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Abstract: Hydraulic turbines constitute an essential component within the hydroelectric power
generation industry, contributing to renewable energy production with minimal environmental
pollution. Maintaining stable turbine operation presents a considerable challenge, which necessitates
effective fault diagnosis and warning systems. Timely and efficient fault w arnings are particularly
vital, as they enable personnel to address emerging issues promptly. Although backpropagation (BP)
networks are frequently employed in fault warning systems, they exhibit several limitations, such
as susceptibility to local optima. To mitigate this issue, this paper introduces an improved social
engineering optimizer (ISEO) method aimed at optimizing BP networks for developing a hydraulic
turbine warning system. Experimental results reveal that the ISEO-BP-based approach offers a highly
effective fault warning system, as evidenced by superior performance metrics when compared to
alternative methods.

Keywords: automated fault warning; BP neural network; artificial intelligence; optimization

MSC: 93-10

1. Introduction

In the era of Industry 4.0, there is a growing need for enhanced equipment reliability
and responsiveness [1]. Hydraulic turbines, serving as vital power-generating equipment
in hydroelectric power plants, play a critical role in determining overall operational quality
and efficiency [2]. Consequently, ensuring high-quality turbine operation and avoiding
instability during the manufacturing process is imperative. Fault diagnosis and warning
systems are essential tools for addressing this challenge [3]. Fault diagnosis involves identi-
fying faults when equipment behavior exceeds acceptable thresholds, enabling relevant
personnel to respond appropriately [4]. In contrast, fault warning aims to forecast future
equipment behavior and estimate potential failure moments, thus aiding decision-making
processes related to maintenance concerns [5,6].

The literature review highlights the significance of fault warnings in averting failures
and minimizing costs, as compared to fault diagnosis. Numerous studies have focused
on devising effective fault warning models utilizing artificial neural networks and op-
timization algorithms [7]. For instance, Scalabrini et al. [8] employed accelerometers to
gauge vibrations, and artificial neural networks to predict motor failure timing, resulting
in reduced operational costs and complexity. Gao et al. [9] suggested an adaptive deep
belief network for early warnings in the electric vehicle charging process to enhance safety.
Cai et al. [10] developed a distribution network fault warning model using the XGBoost
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method. Meanwhile, Sun et al. [11] proposed a technique for analyzing fault warnings of
critical transmission components in wind turbines by integrating a nonlinear method, fea-
ture reduction method, and metric learning. They conducted experiments with engineering
examples, demonstrating the importance of their proposed method in providing warnings
for wind turbine equipment [11]. Additionally, Cui et al. [12] created an air compressor
fault warning model using principal component analysis and the BP method. Li et al. [13]
enhanced the performance of a convolutional neural network utilizing a particle swarm
optimization (PSO) algorithm for fault warnings in synchronous generators. Concurrently,
Liu et al. [14] employed an improved long-short-term memory (LSTM) model for early
warning of axle box bearing faults. Wang et al. [15] utilized a BP neural network for early
warning of distribution transformer faults, while Chen et al. [16] improved a BP neural
network with a genetic algorithm (GA) for fault warning in wind turbine pitch systems.
Ma et al. [17] constructed a BP neural network model for crusher fault diagnosis, and
Ling et al. [18] applied a GA-optimized BP neural network for generator fault diagno-
sis. Zhang et al. [19] developed a BP neural network model for electric vehicle charging
safety warnings using an enhanced grey wolf optimization algorithm. Lee et al. [20] pro-
posed a neural network employing PSO for fault diagnosis. Sun et al. [21] examined the
thermal runaway warning of new energy vehicle batteries and developed a data-driven
warning system. Yuan et al. [22] investigated a fault warning strategy for pitch motors,
employing an echo state network to predict the motor’s temperature and subsequently
using an exponentially weighted moving average technique to set alarm limit lines for
each parameter. Huo et al. [23] studied a mechanical fault detection and warning method
based on adversarial autoencoder. Mu et al. [24] conducted research and analysis on
transmission grid cascade fault warning localization and developed a warning framework
using long and short neural networks. Zhou et al. [25] created a BP neural network-based
early warning algorithm for thermal fault diagnosis in electrical equipment, demonstrating
better prediction accuracy. Yao et al. [26] combined clustering and classification methods to
develop a fault warning system for steam turbines. He et al. [27] developed a multi-module
emerging fault warning method for thermal power plants, suitable for scenarios with few
operational samples. Wang [28] proposed a wind turbine fault warning method based on a
residual self-encoder network to effectively avoid gradient disappearance issues. Lastly,
Zhang et al. [29] enhanced neural networks with a cuckoo optimization algorithm for
industrial equipment fault warning.

