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Abstract: In the era of Big Data, integrating information from multiple sources has proven valuable
in various fields. To ensure a high-quality supply of multi-source data, repairing different types of
errors in the multi-source data becomes critical. This paper categorizes errors in multi-source data
into entity information overlapping, attribute value conflicts, and attribute value inconsistencies. We
first summarize existing repairing methods for these errors and then examine and review the study
of the detection and repair of compound-type errors in multi-source data. Finally, we indicate further
research directions in multi-source data repair.

Keywords: multiple sources; data quality; data repairing; entity resolution; truth discovery; data
dependencies

MSC: 68P20; 68T07

1. Introduction

In recent years, extensive data sources, including social media, crowdsourcing plat-
forms, and ubiquitous sensor networks, continuously generate vast amounts of data.
Conducting data analytics on such massive amounts of data can benefit decision-making
and knowledge discovery. Often, data points describing the same object or event originate
from multiple sources, resulting in multi-source data. For example, descriptions of a par-
ticular item may vary across different commercial platforms. Consequently, multi-source
data inevitably have different forms of representation and various errors, which can impact
their overall value. To ensure the provision of high-quality multi-source data, it is essential
to detect and rectify inconsistencies and mistakes.

Traditional data quality problems are identified according to five dimensions [1]: data
consistency [2], information completeness [3,4], data deduplication [5,6], data currency [7,8],
and data accuracy [9]. The existing data repairing literature has been mostly focused on
data deduplication in multi-source data while addressing other dimensions for the single
source/database. Although methods for single-source data can be applied to multi-source
data by resolving data quality issues within each source separately, the task of repairing
multi-source data differs from that of single-source data. Single-source repairing aims to
achieve complete and consistent data through error detection and repair according to the
dimensions above. In contrast, multi-source repairing seeks reliable integrated information
by repairing conflicts and inconsistencies among data sources, presenting new challenges.
Compared to data repairing methods for single sources, techniques for multi-source data
face the following data quality problems:

(1) Due to varying representations and formats of entities among multiple data sources,
the primary challenge of multi-source repair is to identify overlapping data, particularly
by matching records that refer to the same real-world entity. This task involves purging
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duplicate information and consolidating and merging complementary information to
achieve a consistent view of real-world entities.

(2) For a given entity, each attribute value may have observations provided by a certain
number of data sources. However, multi-source conflicts may arise due to recording errors,
intentional errors, conflicts, and outdated data across different data sources. To address
this issue, it is crucial to determine the correct attribute values for each entity among the
conflicted observations.

(3) In addition to multi-source conflicts, inconsistencies may occur among multi-source
observations of different entities. Here, data consistency refers to the validity and integrity
of attribute values for these entities. To ensure the quality of integrated data, it is necessary
to design robust integrity constraints and practical algorithms for detecting and repairing
inconsistencies within multi-source data.

To summarize, besides the single-source problems in the multi-source case, the specific
data quality issues in multi-source data come from three major categories: entity informa-
tion overlapping, attribute value conflicts, and attribute value inconsistency [10]. As shown
in Figure 1, the existing work usually resolves the entity information overlapping by entity
resolution over the multi-source instances. The detection strategy is blocking, and the
repair strategy is matching. For multi-source attribute value conflicts, the general solution
is truth discovery, which detects inter-source conflicts and resolves them by evaluating the
reliability of the data sources. For attribute information inconsistencies among different
entities, existing approaches use various integrity constraints to detect and find the “least
costly” consistent repair.

Multi-Source Data Repairing

Quality Problem

General Solution

Detection Strategy

Repair Strategy

Attribute value conflicts Attribute value inconsistencies

Entity resolution Truth discovery

Blocking

Matching

Detecting inter-source conflicts

Estimating source reliability

Use of data quality rules

Finding the optimal repair

Instance level Entity levelOccurred Level Constraint level

Entity information overlapping

Inconsistency detection and repair

Figure 1. Multi-source data repairing methods.

This paper comprehensively reviews recent research in entity resolution (Section 2),
truth discovery (Section 3), and inconsistency detection and repair (Section 4). As the types
of errors mentioned above may exist simultaneously and influence each other, we also
examine and review the study of compound error detection and repair (Section 5). Finally,
we indicate further research directions in multi-source data repairing (Section 6).

2. Entity Resolution

Different data providers may have different descriptions of the same thing (including
data formats and representations), and each description of an entity is called a reference
to that entity. Entity resolution (ER) is the process of resolving and mapping real-world
entities from a “collection of references” [11]. ER is also known as record linkage, object
identification, individual identification, and duplicate detection. Intuitively, it is computa-
tionally expensive to directly match each pair of records in two data sources by calculating
the similarity pair by pair. To avoid the excessive complexity generated by direct matching,
the existing work typically divides ER into two steps [12]: (1) blocking and (2) matching.
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Specifically, the blocking step divides records that do not represent the same entity into
different blocks so that only records within the same block need to be matched, avoiding
comparing many records between blocks. Matching refers to determining whether two
representations refer to the same real-world entity. For example, whether two records
(Name: Kristen Smith, Street: 2 Hurley Pl, City: South Fork, MN 48503, Sex: Female) and
(LastName: Smith, FirstName: Kristen L., Gender: F, Address: 2 Hurley Place, South Fork
MN, 48503-5998) refer to the same person Kristen Smith. Next, we review recent ER
approaches and discuss them in two types: learning-based methods and non-learning-
based methods.

2.1. Non-Learning-Based Methods

Most of the non-learning approaches were proposed before artificial intelligence (AI)
became widespread. The methods in this category are summarized in Table 1. For a better
understanding, we organize them into a novel taxonomy that consists of Schema-type, Step,
and Knowledge-based, and detail the related papers according to Schema-type.

• Schema-type: distinguishes between schema-aware or schema-agnostic methods. The
former indicates that the method selects some specific attribute values for blocking
and matching, and these selected attributes are discriminative or contain less noisy
data. The latter does not consider pattern information and extracts information from
all attribute values.

• Step: divides the methods into three categories based on the steps included. Blocking
means that the method contains only blocking steps, matching means that the process
consists of only matching, blocking–matching implies that the method proposes a
complete framework for ER, including both blocking and matching.

• Knowledge-based: classifies the methods into yes, which means that external knowledge,
such as knowledge bases, rules, constraints, etc., are introduced into the techniques,
and no, which means that they are not.

