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Abstract: The Kolmogorov and total variation distance between the laws of random variables have
upper bounds represented by the L1-norm of densities when random variables have densities. In this
paper, we derive an upper bound, in terms of densities such as the Kolmogorov and total variation
distance, for several probabilistic distances (e.g., Kolmogorov distance, total variation distance,
Wasserstein distance, Forter–Mourier distance, etc.) between the laws of F and G in the case where a
random variable F follows the invariant measure that admits a density and a differentiable random
variable G, in the sense of Malliavin calculus, and also allows a density function.
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1. Introduction

Let B = {B(h), h ∈ H}, where H is a real separable Hilbert space, be an isonormal
Gaussian process defined on some probability space (Ω,F,P) (see Definition 1). The authors
in [1] discovered a celebrated central limit theorem, called the “fourth moment theorem”, for
a sequence of random variables belonging to a fixed Wiener chaos associated with B (see
Section 2 for the definition of Wiener chaos).

Theorem 1 (Fourth moment theorem). Let {Fn, n ≥ 1} be a sequence of random variables

belonging to the q(≥ 2)th Wiener chaos with E[F2
n ] = 1 for all n ≥ 1. Then Fn

L−→ Z if and only

if E[F4
n ] → 3 = E[Z4], where Z is a standard Gaussian random variable and the notation L−→

denotes the convergence in distribution.

After that, the authors in [2] obtained a quantitative bound of the distances between
the laws of F and Z by developing the techniques based on the combination between
Malliavin calculus (see, e.g., [3–7]) and Stein’s method for normal approximation (see,
e.g., [8–10]). These distances can be defined in several ways. More precisely, the distance
between the laws of F and Z is given by

d(F, Z) ≤ Cd

√
E[(1− 〈DF,−DL−1F〉H)2]. (1)

where D and L−1 denote the Malliavin derivative and the pseudo-inverse of the Ornstein–
Uhlhenbeck generator, respectively (see Definitions 2 and 5), and the constant Cd in (1)
only depends on the distance d considered. In the particular case where F is an element in
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the qth Wiener chaos of B with E[F2] = 1, the upper bound (1) for Kolmogorov distance
(Cd = 1) is given by

dKol(F, Z) ≤
√

q− 1
3q

(E[F4]− 3). (2)

where E[F4]− 3 is the fourth cumulant of F.
The application of the Stein’s method related to Malliavin calculus has been ex-

tended from the normal distribution to the cases of Gamma and Pearson distributions
(see e.g., [11,12]). Furthermore, the authors in [13] extend the upper bound (1) to a more
general class of probability distribution. For a differentiable random variable in the sense
of the Malliavin calculus, they obtain the upper bound of distance between its law and a
law of a random variable with a density that is continuous, bounded, and strictly positive
in the interval (l, u) (−∞ ≤ l < u ≤ ∞) with finite variance. Their approach is based on
the construction of an ergodic diffusion that has a density p as an invariant measure. The
diffusion with the invariant density p has the form

dXt = b(Xt)dt +
√

a(Xt)dWt, (3)

where W is a standard Brownian motion. Then, they consider the generator of the diffusion
process X and use the integration by parts (see Definition 3 for the integration by parts
formula) to find an upper bound for the distance between the law of a differentiable random
variable G and the law of a random variable F with density pF. This bound contains D and
L−1 as in the bound (1). Precisely, for a suitable class of functions F ,

sup
f∈F
|E[ f (G)− f (F)]|

≤ CE
[∣∣∣∣12 a(G) +E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]∣∣∣∣]
+C|E[b(G)]|. (4)

If a random variable G admits a density with respect to the Lebesgue measure, the Kol-
mogorov ( i.e., F = {1(l,z); z ∈ (l, u)}) and total variation distance ( F = {1B; B ∈ B(R)})
can be bounded by

sup
f∈F
|E[ f (G)− f (F)]| ≤

∫ ∞

−∞
|pG(x)− pF(x)|dx. (5)

We note that Scheffe’s theorem implies that the pointwise convergence of densities
is stronger than convergence in distribution. In this paper, we assume that the law of G
admits a density with respect to the Lebesgue measure. This assumption on G is satisfied
for all distributions considered throughout examples in the paper [13]. Using the bound
of (4) and the diffusion coefficient in (3) given by

a(x) =
−2
∫ x

l (y−m)pF(y)dy
pF(x)

,

we derive a bound of general distances in the left-hand side of (4), being expressed in terms
of the density functions of two random variables F and G as in the case of Kolmogorov
and total variation distances. In addition, we deal with the computation of the conditional
expectation in (4). When G is general, it is difficult to find an explicit computation of this
expectation. The random variables in all examples covered in [13] are just functions of a
Gaussian vector. In this case, it is possible to compute the explicit expectation. If the law
of these random variables admits a density with respect to the Lebesgue measure, like all
examples considered in [13], we can find the formula from which we can easily compute
this expectation.
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The rest of the paper is organized as follows. Section 2 reviews some basic notations
and the results of Malliavin calculus. In Section 3, we describe the construction of a diffusion
process with an invariant density p and derive an upper bound between the laws of F and
G in terms of densities. In Section 4, we introduce a method that can directly compute the
conditional expectation in (4). Finally, as an application of our main results, in Section 5, we
obtain an upper bound of an example considered in [13]. Throughout this paper, c (or C)
stands for an absolute constant with possibly different values in different places.