After conducting a thorough review and analysis of the relevant literature, we have
arrived at the following conclusions:

• The BP neural network is a widely utilized approach for fault warning due to its con-
ciseness, effectiveness, and practicality compared to alternative methods. However,
during the network’s initialization, both weights and thresholds are generated ran-
domly and subsequently updated using the gradient descent method. The sensitivity
of the BP neural network to initial weights implies that varying weight initialization
can result in divergent convergence of the BP algorithm, which can significantly impact
the efficiency and quality of the BP neural network. Thus, it is crucial to optimize the
initial weights and threshold selection method of the BP neural network to maximize
performance and enhance fault-warning outcomes.

• Metaheuristic algorithms have gained recognition as potent tools for optimizing BP
neural networks, thanks to their straightforward parameter adjustment and excep-
tional merit-seeking capability [28–30]. The integration of metaheuristic algorithms
with BP neural networks has become a significant research topic, as it can yield en-
hanced performance and superior outcomes in diverse applications related to fault
warning and diagnosis.

• While numerous combinations of BP with GA, COA, PSO, and various traditional
algorithms exist, to the best of our knowledge, no study has assessed the performance
of the Social Engineering Optimizer SEO within this research domain.
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• The “No Free Lunch” theorem in the optimization community posits that no universal
optimization algorithm consistently outperforms all other algorithms across every
optimization problem [31]. Consequently, it is vital to persistently explore the appli-
cation of diverse optimization algorithms in novel areas and refine them to address
their limitations and augment their performance on specific issues. This notion holds
particular significance for metaheuristic algorithms, which have demonstrated im-
mense potential in optimizing intricate problems but necessitate meticulous selection
and tuning of parameters to attain favorable results. By continuously advancing and
enhancing these algorithms, we can further boost their performance and broaden
their application scope across various fields, including fault warning and neural
network optimization.

In order to address the aforementioned research gaps, this paper introduces an Im-
proved Social Engineering Optimizer (ISEO) to establish a hybrid model referred to as
ISEO-BP. We apply this model to hydraulic turbine fault warning with the aim of better
aligning hydraulic turbine maintenance with industrial development requirements, while
simultaneously ensuring optimal operational efficiency and quality.

• First, we propose improvements to traditional SEO to overcome its limitations and
enhance its performance. These improvements include new search operators to create
a better balance between the exploration and exploitation phases.

• Second, we introduce a novel approach by combining SEO with the BP neural network,
which expands the application area of SEO and enhances its effectiveness in solving
complex problems.

• Third, we propose a new fault warning method called ISEO-BP, specifically designed
for hydraulic turbines. Our method analyzes various failure modes of hydraulic tur-
bines and provides relevant personnel with timely information to choose appropriate
maintenance strategies. We also propose an application strategy for using this method
to address equipment failure warning in other industries.

• Finally, we validate the effectiveness of our proposed method through real-world
industrial case studies.

In conclusion, this paper discusses the development of a fault warning system for
hydraulic turbines in hydroelectric power plants. With the increasing need for reliable
and responsive equipment, fault diagnosis and warning are crucial tools to ensure effi-
cient operation. Fault diagnosis identifies faults when the equipment’s behavior exceeds
acceptable conditions, while fault warning predicts future behavior to prevent failures and
facilitate maintenance decisions. Compared to fault diagnosis, fault warning, as a mode of
prior prevention, is particularly important. However, there is a slight lack of research on
fault warning strategies. Additionally, BP neural networks, an essential tool in this field,
have significant shortcomings, and metaheuristic algorithms that serve to improve these
shortcomings must be given importance.The paper explores the use of a BP neural network
as a fault warning method, highlighting its advantages and limitations, and proposes
optimizing the initial weights and threshold selection of the BP neural network using the
recently developed SEO algorithm. The proposed method, called ISEO-BP, is applied to
hydraulic turbine fault warning and compared with other existing methods. This paper
contributes to the application of the SEO algorithm in new areas and demonstrates that the
proposed method can effectively improve the efficiency and quality of hydraulic turbine
fault warning.