Table 1. Non-learning-based methods.

Method Schema Type Step Knowledge-Based

Standard blocking [5] Schema-aware Blocking No

Sorted blocking [13] Schema-aware Blocking No

CrowdER [14] Schema-aware Blocking-matching No

Swoosh [15] Schema-aware Matching No

SEMR [16] Schema-aware Matching Yes

Rule-based ER [17] Schema-aware Blocking–matching Yes

DMCE [18] Schema-aware Matching Yes

Token blocking [19] Schema-agnostic Blocking No

Attribute clustering
blocking [20] Schema-agnostic Blocking No

SiGMa [21] Schema-agnostic Matching No

MinoanER [22] Schema-agnostic Blocking–matching No

Schema-aware. Methods of this type assume that the input entity profiles adhere to a
known schema. Based on this schema and respective domain knowledge, one can select
the attributes most suitable for blocking and matching. We then discuss precisely what
methods are available in this category [5,13–18].

In terms of blocking, standard blocking [5] is the basis of the blocking algorithm,
which represents each entity with one or more key values. Each block corresponds to a
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specific key value and contains all the entities represented by that key value. It involves
the most straightforward functionality: an expert selects the most suitable attributes, and
a transformation function concatenates (parts of) their values to form blocking keys. For
every distinct key, a block is created containing all corresponding entities. Comparing
records in the same block can reduce the number of record comparisons in the original ER.

Through combining the standard blocking and sort technologies, ref. [13] proposes
an entity resolution blocking technology called sorted blocking. Sorted blocking sorts all
blocking key values according to dictionary order. The ordered entities are then divided
into blocks based on the prefixes of the blocking keys, and the records within one block
are compared. In addition, the algorithm uses a windowing technique to avoid losing any
matches. Records from different blocks in the window are also involved in the comparison
calculation. The sorted blocking algorithm does not limit the block size, which can lead to
large blocks taking up a significant amount of processing time.

In terms of matching, swoosh [15] focuses on “pairwise ER”, which matches and
merges records operating on two records at a time. Swoosh defines two functions, match
and merge, where match identifies duplicates and merge combines two duplicate records
into one. There are also methods [14,16–18] for obtaining matching results for record
pairs by introducing knowledge of manual annotation information, knowledge bases, rule
constraints, etc., through knowledge-based approaches.

SEMR [16] studies how to synthesize matching rules from positive–negative match-
ing examples. It presents a system that introduces real-world associated constraints
to improve the accuracy of the synthesized matching rules. This system matches the
performance of machine learning (ML) methods and produces concise rules. Rule-based
ER [17] considers that records referring to the same entity observed in different periods
may be different. The authors use data quality rules, such as matching dependency and
data currency, to derive temporal records’ information in the time order and the trend
of their attributes’ evolutionwith time elapsing. Based on the obtained information, a
temporal-based clustering method is proposed to improve the accuracy of matching on
datasets containing hidden temporal information.

DMCE [18] focuses on entity classification, which is relevant but not identical to
matching. They propose a rule-based framework using positive and negative rules to
discover miscategorized entities. Positive rules are conservatively used to find disjoint
partitions, so the entities within the same partition should be categorized together. The
partition with the largest size is called the pivot partition under the realistic assumption
that the largest partition is correct. Negative rules are used to compare other partitions
with the pivot partition to discover dissimilar entities as miscategorized entities.

In addition to the above work, a more specific type of crowdsourced blocking uses
machine-based techniques to remove evident non-repetitive entities while using valuable
human resources to examine situations that require human insight. Following this idea,
CrowdER [14] proposes a hybrid human–machine ER approach, which first uses machine-
based techniques to label the non-similar record pairs and asks the crowd to verify only the
remaining pairs.

Schema-agnostic. Methods of this type make no assumptions about schema knowl-
edge, disregarding complete attribute names. We discuss several representatives [19–22]
in this category.

In essence, token blocking (TB) [19] is based on the idea that profiles of duplicate
entities have at least one value in common, independently of the corresponding attribute
names. Therefore, all entities that contain the same token in any attribute of their profile
are placed in one block, resulting in redundancy that each entity is contained in multiple
blocks. To improve TB, attribute clustering blocking [20] requires the common tokens of
two entities to appear in syntactically similar attributes. These attribute names correspond
to similar values but are not necessarily semantically matching (unlike schema matching).
First, it clusters attributes based on the similarities of their aggregate values. Each attribute
is connected to its most similar one, and the transitive closure of the connected attributes
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forms disjoint clusters. A blockk,t is then defined for every token t in the values of the
attributes belonging to cluster k.

Next, we introduce two schema-agnostic methods for matching. SiGMa [21] selects
as seed matches the pairs with identical entity names. Then, it propagates the matching
decisions on the compatible neighbors of existing matches. Unique mapping clustering
is applied for detecting duplicates. That is, for every newly matched pair, the similarities
of the neighbors are recomputed, and their position in the priority queue is updated.
SiGMa is an iterative propagation algorithm that leverages structural information from the
relationship graph and flexible similarity measures between entity properties in a greedy
local search, making it scalable. MinoanER [22] also employs unique mapping clustering.
However, it differs from SiGMa. MinoanER leverages a token-based similarity of entities
to define a new metric that derives the similarity of neighboring entities from the most
important relations. A composite blocking method is employed to capture different sources
of matching evidence from entities’ content, neighbors, or names. The search space of
candidate pairs for comparison is compactly abstracted by a novel disjunctive blocking
graph and processed by a non-iterative, massively parallel matching algorithm that consists
of four generic, schema-agnostic matching rules.

2.2. Learning-Based Methods

With the development of AI, learning methods are used to solve ER problems. We
summarize these methods in Table 2, classified according to step, knowledge-based, learning
type, and pre-trained LM. As step and knowledge-based are introduced in Section 2.1, we detail
learning type and pre-trained LM as follows:

• Learning type: distinguishes these methods into supervised, unsupervised, semi-supervised,
and deep learning, where we uniform all the learning-based methods belonging to the
field of deep learning (DL) to deep learning.

• Pre-trained LM: Identifying and distinguishing entities requires capturing their se-
mantic similarities, which requires significant language understanding and domain
knowledge. Pre-trained transformer-based language models (LMs) perform well on
the ER task due to their ability to understand language and their ability to learn where
to pay attention. This dimension divides methods into yes and no. The former indicates
introducing a pre-trained LM, while the latter does not.

