify two causes of OoFS noise in the model; the first cause is due to the noise
in the training data, which is memorized by the model, and this memorization can be

Mathematics 2023, 11, 2327 5 of 33

reduced via a better feature learning process; the second cause is due to the noise induced
by random initialization, and it can be reduced via proper capacity control methods, such
as L2 regularization, as formulated in Theorem 3.

3.1. Data Distribution, Model, and Definitions

To understand the learned features from a signal-processing perspective, in particular,
to understand the signal and noise in neurons, we need to consider the signal and noise in
the data first. In this subsection, we adopt a data model based on a feature dictionary [17]
to formulate some notions.

Let M ∈ Rd×D be a feature dictionary. There are D features in the dictionary, and each
feature is a d-dimensional vector. We denote the i-th feature by Mi, i.e., the i-th column
of M. For simplicity, we adopt the same assumption as in [17]; let D = d and M be a
unitary matrix, i.e.,

〈
Mi, Mj

〉
= 0. Assume that the training data are generated based on

this dictionary. We denote the training set by {xi, yi}n, where xi is the input, yi is the label,
and n is the number of training samples. Furthermore, assume that each input is composed
of P patches; let it be xi = (xi[j])j∈P.

Take a binary classification task as an illustrative example: Let d > 4. Assume that the
points in Class 1 contain features M1 and M2 and that the points in Class 2 contain features
M3 and M4. Figure 1 shows a sample from Class 1. We refer to M1~M4 as the ground-truth
features and denote the submatrix composed of the first four columns of M by M f ∈ Rd×4.

Figure 1. Illustration of a data point from Class 1.

Under the above setting, we can decompose the d-dimensional space spanned by the
columns of the feature dictionary M into two subspaces: (1) One is the feature subspace (FS;
note that this is not the feature space in the DNN literature) relevant to the task, denoted
by Fspan. We view it as the signal subspace. In this example, it is the subspace spanned
by {M1, M2, M3, M4}. (2) The other is the out-of-feature subspace (OoF subspace, OoFS).
The other d− 4 features in the dictionary are not relevant to the task as they span the OoF
subspace. This subspace is the orthogonal complement of the feature subspace; we denote
it by F⊥span and view it as the noise subspace (with respect to the current task).

Next, considering the support of the data distribution, the feature subspace can be
further divided into two subsets: (1) If there is no OoFS noise in the data, then the support
of the data distribution is generally a bounded subset of the feature subspace Fspan. We
call it the “data support in the feature subspace”, denoted by suppFspan

(X). When there is
OoFS noise in the data, suppFspan

(X) corresponds to the projection of the support onto the
feature subspace. (2) The complementary set of suppFspan

(X) (CoS) in the feature subspace
is denoted by Fspan − supp(X).

Figure 2 shows the division of the d-dimensional space. From this viewpoint, we argue
that a good model should focus on the signal in the feature subspace instead of relying on
the OoFS noise, and the learning algorithm should filter out the OoFS noise in the model as
much as possible.

Mathematics 2023, 11, 2327 6 of 33

Figure 2. The division of the d-dimensional space according to the task-relevant features and the
data distribution.

In the following, to keep the theoretical analysis simple, we follow the setting in [19]
and consider a special case, i.e., there is only one feature M1 relevant to the task; we denote
it by w∗ for simplicity. The data distribution is determined as follows:

(1) Uniformly sample the label y from {−1, 1}.
(2) Let xi = (xi[1], . . . , xi[P]), where each patch xi[j] ∈ Rd.
(3) Signal patch: choose one signal patch P(x) ∈ [P] such that x[P(x)] = cw∗, where

c ∈ R, w∗ ∈ Rd, and ‖w∗‖2 = 1.
(4) c is distributed as c = αy with probability 1− µ, and c = βy otherwise, where α� 1

corresponds to the majority of the samples that have a large margin and β � 1
corresponds to the minority of samples that have a small margin.

(5) Noisy patches: x[j] ∼ N(0, (Id −w∗w∗T)σ2), for j ∈ [P]\{P(x)}.
Now that we have defined the data distribution and differentiated the signal and

noise in the data, we are in a place to study the signal and noise in the model. Consider a
single-hidden-layer neural network as in [19]:

fW(x) = ∑m
r=1 ∑P

j=1〈wr, x[j]〉3 (1)

where m is the number of hidden neurons, and the weights of the first layer are denoted
by W ∈ Rm×d. We denote the r-th row of W by wr ∈ Rd, corresponding to the incoming
weights of the hidden neuron r. We refer to wr as the feature (i.e., the hidden weight) of the
r-th neuron. The weights of the second layer are fixed to 1m.

Then, we can characterize and measure signals and OoFS noise in the neurons during
training. Let r ∈ [m], i ∈ [N], j ∈ [P]\{P(x)}, t ≥ 0, and the hidden weight of the r-th
neuron at time t be denoted by w(t)

r . Let ∇wr L̂(W(t)) represent the gradient of L̂ with
respect to wr. Let c(t)r =

〈
w(t)

r , w∗
〉

be the projection of w(t)
r onto the ground-truth feature

w∗, which can be viewed as the signal contained in the hidden weight of the r-th neuron. Let
v(t)

r = w(t)
r − c(t)r w∗ be the projection of w(t)

r onto the OoF subspace, which can be viewed
as the OoFS noise contained in the hidden weight of the r-th neuron. Let c(t) = c(t)rmax be the

maximum signal, where rmax ∈ argmaxr∈[m]c
(t)
r . Let Ξ(t)

i,j,r =
〈
wt

r, xi[j]
〉

for j ∈ [P]\{P(xi)}.
The objective is L̂(W) = 1

N ∑N
i=1 log(1 + exp(−yi fw(Xi))). Let Φ(x) = (1+ exp(x))−1

and l(t)i = Φ
(
−∑m

r=1 ∑P
j=1 yi

〈
wt

r, xi[j]
〉3
)

for i ∈ [N]. Moreover, we use Õ, Θ̃, and Ω̃ to hide
the logarithmic dependency on d. The parameters are chosen as in [19]: µ = 1/poly(d),
N = Θ(log log(d)/µ), m = poly log(d),λ ∈ [0, 1/poly(d)N], β = d−0.251, α = poly log(d)

√
dβ,

σ = 1/d0.509, P ∈ [2, poly log(d)], and T ∈ [poly(d)N/η, dO(log d)/η]. Finally, κ is used to
describe when the sigmoid term is small such that

∑T
τ=0

1
1 + exp(κ)

≤ Õ(1)⇒ κ ≥ log(Ω̃(T))⇔κ ≥ Ω̃(1) (2)

3.2. The Impact of OoFS Noise in the Model

In this subsection, assume that there is OoFS noise in the training data. According
to the feature learning process described in [18,19], the network quickly picks up the
dominant features that appear in the large-margin data to decrease their training loss.
Once the large-margin data are classified correctly, the gradient terms stemming from

Mathematics 2023, 11, 2327 7 of 33

them become negligible. Consequently, the gradient becomes a sum of the gradients of the
small-margin data. Thus, the model memorizes the noise in these samples to decrease the
training loss. In short, the model memorizes noise to fit small-margin samples.

According to [19], the weights learned via GD and GD with momentum (GD+M)
satisfy the following for r ∈ [m]:

w(T)
r = c(T)r w∗ + v(T)

r , where v(T)
r ∈ span(xi[j]) ⊂ span(w∗)⊥ (3)

(1) For GD, c(T)r ≤ Õ(1/α) and
∥∥∥v(T)

r

∥∥∥
2
≥ 1 for all r ∈ [m].

(2) For GD+M, at least one of c(T)r ≥ Ω̃(1/β), and
∥∥∥v(T)

r

∥∥∥
2
≤ 1 for all r ∈ [m].

Based on these results, and noting that v(T)
r corresponds to the OoFS noise in the

hidden weight of the r-th neuron, we prove the following Theorems 1 and 2. In Theorem 1,
we turn off the signal patch and bound the model’s output for a random OoD test sample,
in which each patch is sampled from a Gaussian distribution on the OoF subspace.

Theorem 1. For the above-mentioned single-hidden-layer model, assume that we run GD/GD+M
for T iterations with the above parameterization and that x = (x[1], . . . , x[P]) is a random test
sample that satisfies x[j] ∼ N(0, (Id −w∗w∗T)ρ2) for all j ∈ [P]; then, we have the following:

(1) For GD and arbitrary ε > 0, P
(
| fW(x)| ≥ ερ3)

)
≥ 1−O(d)ε1/d. Specifically, setting

ε = 1/2, we have: P
(
| fW(x)| ≥ 1

2 ρ3)
)
≥ 1− O(d)

21/d .

(2) For GD and GD+M, we have: P
(
| fW(x)| > κ

2
)
≤ 2 exp

−Õ

 κ2

ρ6
(

∑m
s=1

∥∥∥v(T)s

∥∥∥6

2

)
. Specif-

ically, for GD, we have: P
(
| fW(x)| > κ

2
)
≤ 2 exp(−Õ(κ2

ρ6 max
s∈[m]
‖vs‖6

2
)), and for GD+M, we

have: P
(
| fW(x)| > κ

2
)
≤ 2 exp(−Õ(κ2

ρ6)).

Proof. According to Equations (1) and (3), the output of the model for the test sample is:

fW(x) = ∑m
s=1 ∑P

j=1

〈
v(T)

s , x[j]
〉3

(4)

(1) For GD, since
∥∥∥v(T)

r

∥∥∥
2
≥ 1 holds for all r ∈ [m], then, according to Lemma K.12 in [19],

for ε > 0, we have:

P
(∣∣∣∣∑m

s=1 ∑P
j=1

〈
v(T)

s , x[j]
〉3
∣∣∣∣ ≥ ερ3)

)
≥ 1−O(d)ε1/d (5)

(2) We know that
〈

v(T)
s , x[j]

〉
∼ N(0,

∥∥∥v(T)
s

∥∥∥2

2
ρ2); then, by Lemma K.13 in [19], we have:〈

v(T)
s , x[j]

〉3
is ρ3

∥∥∥v(T)
s

∥∥∥3

2
-subGaussian.>

Using Lemma K.2 in [19], we know that ∑P
j=1

〈
v(T)

s , x[j]
〉3

is
√

Pρ3
∥∥∥v(T)

s

∥∥∥3

2
-subGaussian.