2. Preliminaries

In this section, we briefly review some basic facts about Malliavin calculus for Gaussian
processes. For a more detailed explanation, see [6,7]. Fix a real separable Hilbert space H,
with inner product 〈·, ·〉H.

Definition 1. We say that a stochastic process B = {B(h), h ∈ H} defined on (Ω,F, P) is an
isonormal Gaussian process if B is a centered Gaussian family of random variables such that
E[B(g)B(h)] = 〈g, h〉H for every g, h ∈ H.

For the rest of this paper, we assume that F is the σ-field generated by X. To simplify
the notation, we write L2(Ω) instead of L2(Ω,F, P). For each q ≥ 1, we writeHq to denote
the closed linear subspace of L2(Ω) generated by the random variables Hq(B(h)), h ∈ H,
‖h‖H = 1, where the space Hq is the qth Hermite polynomial. The space Hq is called the
qth Wiener chaos of B. Let S denote the class of smooth and cylindrical random variables F
of the form

F = f (B(ϕ1), · · · , B(ϕm)), m ≥ 1, (6)

where f : Rm → R is a C∞-function such that its partial derivatives have at most polynomial
growth, and ϕi ∈ H, i = 1, · · · , m. Then, the space S is dense in Lq(Ω) for every q ≥ 1.

Definition 2. For a given integer p ≥ 1 and F ∈ S , the pth Malliavin derivative of F with respect
to B is the element of L2(Ω;H�p), where the space H�p denotes the symmetric tensor product of H,
defined by

DpF =
m

∑
i1,...,ip=1

∂p f
∂x1, . . . , ∂xp

(B(ϕ1), . . . , B(ϕn))ϕi1 ⊗ · · · ⊗ ϕip . (7)

For a fixed p ∈ [1, ∞) and an integer k ≥ 1, we denote by Dk,p the closure of its
associated smooth random variable class of S with respect to the norm

‖F‖p
k,p = E[|F|p] +

k

∑
`=1

E[‖D`F‖p
H⊗`

].

For a given integer p ≥ 1, we denote by δp : L2(Ω;H⊗p) → L2(Ω) the adjoint of the
operator Dp : Dk,2 → L2(Ω;H�q), called the multiple divergence operator of order p. The
domain of δp, denoted by Dom(δp), is the subset of L2(Ω;H⊗p) composed of those elements
u such that

|E[〈DpF, u〉H⊗p ]| ≤ C(E[|F|2]1/2 for all F ∈ Dp,2.

Definition 3. If u ∈ Dom(δp), then δp(u) is the element of L2(Ω) defined by the duality relationship

E[Fδp(u)] = E[〈DpF, u〉H⊗p ] for every F ∈ Dp,2. (8)

The above formula (8) is called an integration by parts formula. For a given integer
q ≥ 1 and f ∈ H�q, the qth multiple integral of f is defined by Iq( f ) = δq( f ). Let h ∈ H

with ‖h‖H = 1. Then, for any integer q ≥ 1, we have Iq(h⊗q) = q!Hq(B(h)). From this, the
linear mapping Iq : H�q → Hq by Iq(h⊗q) = q!Hq(B(h)) has an isometric property. It is
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well known that any square integrable random variable F ∈ L2(Ω) can be expanded into a
series of multiple integrals:

F = E[F] +
∞

∑
q=1

Iq( fq),

where the series converges in L2, and the functions fq ∈ H�q, q ≥ 1, are uniquely deter-
mined by F. Moreover, if F ∈ Dm,2, then fq = 1

q!E[D
qF] for all q ≤ m.

Definition 4. For a given F ∈ L2(Ω), we say that F belongs to Dom(L) if

∞

∑
q=1

q2E[Jq(F)2] < ∞,

where Jq is the projection operator from L2(Ω) intoHq, that is, Jq(F) = Proj(F|Hq), q = 0, 1, 2 . . ..
For such an F, the operator L is defined through the projection operator Jq, q = 0, 1, 2 . . ., as
LF = −∑∞

q=1 qJqF.

It is not difficult to see that the operator L coincides with the infinitesimal generator of
the Ornstein–Uhlhenbeck semigroup {Pt, t ≥ 0}. The following gives a crucial relationship
between the operator D, δ, and L: Let F ∈ L2(Ω). Then, we have F ∈ Dom(L) if and only
if F ∈ D1,2 and DF ∈ Dom(δ). In this case, δ(DF) = −LF, that is, for F ∈ L2(Ω), the
statement F ∈ Dom(L) is equivalent to F ∈ Dom(δD).