Table 2. Learning-based methods.

Method Step Knowledge-Based Learning Type Pre-Trained LM

ApproxDNF [23] Blocking No Supervised No

BSL [24] Blocking No Supervised No

BGP [25] Blocking No Supervised No

CBLOCK [26] Blocking No Supervised No

KBPearl [27] Matching Yes Supervised No

CEA [28] Matching Yes Supervised No

AL-EM [29] Matching No Supervised No

Semi-supervised
de-dup [30] Matching No Semi-supervised No

Map-Reduce-Based
EI [31] Matching No Unsupervised No

ULEC [32] Matching No Unsupervised No
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Table 2. Cont.

Method Step Knowledge-Based Learning Type Pre-Trained LM

ZeroER [33] Matching No Unsupervised No

RER [34] Matching Yes Unsupervised No

PERC [35] Matching Yes Unsupervised No

DeepER [36] Blocking–matching No Deep learning No

DeepMatcher [37] Matching No Deep learning No

DeepBlocking [38] Blocking No Deep learning No

DITTO [39] Blocking–matching Yes Deep learning Yes

Machop [40] Matching Yes Deep learning Yes

JointMatcher [41] Matching No Deep learning Yes

Supervised learning methods. Supervised learning is a type of machine learning
where the training data usually contain features and labels. A function is then learned by
mapping a feature vector to a label. Supervised learning in ER is generally conducted by
obtaining feature vectors from matched/unmatched entity pairs and then understanding
the mapping relationship between the vector pairs and the matched/unmatched labels. We
next describe several representatives [23–29] of supervised learning.

Regarding blocking, ApproxDNF [23] uses small record clusters as samples to train an
algorithm. The algorithm learns specific features from the data based on these samples,
producing higher-quality results. The training instances for the learning process are pairs of
records. These instances are used in the rule selection training analysis, which produces the
best record sets in blocking. Then, these selected rules are combined to form expressions in
a disjunctive normal form (DNF), which defines how records are blocked.

BSL blocking [24] is similar to ApproxDNF in its use of blocking rules. The main
difference is how the training samples are used and how predicates are combined to
produce the blocking strategy during the learning process. In practice, BSL blocking is
usually used for samples containing a small number of positive training record pairs. As a
result, the execution time may be less than the time taken to perform ApproxDNF.

Different from the above methods, BGP [25] uses genetic programming (GP) as the
basis for solving adaptive blocking problems. BGP uses a tree representation of supervised
blocking schemes, where each leaf node corresponds to a blocking predicate. In each round,
a set of genetic programming operators, such as replication, mutation, and crossover,
are applied to an initial, random block scheme set. Then, a fitness function infers the
performance of the new schemes from the harmonic mean of genuine coverage of pairs (PC)
and reduction ratio in the number of candidate pairs (RR), and the best ones are returned
as output.

Another tree-based approach is CBLOCK [26], which automatically learns hash func-
tions from attribute domains and a labeled dataset of duplicates. Subsequently, CBLOCK
expresses blocking functions using a hierarchical tree structure composed of atomic hash
functions. It guides the automated blocking process based on architectural constraints, such
as by specifying the maximum size of each block. Each node that exceeds the maximum
limit is split into smaller, disjoint blocks.

In terms of matching, KBPearl [27] and CEA [28] are proposed based on knowledge
bases. KBPearl [27] constructs a semantic graph based on the knowledge extracted from the
canonicalized facts and the side information. Then, KBPearl matches various entities for
disambiguating the noun phrases and relation phrases in the facts by determining a dense
subgraph from the semantic graph efficiently and effectively. CEA [28] identifies entities
that refer to the same real-world object but locate in different knowledge graphs (KGs).
It uses structural, semantic, and string signals to capture similarities between entities in
heterogeneous knowledge graphs.
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AL-EM [29] builds a unified active learning framework containing four essential com-
ponents: feature extractor, learner, example selector, and evaluator. The feature extractor
generates feature vectors for pairs of entities, and the learner learns from a limited amount
of initial labeled pairs of entities to develop the initial model. The example selector chooses
ambiguous, unlabeled examples that the model finds hard to predict the labels for any
queries an Oracle (human or ground truth) for those labels. The newly labeled data is
added to the cumulative training data to learn a refined model. The evaluator evaluates
the learned model during each active learning iteration.

Unsupervised learning methods. Compared with supervised learning, unsuper-
vised learning does not need labeled training examples and automatically classifies or
clusters the input data. We introduce the following unsupervised learning methods [31–35].

In the process of matching, Map-reduce-based EI [31] proposes setting different
weights for each attribute to effectively distinguish the effect of each attribute on the
degree of entity description. After setting the weights, the similarity between records is
calculated from the attribute values and weights, and then entity matching is carried out
based on the graph clustering method. Different from Map-reduce-based EI [31], ULEC [32]
proposes an unsupervised method to generate groups of value pairs that can be trans-
formed in the same way, i.e., values that are logically the same with different formats
share a transformation. Then, the groups are presented to a human for verification and the
approved ones are used to standardize the data.

In ZeroER [33], similarity measures are used to create the feature matrix for the two
input tables, and a blocking function is selected by the users. ZeroER clusters entity pairs
based on the assumption that the similarity values for matched/unmatched entity pairs
follow two different distributions. The authors propose a powerful generative model
based on Gaussian mixture models for learning the match and unmatch distributions.
All parameters can be learned by maximizing the data likelihood via an expectation-
maximization algorithm without any labeled data.

Incorporating annotated information into matching is a good idea because humans
can naturally recognize information about real-world entities represented in different ways.
Considering the fact that workers’ answers may not be accurate due to a lack of domain
expertise, fatigue, malicious behavior, etc., RER [34] corrects the responses of an oracle
through indirect “control queries” and finally obtains the correct annotated information.
PERC [35] adopts an uncertain graph model to address the entity matching problem
with noisy crowd answers. This model sets the problem of ER equivalent to finding the
maximum-likelihood clustering.

Semi-supervised learning methods. Semi-supervised learning involves a small num-
ber of labeled samples and a large number of unlabeled samples, which is not commonly
used in ER. Semi-supervised de-dup [30] regards matching as a clustering task, where the
goal is to put records corresponding to the same physical entity in the same cluster while
separating the records corresponding to different entities into different clusters. Based
on restricted correlation clustering (RCC) [42], the authors develop a semi-supervised
approach that leverages a small labeled dataset, which is carefully selected via an efficient
sampling procedure based on locality-sensitive hashing (LSH).