Applying Lemma K.2 again, we obtain that ∑m
s=1 ∑P

j=1

〈
v(T)

s , x[j]
〉3

is
√

Pρ3

√
∑m

s=1

∥∥∥v(T)
s

∥∥∥6

2
-

subGaussian.

Mathematics 2023, 11, 2327 8 of 33

Then, we use Lemma K.3 in [19] to upper bound this subGaussian random variable
and obtain:

P
(∣∣∣∣∑m

s=1 ∑P
j=1

〈
v(T)

s , x[j]
〉3
∣∣∣∣ > κ

2

)
≤ 2 exp

− (κ/2)2

2ρ6P
(

∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2

)
 (6)

Thus,

P
(∣∣∣∣∑m

s=1 ∑P
j=1

〈
v(T)

s , x[j]
〉3
∣∣∣∣ > κ

2

)
≤ 2 exp

−Õ

 κ2

ρ6
(

∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2

)

 (7)

For GD, since ∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
≤ mmax

s∈[m]
‖vs‖6

2, and m = poly log(d), we have:

P
(
| fW(x)| > κ

2

)
≤ 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)) (8)

For GD+M, we have:
∥∥∥v(T)

r

∥∥∥
2
≤ 1; then, we have:

P
(
| fW(x)| > κ

2

)
≤ 2 exp(−Õ(

κ2

ρ6)) (9)

�

Theorem 1 shows that because the OoFS noise terms in the hidden weight of the
neurons may have non-zero correlations with a test sample from the OoF subspace, the
output of the model is non-zero. From (2) in Theorem 1, we see that as ρ increases, the
upper bound of fW(x) becomes looser, which indicates a larger probability of the output
exceeding a pre-determined value. This is consistent with our intuition that when the
noise level in the data increases, the noise in the output fW(x) also increases. Furthermore,
Theorem 1 demonstrates that when

∥∥∥v(T)
r

∥∥∥
2

increases, the upper bound becomes looser,

which means that when the noise in the neurons increases, the noise in the output fW(x)
increases consequently. Therefore, increasing the noise in the data or increasing the noise in
the model results in a noisier output, corresponding to a larger probability of misclassifying
the OoD point as an in-distribution point.

In Theorem 2, we turn on the signal patch, i.e., assume the OoD test sample has a
non-zero correlation with the feature in some patch and bound the model’s output for such
a test sample.

Theorem 2. For the above-mentioned single-hidden-layer model, assume that we run GD/GD+M
for T iterations with the above parameterization and assume that x = (x[1], . . . , x[P]) is a random
OoD test sample that contains some feature noise, i.e., for some P(x) ∈ [P], let x[P(x)] = θw∗and
let θ > 0 for simplicity, and for all j ∈ [P]\{P(x)}, let x[j] ∼ N(0, (Id −w∗w∗T)ρ2); then, we
have the following:

(1) For GD, P
(

fW(x) ≤ Õ
(

θ3

α3

)
+ κ

2

)
≥ 1− 2 exp(−Õ(κ2

ρ6 max
s∈[m]
‖vs‖6

2
));

(2) For GD+M, P
(

fW(x) ≤ Õ
(

θ3

β3

)
+ κ

2

)
≥ 1− 2 exp(−Õ(κ2

ρ6));

(3) For GD, P
(

fW(x) ≥ 1
2 ρ3
)
≥ 1− O(d)

21/d ;

(4) For GD+M, P
(

fW(x) ≥ 1
2 Ω̃
(

θ3

β3

))
≥ 1− exp

(
−Ω̃

(
θ6

β6ρ6

))
.

Mathematics 2023, 11, 2327 9 of 33

Proof. (1) First, let us consider the upper bound of fW(x), we have:

fW(x) = θ3∑m
s=1 (c

(T)
s)

3
+∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

≤ mθ3(c(T))
3
+ ∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3 (10)

(i) For GD, according to Induction hypothesis D.2 [19], we have: c(t)r ≤ Õ(1/α); then,

fW(x) ≤ Õ
(

mθ3

α3

)
+ ∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

(11)

Since ∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

is ρ3
√

P− 1

√
∑m

s=1

∥∥∥v(T)
s

∥∥∥6

2
-subGaussian; then, accord-

ing to Lemma K.3 in [19], we have:

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ > κ

2

)
≤ 2 exp

− (κ/2)2

2ρ6(P− 1)(∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
)

 (12)

Then, we have:

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ > κ

2

)
≤ 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)), (13)

Therefore,

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ ≤ κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)), (14)

Then, we have:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
≤ κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)) (15)

Combined with Equation (11), we obtain:

P
(

fW(x) ≤ Õ
(

mθ3

α3

)
+

κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)) (16)

Since m = poly log(d), we have:

P
(

fW(x) ≤ Õ
(

θ3

α3

)
+

κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6max
s∈[m]
‖vs‖6

2

)) (17)

(ii) For GD+M, according to Induction hypothesis D.5 in [19], c(t)r ≤ Õ(1/β); then,
combined with Equation (10), we have:

fW(x) ≤ Õ
(

mθ3

β3

)
+ ∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

(18)

Mathematics 2023, 11, 2327 10 of 33

Since
∥∥∥v(T)

s

∥∥∥
2
≤ 1, combined with Equation (12), we have:

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ > κ

2

)
≤ 2 exp(−Õ(

κ2

ρ6)), (19)

Thus,

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ ≤ κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6)), (20)

Then, we have:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
≤ κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6)) (21)

Consequently, we have:

P
(

fW(x) ≤ Õ
(

mθ3

β3

)
+

κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6)), (22)

i.e.,

P
(

fW(x) ≤ Õ
(

θ3

β3

)
+

κ

2

)
≥ 1− 2 exp(−Õ(

κ2

ρ6)) (23)

(2) Then, we consider the lower bound, we have:

fW(x) = θ3∑m
s=1 (c

(T)
s)

3
+∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

≥ θ3(c(T))
3
+ ∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3 (24)

(i) For GD, we have:

fW(x) ≥∑m
s=1 ∑j 6=P(x)

〈
v(T)

s , x[j]
〉3

(25)

According to Lemma K.12 in [19], we know that:

P
(∣∣∣∣∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
∣∣∣∣ ≥ ερ3)

)
≥ 1−O(d)ε1/d, (26)

Thus, we have:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
≥ ερ3)

)
≥ 1

2
(1−O(d)ε1/d). (27)

Combined with Equation (25), we have:

P
(

fW(x) ≥ ερ3
)
≥ 1

2
(1−O(d)ε1/d) (28)

Setting ε = 1/2, we obtain:

P
(

fW(x) ≥ 1
2

ρ3
)
≥ 1− O(d)

21/d (29)

(ii) For GD+M, according to Lemma 6.3 in [19], we have: c(t) ≥ Ω̃(1/β), and thus,
c(T) ≥ Ω̃(1/β); then, combined with Equation (24), we have:

fW(x) ≥ Ω̃
(

θ3

β3

)
+ ∑m

s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

, (30)

Mathematics 2023, 11, 2327 11 of 33

Using Lemma K.3 in [19], we have:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

< −1
2

Ω̃
(

θ3

β3

))
≤ exp

− (1
2 Ω̃(θ3/β3))

2

2ρ6(P− 1)(∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
)

, (31)

Then, we have:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3

< −1
2

Ω̃
(

θ3

β3

))
≤ exp

− Ω̃(θ6/β6)

2ρ6(P− 1)(∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
)

, (32)

Thus, we obtain:

P
(

∑m
s=1 ∑j 6=P(X)

〈
v(T)

s , x[j]
〉3
≥ −1

2
Ω̃
(

θ3

β3

))
> 1− exp

− Ω̃(θ6/β6)

2ρ6(P− 1)(∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
)

 (33)

Combined with Equation (30), we have:

P
(

fW(x) ≥ 1
2

Ω̃
(

θ3

β3

))
≥ 1− exp

− Ω̃(θ6/β6)

2ρ6(P− 1)(∑m
s=1

∥∥∥v(T)
s

∥∥∥6

2
)

 (34)

We note that
∥∥∥v(T)

r

∥∥∥
2
≤ 1; then, we obtain:

P
(

fW(x) ≥ 1
2

Ω̃
(

θ3

β3

))
≥ 1− exp

(
−Ω̃

(
θ6

β6ρ6

))
(35)

�

Theorem 2 shows that for an OoD sample that has a non-zero correlation with the
feature, we have the following: (1) As θ (i.e., the correlation with the feature) increases, the
output increases and the upper bound of the output becomes looser, which is consistent
with our intuition. (2) As β decreases, the upper bound of the output becomes looser, which
means that when the signal in the neurons increases, the output increases. (3) As ρ increases,
i.e., the noise in the data increases, the bound becomes looser, which means that we are
less confident that the output will be smaller than a pre-determined value. (4) As

∥∥∥v(T)
r

∥∥∥
2

increases, i.e., the OoFS noise in the neurons increases, the bound becomes looser, again,
and we are less confident that the output will be smaller than a pre-determined value.

In the above, we discuss the first cause of OoFS noise in the model, i.e., the model
memorizes the noise in the small-margin data during training to decrease their training
losses. In order to reduce this kind of noise, we may employ methods that favor hard-to-
learn features [22,28,42], and we may also resort to regularization methods, such as those
in [41].

3.3. The OoFS Noise in the Model Induced by Random Initialization

In this subsection, we use the same model and data distribution as in Section 3.2,
except that we assume that there is no OoFS noise in the data (i.e., the noise patches are
all zero); then, we can identify another cause of OoFS noise in the model, i.e., the noise
induced by random initialization. In this setting, for the r-th neuron, assume that we have〈

w(0)
r , Mk

〉
6= 0 for at least one k, where k > 1, i.e., Mk is one of the features that are

irrelevant to the task (remember that M1 is the only feature relevant to the task).

Mathematics 2023, 11, 2327 12 of 33

Take the linear model as an illustrative example when using GD and squared loss
without regularization; because the gradients of the loss are always constrained to the
fixed subspace spanned by the data {xi}n [46], the weight w(t)

r are confined to the low-

dimensional affine manifold w(0)
r + span({xi}n). If there is no OoFS noise in the data, then

we have: 〈span({xi}n), Mk〉 = 0; hence,
〈

w(t)
r , Mk

〉
=
〈

w(0)
r , Mk

〉
for all r ∈ [m] and k > 1.

This demonstrates that if we do not impose any capacity control, the OoFS noise remains in
the model; although it is irrelevant to the task, the model has no incentive to filter them out.