The structure of the remainder of the paper is organized as follows: In Section 2, we
introduce ISEO-BP, which is an improvement of SEO that is integrated with BP networks.
Section 3 demonstrates the effectiveness of ISEO by applying it to a hydroelectric power
plant turbine case and proposing a turbine fault warning strategy. In Section 4, we com-
pare ISEO-BP with other advanced methods to further illustrate its effectiveness. Finally,
in Section 5, we conclude the paper with a summary, limitations, and suggestions for
future research.
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2. Proposed Solution Method

In this paper, we propose an ISEO-BP method for hydraulic turbine fault warning.
Here, we first introduce the BP neural network (Section 2.1), followed by a description
of the main SEO framework, and our improvements to SEO (Section 2.2), and finally, we
describe the detailed flow of our proposed INGO-BP (Section 2.3).

2.1. BP Neural Network

The BP neural network is a well-established multilayer neural network that has been
demonstrated to be effective in numerous applications [32]. It comprises three primary
components: the input layer, hidden layer, and output layer. A key characteristic of this
network is its forward signal transmission and backward error propagation, which enables
continuous adjustments of network weights to achieve training objectives and closely
approximate desired outputs. A schematic representation of a typical BP neural network
is provided in Figure 1. The weight and threshold adjustment formulas for the BP neural
network are given by Equations (1) and (2), respectively.

wij(u + 1) = wij(t) + εδj Hj (1)

µj(u + 1) = µj(t) + ησj (2)

where w and µ denote the weights and thresholds, respectively; u denotes the number of
BP network iterations; ε and η denotes the learning parameter; H denotes the jth hidden
layer node; δj and σj denote the error signal values of the nodes, respectively.
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Figure 1. A typical BP neural network.

The BP neural network comprises several essential steps, including initialization,
forward propagation, error calculation, backpropagation, and iterative repetition of these
steps. In the initial stage of training, the network randomly assigns weights and biases
to its neurons. Input data is subsequently passed through the network, where a series
of weighted and nonlinear activation functions generate an output. This output is then
compared to the actual label, enabling the calculation of an error.

During the backpropagation phase, the gradient of each neuron is determined using
the chain rule. Subsequently, weights and biases are updated, starting from the output
layer and progressing backward. These steps are iteratively repeated until the error attains
an acceptable level or a pre-determined number of iterations is reached. Figure 2 offers a
visual depiction of the processes involved in a BP neural network.
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2.2. ISEO

SEO was initially introduced by Fathollahi-Fard et al. [33] as a metaheuristic algorithm
inspired by social engineering theory. Social engineering involves obtaining individuals’
personal information through various techniques, which is then used to influence or coerce
them into complying with the demands of social engineers [34]. SEO presents a simpler
and more efficient alternative to other metaheuristics, with only four main steps and three
straightforward parameters that are easy to understand and implement.

Numerous experiments have demonstrated that SEO surpasses other well-established
and recently developed metaheuristics in terms of solution accuracy, robustness, and effi-
ciency [35]. Nevertheless, since SEO heavily relies on random initial solutions, it may result in
suboptimal solutions and local optima. To address this limitation, we propose a novel strategy
called positive cosine optimization, which enhances SEO’s initial solution formation process
to improve its performance. In this paper, we present the Improved SEO (ISEO) algorithm,
which combines positive cosine optimization with the original SEO algorithm. The ISEO
algorithm is tested on various benchmark functions and engineering examples, showcasing
its effectiveness and efficiency in solving complex optimization problems.