Definition 5. For any F ∈ L2(Ω), we define the operator L−1, called the pseudo-inverse of L, as
L−1F = ∑∞

q=1
1
q Jq(F).

Note that L−1 is an operator with values in D2,2 and LL−1F = F−E[F] for all F ∈ L2(Ω).

3. Diffusion Process with Invariant Measures

In this section, we explain how a diffusion process is constructed to have an invariant
measure µ that admits a density function, say p, with respect to the Lebesgue measure
(see [13,14] for more information). Let µ be a probability measure on I = (l, u) (−∞ ≤ l <
u ≤ ∞) with a continuous, bounded, and strictly positive density function p. We take a
function b : I → R that is continuous such that e ∈ (l, u) exists for which b(x) > 0 for
x ∈ (l, e) and b(x) < 0 for x ∈ (e, u) are satisfied. Moreover, the function bp is bounded on
I and ∫ u

l
b(x)p(x)dx = 0. (9)

For x ∈ I, let us set

a(x) =
2
∫ x

l b(y)pF(y)dy
p(x)

. (10)

Then, the stochastic differential equation (sde)

dXt = b(Xt)dt +
√

a(Xt)dBt (11)

has a unique ergodic Markovian weak solution with the invariant measure µ.
The authors prove in [15] that the convergence of the elements of a Markov chaos to

a Pearson distribution can be still bounded with just the first four moments by using the
new concept of a chaos grade. Pearson diffusions are examples of the Markov triple and Itô
diffusion given by the sde

dXt = −(Xt −m)dt +
√

a(Xt)dBt, (12)
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where m is the expectation of µ, and

a(x) =
−2
∫ x

l (y−m)p(y)dy
p(x)

for x ∈ (l, u). (13)

Let us define

h̃ f (y) =
2
∫ y

l ( f (u)−E[ f (F)])p(u)du
a(y)pF(y)

,

where F is a random variable having its law of µ. For f ∈ C0(I), where C0(I) = { f : I →
R| f is continuous on I vanishing at the boundary of I}, we define

h f (x) =
∫ x

0
h̃ f (y)dy.

Then, h f satisfies that

f −E[ f (F)] = b(x)h′f (x) +
1
2

a(x)h′′f (x).

In [13], the authors derive the Stein’s bound between the probability measure µ and the
law of an arbitrary random variable G. This bound extends the results in [2,12] in the case
where µ is a standard Gaussian and Gamma distribution, respectively.

Theorem 2 (Kusuoka and Tudor (2012) [13]). Let F be a random variable having the target law
µ with a probability distribution associated to the diffusion given by sde (11). Let G be an I-valued
random variable in D1,2 with b(G) ∈ L2(Ω). Then, for every f : I → R such that h̃ f and h̃′f are
bounded, the following holds:∣∣E[ f (G)− f (F)

]∣∣
≤ ‖h̃′f ‖∞E

[∣∣∣∣12 a(G) +
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣∣]
+‖h̃ f ‖∞|E[b(G)]|, (14)

and ∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h̃′f ‖∞E
[∣∣∣∣E[1

2
a(G) +

〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣
]

+‖h̃ f ‖∞|E[b(G)]|. (15)

When the laws of F and G admit densities pF and PG (with respect to Lebesgue
measure), respectively, we derive an upper bound (14) in terms of the densities of F and G
by using Theorem 2.

Theorem 3. Let F be a random variable having the law µ with the density pF associated to the
diffusion given by sde (11). Let G be a random variable in D1,2 with b(G) ∈ L2(Ω). Suppose that
the law of G has the density pG with respect to the Lebesgue measure. Then, for every f : I → R
such that h̃ f and h̃′f are bounded, we find that
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∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h′f ‖∞E
[∣∣∣∣ ∫ ∞

G
b(y)

(
pF(y)
pF(G)

− pG(y)
pG(G)

)
dy
∣∣∣∣
]

+

(
‖h′f ‖∞E

[∫ ∞
G pG(y)dy

pG(G)

]
+ ‖h f ‖∞

)∣∣E[b(G)]
∣∣. (16)

Proof. Let ϕ : R → R be a C1-function having a bounded derivative ϕ′ with a compact
support. Using the integration by parts yields

E
[

ϕ′(G)E
[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]]
= E

[〈
− DL−1(b(G)−E[b(G)]), Dϕ(G)

〉
H

]
= E

[
ϕ(G)(b(G)−E[b(G)])

]
= −

∫ ∞

−∞
ϕ(x)

d
dx

( ∫ ∞

x
(b(y)−E[b(G)])pG(y)dy

)
dx

= −ϕ′(x)
∫ ∞

x
(b(y)−E[b(G)])pG(y)dy

∣∣∣∣∞
−∞

+
∫ ∞

−∞
ϕ′(x)

∫ ∞

x
(b(y)−E[b(G)])pG(y)dydx

= E
[

ϕ′(G)

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)

]
. (17)

