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Abstract: This paper proposes a methodology for creating simplified structural schemes and forward
geometric models for industrial robots with serial architecture, with the goal of reducing thermal
deformation errors that negatively impact positioning accuracy during operation. Unlike classical
approaches, the proposed methodology introduces modifications to the order of matrix multiplication
and incorporates new parameters to create a forward geometric model that better corresponds to the
deformation characteristics of these robots. Details are presented on how to build and employ this
extended model and integrate it into a thermal error compensation algorithm. The implementation of
the algorithm in a software application is presented along with experimental results that demonstrate
its effectiveness. This work addresses a real phenomenon that occurs in industrial robot operation
and has implications for improving the performance of robots in manufacturing applications.

Keywords: industrial robot; error compensation; general model; simulation; thermal deformation;
forward kinematics

MSC: 70B15

1. Introduction

Industrial robots are widely used in various applications, such as material handling,
machining, welding, and assembly, due to their high flexibility, precision, and efficiency.
However, during operation, these robots suffer from thermal deformations that negatively
impact their positioning accuracy. This paper addresses the problem of reducing thermal
deformation errors by proposing a methodology for creating a simplified geometric model
for industrial robots with serial architecture, which considers the way in which these robots
deform during operation. The control and programming of industrial robots relies on
a geometric description of the robot in a digital environment, which typically includes
the dimensions of the robot’s segments, the locations of the joints or links between the
elements, and the angles of inclination or rotation of the segments. This simplified schematic
representation is very efficient in terms of the mathematical description of some robot
models and facilitates the calculation of their position, but unfortunately this is not enough.
In actual operation, the robot may be affected by positioning errors. Positioning deviations
of industrial robots can arise from various factors, such as assembly errors, geometric
deviations of the components, elastic deformations, or thermal expansion [1]. Overlooking
these errors may cause defects in the manipulated parts or in high-precision processes
such as assembly, machining, or laser cutting. To address this issue, this paper proposes a
novel algorithm for creating a geometric model of industrial robots with serial architecture.
Using this procedure, deformations of the robot structure are included into the model,
thus improving the accuracy of the calculations and, in the end, the positioning accuracy
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of the robot. The paper is structured as follows. The next section encompasses a critical
review of the state of the art. Section 3 describes how an extended geometric model can be
constructed and how error parameters are included. Section 4 presents the place occupied
by the extended geometric model in a whole suite of procedures that together compose a
thermal error compensation solution. In Section 5, the advantages of using the extended
forward geometric model and the benefits brought by the integration of such a model into
a thermal error compensation procedure for industrial robots are emphasized.

2. State of the Art

In software control algorithms, the calculations regarding the position of robots are
performed based on matrices in which the dimensions of the robot and the angles of the
joints are included as arguments. To make it easier to track and assign in the corresponding
matrices, the dimensions of the robot and the angles of the joints are first centralized in
a tabular form that is usually called a table of parameters of the robot. Since the robot
models can be different, some standardization of the geometrical description of the robot
elements and the table of parameters is necessary. A general form was first used in 1955 by
Jacques Denavit and Richard S. Hartenberg [2]. This Denavit–Hartenberg (DH) convention
has remained unchanged and is still employed today to create forward geometric models.
The DH convention uses four parameters, namely the link length, the link twist, the link
offset, and the joint angle. They describe the transformation between two adjacent links in
a robotic arm. This convention provides a systematic approach for modeling the kinematics
of a robot and simplifies the process of developing control algorithms for the robot. Since
its introduction, numerous researchers have worked on improving the DH convention and
developing more accurate and efficient forward kinematic models for industrial robots.
One recent example is the work of Cerrillo, D. et al. [3], who proposed a modified DH
convention that incorporates additional parameters to account for joint misalignments
and other imperfections in robot design. Their model demonstrated improved accuracy
over traditional DH models [3]. Another recent study by Maaroof et al. [4] presented an
optimization-based approach for determining the optimal DH parameters for a given robot
configuration. The authors demonstrated that their approach resulted in more accurate
forward kinematic models than traditional methods [4]. Several other researchers have also
proposed modifications and extensions to the DH convention. For example, Zuha et al. [5]
presented a modified DH convention to be used in modeling the kinematics of robots with
redundant degrees of freedom. Their approach extends the DH convention by incorporating
additional parameters to account for the redundant joints [5]. Similarly, Huczala et al. [6]
proposed an improved DH convention that incorporates the concept of screw theory. Their
model uses the screw parameters to describe the transformation between two adjacent
links in a robot arm, providing a more efficient and accurate representation than traditional
DH models [6]. Overall, the use of the DH convention for modeling the kinematics of
industrial robots remains an actual and effective approach. However, ongoing research is
expected to redefine and improve the convention to enhance the accuracy and efficiency
of forward kinematic modeling. One area of current research is the development of more
accurate models for non-standard robot geometries, such as those with flexible links or
complex joint structures. The present paper covers a literature gap focusing on the concept
that the robot’s elements are deformable, as in real applications. To understand how to
consider these deformations, first of all, the general method of calculating the relative
position between two segments of a robot with serial architecture is presented, and then the
DH method is presented in detail with all the advantages, drawbacks, and shortcomings.

2.1. General Method

To utilize robots in tasks such as part handling, machining applications, or precision
assembly, it is imperative to determine the position of the mechanical hand and the tool
that the robot will employ. This position is identified as the characteristic point of the
robot, and its location is calculated through a mathematical computation based on two sets
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of information—the segment length of the robot and the position of its joints, including
the angles of inclination or rotation. Thus, from a mathematical point of view, any other
aspects related to the final form of the elements may be omitted. In this way, some aspects
are reduced to a minimum, and a simplified geometric representation is defined, which is
called the structural scheme. Figure 1a,b depicts the real and structural representations of a
robot [7], with the latter approximating the robot’s segments as line segments of equivalent
length (Figure 1a). The joint positions and rotation angles are indicated by placing Cartesian
coordinate systems at those points, and the robot’s characteristic point is located at the end
of its final segment.
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To calculate the position of the characteristic point, from a mathematical point of
view, other information about the structure of the robot is not relevant. The mathematical
method to determine the position involves the description of each element in the kinematic
chain, starting from the base (from the global coordinate system), and then, row by row, the
position and orientation of each joint and each individual element is determined until the
“top” of the robot is reached. The mathematical description of the locations of the robot’s
joints is achieved by employing homogeneous coordinate transformations and involves the
use of matrices that have two main roles: to describe the translations and to describe the
rotations. The matrices that define the translations along the X, Y, and Z axes have the form:

