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Abstract: Remote sensing cross-modal text-image retrieval (RSCTIR) has recently attracted exten-
sive attention due to its advantages of fast extraction of remote sensing image information and
flexible human–computer interaction. Traditional RSCTIR methods mainly focus on improving
the performance of uni-modal feature extraction separately, and most rely on pre-trained object
detectors to obtain better local feature representation, which not only lack multi-modal interaction
information, but also cause the training gap between the pre-trained object detector and the retrieval
task. In this paper, we propose an end-to-end RSCTIR framework based on vision-language fusion
(EnVLF) consisting of two uni-modal (vision and language) encoders and a muti-modal encoder
which can be optimized by multitask training. Specifically, to achieve an end-to-end training process,
we introduce a vision transformer module for image local features instead of a pre-trained object
detector. By semantic alignment of visual and text features, the vision transformer module achieves
the same performance as pre-trained object detectors for image local features. In addition, the trained
multi-modal encoder can improve the top-one and top-five ranking performances after retrieval
processing. Experiments on common RSICD and RSITMD datasets demonstrate that our EnVLF can
obtain state-of-the-art retrieval performance.

Keywords: remote sensing cross-modal text-image retrieval; vision-language fusion; multi-modal
learning; multitask optimization

MSC: 68T07

1. Introduction

In recent years, remote sensing (RS) technology, which plays an important role in the
satellite and unmanned surveillance aircraft industry, is developing rapidly. Under this
trend, RS images have shown explosive growth [1,2], which bring challenges to multiple
tasks, such as large-scale RS image recognition, detection, classification, and retrieval.
Among these, remote sensing cross-modal text-image retrieval (RSCTIR) [3–7] aims to find
the same or similar images in a large-scale RS image dataset according to the given natural
language descriptions, and vice versa, as Figure 1. RSCTIR enables ordinary users, not
limited to professionals or researchers, to achieve retrieval tasks only by natural language
or visual input. It presents a better application value of human–computer interaction and
information filtering, which leads to a wide range of application prospects in military
intelligence generation, natural disaster monitoring, agricultural production, search and
rescue activities, urban planning, and other scenarios [8,9].

The RSCTIR task, belonging to multi-modal machine learning, is becoming an emerg-
ing research area at the intersection of natural language processing (NLP) and computer
vision (CV), which enables computers to understand image-text pairs in semantic terms [10].
In the RSCTIR task, there is often a huge semantic gap in feature expression between the
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query and target data modality. Therefore, major research focuses on establishing connec-
tions between samples of different modalities which have the same semantics. Specifically,
current RSCTIR methods are mainly divided into image caption-based methods and vision-
language-embedding-based methods. The former is mainly to semantically represent each
RS image to generate keyword tags that can describe the image, thus transforming RSCTIR
into keyword-based text retrieval. The core of such methods is to use generative models to
improve the performance of image caption tasks. For example, to make the generated tags
interpretable, Bao et al. [7] designed an interpretable word-sentence framework, decom-
posing the task into two subtasks: word classification and ranking. In order to enable tag
generators to have a more comprehensive semantic understanding of complex RS images,
Devlin et al. [11] proposed a recurrent attention and semantic gating framework to generate
better context features. Different from image caption-based methods, the vision-language-
embedding-based methods utilize a trained image and text encoder to map the same or
similar semantics sample into feature vectors with closer distances. The main point of these
works is how to choose the best loss optimization strategy to minimize the distance between
similar images and texts [12]. Lv et al. [13] solves the heterogeneous gap problem through
knowledge distillation. On the basis of knowledge distillation, Yuan et al. [14] expects
the model to be as lightweight as possible to achieve fast retrieval. Yuan et al. [5] pro-
posed an asymmetric multi-modal feature matching network (AMFMN) and contributed a
fine-grained RS image-text dataset to this task. Due to the well-studied vision-language
representing the model on pre-training tasks, the embedding-based methods have become
the preferred retrieval model in recent years.

Figure 1. Example visualization results of top-5 candidates for image-text retrieval and text-image
retrieval tasks.

We thus focus on the embedding based methods, which mainly generate visual and
text features from two uni-modal encoders, respectively, and optimize the encoders by
minimizing vector distances with similar semantics in a high-dimensional space. In view
of the high intra-class similarity and large inter-class differences of RS images, the current
RSCTIR framework is mainly based on convolutional encoders to extract the global fea-
tures of images [15,16] and object-detector-based encoders for the local information [17].
Finally, the two uni-modal features will be compared for loss optimization. In other words,
the core of the whole framework is to build a language or visual uni-modal encoder with
better feature expression ability. Although these methods have achieved good retrieval
performance, they do not integrate the features of text and image in the training process by
vision-language fusion. Secondly, most of them use pre-trained object detectors for image
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local feature extraction. Although it can effectively improve the ability of the model to
express the detailed features of RS images, the training processes for the object detectors
and the cross-modal retrieval model are fragmented.

