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Abstract: This work aims at providing a concise review of various agri-food models that employ
fractional differential operators. In this context, various mathematical models based on fractional
differential equations have been used to describe a wide range of problems in agri-food. As a result of
this review, we found out that this new area of research is finding increased acceptance in recent years
and that some reports have employed fractional operators successfully in order to model real-world
data. Our results also show that the most commonly used differential operators in these problems are
the Caputo, the Caputo–Fabrizio, the Atangana–Baleanu, and the Riemann–Liouville derivatives.
Most of the authors in this field are predominantly from China and India.
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1. Introduction

Agriculture plays a vital role in the economic growth of any country. Currently,
modern agriculture and food production systems are facing increasing pressure from
climate change, land, and water availability and, more recently, the COVID-19 pandemic.
Building resilient and sustainable farming systems is the ultimate goal of the agri-food
production system. To that end, information and communication technology (ICT) is
pervading the agri-food sector while passing through the Agriculture (or Agri-Food) 4.0
revolution [1]. In such a context, new words have been coined (such as smart farming or
precision agriculture) as a result of the application of the Internet of Things (IoT) and machine
learning (ML) algorithms. The main focus of precision farming is to reduce production
costs and environmental effects while increasing the farm’s profitability. Some application
examples are water resources management, farm operation scheduling, and delivery plans.
More recently, a new paradigm (called Agriculture 5.0) based on robots has emerged (robots
are supposed to solve the workforce shortage in farms) [2].

In addition to the farming objectives mentioned above, there is also the need to limit
carbon emissions, in harmony with the EU “Green Deal” policy. This aspect is particularly
important to optimize the farming supply chain and takes into account production sus-
tainability. Most techniques used to achieve the above-mentioned goals are model-free,
falling into the broad field of data science (for example, see [3]). The aim of this review is to
examine recent model-based approaches and, in particular, the use of fractional models.
More precisely, we will focus our attention on problems modeled by fractional differential
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equations (FDEs). Unfortunately, the related literature is still fragmented and incomplete,
and the present review represents the first attempt to offer an overview of what has been
done so far, discussing the limits and potential of future research. Hence, this review aims
to answer the following research questions:

• Are there fractional models to tackle agri-food problems? If so, which kind of fractional
operators have been used?

• Has real-world data been employed along with such models?

The article is structured as follows. In the next section, the mathematical models for
the agri-food sector are recalled. The third section is devoted to the literature review on
fractional models, followed by a discussion on fractional versus non-fractional in the fourth
section. The article closes with some conclusions and an appendix recalling the operators
mentioned in this paper (see Appendix A).

2. Mathematical Models

Global food, fuel, and fiber demand is estimated to increase to 11.6 billion tons by
2050 [4]. This increase in the demand for food requires the optimization of production on
existing cropland and further expansion of arable land. According to the global yield gap
analysis, the production could be increased by 30% through improved management of soil
constraints and fertilizer application [5]. From here follows the importance of defining
proper crop models that can function as decision-support tools. Crop models are typically
constructed as differential equations that model dynamical systems. More precisely, one
has to distinguish between dynamic crop models (that is, a set of differential equations that
are then integrated in time to simulate the crop responses of interest at each time point)
and crop-response models (which relate crop responses directly to inputs [6]).

The main state variables of crop models are usually above-ground biomass, leaf area
index, harvesting yield, and water and nitrogen balances [6]. All of the crop models involve
empirical components and are of varying levels of complexity, depending on the particular
goals of the model and on the availability of the input data. There are several studies that
adopt a dynamical systems framework, such as those reports that examine grass ecosystems
and grazing, forest ecosystems, soil salinity, the evolution of canopy cover, soil moisture,
and soil nitrogen (see [7] and references therein). Such models aim mostly to support the
decisions on irrigation and fertilization. It is worth pointing out that not all of the works in
the specialized literature use dynamical systems theory to understand the mathematical
behavior and properties of the models. Using dynamical systems theory to study crop
models allows one to capture many critical aspects of crop systems, such as their stability
with respect to parameters changes; the feedback between water, carbon, and nutrient
cycling; and the optimal conditions for growth and the impact of external inputs (such as
fertilization and irrigation).