1 0 0 tx
0 1 0 0
0 0 1 0
0 0 0 1

 (1)
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
1 0 0 0
0 1 0 ty
0 0 1 0
0 0 0 1

 (2)


1 0 0 0
0 1 0 0
0 0 1 tz
0 0 0 1

 (3)

where tx, ty, and tz represent the distances between the joints of two successive segments.
The matrices that describe the rotations around the X, Y, and Z axes have the form:

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 (4)


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

 (5)


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 (6)

The segments of the robot can be moved relative to each other, but also rotated around
the joint that connects them. From a mathematical point of view, the geometric description
of the position is obtained by composing (multiplying) the matrices of both translation and
rotation, obtaining a transformation matrix (usually denoted by T) of the form:

T =

(
R p
ηT σ

)
(7)

This transformation matrix is composed of four sub-matrices as follows: R = funda-
mental rotational matrix (3 × 3); p = translation vector (3 × 1); η = perspective vector
(1 × 3) (in kinematics it is the null vector); σ = scale factor (usually = 1). Starting from the
base, row by row, for the position of each joint/segment, these transformation matrices
are successively multiplied until the final position of the characteristic point is obtained
as follows:

Tbase− end = T01 × T 12 × T23 × T... × T... =


R11 R12 R13 Px
R21 R22 R23 Py
R31 R32 R33 Pz

0 0 0 1

 (8)

2.2. Denavit–Hartenberg Convention

For the kinematic analysis (forward model) of robot mechanisms, the compound
homogeneous operators obtained from the product of simple homogeneous operators are
important: translation × rotation, rotation × translation, and rotation × rotation. The order
in which the operators are applied is essential because their product is not commutative. It
should be noted that in a compound operator resulting from the product of several simple
ones, each operator acts on the coordinate system obtained after applying the previous
operator. A variant (and the most common) of using block matrices is the one that uses
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the Denavit–Hartenberg notation, which is described in detail in [8]. In brief, the DH
and DHM (Denavit–Hartenberg modified) conventions presuppose compliance with the
following methodologies.

2.2.1. Classic DH

The notation of parameters and placement of axis systems in order to geometrically
describe the position of two successive elements in concordance with DH convention [3] of
a robot is described in Figure 2.
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Figure 2. DH convention for axis placement and parameter notation.

The procedure following the DH convention is described by the following steps:

1. draw the axes of the joints;
2. draw the common perpendiculars between the neighboring axes and their points of

intersection with the axes of the respective joints;
3. for system {i}, the origin of the system is at the point where the common perpendicular

to the axes of the “i” and “i + 1” joints intersects the axis of the “i” joint;
4. the axis Zi is oriented along the axis of the joint “i”;
5. the Xi axis is oriented along the common normal to the axes of the “i” and “i + 1”

joints, or if the axes intersect, the Xi axis is normal to the plane of the Zi and Zi+1 axes;
6. the Yi axis completes the reference system according to the right hand rule;
7. the reference system of the fixed element is denoted by {0}; this system coincides with

system {1} when the variable of the first joint is zero;
8. for the {n} system, the location of the origin On and the direction of the Xn axis are

free, their choice being made so that several parameters of the element are null;
9. a table containing the parameters of the elements is created (Table 1).
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Table 1. Example of DH parameters.

Joint Nr. αi ai di θi/qi

i αi−1 ai−1 di θi/qi

Where: ai is the distance from Zi to Zi+1 measured along Xi; αi is the angle between Zi and Zi+1 measured
around Xi; di is the distance between the axes Xi−1 and Xi measured along Zi; θi is the angle between Xi−1 and Xi
measured around Zi.

If a joint is both translated and rotated compared to the previous one (so there is a
screw displacement), it is common to separate translation and rotation as follows [9]:

[Zi] = TransZi (di)·RotZi (θi) (9)

[Xi] = TransXi (ai,i+1)·RotXi (ai,i+1) (10)

Using these two notations, each link is described according to DH by a coordinate
transformation from the concurrent coordinate to the previous coordinate:

Ti
i−1 = [Zi−1]· [Xi] (11)

resulting in:

Ti
i−1 =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosθi di
0 0 0 1

 (12)

2.2.2. Modified DH (DHM)

The notation of parameters and placement of axis systems in order to geometrically
describe the position of two successive elements in concordance with the modified DH
convention [10] of the robot is described in Figure 3:
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Unlike the standard method, this time, the Oi−1 coordinate system is attached to the
i − 1 axis and Oi is attached to the i axis. The order of applying the operations is as follows:

1. a rotation around the Zi−1 axis of angle θi;
2. a translation along the Zi−1 axis with the distance di;
3. a translation along the axis Xi−1 rotated and becoming Xi with distance ai;
4. a rotation around the axis Xi with the angle αi.

Each transformation is represented by a matrix:

Ti
i−1 = RotXi−1 (αi−1)× TransXi−1(ai)× RotZi (θi)× TransZi (di) (13)

resulting in:

Ti
i−1 =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosθi di
0 0 0 1

 (14)

2.3. Advantages, Disadvantages, and Shortcomings of Using the DH Solutions

The ambiguities involved in the application of the DH solution and the advantages
of the application of the new approach have been discussed in previous papers [11–13] in
which the methodology for developing simpler geometric models was also presented in
order to verify the compatibility of DH together with model validation for several robot
models with the help of CAD (CATIA) and specific offline programming and simulation
software applications (ABB Robot Studio). For example, the DH convention may lead to
the realization of different geometric models for the same robot that are still equivalent to a
certain extent, but that do not exactly correspond to the real geometric parameters of the
robot. One of the most visible aspects is presented in Figure 4 (Table 2), dimensions in mm,
and also in Figures 5 and 6 (Tables 3 and 4), where, for the same type of robot (model IRB
140), different parametrizations are observed in different papers [14–16].
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Table 2. Corresponding DH parameters for Figure 4 [14].

Joint No. αi ai di θi/qi

1 −π/2 70 352 q1
2 0◦ 360 0 q2 − π/2
3 −π/2 0 0 q3
4 π/2 0 380 q4
5 −π/2 0 0 q5
6 0◦ 0 65 q6 + π/2
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Table 3. Corresponding DH parameters for Figure 5 [15].