Inspired by the current mainstream vision-language pre-trained model design, we
believe that an end-to-end training framework will eliminate the training gap brought by
the pre-trained object detectors, and improve the effect of the model by adapting more
training data. At the same time, under the whole framework, a vision-language fusion
model is required for image-text semantic alignment to optimize the feature expression
capabilities of uni-modal and multi-modal encoders simultaneously. By solving the above
problem, the end-to-end framework based on vision-language-fusion will ultimately bring
better results for RSCTIR tasks.

Driven by the above motivation, we introduced a multi-modal encoder to the current
most popular uni-modal encoder architecture, which is used to learn the semantic asso-
ciation between two modalities. Meanwhile, we discard the pre-trained object detector,
extract the local features of the image by introducing a vision transformer model, and use
multi-modal fusion and text erasure strategies to enhance feature interaction between
different modalities, so that the model can have the ability to represent local features based
on main objects. This end-to-end multi-modal framework demonstrates excellent training
convenience and shows more attractive performance. Compared with the most popular
method, our experiments finally achieved about a two point improvement measured by
the mR criterion, which represents the average of all calculated recalls on the RSICD and
RSITMD dataset. Furthermore, the trained multi-modal encoder can further improve the
top-one and top-five ranking performances after retrieval processing.

Our main contributions are as follows:

1. We design a framework with two uni-modal encoders and a multi-modal encoder
for RSCTIR named EnVLF. In this framework, the uni-modal encoders are used to
extract visual and text features, respectively, and the multi-modal encoder is used for
modality fusion. A multi-task optimization in the training process is used to improve
the feature representation for each encoder.

2. Inside the vision encoder, a shallow vision transformer model is chosen to extract the
local features of images instead of a pre-trained object detector, which transforms the
pipe-lined ”object detection + retrieval” process into an end-to-end training process.
The gap between the object detector and retrieval model training process is bridged
by this end-to-end framework.

3. In the inference process, the multi-modal encoder, which learns the fusion features
of image-text pairs, is used in the post-processing for reranking. It can improve the
top-one and top-five ranking performances based on the results on the retrieval task.

Our method is proved to be effective. The results on two commonly used RS text-
image datasets can compare with state-of-the-art (SOTA) methods. Subsequently, we
first introduce related works of cross-modal retrieval and vision-language pre-training
in Section 2. Then, we introduce our proposed EnVLF method and each submodule in
detail in Section 3. Section 4 presents the extensive experiments we conduct to verify the
effectiveness of EnVLF. Finally, our work is concluded.

2. Related Works
2.1. Cross-Modal Retrieval

Cross-modal image-text retrieval (ITR) is to retrieve relevant samples from one modal-
ity given its expression in another modality. Its key challenge is to bridge the heterogeneity
gap and learn a transformation function to project multi-modal data to a common rep-
resentation space, thus reducing the cross-modal retrieval task to an embedding space.
The retrieval process includes the extraction of uni-modal features and the alignment
of multi-modal features. Extracting features is the first and most critical process in an
ITR system, which includes methods such as vision-language embedding, cross-attention,
etc. Visual semantic embedding (VSE) is the most direct way to independently encode
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uni-modal features. The development of VSE mainly includes two aspects of data and
loss function improvement [18–21]. Cross-attention methods are mainly based on the
transformer method, which improve the retrieval performance by learning contextual
knowledge between modalities. For example, Cui et al. [22] proposed a method capable
of simultaneously encoding cross- and intra-modality knowledge in a unified scene to
enhance subsequent feature alignment tasks.

Feature alignment is also an important step, which needs to be used to calculate
pairwise similarity and achieve retrieval. It can be divided into two methods: global
alignment and local alignment. The global alignment method mainly uses the global
feature learning model [23,24], but this will ignore the fine-grained information in images
and texts, thus affecting the retrieval effect. Local alignment usually refers to corresponding
the patch-level information of the image with the word information in the text. Adopting
the ordinary attention mechanism [3,25] is a simple way to explore semantic region/patch
word correspondences. At the same time, it is also a strongly emerging direction to combine
global and local alignment. For example, Ji et al. [26] propose a step-wise hierarchical
alignment network, which decomposes image-text matching into a multi-step cross-modal
reasoning process, first achieving local-to-local alignment at the fragment level, and then in
turn performing global-to-local and global-to-global alignment at the context level.

2.2. Vision-Language Pre-Training

Most of the early cross-modal retrieval works used pre-trained networks in the fields
of natural language processing and computer vision followed by fine-tuning. However,
in recent years, as pre-trained models have become a hot topic, there has been a surge
of interest in developing general cross-modal pre-trained models and extending them to
downstream ITR tasks [27–29]. Most current pre-training ITR methods adopt the trans-
former architecture as a building block. CLIP [30] and ALBEF [31] are two typical cases.
CLIP uses a contrastive loss, which is one of the most effective losses in representation
learning, and is pre-trained on 400 million noisy multi-modal web data points, resulting in
highly general image-text features. Ultimately, CLIP achieves impressive performance on
many downstream vision and language related tasks. ALBEF also uses a contrastive loss to
align image and text representations before they merge. Unlike most existing methods, AL-
BEF requires neither labeled image data nor high resolution images. In addition, in order to
better learn from a large amount of noisy data, momentum distillation is proposed, which
is able to learn from the pseudo-objects of the momentum model. ALBEF also achieves
SOTA performance on many downstream vision-language tasks.