As an example, thanks to dynamical systems theory, optimal yield, and profitability
under different climate scenarios, irrigation strategies and fertilization strategies were
examined in [7]. Another class of problems requiring dynamic systems background is
plant diseases and pest control. Plant viral diseases have devastating effects on agricultural
production. It is estimated that around 42% of the world’s food is exhausted because of
pests. Chemical pesticides are still employed to control pests. In any case, the intense
use of chemical pesticides in farming causes several side effects. Problems such as pest
renaissance and secondary pest outbursts have to be carefully considered. The equilibria
and stability of the adopted dynamical models help one to understand the disease spread
considering the incubation period [8,9]. In particular, to provide suitable interventions for
crop pests (that is, to decrease the number of pests in the crop field), optimal control theory
is a valuable mathematical tool [8].

3. Fractional Models

This section is devoted to providing a recent literature review. To that end, we firstly
describe the review methodology. The problems and the type of fractional operators em-
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ployed in the mathematical models are summarized in Table 1. As mentioned previously,
the present review focuses on models that are based on FDEs. The search process revealed
a few different studies in the agri-food context that we cite here for the sake of complete-
ness. In such studies, the adjective “fractional” is related to types of machine learning
algorithms [10,11], regression models [12] or empirical models [13,14].

Table 1. Problems and types of fractional operators adopted. For the sake of convenience, we
employ the following abbreviations: Caputo (C), Caputo–Fabrizio (CF), Atangana–Baleanu (AB), and
Riemann–Liouville (RL).

Problems Operators References

Biomasses, biogases, and bio-fertilizers C, CF, AB [15–18]
Environmental issues (CO2, nitrogen estimate) C, CF, RL [19–22]
Food science RL [23,24]
Livestock and fishery C, CF, AB, RL [25–28]
Plant diseases C, CF, AB [29–32]
Transportation of contaminants and water issues C [33–40]

It is important to point out that, in the retrieved articles, most authors did not use
real-world data. A list of models calibrated by using real-world data is reported in Table 2.

Table 2. Real-world data calibrated models: application problems and corresponding adopted
fractional operators. For the sake of convenience, we employ the following abbreviations: Caputo
(C), Riemann–Liouville (RL).

Problems Operators References

CO2 emissions/dynamics C, RL [20,21]
Fishery RL [27]
Food science RL [23,24]
Soil moisture C [39]

It is also worth mentioning that not all of the articles present mathematical properties
(e.g., existence and uniqueness, convergence, positivity, and boundedness) and a proper
study of the dynamics (e.g., the stability of the equilibrium, bifurcation analysis). Only in
13 articles out of 31 it is possible to find a formal discussion. Figure 1 shows the distribution
of the classes of the formal investigation.

Figure 1. Classes of formal investigation.

3.1. Review Methodology

The review process was carried out by following the main steps of the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) methodology [41].
The main objective of systematic reviews is to present a detailed review study for a specific
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research area and date interval. The methodology consists of steps such as identification,
screening, and eligibility. We adapted our review process to the PRISMA methodology.

In the first step, we considered the main academic databases (such as Scopus and WoS)
to present a review of fractional models in agri-food. The related papers were checked one
by one. The literature analysis was realized based on the following keywords, by using the
Boolean operators OR and AND:

((agri*) OR (food) OR (plant) OR (crop) OR (livestock) OR (fish)) AND (fractional)
Here, “*” means any string after “agri” and the OR operators are processed before AND.
The search was performed on the title, abstract, and keywords. To refine the search, we
replaced the words “crop” and “plant” with specific terms such as “vegetable”, “potato”,
“olive”, “tomato”, “wheat”, “rice”, etc. We fixed the year range [2003, 2023], but the fact
that the related works are mostly from the last five years shows that the interest in this
topic has been growing lately (see Table 3).