Joint No. αi ai di θi/qi

1 −90◦ a1 d1 0◦

2 0◦ a2 0 −90◦

3 90◦ 0 0 180◦

4 −90◦ 0 d4 0◦

5 90◦ 0 0 0◦

6 90◦ 0 d6 −90◦
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Table 4. Corresponding DH parameters for Figure 6 [16].

Joint No. αi ai di θi/qi

1 π/2 L0 L1 θ1 + π/2
2 0◦ L2 0 θ2 + π/2
3 π/2 0 0 θ3
4 −π/2 0 L3+4 θ4
5 π/2 0 0 θ5
6 0◦ 0 L5 θ6

As can be observed, in practice, when it comes to the geometric and kinematic model-
ing of robots, simplifications of the theoretical model (of the calculation scheme) are very
often used. These simplifications can be successfully represented as theoretical models only
if the robot is removed from the context of its real daily life operation cycle. Some of the
simplifications that are applied in geometric modeling are creating the structural diagrams
as if all the robot’s joints are coplanar in a vertical plane, the dimensions of the joints are
ignored, the robot’s elements are considered to be rigid, and in the particular case of robots
with closed kinematic chain architecture, passive joints and mechanical synchronization
elements are omitted from the geometric model and are usually treated as mechanisms with
only four degrees of freedom. Most of them (such as robots used in palletizing applications)
have five degrees of freedom although they actually have only four numerically controlled
(motorized) axes. These simplifications lead to aspects that, from a strictly geometric and
kinematic point of view (only theoretically), have no influence. On the other hand, if it
is desired that the geometric should include additional error parameters and for certain
error compensation (such as the errors due to the thermal influence on the robot), then a
simplified model no longer corresponds to reality and is no longer sufficient. As a result of
the research carried out in [17], it was shown that adding error parameters to the kinematic
model leads to a mathematical model that fits the robot better than the nominal kinematic
model. In the research carried out on structural and functional optimization in order to
increase the performance of an industrial robot (IR), two cases were considered for the
development of the analytical calculation model:

• model of the robot unaffected by errors but including real constructive and functional
parameters, in addition to the conventional DH parameters;

• model of the robot affected by errors, which includes the modeling of the constructive
and functional parameters, the DH parameters, and some error categories that are
considered while evaluationg the volumetric error.

Such an extended model was also studied in [18], where, based on DH modeling, a
29-parameter model was used to calibrate a robot (ABB IRB140) to improve the positioning
accuracy by approximately three times. In this context, the purpose of this paper is to
present the new modeling approach through which a forward geometric model must be
developed following only two simple rules and eliminating most of the ambiguities related
to the use of DH. This method may be applied to create forward geometric models for
any robot type with serial architecture. Moreover, it is a model whose parameterization
facilitates the extension of the direct geometric model (by simply adding some translation
or rotation parameters to those of the nominal model) in order to include the entire set
of constructive and functional parameters of the real robot and also include parameters
used later to compensate for certain errors (such as thermal errors). For example, such a
model, which is not complete but takes into account as many real constructive parameters
as possible (the real position of the active joints including the real offsets, the position of
the passive joints, and the real dimensions of the structural elements of the robot), for an
articulated arm-type robot with a closed kinematic chain was presented in [19], with the
scheme according to Figure 7.
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To obtain the geometric model, the only two rules to be followed are those presented
in papers [11,12]:

• first, apply the translation matrices from the “i” coordinate system to the “i + 1” system
without changing the orientation of the initial coordinate system;

• the rotation matrix is applied for the “i + 1” system, which will rotate around one of
its own axes (this depends on the rotation axis of that joint).

The use of this method is more efficient to create a forward extended geometric model
because, compared to DH, it leads to a more intuitive structural diagram by maintaining
the same orientation of the coordinate systems attached to the joints on the entire structure
of the robot and a simpler form of the table of parameters (one rotation parameter and three
translation parameters for each joint). Next, if deformations of the robot or positioning
errors are measured, these can be quantified as displacements along and around the X, Y,
and Z axes. Thus, maintaining the same orientation of the axis systems, parameters for
measured errors can be easily integrated into the forward model. Measuring instruments
include laser interferometers, which are able to perform measurements referencing a global
coordinate system. The next section depicts how error compensation parameters could be
added to the geometric model.

3. Forward Geometric Model Including Supplementary Parameters

In recent years, the use of industrial robots has increased dramatically in various
applications such as assembly, machining, and laser cutting. New trends in advanced
applications of industrial robots have been reviewed by Andrius D. et al. in [20]. However,
these applications require high precision, and any positioning deviation of the robot can
lead to defects in the manipulated parts or the processes into which the robot is integrated.
Therefore, it is crucial to improve the positioning accuracy of industrial robots. One
common method is to calibrate robots. Despite the benefits of industrial robot calibration,
there are also some limitations and downsides to consider [21]. One major limitation is that
calibration is a time-consuming and complex process that requires specialized knowledge
and equipment (and is usually very expensive too). Additionally, the calibrated parameters
may change over time due to wear and tear, which means that periodic recalibration may
be necessary. Finally, calibration only addresses geometric errors and does not account for
other sources of error, such as thermally induced errors. The solution for this problem is a
compensation method, implying a new modeling approach. The purpose of this section is
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to present this approach, which involves developing a forward geometric model following
two simple rules that can be applied to any robot type with serial architecture. This new
model allows for easy extension to include all real constructive and functional parameters
of a robot, including parameters used to compensate for errors such as thermal errors.
The next section will describe how error compensation parameters can be added to the
geometric model. However, first, the reason why such a model is necessary must be
understood, and for this, the following case study is exemplified.

This case study is a common example in which the position of several successive
joints from a simple robot structure must be geometrically described. Figure 8a,b describes
the application of transformation matrices from an axis system attached to a base to two
successive joints.
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The matrix associated with the coordinate system attached to the base is T0:

T0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (15)

The transformation from the coordinate system attached to the base to the coordinate
system of the first rotational joint around the Z axis is T01, which is equal to T0 × translation
along Z axis × rotation around Z axis.

T01 = T0 ×


1 0 0 0
0 1 0 0
0 0 1 pz 01
0 0 0 1

×


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 pz 01
0 0 0 1

 (16)

The transformation from the first joint to the second joint (with rotation around X axis)
is presented in Figure 9.

The associated matrix T12 is now equal to T1 × translation along X and Z× rotation
around X.