Since {Mk}d
k>1 forms the orthogonal basis of the OoF subspace, let ω

(t)
r,k =

〈
Mk, w(t)

r

〉
,

where r ∈ [m] and k = 2, .., d; then,
{

ω
(0)
r,k

}
characterizes the OoFS noise in the hidden neurons

induced by random initialization. For GD and GD+M, we can write w(t)
r = c(t)r w∗ + v(t)

r , since

〈w∗, Mk〉 = 0; then, we have: ω
(t)
r,k =

〈
Mk, w(t)

r

〉
=
〈

Mk, v(t)
r

〉
, i.e., v(t)

r = ∑d
k=2 ω

(t)
r,k Mk, and

thus,
∥∥∥v(T)

r

∥∥∥
2
=

√
∑d

k=2

(
ω
(t)
r,k

)2
. According to Theorems 1 and 2, we know that reducing∥∥∥v(T)

r

∥∥∥
2

is beneficial for OoD samples; in the following Theorem 3, we prove that L2

regularization can filter out the OoFS noise in the model, thus reducing
∥∥∥v(T)

r

∥∥∥
2
.

Theorem 3. Assume that we run GD on the above-mentioned single-hidden-layer model with
the above parameterization. Assume that xi[j] = 0, i ∈ [N], j ∈ [P]\{P(x)}, and the training
objective is L̂wd(W) = 1

N ∑N
i=1 log(1 + exp(−yi fw(Xi))) +

λ
2 ‖W‖

2
2. Let ω

(t)
r,k =

〈
Mk, w(t)

r

〉
,

where r ∈ [m] and k = 2, .., d; then, we have: ω
(t)
r,k = (1− ηλ)tω

(0)
r,k for all r and k, where η is the

learning rate and when t→ ∞ , ω
(t)
r,k → 0 .

In order to ensure
∣∣∣ω(Tr,k)

r,k

∣∣∣ < ε1 for some ε1 > 0, Tr,k should satisfy Tr,k > 1
ηλ ln

(∣∣∣ω(0)
r,k

∣∣∣
ε1

)
.

To ensure
∣∣∣ω(T)

r,k

∣∣∣ < ε1 for all r and k, T should satisfy T ≥ max
{

Tr,k
}

. Moreover, to ensure∥∥∥v(Tr,k)
r

∥∥∥
2
< ε, we may require

∣∣∣ω(Tr,k)
r,k

∣∣∣ < ε/
√

d− 1, which means Tr,k >
1

ηλ ln

(√
d−1

∣∣∣ω(0)
r,k

∣∣∣
ε

)

Proof. Via gradient update, for k = 2, .., d, we have:

ω
(t+1)
r,k = (1− ηλ)ω

(t)
r,k − η

〈
Mk,∇wr L̂(W(t))

〉
, (36)

where L̂(W) = 1
N ∑N

i=1 log(1 + exp(−yi fw(Xi))).
According to Lemma E.1 in [19], we know the following:

∇wr L̂(W(t)) = − 3
N

[(
∑i∈Z1

α3l(t)i + ∑i∈Z2
β3l(t)i

)(
c(t)r

)2
w∗ + ∑N

i=1 ∑j 6=P(Xi)
l(t)i

(
Ξ(t)

i,j,r

)2
xi[j]

]
(37)

Since xi[j] = 0 for j ∈ [P]\{P(x)}, the gradients ∇wr L̂(W(t)) are constrained to the
fixed one-dimensional subspace spanned by w∗; thus,

〈
Mk,∇wr L̂(W(t))

〉
= 0, and we

obtain the following:

ω
(t+1)
r,k = (1− ηλ)ω

(t)
r,k ; then, we have : ω

(t)
r,k = (1− ηλ)tω

(0)
r,k . (38)

To satisfy
∣∣∣ω(Tr,k)

r,k

∣∣∣ < ε1, we should have:

(1− ηλ)Tr,k =
ω
(Tr,k)
r,k

ω
(0)
r,k

<
ε1∣∣∣ω(0)
r,k

∣∣∣ (39)

Mathematics 2023, 11, 2327 13 of 33

Thus, we have: Tr,k ln(1− ηλ) < ln
(

ε1/
∣∣∣ω(0)

r,k

∣∣∣). In practice, we know that ηλ is small;
so, we can use the Taylor expansion for ln(1− ηλ). Using ln(1− ηλ) ≈ −ηλ, we have

Tr,k >
1

ηλ
ln

∣∣∣ω(0)

r,k

∣∣∣
ε1

 (40)

�

From Theorem 3, we know that weight decay or L2 regularization can be used to filter
out the OoFS noise in the model, but there are also trade-offs: First, the convergence is
slow; we need to train for a long time to reduce the noise below a pre-defined threshold.
Second, weight decay imposes the same level of penalty for all the parameters in the model
regardless of the geometry of the data. Third, setting the weight decay to a large value
hurts generalization. Therefore, we need other capacity control schemes to filter out the
OoFS noise.

Based on the above understanding, we can infer that the OoD generalization perfor-
mance is related to both the test distribution and the model’s properties. First, we can
evaluate the performance of the model from two aspects:

(1) The performance in the feature subspace, which further depends on two factors:
(i) Does the model learn all the informative features, i.e., does the model learn the basis
of Fspan and the relative strength of the learned features, i.e., the signal strength c(T)r ,
in the hidden neurons? (ii) How does the model explain the data in Fspan − supp(X)?
Different algorithms have different biases and provide different explanations;

(2) The performance in the OoF subspace, which is determined by the OoFS noise in
the model.

Second, considering the distribution of the test data, we can evaluate the performance
by sampling test data from the feature subspace and the OoF subspace individually and by
obtaining the model’s responses to them, as we show in Section 5.1.

Therefore, we can evaluate algorithms under this simple setting to understand their
behaviors and to evaluate their performance from the above two distinct aspects, which
may help us to improve existing algorithms or to develop new algorithms.

4. From Neurons to Representations—Data-Dependent Regularization for the Fully
Connected Layer

In Section 3, we study the impact of the OoFS noise in the model on the OoD test
samples under a simplified setting, i.e., a single-hidden-layer neural network and a data
model based on a feature dictionary. Although things are more complicated for natural
datasets and DNNs, we can still gather some insights from the above analysis. First, in
order to learn a good representation, we should suppress the OoFS noise in the feature
extractor. Although we cannot directly measure OoFS noise anymore for DNNs, from
Theorems 1 and 2, we can see that both the noise in the data and the noise in the model
are embedded in the output; thus, in order to reduce the noise in the feature extractor, we
focus on the representations. However, signal and noise in the representations are still
difficult to define and measure; hence, inspired by [20,22,37] in which modes with stronger
explanatory power can be quantified by the singular value, we resort to using the SVD. For
the model c = h ◦ ϕ, we shift attention away from the properties of ϕ and instead focus
on the representations and the fully connected layer h, i.e., we view the representations as
noisy data that should be processed by the fully connected layer.

On the other hand, we know from Theorem 3 that L2 regularization is beneficial
in reducing OoFS noise in the model; inspired by this effect and considering that both
the signal/noise structure in the data and in the model are reflected in the structure of
the representations, we take the geometry of the representations into consideration and
regularize the parameters of h via a data-dependent norm. Our reasons are as follows:

Mathematics 2023, 11, 2327 14 of 33

First, the fully connected layer is flexible and prone to overfitting, which can be further
constrained by some capacity control scheme in addition to or instead of weight decay.

Second, according to the learning dynamics [21], by changing the dynamics of the
fully connected layer, the behavior of the feature extractor also changes accordingly; thus,
we can promote ϕ to learn better features via back-propagation by regularizing the weights
of the fully connected layer.

Third, from the perspective of the fully connected layer, its input (i.e., the presentations)
is highly anisotropic and has a low rank; hence, uniform L2 shrinkage without being aware
of the geometry of the data may not be the best choice. Moreover, since there may be a
lot of noise in the representations that should be filtered out by the fully connected layer,
setting the same level of penalty for all weights is not very reasonable.

In short, we seek to reduce the noise in the representations via a data-dependent
regularizer that acts on the weights of the fully connected layer; then, we rely on the
back-propagation scheme to push this bias back to the feature extractor, and in this way, we
can implicitly force the feature extractor to focus on signals and to suppress noise, hence
increasing the signal-to-noise ratio (SNR) in the feature extractor.

Let ‖w‖A denote the matrix norm of w with respect to the matrix A, i.e.,
‖w‖2

A = 〈w, Aw〉. For the DNN model c = h ◦ ϕ, let W ∈ RC×m denote the parame-
ters of the fully connected layer, where m is the dimension of the representation space and
C is the number of different classes. Let z = ϕ(x), z ∈ Rm; we denote all the representations
in a mini-batch by Z ∈ Rb×m, where b is the batch size. Suppose that m > b and that
there are d non-zero singular values; assume the singular values are sorted from largest to
smallest. Then, we have: Z = USVT = ∑d

i=1 siuivT
i , where U ∈ Rb×d; S ∈ Rd×d; V ∈ Rm×d;

vi ∈ Rm is the i-th column of V, which represents the i-th (latent) feature; Si,i is the strength
of that (latent) feature; and ui ∈ Rb is the i-th column of U, which contains the weights of
this (latent) feature in each example. Then, we have: Σ = ZTZ = VS2VT .

Similar to principal component analysis (PCA) [47], we assume that the large singular
values are more likely to correspond to the signal, and the small singular values are more
likely to correspond to the noise.