Table 3. Number of articles per year reporting on recent fractional models in agri-food investigation.

Year Number of Publications

2003 1
2008 1
2012 1
2013 2
2014 1
2015 1
2018 1
2019 4
2020 1
2021 4
2022 10

2023 (April) 1

The second step was about screening the papers in order to determine irrelevant or
duplicated works. Irrelevant papers were those in which the title was misleading, present-
ing content not strictly related to the topics here considered. In the third step, irrelevant
or duplicated papers were removed. The initial screening was of around 100 papers,
but only 25 papers were relevant. The number of considered reports with the publica-
tion year is shown in Table 3. The countries of the corresponding authors are shown in
Figure 2. From those results, it is shown that authors with Chinese and Indian affiliations
are predominant. Multiple affiliations have been taken into account.

Figure 2. Countries of the corresponding authors.
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3.2. Caputo-Type Models

According to our results, the use of Caputo-type fractional differential operators
is dominant. This can be easily observed in Figure 3, where the pie chart covers the
different fractional operators employed in the relevant literature of this review. We must
mention that one of the main problems tackled by FDEs is the transportation of biological
or chemical contaminants into groundwater and soils. In [33], the author used a fractional
advection-dispersion equation, which was solved by Jacobi’s collocation method. The
author conducted a formal convergence analysis of the proposed method. The authors
of [34] aimed to model the dynamics of colloids through a soil-vegetation system. To this
end, they also used a fractional advection-dispersion with a few empirical parameters.
The authors did not explicitly mention the Caputo differential operator, but from the
context, it is obvious that it is so. The review article [35] also mentions fractional advection-
dispersion equations to investigate the groundwater quality of aquifers. Relevant problems
in this regard are induced saltwater intrusion, hydraulic fracturing, carbon dioxide (CO2)
sequestration, and deep geologic storage of nuclear waste.

Figure 3. Distribution of the different fractional operators. For the sake of convenience, we employ the
following abbreviations: Caputo (C), Caputo–Fabrizio (CF), Atangana–Baleanu (AB), and Riemann–
Liouville (RL).

The problem of transport of contaminants in groundwater or porous soil was also
tackled in [36]. The authors of that report solved the fractional diffusion equation by em-
ploying the finite element methodology. The focus was mainly on the adopted numerical
technique. Somewhat related is the problem of a suitable model for the water table profile
in agricultural soils. The authors of [37] used a one-dimensional fractional Boussinesq
equation. The solution was obtained using a spectral representation of the fractional deriva-
tive. The computed values were compared to the observed ones in the field experiments,
and they showed good accuracy. Models of water transport in soils represent the basis for
decision-support systems for irrigation. Their aim is to predict soil moisture content and
to determine irrigation schedules. There are works on the fractional version of Richards’
equation to investigate soil moisture mainly from a theoretical perspective [38] and from a
practical one, with a real-world application [39]. In [38], the basic Caputo derivative with
respect to the time was adopted, while in [39], a generalization of it, that is, the ψ-Caputo
derivative, was used. In particular, in [39] the authors used the particle swarm optimiza-
tion algorithm to identify the parameters of the fractional Richards equation, given some
inputs, namely, the suction pressure (from Watermark sensors) and the evapotranspiration.
The aim was to investigate how different derivatives’ functional parameters may influence
the accuracy of soil moisture dynamics simulation.
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Other application problems fall into the area of biomass and biogas. In [15], the author
intended to model the biochemical reaction via anaerobic digestion. This is the biochemical
process for producing biogas as a result of the biological degradation of biomass. A system
of fractional differential equations was obtained, and the solution was sought by means
of the Adomian decomposition method. In [16], a fractional dynamical system for maize
biomass and fall armyworm interaction was proposed. The fall armyworm (spodoptera
frugiperda) is a harmful pest that may affect fields in North and South America. The model
parameters and their baseline values were retrieved from the literature or estimated. In
their work, the authors proved the positivity and boundedness of the solutions. Their
study was completed by the discussion on the local stability of the equilibrium points of
their model. There is also another work about biomass [17], but we will recall it in the next
subsection since the authors considered other additional fractional operators.