T12 = T01 ×


1 0 0 px12
0 1 0 0
0 0 1 pz12
0 0 0 1

×


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 =


1 0 0 px12
0 cosθ −sinθ 0
0 sinθ cosθ pz12
0 0 0 1

 (17)
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Figure 9. Transformation from first joint to second joint.

In this case, the position and orientation of the last axis system (characteristic point of
the robot at the end flange) is calculated by successively multiplying the transformation
matrices: Tend = T01 × T12 × . . . × Tn−1n. Thus, Table 5 contains the parameters.

Table 5. Parameters for each joint and rotation angle (without error parameters).

Joint No. (Axis No.) Rotation Angle Translations

Along X Along Y Along Z

0 (base) θ0 0 0 0
1 θ1 0 0 pz01
2 θ2 px12 0 pz12

Generally, for a system with a higher number of joints, a row corresponding to each
new joint has to be added to this table. The procedure is simple to understand and follow,
and the resulting table with parameters is clear and easy to fill out. The development of an
extended geometric model that is useful for compensating certain errors, the consistency
of the models obtained, and the clear form of the table with parameters facilitate the
possibility of quickly incorporating external factors/parameters in order to apply the
corrections. For example, after completing a study to determine the elastic behavior of
the structural elements and the identification of the quantitative yield values, the values
could be easily integrated into the geometric model by adding additional terms in the table
such as ∆X, ∆Y, ∆Z, and ∆θ1, ∆θ2, etc. The values of these terms are influenced by several
factors such as the loading of the robot, accelerations, inertial loads, etc. In the case of
thermal displacements, these terms must be correlated with the effective temperature of
the robot (considering the values of the thermal expansions and torsions of the elements
being proportional and directly influenced by the temperature) or the operating time if
the heating curves and thermal stabilization periods are known for a specific robot and
working conditions. If necessary, it is possible for a more complex model to be developed in
which multiple error factors (from different sources) can be considered simultaneously. The
key point is that after the development of the geometric model, the identification of some
error parameters and their quantification according to the sources that generate them must
be carried out. This can be achieved in multiple ways—from direct measurements and the
identification of some functions and corresponding mathematical relations to numerical
methods and finite element analysis.
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Taking all these into account, it can be considered that the previous theoretical model
is deformable as the real robot is during operation, due to the heating of its components,
joints, motors, fluids, electrical circuits, etc. The representation of the structural kinematic
scheme in a single plane is no longer sufficient. In Figure 10a,b, such a model is presented
in a simplified manner (initial, at start-up) and deformed (later, after suffering some
deformations due to heating during operation).
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Figure 10. (a) Initial structural diagram (cold start). (b) Structural diagram after deformation.

Even the real deformations are not of the same order of magnitude as the required
positioning accuracy; due to the serial structure of the robot, even small elongations
or torsions of the elements will cause significant deviations of the characteristic point
because errors chain and accumulate. For this reason, for each of the changes in the
position or orientation of the structural elements, the robot operator must include additional
parameters in the geometric model. Considering that the deformations can twist a structure
in 3D, each joint position local coordinate system must be characterized by three additional
matrices of shifting the orientation that may appear (additional rotation around the X, Y,
and Z axes) but also by three additional matrices of deviation from the initial position
(three additional translations along the X, Y, and Z axes). Table 6 presents the parameters
encompassing these additional factors.
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Table 6. Parameters of angular deviations and translations.

Joint No. (Axis No.) Angular Deviations Rotation Angle Translations

Along X Along Y Along Z

0 (base) Dθ0x, Dθ0y, Dθ0z θ0 0 + D X0 0 + D Y0 0 + D Z0
1 Dθ1x, Dθ1y, Dθ1z θ1 0 + D X1 0 + D Y1 pz01 + D Z1
2 Dθ2x, Dθ2y, Dθ2z θ2 p × 12 + D X2 0 + D Y2 pz12 + D Z2

Returning to the matrix multiplication rule, and each time before moving to the next
joint, the robot operator must first update the current position to take into account the
error caused by the deformation. This assumes that first, the matrix describing the initial
position must be multiplied in a row by the three translation matrices that represent the
displacement of the joint from the initial position, followed by multiplication by the three
additional rotation matrices that represent the angular deviation. The obtained result has
to be multiplied by the translation matrix (which represents the length of the segment that
is connected to the next joint) in the direction of the axis corrected in the previous step. In a
mathematical form, this is described as follows:

(1) Correction of linear displacements (lc = linear correction)

T01c = T0 ×


1 0 0 ∆X0
0 1 0 0
0 0 1 0
0 0 0 1

×


1 0 0 0
0 1 0 ∆Y0
0 0 1 0
0 0 0 1

×


1 0 0 0
0 1 0 0
0 0 1 ∆Z0
0 0 0 1

 =


1 0 0 ∆X0
0 1 0 ∆Y0
0 0 1 ∆Z0
0 0 0 1

 (18)

(2) Correction of angular deviations (ac = angular correction)

T0 ac = T01c ×


1 0 0 0
0 cos∆θ0x −sin∆θ0x 0
0 sin∆θ0x cos∆θ0x 0
0 0 0 1

×


cos∆θ0y 0 sin∆θ0y 0

0 1 0 0
−sin∆θ0y 0 cos∆θ0y 0

0 0 0 1

×


cos∆θ0z −sin∆θ0z 0 0
sin∆θ0z cos∆θ0z 0 0

0 0 1 0
0 0 0 1

 (19)

(3) Transformation of the segment length from the base to first joint (M = modified, with all
corrections included)

T01M = T0 ac ×


1 0 0 0
0 1 0 0
0 0 1 pz 01
0 0 0 1

 (20)

To go from the first joint to the second joint, the previous algorithm must be repeated,
first applying the linear corrections for the location of joint 1, then applying the angular
corrections and multiplying in the last phase with the transformation matrices related to
the lengths of the segments connecting joint 1 to joint 2. The previous example represents
a model with bilateral symmetry, that is, in which the structural scheme is located right
in the vertical plane of symmetry. In reality, even robots that look symmetrical from the
outside have inside components that are different on one side compared to the other, and
this different disposition of the components influences the way in which heat is transmitted
and in which the structure is distorted. All the geometrical parameters that describe a robot
model are three linear dimensions that describe the position of a joint compared to the
previous one and the angle at which the respective joint is rotated. If we consider that the
structure is also deformable, then three additional parameters are added that represent the
additional linear displacements caused by the deformations, along with three more angular
parameters that represent the orientation deviations (not only around the joint axis but in
relation to all axes because the distortions could occur in 3D). Therefore, knowing all the
parameters, a general table of parameters can be created that is suitable for calculating the
transformations from one joint to another for any type of robot with serial architecture. The
universal form of the parameters table is presented in Table 7.
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Table 7. Universal form of parameters table.