4.1. Data-Dependent Regularization on the Weights of the Fully Connected Layer for
Binary Classification

First, let us consider the case of a single output. We denote the weights of the fully
connected layer by w; then, we need to determine a matrix A ∈ Rm×m to ensure that,
with the regularizer ‖w‖2

A, w is encouraged to align with the signal, i.e., in the directions
corresponding to larger singular values, the penalty is smaller, and vice versa. We introduce
a parameter p > 0 to control the strength of this bias; p can be fixed during training or can
be set in an adaptive way dynamically. We restrict the matrix A to the class of matrices:
A = ∑d

i=1 γivivT
i , and let (

si
sj

)p

=

∥∥vj
∥∥2

A

‖vi‖2
A

, where i, j ∈ [d], (41)

Then, we have the following:(
si
sj

)p

=

〈
vj, Avj

〉
〈vi, Avi〉

=
vT

j Avj

vT
i Avi

=
vT

j (∑
d
k=1 γkvkvT

k)vj

vT
i (∑

d
k=1 γkvkvT

k)vi
=

γj

γi
. (42)

Consequently, we have: γis
p
i = γjs

p
j = constant = τ; hence, γi = τs−p

i .
Let τ = 1, and putting the results into a matrix form, we have:

A = ∑d
i=1 s−p

i vivT
i = VS−pVT (43)

Mathematics 2023, 11, 2327 15 of 33

Let G = VS−p/2VT ; then, A = GGT , and we can also write the following:

‖w‖2
A = 〈w, Aw〉 =

〈
GTw, GTw

〉
=
∥∥∥GTw

∥∥∥2

2
(44)

In practice, we can set p = 1/2 to balance convergence speed and accuracy, with p = 1
leading to faster convergence. Intuitively, by the inclusion of a data-dependent whitening
term in the weight vector w, we encourage w to focus more on the signal direction and to
rely less on the noise, thus preventing the fully connected layer from fitting data with noise;
consequently, this implicitly prevents the feature extractor from learning noisy features via
back-propagation. Moreover, because L2 regularization for w corresponds to the special
case when A = Im×m, we can also view the parameter p as controlling the (geometric)
interpolation between A = Im×m(i.e., p = 0) and A = Σ−1(i.e., p = 2).

Let p = 1/2; suppose that w lies in the subspace spanned by the columns of V, i.e.,
w = ∑d

i=1 aivi. Then, we have:

‖w‖2
A =

〈
∑d

i=1 aivi, (∑d
i=1 s−1/2

i vivT
i)(∑

d
i=1 aivi)

〉
=
〈

∑d
i=1 aivi, ∑d

i=1 ais
−1/2
i vi

〉
= ∑d

i=1 a2
i s−1/2

i

(45)

Let l = (|a1|s−1/4
1 , |a2|s−1/4

2 , . . . , |ad|s−1/4
d); then,

reg = ‖w‖2
A = ∑d

i=1 |ai|2(s−1/4
i)

2
=

1
d
‖1d‖2‖l‖2 ≥ 1

d
〈1d, l〉2 =

1
d
(∑d

i=1 |ai|s−1/4
i)

2
(46)

The inequality follows from the Cauchy–Schwarz inequality. Hence, the regularizer is

lower-bounded by 1
d (∑

d
i=1 |ai|s−1/4

i)
2
, with equality if, and only if, l is parallel to 1d, i.e.,

when |ai|s−1/4
i = |a1|s−1/4

1 for all i ∈ [d], that is, |ai |
|a1|

=
s−1/4

1
s−1/4

i
=
(

si
s1

)1/4
. Therefore, the

regularization term favors directions corresponding to larger singular values.
We can also calculate the gradient of the regularizer:

ai = 〈w, vi〉 = ∑m
j=1 wjvi,j (47)

∂‖w‖2
A

∂wj
=

∂(∑d
i=1 a2

i s−1/2
i)

∂wj
= ∑d

i=1 (2ais
−1/2
i)

∂ai
∂wj

= ∑d
i=1 (2ais

−1/2
i)vi,j (48)

Then, we obtain: −∇w‖w‖2
A = −∑d

i=1 (2ais
−1/2
i)vi, i.e.,

〈
−∇w‖w‖2

A, vi

〉
= −2ais

−1/2
i .

We can see that, in the directions corresponding to larger singular values, the correla-
tions between the directions and the weight vector w decrease at a slower rate, while in the
directions corresponding to smaller singular values, the correlations between the directions
and the weight vector w decrease at a faster rate. Thus, our regularizer filters out noise in
the representation space in a data-dependent manner.

4.2. Extension to Multi-Class Classification

Here, we extend this method to the case of multi-class classification; we denote the
weight vector corresponding to the c-th logit by wc,: ∈ Rm; we define the regularization
for the c-th logit by regc = ‖wc,:‖2

A = 〈wc,:, Awc,:〉; and then, we sum the results for all the
logits to obtain the final regularization item: R = ∑C

c=1 regc = ∑C
c=1‖wc,:‖2

A. We can also
formulate it into a matrix form:

R = tr(WAWT) = tr(AWTW) = tr(WTWA) (49)

where tr(X) represents the trace of the matrix X.

Mathematics 2023, 11, 2327 16 of 33

Let g = (‖w1,:‖A, ‖w2,:‖A, . . . , ‖wC,:‖A); we apply the Cauchy–Schwarz inequality
again and obtain:

∑C
c=1‖wc,:‖2

A =
1
C
‖g‖2‖1C‖2 ≥ 1

C
〈1C, g〉2 =

1
C

(
∑C

c=1‖wc,:‖A

)2
(50)

The equality holds if, and only if, g is parallel to 1C. Therefore, for multi-class classifi-
cation, the bias of the regularizer is to bring the first C singular values closer.

The training process of the proposed method is described in Algorithm 1:

Algorithm 1 The training process of the proposed method

Input: the training set, {xi, yi}n
i=1; the model, f ; max number of steps, T; the size of a mini-batch,

b; the number of mini-batches, nb; the weighting of the regularizer, λ; the parameter of the
regularizer, p;
Output: the model, fθ̂
for t = 1 to T do

for k = 1 to nb do
Sample a mini-batch of training inputs, Xb, and the ground-truth labels, Yb;
Compute the outputs and representations with current θ, Ŷb, Zb = fθ(Xb);
Compute the cross-entropy loss, LCE = CrossEntropyLoss(Ŷb, Yb);
Compute the SVD decomposition of the representations, U, S, VT = SVD(Zb);
Compute A with formula (43), i.e., A = VS−pVT ;
Compute the regularization item with formula (49), Rb = tr(Wt AWT

t);
Compute the mini-batch loss, L = LCE + λRb;
Update θ by taking an SGD step on the mini-batch loss, L;

end for
end for

Finally, because we do not incorporate the label information into the regularizer and
the regularizer encourages the weights of the fully connected layer to align with the repre-
sentations, we actually push the pressure back to the feature extractor to force it to learn
class-specific representations instead of letting it learn shared and mixed representations
and then relying on the final layer to fit the label. Additionally, this can take advantage of
GD, which performs better when the task and the data are aligned [29].

5. Experiments

In this section, we evaluate our approach with experiments. We first consider synthetic
datasets to examine the behavior and show the advantages of the proposed method; then,
we evaluate the performance on the image classification task.

5.1. Binary Classification Task with a Synthetic Dataset

In this subsection, we consider a binary classification task with a data model based on
a feature dictionary. We generate a dataset that contains hard-to-learn features to highlight
the power of our method. We carry on multiple kinds of tests to examine the effect and
the bias of our regularizer from the feature learning perspective, as presented in Section 3,
and compare our algorithm with GD, AdaGrad [28], Kronecker-Factored approximate
curvature (KFAC) [48].

Considering a binary classification task, we generate training data as follows: assume
that the feature dictionary M contains six features, denoted by M1~M6, where Mk ∈ R6,
‖Mk‖2 = 1, and

〈
Mk, Mj

〉
= 0 for i 6= j. We denote the training set by {xi, yi}n, where

n = 600, i.e., each class contains 300 training samples. Let xi = Mzi + ξi, where x, z, ξ ∈ R6,
z is the hidden variable and denoted by z = (z(1), z(2), . . . , z(6)), and ξ ∼ N(0, 0.3I6×6)
is the random Gaussian noise. The label is generated by y(x) = (sign(〈w∗, z〉) + 1)/2,
where w∗ ∈ R6 is the task vector. The latent variables are determined as follows: for
all samples in Class 1, first, let z(k) = 0 for k = 2, . . . , 6, z(1) ∼ Uni f orm(0.7, 1); then,
randomly select a minority of them (we set it to 10%) and let z(2) ∼ Uni f orm(0.8, 1) for
these samples. The samples of Class 2 are generated in a similar way, i.e., let z(k) = 0 for

Mathematics 2023, 11, 2327 17 of 33

k = 1, 2, 4, 5, 6, z(3) ∼ Uni f orm(0.7, 1); then, select 10% of the samples randomly and let
z(4) ∼ Uni f orm(0.8, 1). Because z(5) and z(6) are always equal to zero, M5 and M6 are
irrelevant to the task, i.e., they span the OoF (noise) subspace.

Under the above setting, M1~M4 are all useful signals informative of the class; how-
ever, they correspond to different levels of difficulty to be learned, i.e., M1 and M3 are
strongly correlated to the label and easy-to-learn, while M2 and M4 are relatively weaker
and harder to learn. Intuitively, from the frequency perspective, features that appear in the
majority of the samples are easier to learn [49]; features that appear only in the minority of
samples are more difficult to learn.

We use a two-layer leaky-ReLU neural network with m = 100 hidden neurons; the
weight matrix of the first layer is denoted by W ∈ R100×6, and the weight vector correspond-
ing to the r-th hidden neuron is denoted by wr ∈ R6, where r ∈ [m]. The bias of the hidden
layer is denoted by b, where b ∈ R100, and the weight vector of the second layer is denoted
by a ∈ R6. The output of the model is a scalar denoted by fW,a(x). The loss objective is
l(x, y) = y · log σ(f (x)) + (1− y) log(1− σ(f (x))) and L̂(X, y) = 1

n ∑n
i=1 l(xi, yi).

In the following of Section 5.1, we compared our approach with GD, AdaGrad, and
KFAC; all the results are obtained with the same initialization.

5.1.1. The Signal and Noise in a Hidden Neuron

To measure the features (i.e., hidden weights) learned by the neurons, we use
cos(θ) = 〈z, z′〉/‖z‖2‖z′‖2 as a measure of the correlation between vector z and z’. We
calculate the following quantities during training:

• The correlation between the hidden weight wr of the r-th neuron and the k-th ground-truth
feature (i.e., the k-th feature in the feature dictionary) Mk: cos(θr,k) = 〈wr, Mk〉/‖wr‖2;

• The correlation between the gradient of the loss with respect to the weight of the r-th

neuron and the k-th ground-truth feature: cos(φr,i) =
〈∇wr L̂,Mk〉
‖∇wr L̂‖2

;

• The norm of the weight vector of the r-th neuron: ‖wr‖2 = ‖Wr,:‖2;
• The norm of the gradient:

∥∥∇wr L̂
∥∥

2;
• The weight of the fully connected layer corresponding to the r-th neuron: ar;
• The bias of the r-th neuron: br.