Through the analysis of all these existing studies, we believe that the essence of
RSCTIR is to bridge the gap in feature expression between images and texts. During the
training process, the two types of features need to be fused to better learn the interaction.
However, different from the pre-training process, RS retrieval has strong supervision
information. Therefore, in addition to improving uni-modal feature encoding, it is a focus
of our paper to use this supervision information to improve the vision-language fusion
features of the model and thus enhance the ability to express cross-modal features.

3. Methods

In this section, we first outline the overall architecture of our model and the design
purpose of each encoder in Section 3.1. Then, Section 3.2 introduces the optimization
objective in detail. Finally, we describe the training process for the entire architecture in
Section 3.3.

3.1. Model Architecture

Most traditional RSCTIR tasks are mainly to compute the vector similarity between
the features of the input query (RS image or text caption) and target features stored in the
database. A typical case is GaLR [4], which has been reported to achieve SOTA performance.
The core of GaLR is a well-designed vision and language encoder. Specifically, the image
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I and text T are encoded by vision encoder Fenc−V(I) and language encoder Fenc−L(T)
separately as two independent vectors which are mapped into the same space. Moreover,
for the visual module, GaLR specifically introduces an object detection branch followed
by a graph convolution network (GCN) based on the global encoder, which may cause
laborious model assembly. In the training optimization procedure, triplet loss is used
for optimization.

Through the detailed exploration of the above architecture, we found that most tradi-
tional RSCTIR methods mainly focus on improving the performance of uni-modal features
extraction. A multi-modal encoder which fuses vision-language features by completing
multitask training optimization objectives can further improve the performance of the en-
tire retrieval task. Illustrated in Figure 2, we propose our EnVLF model, which introduces a
multi-modal encoder based on the traditional RSCTIR framework for cross-modal semantic
feature learning. It is worth noting that we do not use the object detection branch, thus,
the whole training process is end-to-end. We also optimized the training process to enhance
the feature representation performance of uni-modal and multi-modal encoders by simulta-
neously optimizing three kinds of losses: image-text-triplet (ITT), masked-language-model
(MLM) and image-text-match (ITM). This process can be represented as follows:

f IL, f IGL = Fenc−V(I)

fT = Fenc−L(T)

Sdistance, Spairwise = Fenc−Mul( f IL, f IGL, fT)

(1)

f IL, f IGL, and fT denote the local visual features, fused visual features, and text features
extracted by uni-modal encoders Fenc−V and Fenc−L separately. Cross-modal similarity
Sdistance and pair-wised image-text similarity Spairwise are calculated by multi-modal encoder
Fenc−Mul .

Figure 2. Proposed RSCTIR framework based on EnVLF which consists of a vision encoder, a lan-
guage encoder and a multi-modal encoder. Mvit module is introduced into the vision encoder to
achieve local object representation enhancement. The language encoder is constructed based on the
BERT model with a specially designed language mask module. The multi-modal encoder aims to
promote better alignment of image-text features by utilizing multitask optimization, and can also
serve as a reranking module.

Next, we will describe our framework with regard to three aspects: vision encoder,
language encoder and multi-modal encoder.
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3.1.1. Vision Encoder

It has been found in the literature [5,7,32] that in vision-language pre-training tasks,
the information carried by the vision side is much more than the language side, so a more
complex vision encoder is needed to express comprehensive features. Inspired by this,
we believe that a vision encoder can be divided into a global feature extraction module
Mcnn−mvsa, an object-based local feature extraction module Mvit, and a vision fusion module
Mmid f , and in this way, the vision encoder can fully extract the multi-dimensional features
of the image. This can be formalized as follows:

Fenc−V =
{

Mcnn−mvsa, Mvit, Mmid f

}
f IG = Mcnn−mvsa(I)

f IL = Mvit(I)

f IGL = Mmid f ( f IG, f IL)

(2)

where f IG and f IL are global and local features of the same RS image presented by
Mcnn−mvsa and Mvit separately. The f IGL is the features fused by Mmid f .

CNN-based methods directly map the global features of an image into the high-
dimensional space, which have shown advantages in image embedding tasks. In more
detail, referring to the method of GaLR, we use ResNet-18 and a multi-level visual self-
attention (MVSA) module as the global features encoder Mcnn−mvsa for RS images.

An object-detection-based model pre-trained on other RS-related datasets can identify
the main objects in RS images, such as airplanes, cars, buildings, etc. Capturing local
features of RS images by characterizing the relationships between these main objects can
improve the RSCTIR performance [4]. However, training an effective object detector relies
on well annotated RS object detection datasets, such as DOTA [33], NWPU-RESISC45 [34],
and UCAS-AOD [35]. Meanwhile, it is worth noting that the difference of data annotation
forms between object detection and cross-modal retrieval tasks brings a data gap which
results in a pipeline mode of the training process. For this imperfection, we adopt Mvit,
a transformer-based vision model [36], and exploit its image patch-based feature represent-
ing characteristics to replace the pre-trained object detector. By optimizing with MLM and
ITC loss in training, the visual features from Mvit and masked text features from Mbert are
aligned with the key semantics, which means Mvit has the same ability as a pre-trained
object detector for image local feature extraction.