Joint No. (Axis No.) Angular Deviations Rotation Angle Translations

Along X Along Y Along Z

0 (base) Dθ0x, Dθ0y, Dθ0z θ0 px00 + D X0 py00 + D Y0 py00 + D Z0
1 Dθ1x, Dθ1y, Dθ1z θ1 px01 + D X1 py01 + D Y1 pz01 + D Z1
2 Dθ2x, Dθ2y, Dθ2z θ2 px12 + D X2 py12 + D Y2 pz12 + D Z2

. . . . . . . . . . . . . . . . . .
6 Dθ6x, Dθ6y, Dθ6z θ6 px56 + D X6 py56 + D Y6 pz56 + D Z6

Now, applying the same rules as those presented previously and using
Formulas (18) and (19), we obtain a universal form of the correction matrix. To simplify
the matrix writing, we will first note the following terms:

A = cosDθxi; B = sinDθxi; C = cosDθyi; D = sinDθyi; E = cosDθzi; F = sinDθzi

The correction matrix (TC) becomes:
EC −CF D −CFpy + ECpx + Dpz + ∆X

AF + EBD EA − BDF −BC px(AF + EBD) + py(EA − BDF)− BCpz + ∆Y
BF − EAD ADF + EB AC px(BF − EAD) + py(ADF + EB) + ACpz + ∆Z

0 0 0 1

 (21)

The process of passing from one joint to another to obtain the final position of the
deformed robot now becomes:

Tend = (TC0 × R0) × (TC1 × R1) × . . . (TCn × Rn) (22)

where we recall that R represents the rotation matrices around the axis of the respective
joint (Formulas (4)–(6) presented in Section 2.1). Considering the additional parameters
and writing the mathematical model in this way is more difficult than creating a classic
DH model, but this must be carried out only once, at the implementation into the software
algorithm. These additional steps seem difficult to achieve, but in the actual applications in
which industrial robots are increasingly involved (such as machining, welding, or precision
assembly) reducing errors as much as possible is extremely important. By comparison,
the transformation matrices within a geometric conventional DH model contain four
parameters for each joint, three of which are constant and one variable (only the angle of
the joint is variable). The general model proposed in this paper involves 10 parameters,
of which only 3 are constant and 7 are variable. A comparison of computing efficiency
between the classical DH model and the proposed model has not been performed for two
reasons: the software limitation of a robot controller does not allow the implementation
of such an extended model, and different machines will provide different and irrelevant
results in computing time caused by hardware capabilities. Even in CoppeliaSIM, there
is no classic DH model implemented. Instead, each joint of serial structures is, by default,
characterized by seven parameters. Six of these parameters are constants (joint position and
orientation) and one is variable (joint rotation angle). A comparison was made regarding
the simulation time using the default model from CoppeliaSIM and the model in which the
deformations are applied continuously. In both cases, a robot operation program of 200 min
was simulated, in which the robot moved continuously, reaching a total of 10,050 target
points. The complete program ended after 3 min and 40 s for the unreformable robot case
and only 2 s more in the case of the deformable robot whose deformation variables were
constantly updated. At this point, it is desired that the software compensation solution be
an offline one. From this point of view, the time of simulation and obtaining the results is
not relevant. Moreover, in this phase, the initial program of the robot must be manually
updated with the new angles on the corrected joints. Aspects to be improved will be
discussed in more detail in the conclusions section. To emphasize the importance and
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usefulness of the new modified forward model, the exemplification of the use of such an
extended model is presented in the next section.

4. Case Study

The elements presented in the previous sections, related to the development of a
directly extended geometric model for robots with serial architecture, are part of a series of
research/papers aiming to obtain a thermal error compensation solution for an industrial
robot that suffers deformations during operation due to its heating. This extended model
fits the following procedure:

1. experimental evaluation of the thermal behavior of a robot during operation;
2. experimental determination of induced thermal deformations and positioning errors;
3. creating an extended geometric model that includes the necessary parameters that

also characterize the previously measured errors;
4. implementation of the geometric defect model from point 3 in a software algorithm

for inverse kinematics computation based on this deformed geometric model;
5. using the results calculated through inverse kinematics based on the deformed model

to apply angle corrections in the robot’s program so that, even when deformed, it will
reach the programmed points with the highest possible accuracy.

The usefulness is proven by the connection with the previous research for a real case of
an industrial robot of the articulated arm type, and the results must be presented as a whole
methodology, which is reached by applying the entire procedure with the previously listed
steps. Through thermal recording techniques using an infrared camera and monitoring
using sensors located on the robot’s structure, the thermal behavior of an industrial robot
model IRB 140 (in a certain cycle and working environment) was determined in [22]. Based
on these results, in [23], a corroboration between the results of a measurement procedure
using a laser tracker and finite element analysis (FEA) was carried out in order to determine
and locate the deformations and displacements of the robot elements on the whole structure.
At this point, only static deformations were considered, but the model may be extended
by determining the deformations using a transient FEA analysis [24]. Next, a forward
geometric model (as presented in this paper) could be constructed, including parameters for
identified errors. How these errors behave is strongly related to the warm-up of the robot,
so in [25], a warm-up prediction analysis was conducted for the robot (using regression
analysis). The measurements from [22] showed that the robot heats up continuously
for a period of approximately 180 min until it reaches thermal stabilization. During the
approximately 3 h of work, the heating curves of the segments are not exactly linear
but follow a certain curve (not very steep). In [26], the coefficients of the heating curves
were determined through regression analysis, and the most accurate results regarding
the anticipation of heating curves were obtained through cubic regression. However, the
linear regression was not very biased, the correlation coefficient being a high one (0.87).
For this reason, in this paper, it was considered that the deformations occur linearly and
proportionally to the working time. Therefore, the maximum deformations identified on
each segment of the robot were applied increasing linearly in each minute of the work
cycle. The final step of implementing the forward geometric model in a software algorithm
for the computation of the inverse kinematics (based on the deformed model) in order to
obtain corrected joint angle values to compensate for the thermal errors was presented
in [27]. The structural diagram used for constructing the forward geometric model already
included real constructive parameters (Figure 11 [19]).
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Figure 11. Structural diagram used for construction of the robot’s geometric model [19].