Another interesting topic was discussed in [18]. The authors introduced a fractal-
fractional dynamical model in the sense of Caputo’s derivative to study the reuse of dead
algae detritus as fertilizer for crops. The algae recover nitrogen and phosphorus from water,
and they can be reused in agriculture by replacing chemical fertilizers. The values of the
parameters’ model were taken from the literature. The numerical scheme to solve the
model equation was based on Lagrange interpolation polynomials. The authors proved
the existence and uniqueness of the solution, employing then the Ulam–Hyers approach
for the model stability analysis. In [42], a parametric fractional differential equation was
used to process the data obtained from image processing to analyze mixtures of olive and
soybean oil, through the RGB colour system. A hybrid scheme based on genetic algorithms
and a simplex-based algorithm was adopted for parameter estimation. Evapotranspiration
and the effective utilization of agricultural water resources were investigated in [40]. Here,
the authors converted a model previously proposed in [43] into a time-fractional model.

An example of fractional model with Caputo-type derivative is offered in [32] to study
the spread of pests in tea plants. The authors considered a tritrophic food chain system
using the Caputo derivative, proposing an iterative scheme to seek the solution. They
formally investigated the stability analysis of this iterative method and proved the existence
and uniqueness of the solution. In their work, they also considered a Tuofik–Atangana
scheme with the Caputo derivative for comparative purposes.

Finally, since global emissions due to agriculture were recently estimated to be 9.3 bil-
lion tonnes of CO2 equivalent [44], it is worth mentioning fractional models for the predic-
tion of carbon dioxide. In [19], the authors presented a fractional-order model to estimate
the association between economic growth, electricity consumption, agriculture, and CO2
emissions in Turkey in the year range [1971,2014]. The authors used real-world data. In-
stead, in [20], the authors used a fractional grey Riccati model to predict the CO2 emissions
of the United States, China, and Japan. The data sets used were from the M-competition for
forecasting. There is another work [21] dealing with carbon dioxide, but we will recall it in
the next subsection.

3.3. Other Fractional Models

In [25], a model for the Q fever (coxiellosis) transmission in livestock was studied.
The authors investigated the use of conventional derivatives as well as Caputo, Caputo–
Fabrizio, and Atangana–Baleanu fractional differential operators. In order to show that
their integer-order model was epidemiologically well-stated, the authors formally proved
the positivity and boundedness of the solutions, and they conducted a bifurcation analysis.
Then, they proved the existence and uniqueness of the solutions of the fractional models.
On the other hand, there are several papers dealing with plant diseases. For example,
the authors of [29] investigated a plant-disease transmission model for two-stage infec-
tion. More precisely, the authors considered a first phase for exposed individuals before
becoming infectious, and they then considered the transmission of the disease. The authors
used two fractional operators, namely, the Caputo and the Caputo–Fabrizio fractional
derivatives. In [30], the authors studied the dynamics of the treatments of plant diseases
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via the Atangana–Baleanu derivative. They proved the existence and the uniqueness of
the solution. Their numerical approach was based on Lagrange interpolation. They found
that by increasing the roguing rate for the most infected plant or decreasing the rate of
planting in the infected area, disease transmission was reduced.