The vision transformer module Mvit is the key for the local feature encoder, which
consists of stacked blocks that include a multi-head self-attention (MSA) layer and a multi-
layer perceptron (MLP) layer.

v0 = [vclass; v1V; . . . vNV] + Vpos, V ∈ R(P2·C)×H , Vpos ∈ R(N+1)×H

v̂d = MSA(LN(vd−1)) + vd−1, d = 1 . . . D

vd = MLP(LN(v̂d)) + v̂d, d = 1 . . . D

p = tanh(vD
0 Wpool)

(3)

The input image I ∈ RH×W×C is slid into a flattened two-dimensional patch of size
(N × (P2 · C)), where (P, P) is the patch size and N = HW/P2. N is the number of blocks
that affect the length of the input sequence. Followed by the linear projection V ∈ R(P2·C)×H

and position embedding Vpos ∈ R(N+1)×H , v is embedded into fiL ∈ RN×H .
The MIDF module Mmid f proposed by GaLR is used to achieve the dynamic fusion of

global and local features in vision encoder Fenc−V . After Mmid f fusing the local and global
information, the comprehensive features of RS images are represented by the Fenc−V , which
are subsequently used to interact and fuse with the text features generated by the language
encoder Fenc−L.
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3.1.2. Language Encoder

As analyzed in Section 3.1.1, the information contained in language is less than that in
vision, so a lightweight language encoder that can represent text features is needed. To align
with sequenced vision features generated by Mvit, the same language encoder as BERT [11],
where a [CLS] token is appended to the beginning of the text input to summarize the
sentence, is the best choice. Specifically, aiming to simplify the computational complexity,
we initialize the first six layers of the BERT-based model Mbert as the language encoder
Fenc−L. The language encoder transforms the input text T into a sequence of embeddings
wcls, w1, . . . , wN , which is fed to the multi-modal encoder for cross modal representation
learning and language-vision fusion.

fT = Mbert(T) (4)

In order to use the semantic correlation relationship between modalities to improve the
extraction of features for each modal encoder, we perform a targeted masked strategy on the
target category information contained in RS images as well as the traditional random mask
processing in the language mask module. The masked text is passed through the language
encoder to generate the feature fT . The local feature f IL generated by vision encoder and
the masked text feature fT are fused in the multi-modal encoder. By optimizing with the
MLM loss in training, the Mbert in the language encoder and the Mvit in the vision local
encoder can reach a better performance in specific target recognition.

3.1.3. Multi-Modal Encoder

Considering that the semantic features of image I and text T extracted by the uni-
modal encoder with vector distance constraint cannot be sufficiently aligned in traditional
methods. Besides the cross-modal similarity module, a visual-language fusion module
is introduced in the multi-modal encoder, which is initialized with the last six layers of
the BERT-based model and uses an additional cross-attention layer to model the visual-
language interaction. The multi-modal encoder can be formalized as

Fenc−Mul =
{

Mcms, Mvl f

}
(5)

where the Mcms calculates the similarity between image features f IGL and text features fT
by using cosine distance and optimizes the parameters in uni-modal encoders by using ITT
loss. The Mvl f uses MLM loss to optimize the expression of visual local feature encoder
Mvit and text feature encoder Mbert by fusing the features f IL and fT . Furthermore, Mvl f
also utilizes ITM loss to simultaneously optimize the feature representation ability of the
uni-modal encoders and multi-modal encoder.

Training with vision-language fusion can improve the performance of each uni-modal
encoder and ultimately affects the RSCTIR results. Since the vision-language fusion model
Mvl f requires image-text pairs as input in the inference process, it cannot be used for a
large-scale data recall process in RSCTIR. Considering that the trained Mvl f has a better
fine-grained discrimination ability for image-text pairs, so we further use it to rerank the
results to improve the top-one and top-five retrieval performances.

3.2. Multitask Optimization

During the training process, the end-to-end RSCTIR framework should improve the
performance of each encoder by optimizing multiple targeted tasks. Thus we designed
three training objectives for the framework: ITT on the uni-modal encoders with cosine
similarity, MLM loss for capturing main objects based features, and ITM on language-vision
fusion for image-text pairwise similarity learning.
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3.2.1. Image-Text-Triplet Loss for Uni-Modal Encoder

Triplet loss is a loss commonly used in the field of image-text alignment. It calculates
the loss function value by comparing the distance between three samples (anchor, positive,
and negative). The main idea is to learn a feature representation space, so that anchor
samples of the same category are closer to positive samples in this space, and anchor
samples of different categories are farther away from negative samples. This can be
formalized as follows:

Litt = ∑̂
T

[ε− cos(I, T) + cos(I, T̂)]+ + ∑̂
I

[ε− cos(I, T) + cos( Î, T)]+ (6)

where ε represents the minimum margin designed to widen the gap between anchor and
positive/negative sample pairs, [x]+ ≡ max(x, 0). (I, T) is a paired image-text sample. T̂
is the text that is not paired with the image I, and Î is the RS image not paired with the
text T.