Based on constructive parameters and error parameters experimentally determined,
the following tables with parameters were conceived.

Based on the structural diagram and values from the tables of parameters (Tables 8 and 9),
transformation matrices were multiplied according to methodology presented in Section 2.
Then, the virtual model (corresponding to the deformed robot) was constructed in Cop-
peliaSIM (computer-aided design and programming software application). CoppeliaSIM
is a hybrid application with CAD capabilities and scripting programming in different
languages. A deformed robot virtual model could also be constructed in any other CAD
application (such as CATIA) and then controlled via API programming specific to the CAD
application, as in [28]. By changing the position and orientation of the robot joints on the
virtual model, the entire structure is distorted, as seen in Figure 12.

Table 8. Angular parameters and angular deviation parameters [19].

Joint No. (Axis No.) Angular Deviations [◦] Rotation Angle

Dθx Dθy Dθz

0 (base) 0 0 0 θ0
1 −8.44 × 10−5 −0.011 −0.0137 θ1
2 0.0108 0 0 θ2
3 6.665 × 10−6 0.0081 0.0098 θ3
4 0 0 0 θ4
5 0 0 0 θ5
6 0 0 0 θ6

Table 9. Translation parameters [19].

Ref. Axis No. Angular Deviations [mm]

X DX Y DY Z DZ

1 0 −0.02006 0 0.000154 104.5 −0.05297
2 70 0 65 0 247.5 0
3 0 0.10086 −123 0.114855 360 −0.00142
4 238.5 −0.00440 58 0.0241 0 −0.0149
5 141.5 0 0 0 0 0
6 39.5 0 0 0 0 0
7 −0.0166 −0.01662 0 0 0 0
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Figure 12. Virtual model of the robot during deformation (deformations are magnified up to
1000 times).

After building the deformed virtual model, the script for calculating the inverse
kinematics was launched into execution. The main functions of the script are presented in
Appendix A, which includes a link to the complete station (file) that can be downloaded and
loaded in CoppeliaSIM. The software algorithm runs according to the diagram presented
in Figure 13.
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The robot’s targets must be extracted from a dedicated offline programming and
simulation program (in this case, RoboDK) or they can be extracted from a CAD model
(sketches, trajectories) according to the methodology presented in [26]. After completing
the entire procedure, the main result obtained in the previous tests and published in [25]
showed that the deformed model reaches the programmed targets with an improved ac-
curacy ranging from 24% to 93% (depending on the simulation time and general state of
the robot). In the case that the robot has reached thermal stabilization, the positioning
accuracy is about 0.007 mm (by compensating thermally induced errors with a measured
magnitude of 0.097 mm). The maximum angular deviation obtained after compensation
was 0.02◦. It was observed that the thermal behavior of industrial robots is particular to
each individual robot and depends on many factors, such as load, working speed, working
time, and conditions. For the robot in the laboratory, the entire thermal procedure based on
the directly proposed geometric model led to the mentioned results for a particular case of
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working conditions. It should be mentioned that the determined displacements and the
entire compensation procedure are based on experimental measurements and procedures
presented in previous works that were carried out in relatively cold environmental con-
ditions (ambient temperature of 5–7 degrees). Checking the state of the robot, calibrating
it, and measuring the positioning accuracy using a laser tracker system was carried out
and presented in [19]. The procedure for recording the heating behavior of the robot, using
contact sensors placed on the robot as well as recordings with an infrared camera, was
carried out in [22]. Based on the recordings made in [22], FEA simulations and analyses
were performed to determine the deformations on the entire structure of the robot and are
presented in [23]. In the work [24], studies were carried out to predict the temperatures
of the robot during a known work cycle. Through linear regression, the coefficients of the
approximation functions of the heating curves were determined. The first attempt to apply
the deformations on the virtual model of the robot was presented in paper [25]. In this
study, the geometric model was altered with very small values because the robot suffered
small deformations due to the cold environment and working at a maximum speed of 60%
of the robot’s working speed and without load (because the reflector necessary for laser
tracking was mounted on the robot’s flange). Thus, the maximum temperature reached
by the robot in certain areas was only 32 degrees Celsius. Moreover, in this study, only
45 positions were analyzed (without changing the configuration of the robot). The 45 target
points were the pre-programmed equally spaced positions from the calibration procedure.
Although the software algorithm worked, the results provided were not exactly relevant
for two reasons:

1. There could be a chance that the few target points on which the test was carried out
were particular positions that do not involve problems for determining the position of
the robot.

2. The deformations applied were very small and for some elements, even zero. In this
case, there is also the possibility of a particular case in which the deformations of
some elements cancel others out or that the software algorithm works only for these
particular values.

This paper aims to prove the usefulness of the implementation of the extended ge-
ometric model in a software compensation solution for thermal errors that has general
applicability and does not work only in certain particular cases. For this reason, the follow-
ing case study was analyzed, in which the robot suffers exaggerated deformations. Each
joint of the robot is 1 mm off from its initial position along each axis direction and rotated
by 1 degree around each axis from its initial orientation. Moreover, this time, the Cartesian
coordinates of the target points were randomly generated. The parameters are presented in
Tables 10 and 11.

Table 10. Angular parameters and angular deviation parameters—case study.

Joint No. (Axis No.) Angular Deviations [◦] Rotation Angle

Dθx Dθy Dθz

0 (base) 1 1 1 θ0
1 1 1 1 θ1
2 1 1 1 θ2
3 1 1 1 θ3
4 1 1 1 θ4
5 1 1 1 θ5
6 1 1 1 θ6
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Table 11. Translation parameters—case study.

Ref. Axis No. Angular Deviations [mm]

X DX Y DY Z DZ

1 0 1 0 1 104.5 1
2 70 1 65 1 247.5 1
3 0 1 −123 1 360 1
4 238.5 1 58 1 0 1
5 141.5 1 0 1 0 1
6 39.5 1 0 1 0 1
7 −0.0166 1 0 1 0 1

A robot program was created with 50 randomly generated targets placed in the front of
the robot. Two working cases were then considered. In the first case, the displacements of
the robot joints were statically applied. The script was then executed based on the already
deformed virtual model. The programmed targets are presented in Table 12.

Table 12. Programmed targets (static case).