Deep Learning. As seen from the above approaches, structured data are usually
featured on entity attributes and compared for similarity to determine whether they match.
However, with the increasing need for matching textual data, for example, matching the
information on a company homepage with a Wikipedia page describing the company, tradi-
tional learning-based ER solutions (e.g., SVMs) may have difficulty matching text instances
by featuring the attribute values of textual descriptions. Considering the fact that DL-based
models are sensitive to each word in a textual description, they can automatically extract
the semantic features of the entire record or the corresponding attributes for matching.

DeepER [36] proposes an LSH-based blocking approach that considers all attributes
of a tuple and produces smaller blocks, compared with traditional methods that consider
only a few attributes. For matching, it adopts an LSTM-based RNN with the Siamese
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architecture [43], a neural network architecture that has a pair of neural networks with the
same architecture and shared parameters. DeepER first tokenizes each pair of entities, which
are converted into distributed representations using a word embedding model. The model
then aggregates token-level distributed representations into an entity representation for each
entity. Next, the two entity representations are fed into a dense layer that calculates the
similarity between the entities, followed by an output layer that predicts the matching.

DeepMatcher [37] extends DeepER by introducing an architecture template for deep
learning ER methods with three main modules: (1) attribute embedding, which converts
sequences of words used in the attribute values of an entity description to word embedding
vectors; (2) attribute similarity representation, which applies a similarity function on
the attribute embeddings of two descriptions to obtain a final similarity value of those
descriptions (i.e., it learns the similarity function); and (3) a classifier, which uses the
similarities between descriptions as features for a classifier that decides whether a pair of
descriptions is a match (i.e., it learns the match function).

After DeepMatcher was proposed, the authors proposed DeepBlocking [38] to apply
deep learning to blocking. Specifically, each tuple in two input tables is converted into a
string by concatenating all the attribute values. The resulting strings are fed into word
embedding, tuple embedding, and vector pairing. Word embedding converts the words in
each string into a high-dimensional vector. Tuple embedding then combines these vectors
into a single-valued vector representing the entire string (the original tuple). Finally, the
vector-pairing module looks for similar vector pairs.

With the development of pre-trained LMs, DITTO [39] proposes an ER method, which
serializes two records in a record pair and inputs them into a BERT (bidirectional encoder
representation from transformers) model [44], while features are extracted by the BERT
model. In this way, records with different structures can be uniformly processed as input
to a classification model that determines whether to match. Based on modeling matching
as a sentence pair classification problem and introducing pre-trained language models
for fine-tuning, DITTO also proposes three optimization techniques: injecting domain
knowledge, summarizing long texts so that their length meets the input requirements of
the pre-trained models, and data augmentation of the training data. Machop [40] extends
the work of Ditto by allowing for matching between data entries in different data formats
(structured, semi-structured, and unstructured). JointMatcher [41] extends the work of
Ditto by adding a relevance-aware segments encoder and a numerically aware segments
encoder. Consequently, JointMatcher focuses more on similar and number-contained
segments to capture more high-contextualized and fine-grained features, resulting in better
performance than DITTO on small datasets with the same pre-trained LMs.

3. Truth Discovery

As different types of errors can exist in various data sources, the attribute values of
an entity from multiple sources often contradict each other. To ensure data quality, we
need to resolve such conflicts. An intuitive idea for eliminating conflicts is majority voting,
which assumes that all sources are equally reliable. However, this assumption may not
hold in most cases. To compensate for the lack of majority voting, the concept of truth
discovery [45] has been introduced. Truth discovery, also known as data integration, aims
to find the truths from multi-source conflicting data by simultaneously estimating the
reliability of the data sources and inferring the true information.

Truth discovery was first proposed in the literature [46], and the basic idea is that
the more reliable the data source, the more likely it is to provide correct data. The more
correct data are provided, the more reliable the data source is. Since the reliability of a
data source is usually not known in advance, truth discovery methods [46–49] mostly
use iterative algorithms to perform reliability assessment of data sources and inference of
truth in an alternating update mode. Usually, the algorithm starts with an initialization
of source weights and then iteratively conducts the truth computation step and source
weight estimation step. Some stopping criteria are adopted in practice to control the
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number of iterations. One commonly adopted criterion is verifying the change of identified
truths or source weights and terminating the algorithm when the change is smaller than a
pre-defined threshold.

We compare recent truth discovery approaches in Table 3. Here, we summarize them
under different features, i.e., labeled truths, entity dependency, source dependency, non-single
truth, and truth discovery in crowdsourcing.

Table 3. Truth discovery methods.

Method Labeled Truths Entity
Dependency

Source
Dependency Non-Single Truth Crowdsourcing

SSTF [50] X

SLiMFast [51] X

OpSTD [52] X

Investment [53] X X

GFFTD [54] X

MTM [55] X

DynaTD [56] X

TD-corr [57] X

OTD [58] X

CRDI [59] X

CTD [60] X

ACCU [61] X

MSS [62] X X

TDCD [63] X

PrecRecCorr [64] X X

LTM [65] X

DART [66] X

TEM(15) [67] X

FairTD [68] X

TDSSA [69] X

MTD-CC [70] X X X

IMCC [71] X X

3.1. Labeled Truths

Most truth discovery methods are unsupervised due to the difficulty of collecting data
with truth labels, while in [50–52,72], the authors argue that a small set of truths is available
and thus the proposed algorithms which work in semi-supervised settings.

SSTF [50] focuses on the problem of truth discovery with semi-supervised graph
learning by using a small set of ground truth data to help distinguish true facts from
false ones and identify trustworthy data sources. SSTF requires that the ground truths be
among the observations sources provided. This setting is impractical for many real-world
applications, especially when ground truth and observations are real numbers. Thus, it
performs poorly on datasets when object truths are continuous data.

To compensate for the above shortcomings, SLiMFast [51] uses a small amount of
ground truth to obtain an initial estimate of the source accuracy and then uses an iterative
process to obtain a final estimate of the source accuracy and the potential true value of the
object. The work in [52] studies the semi-supervised truth discovery problem for continu-
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ous object truths. They propose an optimization-based semi-supervised truth discovery
(OpSTD) method for discovering continuous object truths, in which the truth discovery
problem is formulated as an optimization task where both object truths and source reliabili-
ties are modeled as variables, and the ground truth is modeled as a regularization term to
propagate its trustworthiness to the estimated truths.