The above equality (17) obviously shows that

E
[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]
=

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)
. (18)

Using the relations (10) and (17), the first expectation in the right-hand side of (15) can be
written as

E
[∣∣∣∣12 a(G) +E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣]

= E
[∣∣∣∣
∫ G
−∞ b(y)pF(y)dy

pF(G)
+

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)

∣∣∣∣
]

(19)

Since ∫ u
l b(y)pF(y)dy

pF(G)
= 0,

we have that ∫ G
−∞ b(y)pF(y)dy

pF(G)
= −

∫ ∞
G b(y)pF(y)dy

pF(G)
,
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This implies that (19) can be written as

E
[∣∣∣∣E[1

2
a(G) +

〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣]
≤ E

[∣∣∣∣
∫ ∞

G b(y)pF(y)dy
pF(G)

−
∫ ∞

G b(y)pG(y)dy
pG(G)

∣∣∣∣
]

+
∣∣E[b(G)]

∣∣E[∫ ∞
G pG(y)dy

pG(G)

]
. (20)

Combining (15) and (20) completes the proof of this theorem.

Remark 1. In Theorem 2 of [13], the authors prove that if a random variable G ∈ D1,2 has the
invariant measure µ, then E[b(G)] = 0 and

E
[

1
2

a(G) +
〈
− DL−1b(G), DG

〉
H

∣∣∣G] = 0. (21)

Furthermore, if µ admits the density pF, it is obvious from (19) that (21) holds.

Remark 2. We think it would be interesting to give numerical examples from the computational
validity in Theorem 3. In this respect, although not a numerical example, we give a simple example
to deduce an upper bound for between the laws of two centered Gaussain random variables.

Proposition 1. Let F and G be two centered Gaussian random variables with variances σ2
1 > 0

and σ2
2 > 0. Then,

dF (F, G) ≤ sup
f∈F
‖h′f ‖∞

∣∣σ2
F − σ2

G
∣∣, (22)

where F is the class of functions to be chosen depending on the type of the distance d.

Proof. Obviously, the random variable F has the law µ with the density

pF(x) =
1√

2πσF
exp

(
− x2

2σ2
F

)

associated to the diffusion given by sde with b(x) = −x and a(x) = 2σ2
F. Since E[b(G)] = 0,

the second sum in (16) is vanished. Hence, from Theorem 3, it follows that∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h′f ‖∞E
[∣∣∣∣∣e G2

2σ2
F

∫ ∞

G
ye
− y2

2σ2
F dy− e

G2

2σ2
G

∫ ∞

G
ye
− y2

2σ2
G dy

∣∣∣∣∣
]

= ‖h′f ‖∞E
[∣∣∣∣∣σ2

Fe
G2

2σ2
F

∫ ∞

− G2

2σ2
F

e−udu− σ2
Ge

G2

2σ2
G

∫ ∞

− G2

2σ2
G

e−udu

∣∣∣∣∣
]

= ‖h′f ‖∞
∣∣σ2

F − σ2
G
∣∣. (23)

Since the distance dF (F, G) between two distributions F and G is given by

dF (F, G) = sup
f∈F

∣∣E[ f (G)− f (F)
]∣∣,

the proof of this proposition is completed.
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Depending on the choice ofF , several types of distances can be defined (see Section 5.2).
Comparing the upper bound in Proposition 3.6.1 of [6] obtained from an elementary
application of Stein’s method with the upper bound in (22) is very interesting. This shows
that our study is differentiated from the existing ones.

4. Computation of E
[
〈−DL−1(b(G)− E[b(G)]), DG〉H|G

]
When G is general, it is difficult to find an explicit computation of the right-hand

side of (15). In particular, when
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

is not measurable with
respect to the σ-field generated by G, there are cases where it is impossible to compute the
expectation. The next proposition in [4] contains an explicit example.

Proposition 2. Let DG = ΨG(B), where B is an isonormal Gaussian process and ΨG : RH → H

is a uniquely defined measurable function a.e. Then, we have〈
− DL−1(G−E[G]), DG

〉
H

=
∫ ∞

0
e−t〈ΨG(B),E′

[
ΨG(e−tB +

√
1− e−2tB′)

]
〉Hdt, (24)

so that

E
[〈
− DL−1(G−E[G]), DG

〉
H
|G
]

=
∫ ∞

0
e−tE

[
〈ΨG(B), ΨG(e−tB +

√
1− e−2tB′)〉H|G

]
dt. (25)

Here, B and B′ are defined on the product space (Ω×Ω′,F ⊗F ′,P⊗P′) such that B′ stands for an
independent copy of B. E and E′ denote the expectation with respect to P⊗ P′ and P′, respectively.