In summary, this paper introduces a novel optimization algorithm named ISEO, which
merges the advantages of SEO with positive cosine optimization. The proposed algorithm
provides a more efficient and accurate method for solving optimization problems, holding
significant potential for practical applications across various fields. The following sections
contain a detailed description of the ISEO proposed in this paper.
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2.2.1. Sine Cosine Algorithm

The Sine Cosine Optimization Algorithm (SCA) was proposed by Mirjalili et al. in
2016 [34]. In this algorithm, the solution fluctuates either outward or toward the optimal
solution based on the mathematical model of sine and cosine functions. The algorithm
employs multiple random and adaptive variables to calculate the current solution location,
allowing it to search different regions in the solution space effectively. By adeptly avoiding
local optima and converging to the global optimum, SCA demonstrates its efficacy. Inspired
by these properties, we introduce SCA’s update strategy in the initial solution generation
process of SEO. The corresponding formulas are depicted in Equations (3) and (4).

X j
i (t + 1) = X j

i (t) + r1 · sin(r2) ·
∣∣∣r3Pj(t)− X j

i (t)
∣∣∣ (3)

X j
i (t + 1) = X j

i (t) + r1 · cos(r2) ·
∣∣∣r3Pj(t)− X j

i (t)
∣∣∣ (4)

where t denotes the current number of iterations; X j
i (t) denotes the component of the

position of individual i in the jth dimension at the tth iteration; r1, r2, r3 are random
parameters; Pj(t) denotes the component of the optimal candidate solution of the candidate
solution set in the jth dimension at the tth selection.

The selection of the SCA optimization strategy is performed with the probability of
generating a random number P. When P > 0.5, Equation (1) is selected for individual
updating, and vice versa, Equation (2) is selected.

2.2.2. ISEO Main Framework

Combining the SCA proposed in the previous section with traditional SEO steps, our
ISEO framework is as follows.

Step 1: Initialize the attacker and the defender.
The first step of SEO is to form an attacker and a defender by first generating two

random solutions [33], after which the solution with better fitness is selected as the attacker
and the other is selected as the defender.

It should be noted that in order to better improve the quality of the initial solution
and compensate for the disadvantage that SEO is easy to fall into local optimization, we
integrate the optimization process of the SCA in the first step of the algorithm. In our
proposed ISEO, attackers and defenders are not generated according to random solutions,
and we set an inner loop number ymaxit. First, npop initial solutions are formed randomly,
and according to the SCA, continuously optimized for the initial solution, and the selection
of attackers and defenders is performed after the operation stops. The one with the highest
adaptation is chosen as the attacker and the one with the second highest adaptation is
the defender.

Step 2: Train and retrain.
The purpose of this step is to continuously train the attacker, through which the

attacker tries to test features against the defender in order to identify the most effective
features in the defender and improve the attacker’s performance. Training is carried out
according to Equation (5).

NTrain = round{c.nvar} (5)

where c denotes the percent of selected traits; nvar denotes the number of all traits in a
person; Ntrain denotes the number of traits that will be tested on some random traits of
the defender.

Step 3: Spot an attack.
To identify the attack, SEO defines four types of attacks [33], namely Obtaining,

Phishing, Diversion Theft, and Pretext. The operation at this stage involves randomly
selecting one of these four attack methods. Only one parameter, the number of beta attacks,
is employed as an input variable in the search process. The four attack methods are
described as follows:
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Obtaining:

de fnew = de fold × (1− sin β×U(0, 1)) +
(de fold + att)

2
× sin β×U(0, 1) (6)

Phishing:

de f 1
new = att× (1− sin β×U(0, 1)) +

(de fold + att)
2

× sin β×U(0, 1) (7)

def f 2
new = de fold ×

(
1− sin

(π

2
− β

)
×U(0, 1)

)
+

(de fold + att)
2

× sin
(π

2
− β

)
×U(0, 1) (8)

Diversion theft:

de fnew = de fold × (1− sin β×U(0, 1)) +

(
de fold + att×U(0, 1)× sin

(
π
2 − β

))
2

× sin β×U(0, 1) (9)

Pretext:

def fnew = (defold × cos(β)×U(0, 1))× (1− sin β×U(0, 1))
+ (def fold × U(0,1) × cos(β) + att)

2 × sin β×U(0, 1).
(10)

where defnew denotes the new position of the defender; defold and att denote the original
positions of the defender and attacker; U (0, 1) denotes a uniformly distributed random
number between [0, 1].