3.2. Entity Dependency

In the general truth discovery framework, it is assumed that entities are independent
and uncorrelated from each other. However, in real-world applications, different entities
and attributes usually have certain relationships with each other and may influence each
other. For example, there is a strong connection between the “city” and “province” where
the same person lives, and in the same region, “A pays more than B” may mean “A pays
more taxes than B”. This dependency relationship between entities and attributes provides
more clues, which can improve the accuracy of truth discovery.

In Investment [53] and GFFTD [54], the authors represent the relationships between
entities as a priori knowledge or common sense. This external knowledge is translated
into propositional constraints integrated into each round of truth discovery. Specifically,
each truth (an entity and its corresponding attribute values) is represented as a [0, 1]
variable, and then the associated truths are combined into propositional constraints based
on external knowledge. The cost function is the distance between initial results based on
truth discovery and new results satisfying the propositional constraints. By minimizing the
cost function, the probability of each candidate truth being true is “corrected” during each
iteration based on external knowledge. To ensure that this optimization problem is solvable,
the truth of each entity is allowed to be “unknown” in order to lower the constraints and
avoid possible constraint conflicts.

In comparison, refs. [53–55] combines information extraction and truth discovery
to address the slot-filling validation task, to determine the trustworthiness of the output
information extracted from different systems in the diverse corpus. The authors construct
a multidimensional truth discovery model (MTM), a heterogeneous method comprising
the system, the corpus, the extracted information, and the weight matrix between them.
Similar to the iterative truth discovery process, the reliability of the information propagated
is used to infer the reliability of the system and the corpus. In turn, the system’s reliability
and the corpus’s reliability reassess the trustworthiness of the information it extracts. The
authors construct knowledge graphs to establish dependencies between different time slots
(entities) as a clue to initialize the trustworthiness of the information.

In another line of research, the works in [56,57] propose to exploit the temporal and
spatial relationships between entities to improve the performance of the truth discovery
algorithm. For example, today’s maximum temperature is correlated with yesterday’s;
neighboring several streets may have similar traffic conditions. This correlation is measured
as similarity is added to the optimization model, leading to better results. DynaTD [56]
constructs a model of temporal relationships between entities on continuous data. TD-
corr [57] can address both temporal and spatial relationships on continuous data, and
their experiments show that capturing the relationships between entities can improve the
performance of truth discovery since, in many practical applications, entity relationships
can be viewed in large numbers by sensor-observation results. Building on [56,57], OTD [58]
further models and integrates temporal trends in the evolution of truth guides the truth
discovery.

Unlike all the above methods, ref. [59] proposes an approach, CRDI, to enhance
the accuracy of truth discovery. CRDI uses the information in the relationships between
entities to find more evidence for the correctness or incorrectness of the values generated
by different data sources. The authors then propose an alternative approach [73], which
uses relational machine learning methods to estimate the relations between entities and
then uses these relations to estimate the true value using some fusion functions.
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CTD [60] introduces denial constraints into the truth discovery problem and formulates
it as a constrained optimization problem. To address the problem, they propose algorithms
to partition the entities into disjoint groups and generate arithmetic constraints for each
disjoint group separately. The true attribute values of the entities in each disjoint group
are then derived by minimizing the objective function under the corresponding arithmetic
constraints.

3.3. Source Dependency

Since copying sometimes occurs between multiple data sources (e.g., different websites
on the Internet), detecting copying between data sources is essential to prevent erroneous
information from being copied continuously, leading to a high proportion of error messages
when discovering the truth. The main principle behind copy detection is that, if some
sources make many common mistakes, they are not likely to be independent of each other.
However, this principle becomes ineffective when some sources copy information from a
good source.

In ACCU [61], the authors use a Bayesian model to infer the existence of copy relation-
ships between data sources and confirm their dependence. This copy-detection process
is combined with the truth discovery for iterative updates. MSS [62] mitigates the source
relationship dependency problem by revealing the underlying group structure among data
sources and performing truth discovery at the group level. This solution reduces the risk of
overusing information from dependent data sources, especially when these data sources
are unreliable.

In contrast to [61,62], which detect copy relationships between data sources from
static data, TDCD [63] detects copy relationships between data sources from dynamic
data sources, where the information provided by the data sources is changing. Given the
historical update records of the data sources, the authors apply a hidden Markov model
(HMM) to detect the copy relationships. The model iteratively evaluates source quality and
updated information simultaneously, outputting changing copy relationships and truth.

In a separate line of research, PrecRecCorr [64] considers different correlations between
data sources that are more general than copying. Sources may have positive correlations,
such as copying information from each other, or negative correlations, such as providing
data from complementary domains or focusing on different information domains. In
general, observations from positively correlated sources should not increase the confidence
that they are true values, and observations supported by only a few negatively correlated
sources should not decrease the confidence that they are true values. The method models
inter-source correlation with joint precision and joint recall and employs Bayesian analysis
to infer whether an observation is true.

3.4. Non-Single Truth

Most methods usually assume that each entity has only one correct value for each
entity. Based on this assumption, these methods aim to select the information with the
highest confidence as the correct value. However, this “single truth” assumption does
not always hold. For example, there are multiple authors for a book and also multiple
actors/actresses for a movie.

In the literature [64,65], the authors propose the probabilistic graphical model to
find multiple truths for each entity. In this case, considering only the credibility of the
source does not distinguish between sources with low precision and those with low recall.
Therefore, in [64], the authors calculate the precision and recall of the data source for
finding multiple truths. Similarly, LTM [65] considers both false positive and negative
aspects to find multiple truths for the same entity. DART [66] proposes an integrated
Bayesian approach that exploits the unique features of the multi-truth problem to assign
more reasonable confidence scores to candidate truth sets, combining data source domain
knowledge and confidence scores to achieve unsupervised multiple truth discovery.
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In addition to the above case of multiple true values, there is a particular case of no
correct value [53,67]. For example, it is suitable to give an output of “unknown” for the
questions (objects) about the death date of someone still alive. Investment [53] uses “un-
known” to augment their data and provides an “unknown” answer when there is insufficient
information or conflicting constraint. TEM [67] considers the has-truth questions, i.e., when
the truth of an entity is not provided by any data source, the truth returned by truth discovery
for that entity should be non-existent. The study evaluated three quality indicators of the
data source in the search for truth, silent rate, false spoken rate, and true spoken rate, thus
effectively filtering out information about entities for which there is no truth.