If G = h(N)−E[h(N)], where h : Rd → R is a C1-function with bounded derivative
and N = (N1, . . . Nd) is a d-dimensional Gaussian random variable with zero mean and
covariance 〈hi, hj〉H = E[Ni Nj] = (Ci,j), i, j = 1, . . . , d, where {hi, i = 1, . . . , n} stands
for the canonical basis of H. By using Proposition 2, the following useful formula can
be proved: 〈

− DL−1(G−E[G]), DG
〉
H

=
∫ ∞

0
e−xE′

[ d

∑
i,j=1

Ci,j
∂h
∂xi

(N)
∂h
∂xj

(
e−x N +

√
1− e−2x N′

)]
dx. (26)

In order to show the significance of the bound (15), the authors in [13] consider the several
random variables G. Here, among these random variables, we consider random variables
with the uniform and Laplace distribution. The random variable defined by

G = e−
1
2 (B( f )+B(g)),

where B( f ) and B(g) are independent standard Gaussian random variables, has the uni-
form distribution U ([0, 1]). The authors in [13] compute the right-hand side of (26) to
prove that

E[
〈
− DL−1(G−E[G]), DG

〉
H
|G] = G(1− G). (27)

Computing in this way is tedious and lengthy. To overcome this situation, we can use
Equation (18) to prove that (27) holds. Since G has the uniform distribution U ([0, 1]),
we have

E
[〈
− DL−1(G− 1

2
), DG

〉
H

∣∣G] =

∫ ∞
G (y− 1

2 )1[0,1](y)dy
1[0,1](G)

= G(1− G). (28)
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In the case where G has a Laplace distribution, the authors in [13] consider two random variables:

G1 =
1
2
(

B(h1)
2 + B(h2)

2 − B(h3)
2 − B(h4)

2), (29)

G2 = B(h1)B(h2) + B(h3)B(h4). (30)

where hi, i = 1, . . . , 4, are orthonormal functions in L2([0, T]). It can be easily seen that Gi,
i = 1, 2, has the Laplace distribution with parameter 1. In the paper [13], the authors prove,
using Theorem 2 in [13], that for i = 1, 2,

E
[〈
− DL−1Gi, DGi

〉
H

∣∣Gi

]
= 1 + |Gi|. (31)

The authors argue that these identities are difficult to be proven directly. Here, we introduce
a method that can directly prove these identities (31) by using the formula given in (18).
Since Gi, i = 1, 2, has a Laplace distribution with parameter 1, we find that for i = 1, 2,

E
[〈
− DL−1(Gi −

1
2
), DGi

〉
H

∣∣Gi

]
=

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

. (32)

An elementary computation yields that for Gi ≥ 0 a.s,

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

=
e−Gi (1 + Gi)

e−Gi
= 1 + Gi, (33)

and for Gi < 0 a.s.

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

=

1
2

∫ 0
Gi

yeydy + 1
2

∫ ∞
0 ye−ydy

1
2 eGi

=
eGi (1− Gi)

eGi
= 1− Gi. (34)

Combining (33) and (34) proves that the identity (31) holds.

5. Example

In this section, we illustrate the upper bound of probabilistic distances in Theorem 3
through an example considered in [13]. We denote the Wiener integral of h ∈ L2([0, T])
by W(h). Let {hi, i = 1, 2, . . .} be a sequence of orthonormal bases of L2([0, T]) and
{GN , N = 1, 2 . . .} a sequence of random variables defined by

GN = e−
1√
2N ∑N

i=1(W(hi)
2−1). (35)

Let F be a random variable having log normal distribution with mean m = 0 and variance
σ2 = 1. Then, the density of F is given by

pF(x) =
1√
2πx

exp
(
− 1

2
(log x)2

)
1(0,∞)(x). (36)

Next, we compute the density of the random variable GN given by (35). We first
compute the cumulative distribution function of GN . Let us set XN = ∑N

i=1 W(hi)
2. Then,

the random variable XN = N −
√

2N log GN has a Gamma distribution with parameters
α = N

2 and β = 1
2 , that is,

PXN (x) =
1

2
N
2 Γ(N

2 )
x

N
2 −1e−

x
2 1(0,∞)(x). (37)
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Using (37), we find that for x ≥ 0,

P(GN ≤ x) = P
(
− 1√

2N

N

∑
i=1

(W(hi)
2 − 1) ≤ log x

)
= P

(
XN ≥ N −

√
2N log x

)
=

∫ ∞

N−
√

2N log x
pXN (y)dy. (38)

Differentiating Equation (38) proves that

pGN (x) =
√

2N
x

pXN

(
N −
√

2N log x
)
. (39)

From (39), it follows that

pGN (x) =

√
2N

2
N
2 Γ(N

2 )x

(
N −
√

2N log x
) N

2 −1e−
1
2

(
N−
√

2N log x
)

1(0,∞)(x)

=

√
2N

2
N
2 Γ(N

2 )x
exp

{(N
2
− 1
)

log(N −
√

2N log x)

− 1
2
(N −

√
2N log x)

}
1(0,∞)(x). (40)