The advantage of ITT loss lies in the distinction of details, that is, when the two
inputs are similar, triplet loss can better model the details. Therefore, we choose the triplet
loss in our RSCTIR task to constrain feature representation for uni-modal encoders. The
strategy for choosing positive and negative examples is: given the N image-text pairs in one
batch are positive samples, and the other N2 − N unpaired image-text pairs are negative
samples. The purpose of this strategy is to make the uni-modal encoder learn a complex
representation of both inter-class and intra-class differences.

3.2.2. Image-Text-Match Loss for Pairwise Similarity

In image-text matching, the model predicts whether a pair of input image and text is
matched or not. Inspired by most VLP models treating image-text matching as a binary
classification problem, we use this training target for the multi-modal encoder. Specifically,
a special token, such as [CLS], is inserted at the beginning of the input sentence, which tries
to learn a cross-modal representation. Different from the multi-modal encoder of VLP for
binary classification, we add a fully connected layer to calculate a two-class probability pitm

for each image-text pair which can be used as a reranking model in the inference procedure.
ITM loss can be formalized as follows:

Litm = E(I, T)∼D H(yitm, pitm(I, T)) (7)

3.2.3. Masked Language Model for Object-Based Image Representation

The masking language modeling (MLM) loss strategy uses images and contextual text
to predict masked words, which was originally used in language training tasks, providing
better feature expression for pre-trained models. In RSCTIR, it has also been proved to
have the same importance as the ITM loss strategy. In our framework, in order to allow the
vision encoder to express the region features without using the object detection module, we
use MLM with the patch embedding ability of the vision transformer to express the features
of the main target of RS images. At the same time, we optimize the masked strategy by
using two methods: targeted masked strategy and random masked strategy. The targeted
masked strategy aims to enhance the generalization ability of the model, and the targeted
mask mainly focuses on important information in the retrieval process, such as the type
and number of objects. The text is input into the encoder through the above two masking
methods, and then the model is trained to reconstruct the original mark to achieve the
ability to represent the information of the main targets. The optimization objective of MLM
is minimizing a cross-entropy loss:

Lmlm = E(I, T̂)∼D H(ymsk, pmsk(I, T̂)) (8)

where the masked text is denoted by T̂, and the predicted probability of the model for a
masked token is denoted by pmsk(I, T̂).
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3.3. Training Procedure of EnVLF

The training and inference procedures of our proposed EnVLF are summarized in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Training Procedure of the Proposed EnVLF
Input:

Image-Text pairs of RS dataset DIT = {{I1, T1} · · · {In, Tn}, n is the number o f pairs}
Through:

Global visual feature f IG = Mcnn−mvsa(I; θ1)
Local visual feature f IL = Mvit(I; θ2)
Vision fusion feature f IGL = Mmid f (I; θ3)
Text feature fT = Mbert(T; θ4)
Multi-modal fusion feature fMM = Mvl f (I, T; θ5)

Repeat until convergence:
1: for each batch I, T ∈ DIT do

Dual visual feature extraction
2: f IG = Mcnn−mvsa(I; θ1)
3: f IL = Mvit(I; θ2)
4: f IGL = Mmid f (I; θ3)

Text feature extraction
5: fT = Mbert(T; θ4)

Multi-model extraction
6: fMM = Mvl f ( f IL, f IGL, fT ; θ5)

Calculate the ITT loss
7: litt = L( f IGL, fT)

Calculate the ITM loss
8: litm = L( fMM)

Calculate the MLM loss
9: lmlm = L( f IL, fT)

10: Update θ1, θ2, θ3, θ4, θ5 by litt, litm, lmlm

11: end for
12: return Mcnn−mvsa, Mvit, Mmid f , Mbert, Mvl f

Algorithm 2 Inference Procedure of the Proposed EnVLF
Input:

Image-Text pairs of RS dataset DIT = {{I1, T1} · · · {In, Tn}, n is the number o f pairs}
Through:

EnVLF model f IGL, fT = EnVLF(I, T; θ1)
Initialize the similarity matrix S
Vision-Language Fusion module rerank Spairwise = Mvl f ( f IGL, fT ; θ2)

Calculate image-text similarity matrix:
1: for each batch I, T ∈ DIT do

Visual and text feature extraction
2: f IGL, fT = EnVLF(I, T; θ1)
3: Sdistance = Mcms( f IGL, fT)
4: Append Sdistance to S
5: end for
6: return S

Multi-model module top-10 rerank: (optional)
7: Spairwise = Mvl f ( f IGL, fT ; θ2)
8: return Spairwise

In the training process, we mainly optimize the image encoder Fenc−V , the text encoder
Fenc−L, and the multi-modal encoder Fenc−Mul . First, we input the RS image-text pair batch
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Dit for training, and then pass it through the uni-model image encoder Fenc−V and text
encoder Fenc−L. Fenc−V contains dual modules Mcnn−mvsa and Mvit to extract global features
f IG and local features f IL, respectively, and finally visual features are formed through the
vision fusion module Mmid f . The whole process uses three loss strategies to guide the
training process, and the litt loss is used to optimize the generation of f IGL and fT . litm
and lmlm are jointly optimized by text encoder Fenc−L and module Mvl f in multi-modal
encoder Fenc−Mul , and finally after multiple epoch iterative training, the optimal EnVLF
model is constructed.