3.5. Truth Discovery in Crowdsourcing

In the past decade, crowdsourcing has emerged as a popular internet-based collab-
orative computing paradigm. In crowdsourcing systems, requesters can ask workers
(“sources”) for true values (“truths”) of objects or events. Generally, sources could pro-
vide inconsistent or conflicting answers (“candidates”) about the object. Researchers have
studied truth discovery in crowdsourcing from different perspectives.

Crowdsourcing collects shared information from a large number of people and is often
negatively impacted by unreliable sources with low-quality data. To address this problem,
MSS [62] proposes a probabilistic model to jointly assess the reliability of sources and find
true data. It also explicitly reveals the reliability of groups and minimizes the negative
impacts of unreliable groups.

FairTD [68] argues from a fairness perspective that simply aggregating feedback from
all crowdsourced workers will inevitably lead to race, gender, and political interference
in the outcome. Thus, FairTD proposes a notion of difference in truth discovery, three
theories of fairness enhancement, and an iterative method of estimating bias and truth to
address the fairness problem in truth discovery. TDSSA [69] considers the truth discovery
problem under Sybil attack and proposes a method to defend against strategic Sybil attack.
The method assigns the same standard set of tasks to each worker in the cluster. It filters
malicious worker feedback out by classifying each cluster as normal or malicious based on
worker feedback.

FairTD and TDSSA ignore the correlation between candidates, so the inferred truth
may differ from the ground truth. To solve this problem, ref. [70] proposes MTD-CC,
multi-truth discovery with candidate correlations. Specifically, the authors first design a
metric of potential function to measure the correlation between each pair of candidates
based on the sources’ votes and reliabilities. Then, they construct a Markov random field
(MRF) to represent these correlations. Finally, they transform the MRF into a directed graph
and cut it based on the Min-cut theorem to infer which candidates are truths.

Unlike the copy detection in Section 3.3, IMCC [71] considers the copying of workers
in crowdsourcing. Some workers copy some (or all) of the data from other workers, making
truth discovery more complicated if the wrong answer is copied. IMCC aims to design
a crowdsourcing incentive mechanism for the truth discovery of textual answers with
copiers. They formulate the problem of maximizing social welfare such that all tasks can be
completed with the least confidence for truth discovery and design a three-stage incentive
mechanism. In the contextual embedding and clustering stage, they construct and cluster
the content vector representations of crowdsourced textual answers at the semantic level.
In the truth discovery stage, they estimate the truth for each task based on the dependence
and accuracy of workers. In the reverse auction stage, they design a greedy algorithm to
select the winners and determine the payment.

4. Inconsistency Detection and Repair

Data consistency refers to data collection that does not contain semantically incorrect
or conflicting data. For data consistency detection, existing studies [74–76] usually establish
a set of data quality rules such that once inconsistent data appear in the database, the
corresponding rules are violated so that the tuple violating the rules is discovered and
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repaired. Data quality rules describing consistency include function dependencies (FDs),
conditional functional dependencies (CFDs), denial constraints (DCs), etc. The followings
are brief descriptions of these three common data rules, respectively.

Consider a relational schema R with attributes attr(R). An FD ϕ is defined as X → Y,
where X ⊆ attr(R) and Y ⊆ attr(R). An instance I of R satisfies FD ϕ, denoted as I |= ϕ
if for any two tuples tα, tβ in I, such that tα[X] = tβ[X], then tα[Y] = tβ[Y]. For example,
an FD [Country Code, Area Code]→ City is presented in Table 4, stating that the values of
Country Code and the Area Code can determine the value of City.

A CFD ϕ on R is a pair (R : X → Y, Tp), where (1) X, Y are sets of attributes from
attr(R), (2) R : X → Y is a standard FD, referred to as the FD embedded in ϕ; and (3) Tp is
a tableau with all attributes in X and Y, referred to as the pattern tableau of ϕ, where for
each A in X or Y and each tuple t ∈ Tp, t[A] is either a constant ‘a’ in the domain dom(A)
of A, or an unnamed variable ‘_’. If A appears in both X and Y, we use t[AL] and t[AR]
to indicate the A field of t corresponding to A in X and Y, respectively [77]. For instance,
given a CFD: ([Country Code, Zip]→ Street, (44, _, _)), [Country Code, Zip]→ Street refers
to an FD and (44, _, _) specifies the condition, i.e., when Country Code is 44, Zip uniquely
determines Street.

A DC ϕ on R is defined as: ∀tα, tβ, tγ, · · · ∈ R,¬(P1∧ P2 · · · ∧ Pm), where each predicate
Pi is of the form v1θv2 or v1θc with v1, v2 ∈ tx[A], x ∈ {α, β, γ, . . . }, A ∈ R, c is a constant in
the domain of A, and θ ∈ {=,<,>, 6=,≤,≥}. For example, ∀tα ∈ R,¬(tα[Country Code] =
‘01’ ∧ tα[Area Code] = ‘908’ ∧ tα[City] 6= ‘MH’), i.e., there is no tuple where Country Code
is ‘01’, Area Code is ‘08’, and City is not ‘MH’.

Table 4. An example of database information.

Tid Country
Code

Area
Code Phone Name Street City Zip

t1 01 908 5219527 Mike Tree Ave. MH 07974

t2 01 908 5219527 Rick Tree Ave. MH 07974

t3 01 212 2018967 Joe 5th Ave NYC 01202

t4 01 908 2018967 Jim Elm Str. MH 07974

t5 44 131 3314823 Ben High St. EDI EH4 1DI

t6 44 131 4675378 Ian High St. EDI EH4 1DT

t7 44 908 4675378 Ian Port PI MH W1B 1JH

t8 01 131 2018967 Sean 3rd Str. UN 01202

The problem of repairing inconsistent data is making “minimal” changes to data
collection that do not satisfy a given set of rules. In Table 5, we summarize the inconsistency
detection and repair methods in two dimensions, Data and Constraints. Data divides the
methods into Table Data and Graph Data, which represent the type of data handled by the
method. Constraints refers to FDs, CFDs, DCs, and Other Constraints, which represent the
data quality rules used in the method. Next, we discuss these papers according to Data.

Table 5. Inconsistency detection and repair methods.