(1) Optimization via GD

Figure 3 visualizes the above quantities during training via GD for the third neuron
in the hidden layer; we set the learning rate and the weight decay to 1e-3 and set the
momentum to 0.9. The x-axis represents the epoch number, k = 1, . . . , 6. Figure 3a
plots cos(θ3,k), and Figure 3b plots cos(φ3,k). In Figure 3a,b, the blue and green solid lines
represent the correlations with the two easy-to-learn features (i.e., M1 and M3, respectively),
while the orange and red dashed lines represent the correlations with the two hard-to-
learn features (i.e., M2 and M4); finally, the purple and brown dotted lines represent the
correlations with the two remaining irrelevant features (i.e., M5 and M6). Figure 3c plots
‖w3‖2 (blue),

∥∥∇wr L̂
∥∥

2 (orange), a3 (green), and b3 (red).
In Figure 3, for the third neuron, the correlations with M1~M4 evolve in different ways,

and the hidden weight w3 has a positive correlation with M3 and a negative correlation with
M1, thus corresponding to a negative a3. Because M2 and M4 only appear in a minority
of the samples, they are hard to learn, and this neuron tends to “forget” them instead of
learning them, i.e., their correlations converge to some values near zero. Moreover, the
correlations with M5 and M5 also converge to some values near zero.

We can also compare the convergence speed of the correlations in Figure 3a; the
neuron learns M3 very fast but filters out M5 and M6 at a relatively slow rate. Although
training for longer durations seems beneficial for filtering out OoFS noise, this also makes
the neuron “forget” M2 and M4 more completely. It seems that GD cannot differentiate
well between the hard-to-learn features and noise; it filters out noise as well as forgets the
informative features.

Mathematics 2023, 11, 2327 18 of 33

Figure 3. The evolution of the quantities for Neuron 3 during training via GD. (a) The correlations
between w3 and M1 ~M6: note that M1 and M3 are easy to learn and that M2 and M4 are hard to
learn. (b) The correlations between ∇w3 L̂ and M1 ~M6. (c) The norm of the hidden weight ‖w3‖, the
norm of the gradient

∥∥∇w3 L̂
∥∥

2, the outgoing weight a3, and the bias b3 of the hidden neuron.

(2) Optimization via AdaGrad

It is known that AdaGrad can learn highly predictive but rare features better than GD.
Figure 4 shows the results when training via AdaGrad; the learning rate and the weight
decay are set to 1 × 10−3. It can be seen that, for the third neuron, AdaGrad performs better
when learning M4 compared with GD, at the expense of performing worse when filtering
out noise, i.e., Figure 4a shows that the correlations with M5 and M6 do not converge to
zero. It seems that AdaGrad also cannot differentiate well between hard-to-learn features
and noise; it favors hard-to-learn features at the expense of memorizing more noise.

Figure 4. The evolution of the quantities for Neuron 3 during training via AdaGrad: (a) The
correlations between w3 and M1 ~M6. (b) The correlations between ∇w3 L̂ and M1 ~M6. (c) The
norm of the hidden weight ‖w3‖, the norm of the gradient

∥∥∇w3 L̂
∥∥

2, the outgoing weight a3, and
the bias b3 of the hidden neuron.

(3) Optimization via KFAC

KFAC is an efficient second-order optimization method proposed for approximating
NGD in neural networks. It can be seen in Figure 5 that KFAC learns M2 well, but the
gradient correlations with M1~M6 are much noisier than GD and AdaGrad. Moreover, it
memorizes the irrelevant noise M6. It also favors hard-to-learn features at the expense of
memorizing noise.

(4) Optimization via GD with the proposed regularizer

Figure 6 shows the results of training via GD with our regularizer. To highlight the
effect of our method, we set the weight decay of the weights of the fully connected layer
to zero, and the other super-parameters are set to the same values as in GD; moreover,
p = 1/2, and the weighting of our regularization term is set to 1.

It can be seen that the correlations with M1~M6 all converge at a relatively fast rate,
and it performs well in learning M4; meanwhile, it filters out M5 and M6 better than
AdaGrad and KFAC.

Mathematics 2023, 11, 2327 19 of 33

Figure 5. The evolution of the quantities for Neuron 3 during training via KFAC: (a) The correlations
between w3 and M1 ~M6. (b) The correlations between ∇w3 L̂ and M1 ~M6. (c) The norm of the
hidden weight ‖w3‖, the norm of the gradient

∥∥∇w3 L̂
∥∥

2, the outgoing weight a3, and the bias b3 of
the hidden neuron.

Figure 6. The evolution of the quantities for Neuron 3 during training via GD with our regularizer.
(a) The correlation between w3 and M1 ~M6. (b) The correlation between∇w3 L̂ and M1 ~M6. (c) The
norm of the hidden weight ‖w3‖, the norm of the gradient

∥∥∇w3 L̂
∥∥

2, the outgoing weight a3, and
the bias b3 of the hidden neuron.

Specifically, compared with GD with weight decay, training with our regularizer
makes it easier to learn M3 and M4. Meanwhile, it performs better than GD in filtering
out OoFS noise M5 and M6, which demonstrates the power of our method; in particular, it
exhibits the ability to differentiate signal and noise in some sense.

It can be seen from Figures 3–6 that these methods share some common properties:

(i) Due to the existence of underlying noise in the data (i.e., ξ the gradients have non-zero
correlation with the two OoFS features M5 and M6.

(ii) The correlations between the gradients and the ground-truth features tend to converge,
and the norm of the gradients converges to zero fast.

(iii) The correlations between the hidden weights and the ground-truth features tend to
converge but with different rates.

(iv) Due to both the OoFS noise in the data and the influence of the random initialization,
the learned features (i.e., the hidden weights) have non-zero correlations with M5 and
M6, which may induce noise in the output for the OoFS test samples.

(v) Although the six ground-truth features in the feature dictionary are orthogonal, the
neurons in the models do not learn these pure ground-truth features; instead, they
learn a mixture of the ground-truth features M1~M4 and contain OoFS noise (i.e., M5
and M6) as well.

5.1.2. Test with Samples within the Feature Subspace

In this test, we generate the latent variables as follows: for Test 1 (corresponds to
Class 1 but contains out-of-support samples), we set z(k) = 0 for k = 3, . . . , 6, and sample
2500 points uniformly on the two-dimensional mesh [0, 1]× [0, 1]. Let [z(1), z(2)] correspond
to the coordinates of these points, i.e., the x and y coordinates correspond to z(1) and z(2),
respectively. We generate samples for Test 2 in a similar way, i.e., we set z(k) = 0 for

Mathematics 2023, 11, 2327 20 of 33

k = 1, 2, 5, 6, and sample 2500 points uniformly on the two-dimensional mesh [0, 1]× [0, 1].
Let the x and y coordinates correspond to z(3) and z(4), respectively.

After we generate the hidden variables, we use x = Mz + ξ to generate the inputs,
where we set ξ = 0. Then, we have 2500 test points for each test and feed them into the
model to obtain the outputs. Figures 7–10 visualize the results for GD, AdaGrad, KFAC,
and our method. In each figure, the first row shows the results for Test 1, while the second
row shows the results for Test 2. The left column plots the original outputs, while the right
column plots the sigmoid of the outputs. All the super-parameters are set as in Section 5.1.1.

Figure 7. Feature subspace test with the model trained via GD: (a) the contour of the original output
for Test 1; (b) the contour of the sigmoid of the output for Test 1; (c) the contour of the original output
for Test 2; (d) the contour of the sigmoid of the output for Test 2.

Figure 8. Feature subspace test with the model trained via AdaGrad: (a) the contour of the original
output for Test 1; (b) the contour of the sigmoid of the output for Test 1; (c) the contour of the original
output for Test 2; (d) the contour of the sigmoid of the output for Test 2.

Mathematics 2023, 11, 2327 21 of 33

Figure 9. Feature subspace test with the model trained via KFAC: (a) the contour of the original
output for Test 1; (b) the contour of the sigmoid of the output for Test 1; (c) the contour of the original
output for Test 2; (d) the contour of the sigmoid of the output for Test 2.

Figure 10. Feature subspace test with the model trained via GD with our regularizer: (a) the contour
of the original output for Test 1; (b) the contour of the sigmoid of the output for Test 1; (c) the contour
of the original output for Test 2; (d) the contour of the sigmoid of the output for Test 2.

(1) Optimization via GD

Figure 7 shows the results for GD. It can be seen that the contour is almost vertical to
the x-axis, i.e., when the x coordinate is fixed, the output is almost independent of the y
coordinate; therefore, the model has hardly learned M2 and M4. This example shows the
feature imbalance mentioned in [18,21,22,26,28,32].

Mathematics 2023, 11, 2327 22 of 33

From the contour of the sigmoid, we can see that, for the points within the support
of the training data (i.e., [0.7, 1] * [0.8, 1]), the model is very confident in its prediction;
however, different algorithms present different explanations for the points outside the
support. Some algorithms make conservative predictions, while others choose to be more
tolerant. For example, consider the point (0.5, 0.1); although it is outside of the support of
the training data, the model trained via GD still produces very confident predictions.

(2) Optimization via AdaGrad

Figure 8 shows the results for AdaGrad. It can be seen that AdaGrad performs better
when learning M2 than GD, but it still can hardly learn M4. Moreover, it provides more
tolerant predictions than GD; it predicts that a point, such as [0.35, 0.1], is from Class 1 with
high confidence.

(3) KFAC

The results for KFAC are shown in Figure 9. As a second-order optimization algorithm,
the learned features (i.e., the hidden weights) seem more complicated, and it performs
better when learning M2 than other methods, in some sense.

(4) Optimization via GD with the proposed regularizer

The results for the model trained via GD with our regularizer are presented in
Figure 10; it can be seen that compared with GD and AdaGrad, the model trained with our
regularizer performs better when learning the hard-to-learn features, i.e., M2 and M4. We
can see that, for the same x, as the y coordinate increases, the model is more confident in
its predictions. Furthermore, our model is more conservative for the points belonging to
Fspan − supp(X), i.e., it is not as confident as GD and AdaGrad when the test point lies
outside the support of the training set.

In this test, we show that the model trained with our regularizer performs better on
both the easy-to-learn features and the hard-to-learn features than GD, AdaGrad, and
KFAC, which demonstrates its ability to learn features (i.e., signal). On the other hand, for
the test points in Fspan − supp(X), our method provides more conservative predictions.