Programmed Coordinates Programed TCP
Orientation

Programmed
Coordinates

Programed TCP
Orientation

X Y Z RX RY RZ X Y Z RX RY RZ

P1 641 21 473 0 90 0 P26 695 288 364 0 90 0
P2 536 235 281 0 90 0 P27 483 298 550 0 90 0
P3 656 242 373 0 90 0 P28 417 184 294 0 90 0
P4 510 276 526 0 90 0 P29 700 36 537 0 90 0
P5 459 −118 333 0 90 0 P30 452 103 282 0 90 0
P6 610 99 466 0 90 0 P31 580 25 303 0 90 0
P7 465 −55 492 0 90 0 P32 547 −113 431 0 90 0
P8 436 237 298 0 90 0 P33 544 −83 447 0 90 0
P9 445 −117 511 0 90 0 P34 493 187 285 0 90 0
P10 547 29 431 0 90 0 P35 644 53 525 0 90 0
P11 415 171 268 0 90 0 P36 592 −10 393 0 90 0
P12 490 300 336 0 90 0 P37 626 143 336 0 90 0
P13 619 7 521 0 90 0 P38 434 95 515 0 90 0
P14 563 296 267 0 90 0 P39 635 −10 469 0 90 0
P15 571 270 520 0 90 0 P40 547 245 397 0 90 0
P16 414 101 432 0 90 0 P41 514 234 468 0 90 0
P17 431 50 452 0 90 0 P42 622 −144 277 0 90 0
P18 462 −94 399 0 90 0 P43 600 −103 393 0 90 0
P19 692 76 390 0 90 0 P44 462 109 354 0 90 0
P20 536 248 280 0 90 0 P45 439 103 506 0 90 0
P21 619 18 314 0 90 0 P46 414 136 536 0 90 0
P22 527 287 353 0 90 0 P47 464 −149 491 0 90 0
P23 647 222 381 0 90 0 P48 628 276 275 0 90 0
P24 405 244 479 0 90 0 P49 522 −143 294 0 90 0
P25 415 192 396 0 90 0 P50 537 −37 325 0 90 0

All the target points were programmed keeping the same orientation of the TCP
to not only easily check if, following the execution of the script from CoppeliaSIM, the
Cartesian coordinates are respected but also to check the orientation of the robot flange.
After executing the script, solutions were determined for all 50 target points. The minimum
and maximum values of the orientation deviation are presented in Table 13. The coordinates
that the deformed robot reached are presented in Table 14.
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Table 13. Deviation from programmed orientation (static case).

Orientation Deviation [◦]

∆θX ∆θY ∆θZ

MIN 0 0 −0.002
MAX 0 0.02 0.005

Table 14. CoppeliaSIM targets (static case).

CoppeliaSIM
Coordinates

Programmed
Coordinates

X Y Z X Y Z

P1 640.998 20.999 472.999 P26 694.996 287.991 363.999
P2 535.999 235.000 281.000 P27 483.003 297.998 550.004
P3 656.000 241.991 373.001 P28 416.992 184.010 294.000
P4 510.003 275.996 526.004 P29 700.003 35.999 537.002
P5 459.000 −118.003 332.999 P30 451.998 103.000 281.999
P6 610.001 99.002 466.001 P31 579.996 24.994 302.997
P7 464.997 −55.004 491.997 P32 547.001 −113.001 431.001
P8 435.999 237.000 298.000 P33 544.002 −83.001 447.001
P9 445.001 −117.001 511.002 P34 492.999 187.001 285.000

P10 547.005 29.010 431.004 P35 644.002 53.000 525.001
P11 414.999 171.000 268.000 P36 591.998 −9.990 392.999
P12 490.003 299.996 336.001 P37 626.003 143.005 336.002
P13 619.002 6.999 521.001 P38 434.000 95.002 515.001
P14 562.999 296.000 267.000 P39 635.000 −10.002 469.000
P15 571.001 270.001 520.000 P40 546.999 245.001 396.999
P16 413.997 101.006 431.998 P41 514.001 233.996 468.002
P17 430.998 49.996 451.998 P42 622.000 −144.003 276.999
P18 461.994 −93.997 398.995 P43 600.002 −103.008 393.001
P19 692.005 75.999 390.002 P44 462.005 109.008 354.005
P20 536.002 248.010 280.002 P45 439.001 103.001 506.001
P21 618.993 17.993 313.997 P46 414.002 135.998 536.003
P22 527.005 287.004 353.003 P47 464.000 −149.004 491.000
P23 646.997 221.993 380.999 P48 627.999 276.001 275.000
P24 405.003 244.002 479.003 P49 521.992 −143.001 293.996
P25 414.997 192.003 395.998 P50 537.004 −37.001 325.002

The minimum and maximum values of the position deviation are presented in Table 15.

Table 15. Position deviation (static case).

Position Deviation [mm]

∆X ∆Y ∆X

MIN −0.0053 −0.0099 −0.0047
MAX 0.0084 0.00929 0.005

The joint angles necessary to reach the programmed points calculated with IK in
CoppeliaSIM based on the deformed model (with values of the errors shown previously)
are presented in Table 16.
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Table 16. Robot joint angles for deformed robot (compensated errors).

Joint Angles Computed for Each Target

J1 J2 J3 J4 J5 J6

P1 2.810995 26.28615 2.378532 −0.15608 −31.019 −6.68297
P2 26.62761 43.21751 14.09162 25.74425 −63.459 −18.008
P3 22.93873 44.08226 −8.68216 29.66404 −43.2045 −29.2832
P4 33.23419 15.92531 9.233602 49.5101 −42.2511 −49.3862
P5 −17.4076 24.26864 36.40971 −23.7015 −63.9363 5.716024
P6 11.09623 24.11561 7.243542 14.21492 −35.2344 −18.658
P7 −7.59358 0.09331 32.73793 −17.8784 −35.6293 7.620256
P8 32.53324 34.05742 30.30792 30.47852 −71.1767 −16.7415
P9 −17.0201 −3.04336 32.26777 −35.4684 −35.0908 22.97249
P10 3.81082 18.29642 22.26341 0.828017 −42.9847 −7.14365
P11 25.54021 36.07047 38.04107 22.07303 −78.3546 −9.73248
P12 35.63698 35.49974 16.15504 36.95549 −61.9528 −26.3381
P13 1.610659 19.50852 4.022058 −2.31556 −25.8131 −5.04101
P14 30.95777 49.89616 2.903374 31.68392 −60.8979 −22.8277
P15 29.44616 23.32127 −0.1367 47.25214 −38.1531 −48.4764
P16 16.39806 2.722649 42.67031 17.36198 −50.1682 −18.3206
P17 8.01806 0.308295 40.74881 7.228396 −44.0928 −12.18
P18 −13.719 12.96507 36.47092 −21.7382 −52.6882 7.528158
P19 7.457114 41.02561 −7.01741 7.177614 −36.8931 −12.1077
P20 27.90518 43.90233 12.88649 27.24821 −63.3535 −18.9197
P21 1.908118 40.54725 9.667821 −2.20752 −52.4979 −4.18649
P22 32.36995 35.64228 11.64176 35.08456 −57.1776 −27.7245
P23 21.54627 41.26615 −5.08687 27.38036 −43.2764 −27.3789
P24 36.74781 5.304382 30.8585 45.23446 −51.8357 −40.4683
P25 29.09069 13.72432 37.74581 30.13305 −59.585 −23.4212