Data Constraints

Table Data Graph Data FDs CFDs DCs Other Constraints

FD-based value
modification [78] X X X

FindVRepair [79] X X X
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Table 5. Cont.

Data Constraints

Table Data Graph Data FDs CFDs DCs Other Constraints

CFD-based
Detection [77] X X

CFD-based value
modification [80] X X

Distributed
Detection [81] X X

Incremental
Detection [82] X X

C-Repair [83] X X

Holistic Repair [84] X X

HoloClean [85] X X X

GFD-based
Detection [86] X X

IncDect [87] X X

StarRepair [88] X X

Logic-based Graph
Repair [89] X X

4.1. Table Data

Traditional repairing methods [2,90,91] directly delete the non-compliant records from
the database so that the remaining records can comply with all the given universal integrity
constraints (ICs). Since the errors in the remaining dataset are not increased when the
records are deleted, it is always possible to iterate through the data repair, i.e., first finding
the set of records that violate the constraint, then deleting a random record, and then
testing the remaining dataset. This strategy is relatively simple, but a significant amount of
information is lost. To address this issue, an alternative strategy [92] is proposed. Instead of
adding or deleting any records, only certain fields are modified so that the entire collection
can meet the pre-defined consistency requirements. This strategy allows for maximum
preservation of the original information of the data collection.

In [78], the authors propose a repair model which detects tuples that violate FDs and
inclusion dependencies (INDs) and modifies attribute values to ensure consistency in the
database. The model describes the cost-based minimum repair measured by the tuple
weights and the similarity of the values for each modification, which was not considered
by any previous work. The tuple weights represent the confidence of each tuple placed by
the users. The similarity of the values is defined as the minimum number of individual
character insertions, deletions, and substitutions required to convert the original value to
the repaired value.

In [77], the authors argue that FDs have been developed primarily for schema design
and are often insufficient to capture the semantics of the data. They introduce CFDs, an
extension of traditional FDs, which can capture data consistency by enforcing bindings of
semantically related values. They provide an inference system analogous to Armstrong’s
axioms for FDs and consistency analysis. Since CFDs allow for data bindings, many indi-
vidual constraints may hold on a table, complicating the detection of constraint violations.
They first provide an SQL technique for finding violations of a single CFD, e.g., using group
by statements and then extend it to validate multiple CFDs.
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Following [78], FindVRepair [79] proposes a method for repairing the inconsistency
errors in the database that violate FDs by minimizing the distance metric. The distance
metric depends on the number of value modifications and the weight/confidence associated
with the modified tuples. In addition, the authors show how to use CFDs for data repair.
In [80], the authors propose two algorithms: one for automatically computing the repaired
database that satisfies a given CFD set and the other for incrementally finding repairs in
response to updates to a clean database. The former extends the FD-based cost model
of [78] to ensure quality repairs are found when processing CFDs. The latter is an effective
heuristic algorithm for finding fixes that respond to updates, i.e., the deletion or insertion
of a set of tuples, and can also be used to find fixes for dirty databases.

In another line of research, ref. [81] describes the detection problem in various dis-
tributed environments. The authors formulate CFD violation detection for data partitioned
horizontally or vertically as optimization problems measured by either response time or
data shipment (i.e., the amount of data shipped from one site to another). They study CFD
violation detection in horizontal partitioning but consider neither incremental detection
nor algorithms for detecting errors in vertical partitions. The works in [81,82] provide
such incremental algorithms for vertically partitioned and horizontally partitioned data
and further propose optimization techniques for the incremental algorithm over vertical
partitions.

Compared with the above CFD-based repairing methods, ref. [83] no longer focuses
solely on databases containing CFDs but specifically on data containing conditional func-
tional dependencies (CFDPs) with built-in predicates. The authors propose a heuristic
algorithm for inconsistent data detection and repairing, which can repair inconsistent data
violating the CFDPs in datasets under unsupervised circumstances. For data detection, the
maximum dependency set is used to detect them. For data repairing, they use unsupervised
machine learning to learn the correlation among attributes in datasets and integrate the
minimum cost idea and information theory to repair, which makes the repair results most
relevant to the initial values with minimum repair times.

The above techniques do not consider the interaction among different class constraint
violations. Therefore, the researchers introduce the DCs for repairing [84,85], which subsumes
several types of DCs, such as FDs and CFDs. The authors in [84] let users specify quality
rules using DCs with ad hoc predicates. They introduce two data structures: the Conflict
Hypergraph, which encodes all violations into a common graph structure, and the Repair
Context, which encodes all necessary information on how to fix violations holistically.

The authors also introduce HoloClean [85], a framework for holistic data repairing
driven by probabilistic inference. HoloClean unifies existing qualitative data repairing
approaches, which rely on DCs or external data sources, with quantitative data repairing
methods, which leverage statistical properties of the input data. With an inconsistent
dataset as input, HoloClean automatically generates a probabilistic program to fix data.

Data quality rules by themselves are not sufficient to correctly resolve conflicts, or
worse, may even introduce new errors when attempting to repair data. Thus, some
studies [76,93] use master data or users to guide the repair process. In [76], the authors
propose a method to find certain fixes based on master data, the concept of certain regions,
and a class of editing rules. A certain region is a set of attributes for which the user is
guaranteed to be correct. Given a certain region and master data, edit rules tell which
attributes to fix and how to update them. Techniques for reasoning about edit rules are
then developed to determine whether they lead to unique fixes and whether they can fix
all attributes in the tuple relative to the master data and a certain region. A framework and
algorithms are also proposed to find certain fixes by interacting with the user to ensure that
a region is correct.

In [93], the authors introduce GDR, a guided data repair framework that incorporates
user feedback in the repairing process to enhance and accelerate existing automated repair
techniques while minimizing user involvement. Specifically, GDR consults the user on the
updates that are most likely to be beneficial in improving data quality. Then, GDR uses
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existing machine learning methods to identify and apply the correct updates directly to the
database without the actual involvement of the user on these specific updates.

4.2. Graph Data

Graph data inconsistency refers to semantic information errors or contradictions
among the relevant data information in a graph. Recent methods capture inconsistency
errors in graph data and repair them in terms of rules [86,87], logic-based incremental
methods [89], etc.