5.1.3. Test with Samples within the OoFS

This test is similar to the test in Section 5.1.2, except that the coordinates of the points
within the mesh correspond to z(5) and z(6), and the other components of the latent variable
z are all set to zero. It can be seen that these test samples lie in the OoF subspace.

Figure 11 shows the results of the four methods. The four rows correspond to GD,
AdaGrad, KFAC, and our method; the left column shows the original output, while the
right column shows the sigmoid of the output. It can be seen that our method produces
smaller outputs than the other methods and provides the best sigmoid confidence value
(i.e., all near 0.5). This demonstrates that our model contains less OoFS noise, which means
that our regularizer performs well in filtering out OoFS noise.

5.1.4. The Signal and Noise in the Hidden Layer

In the test in Section 5.1.1, we measured the signal and noise in the hidden weight of
each neuron; however, here, to obtain the whole picture, we capture the signal and noise of
the whole hidden layer via the following quantities:

We measure the signal learned by the hidden layer using: si = ∑m
r=1〈wr, Mi〉, where

i = 1, .., 4 and m = 100, i.e., the number of hidden neurons, and we measure the noise in
the hidden layer using ni = ∑m

r=1〈wr, Mi〉, where i = 5, 6. Remember that M2 and M4 are
hard-to-learn features, and that M5 and M6 span the OoF subspace.

In Figure 12, the x-axis represents the epoch number, the y-axis represents the signal
or noise. Specifically, the blue and green solid lines correspond to s1 and s3, respectively;
the orange and red dashed lines correspond to s2 and s4, respectively; and the purple and
brown dotted lines correspond to n5 and n6, respectively.

Mathematics 2023, 11, 2327 23 of 33

Figure 11. OoFS test with the model trained via the four methods: (a) the contour of the original
output with the model trained via GD; (b) the contour of the sigmoid of the output with the model
trained via GD; (c) the contour of the original output with the model trained via AdaGrad; (d) the
contour of the sigmoid of the output with the model trained via AdaGrad; (e) the contour of the
original output with the model trained via KFAC; (f) the contour of the sigmoid of the output with
the model trained via KFAC; (g) the contour of the original output with the model trained via GD
with our regularizer; (h) the contour of the sigmoid of the output with the model trained via GD with
our regularizer.

Mathematics 2023, 11, 2327 24 of 33

Figure 12. The signal and noise in the hidden layer of the model trained via the four methods: (a) GD;
(b) AdaGrad; (c) KFAC; (d) our method.

It can be seen that, for GD, the signal strength on M1 and M3 increases quickly during
the early phase of training, while the signal strength on M2 and M4 only increases a little at
the beginning and then decreases. The noise strength measured by n5 and n6 approaches
zero at a slow rate. We can say that, during the training, GD forgets M2 and almost does
not learn M4 at all, which is consistent with the results given in Section 5.1.2. We can infer
that if we train for a longer duration, the amount of OoFS noise decreases, but the model
also forgets about more of M2.

Figure 12b shows that AdaGrad does not forget M2 as GD does, and it learns M4
better than GD; however, it filters out noise at a slower rate.

The results for KFAC are given in Figure 12c; it can be seen that KFAC learns M2 and
M4 well, and it even puts more focus on the hard-to-learn feature M4 than the easy-to-learn
feature M1. However, when we shift our attention to the noise, its performance is poor.
The model trained via KFAC contains much OoFS noise, which hurts generalization.

Figure 12d shows the results of our method. It can be seen that the model trained with
our regularizer indeed learns the hard-to-learn features M2 and M4. Moreover, it performs
a bit better than GD and obviously better than AdaGrad and KFAC when filtering out
OoFS noise.

5.1.5. The Effective Rank, Trace Ratios, and Spectrum

In another test, we measure the effective rank based on spectral entropy and the
trace ratios [37]. Given a kernel matrix K ∈ Rr×r with positive eigenvalues λ1, . . . , λr,
let µj = λj/∑r

i=1 λj be the trace-normalized eigenvalues. The effective rank is defined
as follows:

erank = exp(H(µ)), H(µ) = −∑r
j=1 µj log(µj)

where H(µ) is the Shannon entropy. The effective rank is a real number between 1 and r,
upper bounded by rank(K), which measures the “uniformity” of the spectrum through the
entropy. The trace ratios are defined as: Tk = ∑j<k λj/∑j λj, and it quantifies the relative
importance of the top k eigenvalues.

Figures 13–16 show the effective rank and trace ratios of the representations during
training via GD, AdaGrad, KFAC, and our method. We also plot the spectrum of the
representations for the final models trained via the four methods.

Mathematics 2023, 11, 2327 25 of 33

Figure 13. The effective rank, trace ratios, and spectrum of the representations evaluated on the
model trained via GD: (a) effective rank; (b) trace ratios; (c) spectrum of the representations.

Figure 14. The effective rank, trace ratios, and spectrum of the representations evaluated on the
model trained via AdaGrad: (a) effective rank; (b) trace ratios; (c) spectrum of the representations.

Figure 15. The effective rank, trace ratios, and spectrum of the representations evaluated on the
model trained via KFAC: (a) effective rank; (b) trace ratios; (c) spectrum of the representations.

Figure 16. The effective rank, trace ratios, and spectrum of the representations evaluated on the
model trained via our method: (a) effective rank; (b) trace ratios; (c) spectrum of the representations.

It can be seen that GD and AdaGrad are more or less similar under this perspective,
while the model trained with KFAC apparently contains much noise. Our method leads to
a smaller effective rank in the representation space and suppresses noise better than the
other methods.

Mathematics 2023, 11, 2327 26 of 33

5.2. Linear Binary Classification Task

In this subsection, we evaluate our regularizer on a binary classification task with
input from a mixture of Gaussian distribution with two components. Assume that there
are two classes; each contains 150 data points, and p(x|C1) ∼ N(µ1, Σ) and p(x|C2) ∼
N(µ2, Σ), where µ1 = (−3, 0), µ2 = (3, 0), and Σ = diag(1.5, 16). The linear model y = βx
is trained with the cross-entropy loss. We visualize the decision boundaries and plot the
contour lines for the models trained via SGD, AdaGrad, KFAC, and our method.

Figure 17 shows the results for SGD; it can be seen in Figure 17a that, due to the noise
in the training data, the decision boundary is skewed. In Figure 17b, we see that the model
is over-confident near the decision boundary.

Figure 17. Results with the model trained via SGD: (a) the decision boundary; (b) the contour of the
sigmoid of the output.

Figure 18 shows the results for AdaGrad; the decision boundary is similar to that of
SGD, but the model trained with AdaGrad is less confident near the decision boundary,
which indicates better performance in uncertainty estimation.

Figure 18. Results with the model trained via AdaGrad: (a) the decision boundary; (b) the contour of
the sigmoid of the output.

The results for KFAC are shown in Figure 19; the decision boundary is closer to
the ground-truth boundary compared with SGD and AdaGrad, and it presents better
uncertainty estimations near the boundary.

Figure 19. Results with the model trained via KFAC: (a) the decision boundary; (b) the contour of the
sigmoid of the output.

Mathematics 2023, 11, 2327 27 of 33

Figure 20 shows the results for our method. The regularization acts on the parameter β;
we set p = 1/2, and the weighting of the regularizer is 0.1. It can be seen that the decision
boundary is the closest to the ground-truth boundary compared with the other methods,
which indicates better generalization. Furthermore, it provides the best uncertainty estimate
near the decision boundary.

Figure 20. Results with the model trained via GD with our regularizer: (a) the decision boundary;
(b) the contour of the sigmoid of the output.

From this experiment, we can see that, although this is only a linear model without any
hidden layer and we have no chance to enforce a good representation via back-propagation,
we can still benefit from data-dependent regularization. It can be seen that our regularizer
can deal with noisy data in a better way; thus, we obtain a decision boundary closest to the
ground truth, along with the best uncertainty estimation performance.

5.3. Image Classification Task on Benchmark Datasets

In this section, we evaluate our method on three vision benchmark datasets: MNIST
(MNIST dataset link: http://yann.lecun.com/exdb/mnist/ (accessed on 9 February 2023)) [50],
SVHN (SVHN dataset link: http://ufldl.stanford.edu/housenumbers/ (accessed on
2 March 2023)) [51], and CIFAR10 (CIFAR10 dataset link: http://www.cs.toronto.edu/
~kriz/cifar.html (accessed on 4 March 2023)) [52]. We use the same models and settings as
in [15]. For MNIST and SVHN, we use 250 samples to train the model; for CIFAR10, we
use 500 and 1000 samples to train the model.

For SVHN and CIFAR10, the CNN-13 architecture [53] is used, and for MNIST, we use
a simpler CNN architecture, as in [15]. We train the model using an SGD optimizer with a
momentum of 0.9 and employ a cosine annealing learning rate scheduler [54].

The cross-entropy loss is employed; we set the super-parameter p of the regularizer to
1/2; the batch size is set to 32; the weight decay on the feature extractor ϕ is set to 1 × 10−3;
and the weight decay on the linear classifier h is set to 1 × 10−3, except for CIFAR10-1k,
which we set to 5 × 10−4. For SVHN and CIFAR10, the weighting of the regularization
term is set to 0.35, and the initial learning rate is set to 0.2. For MNIST, both the weighting
of the regularization term and the initial learning rate are set to 0.1.

Table 1 compares our method with Vanilla (including batch normalization, dropout [55]
and weight decay) and the regularizers proposed in relevant work, including the Jacobian
regularizer [43], regularizers based on statistics of representations [44,45], and the topologi-
cal regularizer [15]. We report the average test error (%) and the standard deviation over
10 cross-validation runs. The number attached to the dataset names indicates the number
of training instances used. It can be seen that our method achieves the lowest average error
for MNIST-250, CIFAR10-500, and CIFAR10-1k.

It should be mentioned that the topological regularization method in [15] relies on
sub-batch construction, i.e., each mini-batch consists of n sub-batches, and each sub-batch
consists of b samples from the same class. However, this construction is not commonly
used in modern practice, and our method achieves the best performance on three tasks
among four without any dependence on special construction.

http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Mathematics 2023, 11, 2327 28 of 33

Table 1. Comparison with previous regularizers. “Vanilla” includes batch normalization, dropout,
and weight decay. The average test error and the standard deviation are reported. (We use the bold
to highlight the smallest test error).