The authors of [31] investigated the transmission dynamics of the potato leaf roll virus
using integer and fractional-order differential equations. The models were built by dividing
the potato population into susceptible and infected individuals. The model parameter
values were gathered from the literature or assumed by the authors. Here, it is important to
recall that the use of the type of fractional operator was not explicitly mentioned. The au-
thors proved the positivity and boundedness of the solution. They also formally discussed
the local stability of the disease-free equilibrium. In [17], the authors proposed a math-
ematical model for ethanol production based on fractal-fractional operators. Bioethanol
is produced from biomass and bioenergy crops, and it has gained an increasing amount
of attention as an effective alternative to fossil fuels. The authors employed the Caputo,
the Caputo–Fabrizio, and the Atangana–Baleanu operators. The solution was sought by
adopting the Adams–Bashforth approach, which is a numerical technique essentially based
on the Lagrangian interpolation method. The authors proved the existence and uniqueness
of the solution. Moreover, they formally discussed the Ulam–Hyres stability by using
nonlinear analysis.

On the other hand, there are a few papers dealing with fisheries. In [26], the authors
formally investigated random fuzzy differential equations with the Riemann–Liouville frac-
tional derivative. Their application example was fish harvesting. The authors considered
the fuzzy fish population growth model, assuming that fish population size, birth, and
death rates were all fuzzy-valued. They proved the existence and uniqueness of the solu-
tion and proposed a technique to find the analytical solutions of fractional random fuzzy
differential equations by using the solutions of random fuzzy differential equations. In [27],
the focus was on the parameter estimation problem for stochastic differential equations
with both ordinary and fractional Brownian motions. The proposed approach converted
the stochastic differential equation into a system of ordinary differential equations. For their
numerical experiments, the authors used the data on the North-Atlantic herring population
counted by several independent observatories over the years in the range [1940, 2010].
In [28], the authors modeled commercial fishing as a dynamical system via fractional dif-
ferential equations. In particular, they employed a predator–prey model. They discussed
the stability of the equilibrium points of their model, the non-existence of the limit cycle,
and the periodic solution for the movement of the considered fish stocks belonging to
two species.

The aim of [22] was to study the feasibility of detecting nitrogen in crops by a fractional-
order differential algorithm. The authors used spectral data with the help of a Grunwald–
Letnikov fractional differential equation. It is worth mentioning that nitrogen is one of
the most used fertilizers, and it influences the growth, development, yield, and quality
of crops. The rapid and accurate assessment of nitrogen content in crops is critical for
nutrition diagnosis and growth monitoring. In [45], agriculture was only mentioned as
an application field. Anyhow, considering the theoretical nature of most related works
in literature, we deem it relevant. The authors studied the non-linear space-fractional
Fisher–Kolmogorov–Petrovskii–Piskunov equation, where the fractional derivatives were
taken in the modified Riemann–Liouville sense. Using the travelling-wave transformation,
the original equation was converted into an ordinary differential equation and the dynamics
were investigated.

Other interesting applications based on the Riemann–Liouville differential operator
are related to the broad area of food science. In [23], fractional differential equations
were used to predict the nonlinear survival and growth curves of food-borne pathogens.
The curves were validated using experimental data in the literature. Thanks to the model, it
was possible to predict the tails in survival curves, which was not possible using Weibull or
linear models. The problem in [24] was the consecutive intakes of contaminated food when
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the human immune system was not properly working. The fractional differential equation
of order one-half was proposed to model the dynamical process of the accumulation and
elimination of the contaminant in the human body. The Adomian decomposition method
was used to obtain the approximate solution. The data for the numerical experiments was
obtained upon request from the National Center of Food in Burkina Faso.

As in the previous subsection, we close this literature review by citing a work dealing
with carbon dioxide. In [21], the authors discussed a system of fractional differential
equations modeling the atmospheric dynamics of carbon dioxide. This model was obtained
by taking into account the atmospheric level, the human population and the forest biomass.
The authors used the Caputo–Fabrizio fractional operator and the Laplace transform with
the q-homotopy approach to obtain the approximate solution. The values of the parameters
were retrieved from reports available in the literature. Besides, the authors proved the
existence and the uniqueness of the solution.