5.1. Scheffe’s Theorem

First, we prove that GN converges in distribution to F by using Scheffe’s theorem
and then find a convergence rate of the Kolmogorov and total variation distance. The
right-hand side of (40) can be written as

pGN (x) =

√
2N

2
N
2 Γ(N

2 )x
exp

{(N
2
− 1
)

log N − N
2

}

× exp
{(N

2
− 1
)

log
(

1−
√

2
N

log x
)

+

√
N
2

log x
}

1(0,∞)(x). (41)

For any fixed x ∈ (0, ∞), we have, from (36) and (41), that

pGN (x)− pF(x) =

[ √
2N

2
N
2 Γ(N

2 )
exp

{(N
2
− 1
)

log N − N
2

}

− 1√
2π

]
1
x

e−
1
2 (log x)2

+

√
2N

2
N
2 Γ(N

2 )
exp

{(N
2
− 1
)

log N − N
2

}

× 1
x

[
exp

{(N
2
− 1
)

log
(

1−
√

2
N

log x
)

+

√
N
2

log x
}
− e−

1
2 (log x)2

]
= A1,N + A2,N . (42)
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To estimate the first term A1,N in (42), we can use the following specific version of the
Stirling formula of the Γ function, incorporating upper and lower bounds (see [16]):

Lemma 1. Let S(x) = xx− 1
2 e−x. Then for all x > 0,

√
2πS(x) ≤ Γ(x) ≤

√
2πS(x)e

1
12x . (43)

The term |A1,N | in (42) can be written as

|A1,N | =
1√
2π
|1− A11,N × A12,N |

1
x

e−
1
2 (log x)2

, (44)

where

A11,N =

√
2π
√

2
N (N

2 )
N
2 e−

N
2

Γ(N
2 )

,

A12,N =

√
2Ne(

N
2 −1) log N− N

2

2
N
2

√
2
N (N

2 )
N
2 e−

N
2

.

Obviously,

A12,N =

√
2N2

N
2 −1(N

2 )
N
2 −1

2
N
2

√
2
N (N

2 )
N
2

= 1. (45)

Hence, form (43) and (44),

|A1,N | =
1√
2π

∣∣∣∣Γ(N
2 )−

√
2π(N

2 )
N
2 −

1
2 e−

N
2

Γ(N
2 )

∣∣∣∣
≤ 1√

2π

(
1− e

1
12N
)

=
1

12
√

2πN
+ o
( 1

N
)
. (46)

Using the Taylor expansion of log
(

1−
√

2
N log x

)
log
(

1−
√

2
N

log x
)
= −

√
2
N

log x− 2
2N

(log x)2 + ox(N−1),

we write A2,N as

A2,N =

√
2N

2
N
2 Γ(N

2 )
exp

{(N
2
− 1
)

log N − N
2

}

× 1
x

[
exp

{
− 1

2
(log x)2 + o(1)

}
− e−

1
2 (log x)2

]
. (47)

Since

lim
N→∞

√
2N

2
N
2 Γ(N

2 )
exp

{(N
2
− 1
)

log N − N
2

}
=

1√
2π

,

we will have that limN→∞ A2,N = 0, and hence, from (42),

lim
N→∞

pGN (x) = pF(x) for all x ∈ (0, 1).
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This convergence implies, from Scheffe’s theorem, that as N → ∞,∫ ∞

0
|pGN (x)− pF(x)|dx → 0.

An upper bound for the Kolmogorov and total variation distance is given in (5). Hence, GN
converges in distribution to F. Next, we find the rate of convergence for an upper bound
for these distances by using the bound (5). By using the change of variables log x = z, we
find, from (36) and (40), that

d(G, F) ≤
∫ ∞

0

∣∣pF(x)− pG(x)
∣∣dx

=
∫ ∞

−∞

∣∣∣∣ 1√
2π

e−
z2
2 −

√
2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

× e(
N
2 −1) log(1−

√
2
N z)+

√
N
2 z
∣∣∣∣dz. (48)

Using the Taylor expansion of log(1−
√

2
N z), the right-hand side of (48) can be repre-

sented as

d(G, F) ≤ 1
2

∫ ∞

−∞

∣∣∣∣ 1√
2π

e−
z2
2 −

√
2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

× e−
z2
2 +

√
2
N z+oz(N−

1
2 )
∣∣∣∣dz

≤ 1
2

∣∣∣∣ 1√
2π
−
√

2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

∣∣∣∣ ∫ ∞

−∞
e−

z2
2 dz

+

√
2N

2
N
2 +1Γ(N

2 )
e(

N
2 −1) log N− N

2

∫ ∞

−∞
e−

z2
2

×
∣∣∣∣1− e

√
2
N z+oz(N−

1
2 )
∣∣∣∣dz

= B1,N + B2,N . (49)

From (46), it follows that

B1,N ≤
C√
N

. (50)

Obviously,

B2,N ≤ C
∫ ∞

−∞
e−

z2
2

∣∣∣∣1− e
√

2
N z+ z2

N ++oz(N−
1
2 )
∣∣∣∣dz

≤ C√
N

. (51)

From (50) and (51), we prove that the rate of convergence of the Kolmogorov and total
variation distance between the laws of F and GN is of order 1√

N
.