For the inference process, the RS image-text test pair batch is required, which is
sent to the trained EnVLF model to obtain the uni-model image and text feature f IGL,
fT . Afterwards, the cosine distance is used to calculate the similarity Sdistance between
query and targets, and all test datasets are traversed to generate a large matrix S, thereby
completing the final recall task. At the same time, in order to utilize the pairwise similarity
Spairwise calculated by multi-modal encoder, we choose to use it to complete the reranking
of top-10 results.

4. Experiments
4.1. Datasets and Evaluation Metrics

In our experiments, we validate our EnVLF on two datasets: RSICD [9] and RSITMD [5].
Each dataset is given in the form of a large number of image-text pairs, as shown in Figure 3,
where RSICD has 10,921 pairs, of which the image size is 224× 224, making it the most
numerous retrieval dataset currently available. RSITMD has 4743 pairs with the image
size of 256× 256. Compared with RSICD, RSITMD has a finer-grained text caption. In our
experiments, we follow the data partitioning approach of Yuan et al. [5] and use 80%,
10%, and 10% of the dataset as the training set, validation set, and test set, respectively.
For the evaluation criteria, we use R@k and mR [37] to evaluate the recall performance of
EnVLF. R@k indicates the proportion of ground truth contained in the top k results recalled.
Consistent with GaLR, we choose k to be 1, 5, or 10 to evaluate the results more fairly.
mR represents the average value of each R@k, which can be used as the final evaluation
criterion of the overall performance of the model.

Figure 3. Example image-text pairs from the RSICD and RSITMD remote sensing image-text datasets,
where each pair consisting of an RS image and five corresponding sentences.

4.2. Implementation Details

All our experiments are performed on a single Tesla V100 GPU. For images, we unified
the size of all images to 3× 256× 256 and sent them to the image encoder, and then applied
data enhancement methods such as random rotation and random cropping. We directly
chose ResNet-18 to apply to the global encoder. For the local encoder, we used a 6-layer
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standard VIT model, and the final generated image and text uni-model features were both
512. For the text model, we used the first six layers of BERT to build a text encoder, and the
last six layers to build a multi-model encoder. The batch size we applied in the training
procedure was 64 and adjusted to 128 during validation. The learning rate was initialized
to 2 × 10−4, and decayed by a factor of 0.7 every 15 epochs of validation following the
iterative process. We trained the entire model for 30 epochs and optimized the model
with the Adam optimizer. The rest of the parameters except the learning rate were kept as
default values and were not adjusted during the entire procedure.

4.3. Comparisons With the SOTA Methods

We compare the excellent work based on RS cross-modal retrieval task on RSICD and
RSITMD datasets: including VSE++ [23], SCAN [12], CAMP [38], MTFN [39], AMFMN [5],
LW-MCR [14], and GaLR [4].

VSE++ is one of the pioneers of using uni-modal encoders to extract image and text
features for cross-modal retrieval. A triplet loss is used to optimize the training objective.

SCAN enhances VSE++ by using an object detector to extract local features. The object
detector has been proved to achieve excellent performance in local feature extraction.

CAMP propose a message passing mechanism, which adaptively controls the informa-
tion flow for message passing across modalities. The triplet loss and the BCE loss method
are used as control groups.

MTFN designs a multi-modal fusion network based on the idea of rank decomposition
to improve the retrieval performance by a reranking process.

AMFMN utilizes an asymmetric approach based on triplet loss that uses visual features
to guide text presentation.

LW-MCR takes advantage of methods such as knowledge distillation and contrast
learning for lightweight retrieval models.

GaLR optimizes the representation matrix and the adjacency matrix of local features
by using GCN. The quantitative analysis on multiple RS text-image datasets demonstrates
the effectiveness of the proposed method for RS retrieval.

For the methods above, we use the results reported in the literature [14]. Following
the same strategy for our experiments as these works, we provide the performance of our
final model for comparison.

EnVLF: We use the whole EnVLF framework in training progress, and use the uni-
modal encoder for RS cross-modal retrieval.

Table 1 shows that the performance of the EnVLF is particularly impressive on both
RSICD and RSITMD datasets, and we can obtain conclusions as follows:

Table 1. Performance comparison with other models on the RSICD and RSITMD datasets.

Model

RSICD Dataset RSITMD Dataset

Sentence Retrieval Image Retrieval mR Sentence Retrieval Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VSE++ 3.38 9.51 17.46 2.82 11.32 18.10 10.43 10.38 27.65 39.60 7.79 24.87 38.67 24.83
SCAN t2i 4.39 10.90 17.64 3.91 16.20 26.49 13.25 10.18 28.53 38.49 10.10 28.98 43.53 26.64
SCAN i2t 5.85 12.89 19.84 3.71 16.40 26.73 14.23 11.06 25.88 39.38 9.82 29.38 42.12 26.28

CAMP-triplet 5.12 12.89 21.12 4.15 15.23 27.81 14.39 11.73 26.99 38.05 8.27 27.79 44.34 26.20
CAMP-bce 4.20 10.24 15.45 2.72 12.76 22.89 11.38 9.07 23.01 33.19 5.22 23.32 38.36 22.03