4. Fractional Versus Non-Fractional

Various works tackle the comparison between the non-fractional and the fractional
scenarios [25,29,31]. In some cases, the numerical results show that as the value of the
fractional order increases, the behavior of the fractional-order model solution approaches
the integer-order scenario [31]. This fact is entirely expected, of course. However, it may
also happen that the trajectories of the fractional-order systems follow different directions
and do not converge to the equilibrium point when they approach the integer order [25].
In general, the fractional derivative provides an excellent instrument for modeling real-life
phenomena, such as memory and hereditary properties in the context of plant diseases [29].
In [29], the authors discussed the positiveness and boundedness of the solution and for-
mally investigated the local asymptotically stability of the disease-free equilibrium. This
ability of the fractional-based models is also reflected in the study comparing the classical
Richards model for water transport with the generalized one based on fractional deriva-
tives [38]. It was shown that the classical Richards’ equation was able to predict a decrease
in the soil water diffusivity while the infiltration progressed, but the generalized Richards’
equation could describe all of the observations properly by means of a single diffusivity
function. In fact, there is evidence in the literature that Richards’equation fails to model
water transport in horizontal soil columns. The generalized Richards’ equation indicates
the presence of memory effects in soil–water transport phenomena. Another comparison
between the classical Richards model and the fractional one is discussed in [39]. The frac-
tional model turned out to be the most accurate in the two highest layers of soil (15 cm
and 35 cm), i.e., the layers containing most of the crop’s roots. The classical model in these
layers significantly overestimated evapotranspiration. Such forecasts could contribute to
soil over-moistening, potential crop-yield losses, and inefficient irrigation water usage.
Compared to the classical model, in the first soil layer (up to 15 cm depth), the fractional
models gave 5–7 times better accuracy.

On the other hand, studies carried out using integer-order models have the advantage
that they can be derived from some well-known conservation laws. This situation prevails
in other physical and biological problems, where differential equations can be obtained
from some principle of conservation of mass, energy, momentum, etc., [46]. This is the
case for many advection–diffusion–reaction equations from mathematical physics and
biology. In the fractional-case scenario, however, science has not been able to establish
empirical conservation laws. To clarify this statement, it is important to mention that
conservation laws have been established analytically for some systems of fractional-order
partial differential equations. As an example, one of the authors of this mini-review has
devoted some recent works to design conservative schemes for Riesz-fractional partial
differential equations of the hyperbolic type [47–49]. These facts have been established
thanks to some Riesz-fractional forms of the formula for integration by parts derived by
Tarasov [50]. However, there are no reports of fractional-order conservation laws estab-
lished experimentally. From that perspective, the deduction of fractional-order differential
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equations from experimental fractional laws is not possible at all. In the best case, these
models are the only possible candidates to describe real-world problems. In some cases,
those models provided good descriptions of phenomena. Such is the case of the article [20],
in which the authors applied a fractional-order Riccati model to predict the carbon dioxide
emissions of various countries.

To this day, the relevance of fractional calculus is still under scientific scrutiny. Be-
yond the consequent development of the mathematical theory that fractional calculus
has provoked, there are still many questions on the rigorous applicability of fractional
mathematics. Indeed, it is well known that some systems consisting of particles with
long-range interactions yield fractional derivatives of the Riesz type in the continuum
limit [51]. Moreover, a variational calculus for Riesz fractional operators has been de-
veloped in the literature [50], allowing for the possibility of developing a Hamiltonian
theory of mechanics for systems with long-range interactions and memory. However,
a physical interpretation of these operators is still lacking in the literature. Nevertheless,
beyond that limitation, fractional differential equations have been applied successfully in
the description of many complex phenomena and, in some situations, yield better results
than integer-order systems.