5.2. General Distance

In this section, we consider general distances between the laws of F and GN defined by

dF (GN , F) = sup
f∈F

∣∣E[ f (GN)]−E[ f (F)]
∣∣, (52)

where F is a class of functions defined on R. Depending on the choice of F , several types
of distances can be defined. In addition to the Kolmogorov distance and total variation
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distance, the following distances can be obtained: for example, if F = { f : ‖ f ‖L ≤ 1},
where ‖ · ‖L denotes the Lipschitz seminorm defined by

‖ f ‖L = sup

{
f (x)− f (y)|
|x− y| : x 6= y

}
.

then the distance in (52) is called Wasserstein. If F = { f : ‖ f ‖L + ‖ f ‖∞ ≤ 1}, the Fortet-
Mourier will be obtained. The rate of convergence of this distance can be found by using
the bound given in Theorem 3. The drift coefficient of the associated diffusion is given by

a(x) =
2em+ σ2

2

pF(x)

[
Φ
(

log x−m
σ

)
−Φ

(
log x−m

σ
− σ

)]
, (53)

where the function Φ denotes the distribution function of the standard Gaussian distribution.
Let us set ḠN = GN −E[GN ]. From (18) and (39), it follows that

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

∫ ∞
GN

(y−m)pGN (y)dy

pGN (GN)

=
GN
∫ ∞

GN
(y−m)

√
2N
y pXN

(
N −
√

2N log y
)
dy

√
2NpXN

(
N −
√

2N log GN
)

=
GN
∫ XN
−∞(e−

1√
2N

(x−N) −m)pXN (x)dx
√

2NpXN (XN)
, (54)

where m is the expectation of GN given by

m = e
√

N
2

(
1 +

√
2
N

)− N
2

.

The right-hand side of (54) can be written as

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]

=
e
√

N
2 GN

∫ XN
−∞

[
e−

x√
2N −

(
1 +

√
2
N
)− N

2
]
pXN (x)dx

√
2NpXN (XN)

=
e
√

N
2 GN X1− N

2
N e−

XN
2

√
2N

×
∫ XN

0

[
e−

x√
2N −

(
1 +

√
2
N
)− N

2
]
x

N
2 −1e−

x
2 dx

=
e
√

N
2 GN X1− N

2
N e−

XN
2

√
2N

{ ∫ XN

0
x

N
2 −1e−

1
2 (
√

2
N +1)xdx

−
∫ XN

0

(
1 +

√
2
N
)− N

2 x
N
2 −1e−

x
2 dx

}
. (55)
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Using the change of variables
(√ 2

N + 1
)
x = y, we express the right-hand side of (55) as

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
√

N
2 GN X1− N

2
N e

XN
2

√
2N

(
1 +

√
2
N
)− N

2

×
∫ (

√
2
N +1)XN

XN

x
N
2 −1e−

x
2 dx. (56)

By using the expansion

(
1 +

√
2
N
)− N

2 = e−
√

N
2 + 1

2−
1

3
√

2N
+o(N−

1
2 ),

the right-hand side of (56) can be expressed as

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2−

1
3
√

2N
+o(N−

1
2 )GN X1− N

2
N e

XN
2

√
2N

×
∫ (

√
2
N +1)XN

XN

x
N
2 −1e−

x
2 dx. (57)

The change of variables x−XN√
2
N XN

= z shows that (57) is

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2−

1
3
√

2N
+o(N−

1
2 )GN XN

N

×
∫ 1

0

(
1 +

√
2
N

z
) N

2 −1
e−

XN z√
2N dz. (58)

The Taylor expansion of log
(

1 +
√

2
N z
)

, 0 ≤ z ≤ 1, is given by

log
(

1 +

√
2
N

z
)
=

√
2
N

z− 1
N

z2 + o(N−1). (59)

Applying this expansion (59) to a function
(

1 +
√

2
N z
) N

2 −1
, we have

(
1 +

√
2
N

z
) N

2 −1
= e

( N
2 −1)

(√
2
N z− 1

N z2+o(N−1)

)
= e

√
N
2 z− z2

2 +No(N−1)e−
√

2
N z+o(N−

1
2 ). (60)

Substituting (60) into the integrand in (58) yields that

E
[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2−

1
3
√

2N
+o(N−

1
2 )GN XN

N

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 z+o(N−

1
2 )dz. (61)
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From (36) and (53), the drift coefficient of diffusion is given by

1
2

a(GN) =
e

1
2

pF(GN)

∫ log GN

log GN−1

1√
2π

e−
z2
2 dz

=
√

2πe
1
2 GNe

1
2

(
1√
2N

(XN−N)
)2 ∫ − 1√

2N
(XN−N)