MTFN 5.02 12.52 19.74 4.90 17.17 29.49 14.81 10.40 27.65 36.28 9.96 31.37 45.84 26.92
LW-MCR(b) 4.57 13.71 20.11 4.02 16.47 28.23 14.52 9.07 22.79 38.05 6.11 27.74 49.56 25.55
LW-MCR(d) 3.29 12.52 19.93 4.66 17.51 30.02 14.66 10.18 28.98 39.82 7.79 30.18 49.78 27.79

AMFMN-soft 5.05 14.53 21.57 5.05 19.74 31.04 16.02 11.06 25.88 39.82 9.82 33.94 51.90 28.74
AMFMN-fusion 5.39 15.08 23.40 4.90 18.28 31.44 16.42 11.06 29.20 38.72 9.96 34.03 52.96 29.32

AMFMN-sim 5.21 14.72 21.57 4.08 17.00 30.60 15.53 10.63 24.78 41.81 11.51 34.69 54.87 29.72
GaLR 6.59 19.85 31.04 4.69 19.48 32.13 18.96 14.82 31.64 42.48 11.15 36.68 51.68 31.41

EnVLF 7.78 20.52 31.56 6.09 22.33 36.65 20.82 13.42 33.11 47.12 11.15 38.63 57.58 33.50
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The performance of EnVLF on the RSICD dataset, which is a large RS image-to-
text dataset, strongly demonstrates the effectiveness of our proposed method. For the
EnVLF model, the mR score is even 1.86 points higher than the most outstanding models,
reaching 20.82. Whether it is text-to-image retrieval or image-to-text retrieval, EnVLF model
shows the best performance compared with the previous SOTA method on R@1, R@5, and
R@10 results.

RSITMD has more fine-grained representation in text than RSICD, which makes the
retrieval task even more challenging. However, EnVLF still performs well on the RSITMD
dataset. The mR of EnVLF finally reached 33.50, which is 2.09 points ahead of GaLR. In
more detail, the most difficult R@1 results for text-to-image and image-to-text retrieval
of our EnVLF are slightly lower than SOTA. This may be due to the difference between
the training set and the test set. Perhaps the semantic distribution of the test set is a little
simpler than that of the training set. While compared with AMFMN, our model is more
complex, leading to poor results, which can be a future research point. However, it is worth
noting that the R@5 and R@10 results are well ahead of the SOTA.

We further compare the qualitative results of our EnVLF with GaLR in Figure 4.
For text-to-image retrieval, we chose an example of the playground. The results show that
EnVLF hit the ground truth of the image at the top-one position, and in the top-five results,
most of the results centered on the playground. While for GaLR, the hit is not only realized
in the top-three position, but most of the results are centered around the baseball field,
which indicates that EnVLF can learn more matching, semantically similar features through
our cross-modal design. The image-to-text retrieval results are shown below. We can find
that EnVLF can hit more ground truth texts in the top-five results, and all of them rank
within the top two, while GaLR only hit one low-ranked ground truth text.

Figure 4. Visual comparison of retrieval results between EnVLF and the state-of-the-art GaLR on
the RSITMD test set for two retrieval tasks. Among the top-5 candidates, the red box surrounds the
ground truth.

We then explore the reasons why EnVLF exhibits more attractive performance com-
pared with GaLR, which we believe can be attributed to the following factors: Firstly,
EnVLF adds an Mvit local vision encoder on the basis of the global vision encoder. How-
ever, GaLR contains a global encoder and an object detector whose effect has been proved to
be closely related to the number of objects contained in the image [4]. When there are fewer
objects, the detector will show weaker performance. Secondly, the language encoder of
EnVLF also adopts the transformer model and carefully designs a targeted masked strategy,
thus improving the expression of the main features, which are not considered in GaLR.
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Finally, GaLR only uses the triplet loss to optimize the vision and language encoder, while
EnVLF introduces a multi-modal encoder which can better perform semantic alignment
across modalities and uses three kinds of losses during the optimization.

4.4. Reranking Process Based on Multi-Modal Encoder

In EnVLF, the cross-modal similarity calculation module Mcms can be used to effi-
ciently find the top-N similar results for large-scale data retrieval. Furthermore, in order
to take full advantage of the vision-language fusion module Mvl f that learns pairwise
image-text feature representations, we train it to be used as a reranking process. In our
experiment, the EnVLF model only uses each uni-modal encoder for feature extracting,
and Mcms in multi-modal encoder for feature similarity calculating. However, the results
show that the recall rate of the model on the more difficult top-one and top-five is always
lower, so based on the results of EnVLFrerank, we use the EnVLFrerank model to calculate
the pairwise similarity between the query and top-ten recalled candidates. The results in
Table 2 shows the reranking process can further improve the mR criterion by about 0.1
points. During our experiment, we found that the performance of the reranking process is
not stable, but a slightly higher result can be achieved on most of the top-one and top-five
results, especially in some difficult cases, such as Figure 5; although EnVLF recalls similar
candidates, EnVLFrerank can still rerank the ground truth to top-one, and can even find
more top-five correct retrieval results, which shows the potential of the reranking process.
Thus, we believe that with more careful design in the future, the reranking process can play
a greater role.