Step 4: Respond to attack.
Let gmaxit the number of attacks. After each attack, the new defender is evaluated and

compared to the original defender. Then, the best position of the defender is selected, and
if the new position of the defender is better than the attacker, the defender is swapped with
the attacker, and when the attack lasts gmaxit times, the attack stops and a new defender
has generated again. The above steps are repeated until the maximum number of iterations
is reached or the algorithm stops.

Finally, the ISEO algorithm flow is described as follows:
Step 1: Input algorithm parameters: maximum number of Imaxit iterations, number of

attacks gmaxit, the initial population of SCA strategy npop, number of sine cosine strategy
iterations ymaxit retraining rate c, number of attacks β.

Step 2 Generate the initial attacker and defender according to the SCA.
Step 3: The defender is trained and retrained to generate c new solutions, and the

optimal one is selected as the defender.
Step 4 Generate a new defender by randomly selecting one of the four attack methods,

and replace the original defender if the new defender has better adaptation.
Step 5: Judge if the defender is better than the attacker. If so, the defender becomes

the new attacker, otherwise, no change is made.
Step 6: Determine if the number of attacks reaches the upper limit. If so, stop the

attacks and the algorithm proceeds to Step 7; otherwise, proceed to Step 4.
Step 7: Create a new defender.
Step 8: Determine the termination condition of the algorithm. If the maximum number

of iterations Imaxit is reached or the preset termination conditions are met, the algorithm
terminates and the attacker is output; otherwise, it proceeds to Step 3.

2.3. ISEO-BP

To address the issues of poor self-adaptation and local minima in BP neural networks,
we first employ ISEO to perform global pre-optimization of the weights and thresholds of
the BP neural network. We then assign the optimal weights and thresholds (i.e., attacker
output) to the BP neural network as the initial weights and thresholds, and use the opti-
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mized parameters to train the BP neural network, eventually obtaining the final fault BP
neural network structure for early warning.

The specific ISEO-BP processes are as follows:

1. Input neural network parameters, i.e., number of neurons in the hidden layer, activa-
tion function, number of training times, training rate, and target error to be achieved
by training.

2. Input ISEO algorithm parameters, use the root mean square error of neural network
prediction as the ISEO fitness function, and execute the ISEO algorithm process.

3. Train the constructed BP neural network using the weights and thresholds obtained
from ISEO optimization, and obtain the BP neural network structure.

4. Input test data into the trained BP neural network to obtain output data and perform
data analysis.

We have integrated the key steps of ISEO (as described in Section 2.2.2) with the main
steps of the BP neural network (as outlined in Section 2.1) to provide a comprehensive
overview of our proposed methodology. The resulting algorithm, known as ISEO-BP, is
illustrated in the flow chart presented in Figure 3.
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As depicted in the flow chart, ISEO-BP involves several critical steps. Initially, the
algorithm initializes the neural network by randomly assigning weights and biases to the
neurons. Next, input data is passed through the network, generating an output via a series
of weighted and nonlinear activation functions. This output is then compared to the actual
label to calculate an error.

At this stage, the ISEO component comes into play, employing a positive cosine
optimization strategy to generate an initial solution for the optimization process. This
solution undergoes an iterative search process, which evaluates fitness values and selects
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new candidate solutions. The resulting solutions are subsequently fed back into the BP
neural network, which uses them as weights and thresholds for starting the iteration.

The iterative process continues until either a predetermined number of iterations
has been completed, or the error has been reduced to an acceptable level. Through this
approach, ISEO-BP effectively combines the strengths of both the BP neural network and
the ISEO algorithm, providing an efficient and effective solution for fault warning detection
in hydraulic turbines and other similar equipment.

3. Case Study

Hydraulic turbines are a critical component of power equipment in generating elec-
tricity at hydropower stations, as they convert water energy into electrical energy using a
hydraulic turbine as the prime mover. As water flows through the turbine, it transforms
the water energy into mechanical energy, driving the rotor of the generator to produce
electrical energy. The rotor of the hydraulic turbine generator is short and thick, allowing
for flexibility in operation and dispatch, and requiring less time to start and connect to the
grid. The rotational speed of the hydraulic turbine generator determines the frequency of
the output alternating current, and to ensure the stability of this frequency, closed-loop
control stabilizes the rotational speed of the prime mover. Hydraulic turbines have high
utilization value in clean energy production.