In [86], the authors propose a class of FDs for graphs, referred to as GFDs. Capturing
the attribute-value dependencies and topology of entities through GFDs provides an
effective way to detect inconsistencies in knowledge graphs. The same team later proposed
an arithmetic and comparison expression, NGD, to capture semantic inconsistencies in the
graphs, and developed an incremental algorithm, IncDect [87], to detect errors in graph
data and provide provable performance guarantees. Compared to GFDs, NGDs focus more
on numerical inconsistency in real-life situations, and NGDs extend GFDs by supporting
linear arithmetic expressions and built-in comparison predicates {=, 6=, >, ≥, <, ≤}.

In [88], the authors propose a class of constraints called Star Function Dependencies
(StarFDs), which enforce value dependencies conditional on entities and their associated
neighbors, unlike traditional ICs. These neighbors are identified by a star schema containing
a join rule path query. This type of star function dependency strikes a balance between
expressiveness and complexity. Given a set of StarFDs and graphs, entity repair detects and
resolves inconsistencies differently using optimal and cost-bounded solutions, referred to
as the StarRepair method. StarRepair computes the repairing process under the minimum
cost by enforcing StarFDs, where the cost is determined by the size of the inconsistency.

In another line of research, ref. [89] proposes a logic-based approach to incremental graph
repair, a method that does minimal change repair. The authors formalize consistency using a
so-called graph condition equivalent to a first-order logic on the graph. Inconsistency is then
resolved according to two repair algorithms: state-based repair independent of graph update
history, and incremental repair that considers graph update history to restore consistency.

5. Detection and Repair of Compound-Type Errors

In practice, multi-source data often contain multiple error types, and fixing one type of
error may introduce other types of errors. Thus, several methods focus on fixing compound
errors. We summarize these methods in Table 6, where the considered types of errors are
Duplication (i.e., entity information overlapping), Conflict (i.e., attribute value conflicts),
Inconsistency (i.e., attribute value inconsistency), and Incomplete. As several papers consider
the incomplete case in their compound-type error study, we also added “Incomplete” as an
aspect of classification.

In [94], the authors design graph repair rules (GRRs) that capture incompleteness, con-
flict, and redundancy in a graph and indicate how to repair these errors. Three fundamental
issues defined semantically in GRRs, namely implication, consistency, and termination,
are investigated to verify whether a GRR is meaningful. The work in [94,95] proposes to
deduce certain fixes for graphs based on data quality rules and truth values.They define
data quality rule (GQRs), to support CFDs, recursively defined keys, and negative rules on
graphs so that repairs can be deduced by combining data repair and entity resolution. In
addition, they prove that deducing certain fixes is Church–Rosser and propose online and
offline modes to perform fixes, respectively.

The authors of [95] also propose another class of graph association rules [96], rep-
resented by GARs, to describe regular relationships between entities in a graph. GARs
are combinations of graph schemas and dependencies that can be used as predicates for
relationship prediction by machine learning classifiers, capable of capturing incomplete
information in schema-free graphs, predicting links in social graphs, identifying leads in
digital marketing, and extending graph function dependencies to capture missing links
and inconsistencies. They demonstrate that the satisfiability, implication, and association
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derivation problems for GARs are coNP-complete, NP-complete, and NP-complete, respec-
tively, as well as that they maintain the same complexity bounds as the graph function
dependency problem despite the improved expressiveness of GARs.

Instead of relying on various data quality rules, ref. [97] proposes a knowledge
fragment cleaning method (KFCM) for cleaning up faulty knowledge fragments in a
genealogical knowledge graph, consisting of three phases. The first stage detects and
analyzes faulty knowledge fragments by inferring common problem patterns; the second
stage supplements the entity relationship for different error patterns and conducts entity
resolution; the third stage aligns entities with missing attributes based on parent–child
relationships and connects isolated knowledge fragments.

In [98], the authors propose combining the idea of truth discovery methods and rule-
based data repair methods to resolve the conflicts and inconsistencies. They present
an automatic multi-source data repair method, AutoRepair, that uses FDS to resolve
inconsistencies in multi-source data. The source reliability is used as evidence to discover
and repair the errors among these violations. At the same time, the corrected results are
used to estimate the source reliability. As the source reliability is unknown, the process is
modeled as an iterative framework to ensure better performance.

The authors of [98] then propose incorporating DCs into the truth discovery process
to resolve the conflicts together with dependencies [99]. They formulate the data repairing
problem as an optimization problem and create constraints for the DCs. Compared
with [98], this approach can repair the errors among related entities in different data types
(e.g., categorical data and continuous data). They also give four concrete cases using
different classes of DCs as examples.

Table 6. Compound-type error detection and repair methods.

Method Duplication Conflict Inconsistency Incomplete

GRRs [94] X X X

GQRs [95] X X

GARs [96] X X

KFCM [97] X X X

AutoRepair [98] X X

Conflicts Together with
Dependencies [99] X X

6. Future Research Directions

In summary, many studies have been carried out by domestic and international
scholars in multi-source data error detection and repair research. These research efforts
have focused on entity resolution and truth discovery, and some methods that have emerged
in recent years have considered the inconsistency of multi-source data. However, several
unresolved issues remain.

The detection and repair of compound-type errors in multi-source data need to be
further studied. As compound-type errors commonly exist in multi-source data, error
detection, and repair methods for multi-source data need to consider multiple types of
errors simultaneously to obtain optimal repair solutions. However, the repair of existing
compound types of errors is limited to considering only a few types of errors. Thus, there
needs to be more research work that integrates the consideration of conflicting, duplicated,
and inconsistent entity information on multi-source data.

The error detection based on semantic association in multi-source data needs to be
studied in depth. Existing inconsistency detection methods typically use different types of
data quality rules [100] to express dependencies between attributes or attribute values and
treat information that violates the corresponding type of data quality rule as an error and
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repair it. However, with multiple data sources, information from different sources may be
expressed differently. Let us suppose only exact matches of data values are considered. In
that case, this can affect the judgment of the reliability of the data source and the accuracy
of error detection and subsequent repair. Therefore, it is necessary to design data quality
rules based on semantic association to detect various errors accurately.

Efficient repair in multi-source data needs to be further studied. Existing entity
matching methods and inconsistency detection and repair methods tend to have high
time complexity and can suffer from more severe efficiency problems in massive data
scenarios [101]. In the present era of Big Data, modern data mining and analysis methods
often include multiple iterations, thus making the efficiency disadvantage of traditional
methods even more apparent. Therefore, error repair methods for multi-source data need
to maximize efficiency while ensuring accuracy.
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