Table 2. Comparison results of the rerank module on the RSICD dataset.

Model Sentence Retrieval Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

EnVLF 7.78 20.52 31.56 6.09 22.33 36.65 20.82
EnVLFrerank 7.99 20.98 31.56 5.73 22.80 36.65 20.95

4.5. Ablation Studies of Structures

We conducted ablation experiments on the RSITMD dataset for the cross-modal
retrieval task to validate each module separately. Specifically, four control experiments
were designed to explore the influence of every proposed module on retrieval performance,
and we kept the language encoder Fenc−L the same in all experiments. The ablation
experiment modules are as follows:

EnVLFglb: Use the vision encoder Fenc−V only containing the global feature extractor
Mcnn−mvsa for visual features and multi-modal encoder Fenc−Mul only containing Mcms for
cosine similarity calculating.

EnVLFuni: Use the full vision encoder Fenc−V containing the global feature extractor
Mcnn−mvsa, local feature extractor Mvit and vision fusion module Mmid f for visual features,
and multi-modal encoder Fenc−Mul only containing Mcms for cosine similarity calculating.

EnVLFRanMask: Use the full vision encoder Fenc−V and full multi-modal encoder
Fenc−Mul containing Mcms and vision-language fusion module Mvl f . We do not inter-
fere in the selection of masks in this experiment, and a random masked strategy is used for
text preprocessing.

EnVLFTarMask: The overall model is the same as EnVLFRanMask, but our proposed
targeted masked strategy proposed is used for the text preprocessing to guide the text
encoder to learn more targeted features that are conducive to the image-text retrieval
process. At the same time, we do not remove the random masked strategy module.

In these models, the comparison between EnVLFglb and EnVLFuni shows the perfor-
mance of the Mvit module without vision-language fusion. The results of EnVLFRanMask
compared with EnVLFuni shows the influence of vision-language fusion module Mvl f in
multi-modal encoder Fenc−Mul . The control group (EnVLFRanMask, EnVLFTanMask) veri-
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fies the superiority of the targeted masked strategy with vision transformer Mvit in local
feature extraction.

Figure 5. Visual comparison of the rerank module for two retrieval tasks on the RSITMD test set.
Among the top-5 candidates, the red box surrounds the ground truth.

Table 3 shows the results of the above three groups of experiments.
Compared with EnVLFglb, the mR criterion of the model EnVLFuni increased by 0.77

points after adding the vision transformer Mvit for local feature extraction without multi-
modal fusion.

Subsequently, we show the results of EnVLFRanMask. Through adding the vision-
language fusion module Mvl f to the multi-modal encoder Fenc−Mul , the mR criterion is
further improved by 0.44 points compared with EnVLFuni.

The results of control-experiment group (EnVLFRanMask, EnVLFTarMask) show that
the object-related information masked strategy can improve the representation for local
features, especially for the top-10 recall results, through EnVLFTarMask can reach 1.69 points
of improvement. This experiment can also prove that the vision and language transformers
trained by multi-modal fusion show a comparable ability with pre-trained object-detector-
based methods.

Table 3. Ablation experiments for different modules on the RSITMD dataset.

Model Mmvsa

Mvit I2T Retrieval T2I Retrieval
mRw/o

mlm
Random

Mask
Targeted

Mask R@1 R@5 R@10 R@1 R@5 R@10

EnVLFglb
√ √

12.83 29.42 44.25 11.64 38.89 54.82 31.98
EnVLFuni

√ √
13.86 32.37 45.20 11.49 38.60 54.96 32.75

EnVLFRanMask
√ √

14.60 32.52 44.69 12.39 39.03 55.90 33.19
EnVLFTarMask

√ √ √
13.42 33.11 47.12 11.15 38.63 57.58 33.50

5. Conclusions

In this paper, we proposed an end-to-end RS cross-modal retrieval framework named
EnVLF, which consists of three modules: a vision encoder and a language encoder for
uni-model feature extraction, and a multi-modal encoder for vision-language fusion. Specif-
ically, for the vision encoder, we introduce a vision transformer module trained with
a multi-modal encoder to achieve the ability of object detection, which transforms the
pipelined training process into an end-to-end process. By optimizing multiple target tasks
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for training, EnVLF can obtain competitive retrieval performance and bridge the training
gap between object detection and retrieval tasks. In addition, the trained multi-modal
encoder can improve the top-one and top-five ranking performances after retrieval pro-
cessing. The experiments and analysis on multiple RS text-image datasets demonstrate the
effectiveness of our EnVLF method for RS retrieval.

Visual grounding and image captioning, as two other typical tasks of multi-modal
machine learning, have potential benefits for text-to-image retrieval and image-to-text
retrieval separately. Therefore, in future work, we will further improve by means of multi-
level cross-modal feature learning and generative transformer modals, which are proved to
be efficient in visual grounding and image captioning tasks [40,41]. Furthermore, obtaining
accurate results from noisy data will also be part of our follow-up research to improve the
practical value of RSCTIR [42].
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