Regularization MNIST-250 SVHN-250 CIFAR10-500 CIFAR10-1k

Vanilla 7.1 ± 1.0 30.1 ± 2.9 39.4 ± 1.5 29.5 ± 0.8
+Jac.-Reg [43] 6.2 ± 0.8 33.1 ± 2.8 39.7 ± 2.0 29.8 ± 1.2
+DeCov [44] 6.5 ± 1.1 28.9 ± 2.2 38.2 ± 1.5 29.0 ± 0.6

+VR [45] 6.1 ± 0.5 28.2 ± 2.4 38.6 ± 1.4 29.3 ± 0.7
+cw-CR [45] 7.0 ± 0.6 28.8 ± 2.9 39.0 ± 1.9 29.1 ± 0.7
+cw-VR [45] 6.2 ± 0.8 28.4 ± 2.5 38.5 ± 1.6 29.0 ± 0.7

+Sub-batches [15] 7.1 ± 0.5 27.5 ± 2.6 38.3 ± 3.0 28.9 ± 0.4
+Sub-batches + Top.-Reg [15] 5.6 ± 0.7 22.5 ± 2.0 36.5 ± 1.2 28.5 ± 0.6
+Sub-batches + Top.-Reg [15] 5.9 ± 0.3 23.3 ± 1.1 36.8 ± 0.3 28.8 ± 0.3

+FC_Reg (ours) 5.3 ± 0.3 27.8 ± 1.3 36.2 ± 0.7 28.4 ± 0.3

Figure 21 visualizes the representations for CIFAR10-500. It can be seen that, for our
method, although we do not explicitly force clustering within a class or separation of differ-
ent classes, the representations of samples from the same class are clustered more tightly,
and there are no outliers. Moreover, samples from different classes are well separated,
and the representation space is more structured. However, we should also mention that
Figure 21 is only a low-dimensional visualization of the representations; although it may
serve as an illustration of the bias of the algorithms, some information is lost during dimen-
sionality reduction, and the performance of the fully connected layer is not included. Thus,
the generalization capability cannot be reliability inferred via this visualization. Specifically,
Figure 21d shows the result for the cw-CR method. This method explicitly utilizes class
information and performs representation shaping per class. It targets a reduction in the
covariance of representations calculated from same-class samples to encourage feature
independence. We can infer that, due to this feature independence effect, more information
is lost in the dimensionality reduction for the cw-CR method than for other methods, and
the impact of the lost information on the generalization performance is difficult to estimate.
Moreover, Figure 21g shows the results of the topological regularizer proposed in [15]. This
regularizer controls the representation space by extracting topological information from
the representations. Since the topological method collects information from all dimensions
and can capture the global shape of high-dimensional data, its advantage may not be fully
captured by low-dimensional visualization.

We also compare the trace ratios in Table 2 and plot the spectrum of the representations
in Figure 22. It can be seen from Table 2 and Figure 22 that, for our method, the dominant
singular values are more balanced, which is consistent with the theoretical analysis pre-
sented in Section 4.2. In particular, Figure 22 shows the bias of our method in suppressing
noise such that almost all the variances can be explained with the first 10 singular values.
We think that, due to this strong bias toward the suppression of noise, the model is forced
to learn hard-to-learn features instead of fitting hard samples with noise; hence, we achieve
better generalization performance by suppressing noise and favoring hard-to-learn features
over noise simultaneously.

Mathematics 2023, 11, 2327 29 of 33

Figure 21. Visualization of the representations using models trained with different methods: (a) SGD;
(b) Jacobian regularizer; (c) CR; (d) cw_CR; (e) VR; (f) cw_VR; (g) Top.-Reg; (h) our regularizer.

Table 2. Comparison of trace ratios.

Regularization Trace Ratios of the Representations

Vanilla [0.3169, 0.4428, 0.5347, 0.6189, 0.7002, 0.7735, 0.8363, 0.8934, 0.9445, 0.9903]
+Jac.-Reg [43] [0.5379, 0.6417, 0.7099, 0.7706, 0.8209, 0.8686, 0.9089, 0.9422, 0.9684, 0.9891]
+DeCov [44] [0.2386, 0.3460, 0.4434, 0.5366, 0.6175, 0.6964, 0.7638, 0.8259, 0.8841, 0.9380]

+VR [45] [0.3013, 0.4078, 0.4997, 0.5849, 0.6643, 0.7422, 0.8100, 0.8746, 0.9335, 0.9909]
+cw-CR [45] [0.2001, 0.3326, 0.4374, 0.5364, 0.6252, 0.7113, 0.7902, 0.8650, 0.9338, 0.9983]
+cw-VR [45] [0.3013, 0.4078, 0.4997, 0.5849, 0.6643, 0.7422, 0.8100, 0.8746, 0.9335, 0.9909]

+Top.-Reg [15] [0.6253, 0.6835, 0.7317, 0.7781, 0.8220, 0.8608, 0.8971, 0.9313, 0.9637, 0.9883]
+FC_Reg (ours) [0.1727, 0.3008, 0.4158, 0.5226, 0.6253, 0.7254, 0.8217, 0.9165, 0.9997, 1.0000]

Figure 22. Comparison of the spectrum of representations. (a) GD; (b) Jacobian regularizer; (c) CR;
(d) cw_CR; (e) VR; (f) cw_VR; (g) Top.-Reg; (h) our regularizer.

Mathematics 2023, 11, 2327 30 of 33

6. Discussion

Motivated by previous work on OoD generalization and OSR, we studied the repre-
sentation learning problem in a small-sample-size regime and identified a factor that affects
the representation quality in this paper. The division of the data space and the notion of
OoFS noise proposed in Section 3 can be used in a theoretical analysis of representation
learning; moreover, they may serve as powerful tools in research on OoD generalization,
OSR, and uncertainty estimates. Furthermore, in contrast to GD, AdaGrad, and KFAC,
which struggle to balance learning hard-to-learn features and filtering out noise, the pro-
posed method can simultaneously learn hard-to-learn features and filter out noise, which
not only demonstrates the power of the proposed method but also hints at the potential of
the proposed notion.

However, there is room for improvement. First, our regularizer introduces additional
hyperparameters, i.e., the weighting and the parameter p. Although they can be determined
empirically or by using a grid search, this workload can be reduced by designing some
adaptive tuning algorithms. Second, a theoretical analysis of the generalization error of
the proposed method can be performed using the PAC-Bayesian approach. Finally, some
other failure modes of representation learning methods exist, such as a dense mixture of the
features, as proposed by [17] from the perspective of adversarial examples; therefore, their
impact on the representation quality should also be explored, with further understanding
giving rise to better representation learning algorithms.

7. Conclusions

A good representation is generally beneficial for generalization in deep learning, espe-
cially when the amount of data is insufficient. In this paper, we studied the representation
learning problem via a novel perspective and argued that the model’s response to OoD
samples can be seen as an indicator of the quality of the feature extractor. Based on this
assumption, we proposed decomposing the data space into three subspaces and formu-
lated a notion of OoFS noise. Then, we theoretically studied the OoFS noise in the feature
extractor for a single-hidden-layer neural network and bound the impact of the OoFS noise
by proving two theorems. Furthermore, we identified two distinct causes of OoFS noise
and demonstrated the effect of L2 regularization on filtering out the OoFS noise induced
by random initialization. Finally, we proposed a novel data-dependent regularization
approach to filtering out the noise in the representation space.

We evaluated our approach both on synthetic and benchmark datasets. For the
synthetic datasets, we considered a binary classification task, and the experiments showed
that our method could simultaneously learn hard-to-learn features and filter out OoFS noise
and outperformed GD, AdaGrad, and KFAC. These results demonstrated that the proposed
regularizer could effectively force the feature extractor to focus on informative features
instead of memorizing noise via a back-propagation mechanism. For the vision benchmark
datasets, experiments on image classification showed that our method outperformed other
methods in three tasks among four. These experiments demonstrated the advantages of
our proposed method.

Future work includes exploring other failure modes of representation learning meth-
ods in small-sample-size settings. Moreover, exploring the potential of the proposed
method in more involved scenarios, such as noise reduction [56] and feature mining [57–59],
and testing our method on new datasets [60] are also challenging. Furthermore, studying
the learning dynamics of the proposed method will be beneficial in understanding back-
ward feature correction effects. Finally, using the notion of OoFS noise to study the OoD
generalization problem and to develop better methods based on this new understanding
would be interesting.

Mathematics 2023, 11, 2327 31 of 33

Author Contributions: M.C. and D.W. worked on conceptualization, methodology, software, and
writing—original draft preparation; S.F. and Y.Z. conducted validation and writing—review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant nos.:
62172086 and 62272092).

Data Availability Statement: The data used in this study are available from the references.

Acknowledgments: The authors would like to express our sincere gratitude to the editor and
reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning Requires Rethinking Generalization. In

Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.
2. Buckner, C. Understanding Adversarial Examples Requires a Theory of Artefacts for Deep Learning. Nat. Mach. Intell. 2020, 2,

731–736. [CrossRef]
3. Wang, M.; Deng, W. Deep Visual Domain Adaptation: A Survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
4. Salehi, M.; Mirzaei, H.; Hendrycks, D.; Li, Y.; Rohban, M.H.; Sabokrou, M. A Unified Survey on Anomaly, Novelty, Open-Set, and

Out-of-Distribution Detection: Solutions and Future Challenges. arXiv 2021, arXiv:2110.14051.
5. Allen-Zhu, Z.; Li, Y.; Liang, Y. Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers.

In Proceedings of the Advances in Neural Information Processing Systems 32, Montreal, QC, Canada, 2–8 December 2018.
6. Jiang, Y.; Krishnan, D.; Mobahi, H.; Bengio, S. Predicting the Generalization Gap in Deep Networks with Margin Distributions. In

Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
7. Zhang, R.; Zhai, S.; Littwin, E.; Susskind, J. Learning Representation from Neural Fisher Kernel with Low-Rank Approxima-tion.

In Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022.
8. Yu, Y.; Chan, K.H.R.; You, C.; Song, C.; Ma, Y. Learning Diverse and Discriminative Representations via the Principle of Maximal

Coding Rate Reduction. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020.
9. Soudry, D.; Hoffer, E.; Nacson, M.S.; Gunasekar, S.; Srebro, N. The Implicit Bias of Gradient Descent on Separable Data. J. Mach.