5. Conclusions

In this work, we investigated the state of the art on the use of fractional differential
equations to solve agri-food problems. The problems considered in this work span various
areas related to agriculture, food, plants, crops, livestock, and fish, and all of them had
the same common denominator: they were modeled by fractional differential equations.
Following a standard methodology (PRISMA), it was possible to identify recent progress
in the area. The investigation was confined to the main academic databases, and vari-
ous conclusions were drawn from our search. To start with, we identified that most of
the contributions have been authored by researchers from China and India. Moreover,
a dramatic increase in the number of publications in the area was recorded in the past
year. Additionally, it has been established that the most common differential operators
employed in these fractional models are Caputo-type operators, the Atangana–Baleanu
derivative, and the Riemann–Liouville operators. In all of these reports, the fractional
operators have been applied to the temporal variable, which means that these systems
model some associated memory effects.
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Appendix A. Fractional Operators

Beforehand, it is worthwhile to point out that dramatic progress has recently been
made in the field of fractional calculus [52,53]. Many non-equivalent fractional derivatives
have been recently introduced in the literature in order to extend the classical calculus to
the fractional order (see also [54] and references therein). Moreover, the literature provides
an account of many new analytical results that have been derived in the way. The purpose
of this appendix is to recall the definitions of the fractional derivatives mentioned in
this work. Throughout, we will suppose that Ω is a nonempty domain of Rn and that
u : Ω × (0, ∞) → R is a sufficiently regular function on the vector (x, t) ∈ Ω × (0, ∞).
If α ∈ (0, 1), then the Caputo fractional derivative of u with respect to t of order α at the
point (x, t) is defined as (see [55])

CDα
t u(x, t) =

1
Γ(1− α)

∫ t

0
(t− τ)−α ∂u(x, τ)

∂t
dτ, ∀(x, t) ∈ Ω× (0, ∞). (A1)

The Caputo–Fabrizio fractional derivative of u with respect to t of order α at (x, t) is
given by

CFCDα
t u(x, t) =

B(α)
1− α

∫ t

0
exp

[
−α(t− τ)

1− α

]
∂u(x, τ)

∂t
dτ, ∀(x, t) ∈ Ω× (0, ∞). (A2)

Here, B is a positive normalization function defined on [0, 1], which satisfies
B(0) = B(1) = 1 (see [56]). In turn, the Atangana–Baleanu fractional derivative of u
of order α with respect to t at (x, t) is defined by the expression

ABCDα
t u(x, t) =

B(α)
1− α

∫ t

0
Eα

[
−α(t− τ)α

1− α

]
∂u(x, τ)

∂t
dτ, ∀(x, t) ∈ Ω× (0, ∞). (A3)

The function B is a function defined on [0, 1], which satisfies the same properties in
the definition of the Caputo–Fabrizio derivative [57]. The Riemann–Liouville fractional
derivative of u with respect to t of order α at the point (x, t) is defined by (see [58])

RLDα
t u(x, t) =

1
Γ(1− α)

∂

∂t

∫ t

0
(t− τ)−αu(x, τ)dτ, ∀(x, t) ∈ Ω× (0, ∞). (A4)

Finally, if f , ψ ∈ Cn+1([a, b]) and α > 0, then the ψ-Caputo derivatives are defined as

CDα,ψ
a+ f (x) =

(ψ(x)− ψ(a))n−α

Γ(n + 1− α)
f [n]ψ (a)

+
1

Γ(n + 1− α)

∫ x

a
(ψ(x)− ψ(t))n−α d

dt
f [n]ψ (t)dt

(A5)

and
CDα,ψ

b− f (x) = (−1)n (ψ(b)− ψ(x))n−α

Γ(n + 1− α)
f [n]ψ (b)

− 1
Γ(n + 1− α)

∫ b

x
(ψ(t)− ψ(x))n−α(−1)n d

dt
f [n]ψ (t)dt.

(A6)

In general, the definitions are not all equivalent to each other. However, they satisfy
various properties that can be found in the literature.
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