Due to the large size of the results table, the calculated angle values are presented only
for the first 25 target points. The complete results files are available for download from the
GitHub repository, whose link is written at the end of Appendix A.

In the second case, the deformations were constantly applied during a 200 min oper-
ating cycle. The robot program was executed in a loop for this whole time. The forward
geometric model was updated minute by minute, and at the same interval, the IK was
recalculated for each point that had to be reached. In this interval, the robot traveled a
total number of 10,050 target points. For the same reason of a very large table of results,
in Tables 17 and 18, only the maximum and minimum position and angular deviations
recorded are presented.

Table 17. Position deviation (transient case).

Position Deviation [mm]

∆X ∆Y ∆X

MIN −0.199 −0.198 −0.199
MAX 0.1 0.1 0.1

Table 18. Deviation from programmed orientation (transient case).

Orientation Deviation [◦]

∆θX ∆θY ∆θZ

MIN 0 0 −0.007
MAX 0 0.1 0.004
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Results Analysis and Synthesis

In the laboratory, measurements were performed simultaneously for recording the
position of the robot using a laser tracking system and recording the thermal evolution
during work using an infrared camera, as presented in Figure 14.
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Figure 14. The robot in the laboratory during measurements.

Due to the thermal deformations, for the IRB 140 industrial robot in the laboratory, the
experimental measurements showed a deviation of the characteristic point of approximately
0.097 µm. By using the deformed virtual model, based on the extended geometric model
with included error parameters and applying the entire error compensation procedure, the
precision of reaching the pre-programmed points of the deformed robot (thus reaching
thermal stabilization) was 0.07 mm. For the situation in which the robot was still in
the warm-up status, the application of the presented compensation methods showed a
possibility of improving the positioning precision by between 0.07 mm and 0.073 mm. There
are still many aspects to be studied regarding the improvement of the accuracy and during
the thermal transition period. At this stage, the Improvement of the positioning accuracy
by up to 93% proves that the extended geometric model, with a structural diagram based
on the real constructive elements of the robot and including error parameters, is important
and its use is mandatory in software procedures for thermal error compensation. Moreover,
in the case study where exaggerated displacements of 1 mm in all directions for each joint
of the robot and 1 degree of angular deviation, also around each axis, were considered, the
ability of the procedure to provide compensated angles was shown. The robot structure
being deformed to such a magnitude led to severe deviations of the characteristic point
compared to the theoretical position. In the image, the deformations are visible with the
naked eye even if they have not been magnified. Deviations of the characteristic point
of even 20 mm are observed. From the results presented in Section 4, for this excessively
deformed structure, it was possible to determine the angles of the joints (compensating for
thermal errors) so that the accuracy of reaching the programmed targets is about 0.01 mm
and the maximum angular deviation is 0.02 degrees. For the transient case, in which the
deformations were applied progressively throughout the 200 min of robot operation, the
maximum accuracy was approximately 0.2 mm, and the maximum angular deviation was
0.01 degrees, which represents an improvement with an order of magnitude two times
higher than the deformations (Figure 15).
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5. Conclusions

In this paper, it was proved that in the context of the integration of industrial robots in
applications that require high precision, simple modeling (applying theoretical assumptions
such as the non-deformability of structural elements or not respecting the real configuration
of the robot) is no longer sufficient. The conception of the forward geometric model (which
actually represents the basis from which the control of industrial robots starts) must respect
as much as possible the structure of the robot and if it is imposed to improve their precision,
errors that may occur (such as errors due to thermal deformations) must be found, analyzed,
interpreted, and corrected. The use of an extended geometric model in which the same
orientation of the axis systems is maintained facilitates the construction of the parameter
tables and simplifies the integration of additional correction factors. These should be
considered in the multiplication of the matrices that mathematically describe the structure
of the robot. The use of this extended geometric model is only a necessary step in a suite of
procedures starting from experimental measurements up to the development of a software
algorithm for error compensation. Even if the introduction of additional parameters in
the calculation model means additional mathematical operations, considering modern
computational capabilities, with a relatively small additional effort, the improvements
regarding the positioning accuracy of the robot (by compensating for thermally induced
errors) are very important. The entire thermal error compensation methodology can be
used, but care must be taken to ensure that all experimental determinations and geometric
modeling are carried out individually for each type of robot and for known and stable
working conditions. Because the proposed compensation method is an off-line one, it is
assumed that the working environment, the robot program, and the thermal behavior are
known and well determined previously and that they do not change. Considering this
aspect, it is desired that the methodology to be improved in the future. Among the aspects
that will be researched and further developed are:

(a) development of an online software link between CoppeliaSIM and the robot controller.
The possibility of online transmission of the corrected target points or the possibility
of direct control of the robot from CoppeliaSIM would remove the manual post-
processing part of the files containing the robot’s work programs.

(b) the integration of a hardware–software technical solution for measuring the temper-
ature of the robot structure in real time and automatically adjusting the parameters
related to the deformations of the structural elements.

(c) carrying out analysis with finite elements and experiments to determine the thermal
behavior of the robot and the deformation of its structure in various environmental
conditions, from very low temperatures to very high temperatures.

(d) adjusting the parameters of the calculation functions for inverse kinematics to obtain
faster and more accurate solutions.
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(e) identifying a solution for the problem of decreasing the degree of precision in provid-
ing results for the transient case.

(f) the implementation of a software solution for processing and compensation and for
programs that involve tracking curves.
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