− 1√
2N

(XN−N)−1

1√
2π

e−
z2
2 dz

=
e

1
2 GNe

1
4N (XN−N)2

√
2N

∫ XN+
√

2N

XN

e−
(y−N)2

4N dz

=
e

1
2 GN√
2N

∫ XN+
√

2N

XN

e−
(y−XN )2

4N − (XN−N)(y−XN )
2N dy. (62)

The use of the change of variables (y−XN)√
2N

= z makes the right-hand side of (62) equal to

1
2

a(GN) = e
1
2 GN

∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz. (63)

From (61) and (63), we write 1
2 a(GN)− gḠN

(ḠN) = D1,N + D2,N + D3,N , where

D1,N = e
1
2
(
1− e−

1
3
√

2N
+o(N−

1
2 ))GN

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz,

D2,N = e
1
2−

1
3
√

2N
+o(N−

1
2 )GN

(
1−−XN

N

)
×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz,

D3,N = e
1
2−

1
3
√

2N
+o(N−

1
2 )GN

XN
N

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 z
(1− eo(N−

1
2 ))dz.

Lemma 2. For every x > 0, we have

E[Gx
N ] = e

x2
2 +ox(N−β). (64)

where 0 < β < 1
2 .

Proof. We write GN = e
√

N
2 × e−

XN√
2N , where XN ∼ Γ(N

2 , 1
2 ). Hence,

E[Gx
N ] = ex

√
N
2 E
[
e−

x√
2N

XN ]
= ex

√
N
2
(

1 +
2x√
2N

)− N
2

. (65)

Since

log
(

1 +
2x√
2N

)
=

2x√
2N
− 2x2

2N
+ ox(N−α), α <

3
2

,
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we have

(
1 +

2x√
2N

)− N
2

= e
− N

2 log
(

1+ 2x√
2N

)

= e−x
√

N
2 + x2

2 +ox(N−β), 0 < β <
1
2

. (66)

Substituting (66) into (65) proves this lemma.

Next, we estimateE[|Dk,N |], k = 1, 2, 3. The Cauchy–Schwartz inequality and Lemma 2
give the estimate

E[|D1,N |] ≤ e
1
2
∣∣1− e−

1
3
√

2N
+o(N−

1
2 )∣∣√E[G2

N ]

×
( ∫ 1

0
e−z2E

[
G2z

N
]
dz

) 1
2

≤ e
3
√

2N
(1 + o(1))eo(1) ≤ c√

N
. (67)

By Hölder inequality and Lemma 2, we have

E[|D2,N |] ≤ e
1
2−

1
3
√

2N
+o(N−

1
2 )
(E[G3

N ])
1
3
(E[|N − XN |3])

1
3

N

×
( ∫ 1

0
e−

3z2
2 E[G3z

N ]dz
) 1

3

≤ e
1
2−

1
3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)

(
E
[(

N − XN√
2N

)4]) 1
4√ 2

N

×
( ∫ 1

0
e3z2+oz(N−β)dz

) 1
3

≤ e
1
2−

1
3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)

(
3 +

12
N

) 1
4
√

2
N

e1+o(N−β)

≤ c√
N

. (68)

Similarly,

E[|D3,N |] ≤ e
1
2−

1
3
√

2N
+o(N−

1
2 )
(E[G3

N ])
1
3
(E[|XN |3])

1
3

N

×
( ∫ 1

0
e−

3z2
2 E[G3z

N ]dz
) 1

3

|1− eo(N−
1
2 )|

≤ e
1
2−

1
3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)(1 + o(1))

× e1+o(N−β)|1− eo(N−
1
2 )|

≤ c√
N

. (69)
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Combining the bounds in (67), (68) and (69), we obtain

∣∣E[ f (GN)− f (F)
]∣∣ ≤ ‖h′f ‖∞E

[∣∣∣1
2

a(GN)− gḠN
(ḠN)

∣∣∣]
≤ c√

N
. (70)

Therefore, we find that the rate of convergence of the general distance is of order 1√
N

.

6. Conclusions and Future Works

When a random variable F follows the invariant measure that admits a density and a
differentiable random variable G in the sense of Malliavin allows a density function, this
paper derives an upper bound on several probabilistic distances (e.g., Kolmogorov distance,
total variation distance, Wasserstein distance, and Forter–Mourier distance, etc.) between
the laws of F and G in terms of two densities. Among these distances, it is well known that
the upper bound of the Kolmogorov and total variation distance can be easily expressed
in terms of densities. The significant feature of our works is to show that the bounds of
distances other than the two distances mentioned above can be expressed in some form
of two density functions. An insight into the main result of this study is that it is possible
by applying our results to express an upper bound for the distance of two distributions in
terms of two density functions even when it is difficult to express the distance as a density
function of two distributions.

Future works will be carried out in two directions: (1) Using the results worked in this
paper, we plan to conduct a study on the upper bound that is more rigorous than the results
obtained in the papers [15,17]. (2) In the case when G is a random variable belonging to a
fixed Wiener chaos, we will prove the fourth moment theorem by using the bound obtained
in this paper.
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