Learn. Res. 2018, 19, 2822–2878.
10. Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45,

4396–4415. [CrossRef]
11. Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization in Vision: A Survey. arXiv 2021, arXiv:2103.02503.
12. Sun, J.; Wang, H.; Dong, Q. MoEP-AE: Autoencoding Mixtures of Exponential Power Distributions for Open-Set Recognition.

IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 312–325. [CrossRef]
13. Shen, Z.; Liu, J.; He, Y.; Zhang, X.; Xu, R.; Yu, H.; Cui, P. Towards Out-Of-Distribution Generalization: A Survey. arXiv 2021,

arXiv:2108.13624.
14. Ye, N.; Li, K.; Hong, L.; Bai, H.; Chen, Y.; Zhou, F.; Li, Z. OoD-Bench: Benchmarking and Understanding Out-of-Distribution Gen-

eralization Datasets and Algorithms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18–24 June 2022.

15. Hofer, C.D.; Graf, F.; Niethammer, M.; Kwitt, R. Topologically Densified Distributions. In Proceedings of the 37th International
Conference on Machine Learning, Online, 13–18 July 2020.

16. Wager, S.; Fithian, W.; Wang, S.; Liang, P. Altitude Training: Strong Bounds for Single-Layer Dropout. In Proceedings of the
Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

17. Allen-Zhu, Z.; Li, Y. Feature Purification: How Adversarial Training Performs Robust Deep Learning. In Proceedings of the IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 7–10 February 2020.

18. Allen-Zhu, Z.; Li, Y. Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning. arXiv
2021, arXiv:2012.09816.

19. Jelassi, S.; Li, Y. Towards Understanding How Momentum Improves Generalization in Deep Learning. In Proceedings of the 39th
International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022.

20. Saxe, A.M.; McClelland, J.L.; Ganguli, S. A Mathematical Theory of Semantic Development in Deep Neural Networks. Proc. Natl.
Acad. Sci. 2019, 116, 11537–11546. [CrossRef]

21. Tachet, R.; Pezeshki, M.; Shabanian, S.; Courville, A.; Bengio, Y. On the Learning Dynamics of Deep Neural Networks. arXiv 2020,
arXiv:1809.06848.

22. Pezeshki, M.; Kaba, S.-O.; Bengio, Y.; Courville, A.; Precup, D.; Lajoie, G. Gradient Starvation: A Learning Proclivity in Neural
Networks. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020.

23. Geirhos, R.; Jacobsen, J.-H.; Michaelis, C.; Zemel, R.; Brendel, W.; Bethge, M.; Wichmann, F.A. Shortcut Learning in Deep Neural
Networks. Nat. Mach. Intell. 2020, 2, 665–673. [CrossRef]

https://doi.org/10.1038/s42256-020-00266-y
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TCSVT.2022.3200112
https://doi.org/10.1073/pnas.1820226116
https://doi.org/10.1038/s42256-020-00257-z

Mathematics 2023, 11, 2327 32 of 33

24. Huh, M.; Mobahi, H.; Zhang, R.; Cheung, B.; Agrawal, P.; Isola, P. The Low-Rank Simplicity Bias in Deep Networks. arXiv 2022,
arXiv:2103.10427.

25. Teney, D.; Abbasnejad, E.; Lucey, S.; Van den Hengel, A. Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 21–23 June 2022.

26. Shah, H.; Tamuly, K.; Raghunathan, A. The Pitfalls of Simplicity Bias in Neural Networks. In Proceedings of the Advances in
Neural Information Processing Systems, Online, 6–12 December 2020.

27. Oymak, S.; Fabian, Z.; Li, M.; Soltanolkotabi, M. Generalization Guarantees for Neural Networks via Harnessing the Low-Rank
Structure of the Jacobian. arXiv 2019, arXiv:1906.05392.

28. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Adaptive
subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.

29. Amari, S.; Ba, J.; Grosse, R.; Li, X.; Nitanda, A.; Suzuki, T.; Wu, D.; Xu, J. When Does Preconditioning Help or Hurt General-ization?
In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April 2020.

30. Martens, J. New Insights and Perspectives on the Natural Gradient Method. J. Mach. Learn. Res. 2020, 21, 5776–5851.
31. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning

Representations, Toulon, France, 24–26 April 2017.
32. Nagarajan, V.; Andreassen, A. Understanding the Failure Modes of Out-of-distribution Generalization. In Proceedings of the

International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April 2020.
33. Vardi, G.; Yehudai, G.; Shamir, O. Gradient Methods Provably Converge to Non-Robust Networks. arXiv 2022, arXiv:2202.04347.
34. Belkin, M.; Ma, S.; Mandal, S. To Understand Deep Learning We Need to Understand Kernel Learning. In Proceedings of the 35th

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
35. Muthukumar, V. Classification vs. Regression in Overparameterized Regimes: Does the Loss Function Matter? J. Mach. Learn. Res.

2021, 22, 1–69.
36. Hastie, T.; Montanari, A.; Rosset, S.; Tibshirani, R.J. Surprises in High-Dimensional Ridgeless Least Squares Interpolation. Ann.

Stat. 2022, 50, 949–986. [CrossRef]
37. Baratin, A.; George, T.; Laurent, C.; Hjelm, R.D.; Lajoie, G.; Vincent, P.; Lacoste-Julien, S. Implicit Regularization via Neural

Feature Alignment. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, San Diego, CA,
USA, 13–15 April 2021.

38. Arora, R.; Bartlett, P.; Mianjy, P.; Srebro, N. Dropout: Explicit Forms and Capacity Control. In Proceedings of the 37th International
Conference on Machine Learning, Online, 13–18 July 2020.

39. Cavazza, J.; Morerio, P.; Haeffele, B.; Lane, C.; Murino, V.; Vidal, R. Dropout as a Low-Rank Regularizer for Matrix Factorization.
In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, Canary
Islands, 9–11 April 2018.

40. Mianjy, P.; Arora, R.; Vidal, R. On the Implicit Bias of Dropout. In Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018.

41. Wager, S.; Wang, S.; Liang, P. Dropout Training as Adaptive Regularization. In Proceedings of the Advances in Neural Information
Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013.

42. Huang, Z.; Wang, H.; Xing, E.P.; Huang, D. Self-Challenging Improves Cross-Domain Generalization. In Computer Vision—ECCV
2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020;
Volume 12347, pp. 124–140. [CrossRef]

43. Hoffman, J.; Roberts, D.A.; Yaida, S. Robust Learning with Jacobian Regularization. arXiv 2019, arXiv:1908.02729.
44. Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; Batra, D. Reducing Overfitting in Deep Networks by Decorrelating Representa-

tions. In Proceedings of the International Conference on Learning Representations, San Juan, PR, USA, 2–4 May 2016.
45. Choi, D.; Rhee, W. Utilizing Class Information for Deep Network Representation Shaping. In Proceedings of the AAAI Conference

on Artificial Intelligence, Honolulu, HI, USA, 27 January 2019.
46. Gunasekar, S.; Lee, J.; Soudry, D.; Srebro, N. Characterizing Implicit Bias in Terms of Optimization Geometry. In Proceedings of

the 35th International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018.
47. Shlens, J. A Tutorial on Principal Component Analysis. arXiv 2014, arXiv:1404.1100.
48. Martens, J.; Grosse, R. Optimizing Neural Networks with Kronecker-Factored Approximate Curvature. In Proceedings of the

32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015.
49. Chatterjee, S. Coherent Gradients: An Approach to understanding generalization in gradient descent-based optimization. In

Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April 2020.
50. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
51. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature

Learning. In Proceedings of the Conference on Neural Information Processing Systems, Granada, Spain, 12–17 December 2011.
52. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON,

Canada, 2009.

https://doi.org/10.1214/21-AOS2133
https://doi.org/10.1007/978-3-030-58536-5_8
https://doi.org/10.1109/5.726791

Mathematics 2023, 11, 2327 33 of 33

53. Laine, S.; Aila, T. Temporal ensembling for semisupervised learning. In Proceedings of the International Conference on Learning
Representations, Toulon, France, 24–26 April 2017.

54. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. In Proceedings of the International Conference
on Learning Representations, Toulon, France, 24–26 April 2017.

55. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks by Preventing
Co-Adaptation of Feature Detectors. arXiv 2012, arXiv:1207.0580.

56. Ma, P.; Ren, J.; Sun, G.; Zhao, H.; Jia, X.; Yan, Y.; Zabalza, J. Multiscale Superpixelwise Prophet Model for Noise-Robust Feature
Extraction in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [CrossRef]

57. Fu, H.; Sun, G.; Zhang, A.; Shao, B.; Ren, J.; Jia, X. Tensor Singular Spectral Analysis for 3D feature extraction in hyperspectral
images. IEEE Trans. Geosci. Remote Sens. 2023. [CrossRef]

58. Li, Y.; Ren, J.; Yan, Y.; Petrovski, A. CBANet: An End-to-end Cross Band 2-D Attention Network for Hyperspectral Change
Detection in Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2023; in press.

59. Xie, G.; Ren, J.; Marshall, S.; Zhao, H.; Li, R.; Chen, R. Self-attention Enhanced Deep Residual Network for Spatial Image
Steganalysis. Digit. Signal Process. 2023, 104063. [CrossRef]

60. Chen, R.; Huang, H.; Yu, Y.; Ren, J.; Wang, P.; Zhao, H.; Lu, X. Rapid Detection of Multi-QR Codes Based on Multistage Stepwise
Discrimination and a Compressed MobileNet. IEEE Internet Things J. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2023.3260634
https://doi.org/10.1109/TGRS.2023.3272669
https://doi.org/10.1016/j.dsp.2023.104063
https://doi.org/10.1109/JIOT.2023.3268636

	Introduction
	Related Work
	Theoretical Analysis of the Noise in Hidden Neurons
	Data Distribution, Model, and Definitions
	The Impact of OoFS Noise in the Model
	The OoFS Noise in the Model Induced by Random Initialization

	From Neurons to Representations—Data-Dependent Regularization for the Fully Connected Layer
	Data-Dependent Regularization on the Weights of the Fully Connected Layer for Binary Classification
	Extension to Multi-Class Classification

	Experiments
	Binary Classification Task with a Synthetic Dataset
	The Signal and Noise in a Hidden Neuron
	Test with Samples within the Feature Subspace
	Test with Samples within the OoFS
	The Signal and Noise in the Hidden Layer
	The Effective Rank, Trace Ratios, and Spectrum

	Linear Binary Classification Task
	Image Classification Task on Benchmark Datasets

	Discussion
	Conclusions
	References