Hydraulic turbines consist of several major components, including the rotor, stator,
frame, thrust bearing, guide bearing, cooler, brake, and others. The stator comprises a
seat, core, and winding components, and the stator core is made of cold-rolled silicon steel
sheets. It can be constructed as a whole or split structure depending on manufacturing
and transportation conditions. The cooling method for hydro generators typically employs
closed-circulation air cooling. Very large capacity units tend to use water as the cooling
medium to cool the stator directly. If both the stator and rotor are cooled simultaneously, it
is called a double water intercooler hydro generator set. These components may experience
various failures during turbine operation, leading to significant degradation in the turbine’s
performance. Due to the complex structure, it is crucial to provide advance warning of
these failures and react promptly to ensure the stability of clean energy production.

To verify the effectiveness of ISEO-BP, we collected 1030 operational data points from
a hydroelectric turbine in a hydropower plant, dividing all data into training and test sets at
a ratio of 7:3. It is essential to note that the samples we collected are all from the turbine in
healthy operation. The input data represent point data for each component under normal
operation of the turbine, and the output data correspond to the data that should be output
by each component during normal operation. First, we calibrated the ISEO-BP parameters
(Section 3.1), then applied them to the ISEO-BP network training (Section 3.2). Finally, we
carried out an ISEO-BP application analysis (Section 3.3).

3.1. ISEO-BP Parameter Calibration

In the literature, it is noted that before employing the metaheuristic algorithm and
BP neural network to solve a problem, calibrating the parameters is necessary to improve
the solution quality [35]. Therefore, we initially selected appropriate parameters for ISEO-
BP. Based on pre-experiments and literature analysis, and considering the efficiency and
quality of the algorithm, we set Imaxit = 200, the number of attacks gmaxit = 50, the initial
population of the SAC npop = 10, the number of iterations of the sine cosine strategy
ymaxit = 50, the maximum number of BP neural network training runs as 2000, the training
error target as 0.02, and the learning rate as 0.001.

For the settings of c, β, BP neural network activation function, and the number of
neurons in the hidden layer, we referred to the literature analysis and provided reference
values for different levels of these five parameters, measuring them using orthogonal tests.
Our given reference values are shown in Table 1. It should be noted that all codes were
written in MATLAB 2018b software on an operating system using an Intel Core i7-10850H
CPU @ 2.70 GHz, 2712 MHz, with 6 Cores and 12 Logical Processors.
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Table 1. ISEO-BP parameter levels.

Parameters Alternative Reference Values

Levels 1 2 3 4

c 0.2 0.4 0.6 0.8

β π/9 4π/9 6π/9 5π/18

Input layer to
implicit layer
functions

logsig tansig purelin

Implicit layer to
output layer
functions

logsig tansig purelin

Number of
neurons in the
hidden layer

10 12 14 16

As depicted in Table 1, performing all tests would result in an extensive number of
trials and a significant waste of resources. Therefore, we employed Taguchi’s experimental
design method to form an orthogonal array for parameter calibration. According to
Taguchi’s test method guidance, this approach requires L16 tests. Additionally, we used
the Relative Percentage Deviation (RPD) calculated with RMSE to measure algorithm
performance, as shown in Equations (11) and (12). It should be noted that due to the
random nature of the metaheuristic algorithm, the RPD under each parameter is averaged
over 15 runs for fairness. After our measurements, the final ISEO-BP parameters are
presented in Table 2.

RMSE =

√
l
m

m

∑
i=1

(
yac − y f o

)2
(11)

where m denotes the number of output vectors; yac denotes the actual value; yfo denotes the
predicted value.

RPD =
CRMSE −MinRMSE

MinRMSE
(12)

where CRMSE denotes the RMSE of the predicted results obtained with the current pa-
rameter; MinRMSE denotes the minimum RMSE of all predicted results obtained with
each parameter.

Table 2. ISEO-BP parameter calibration results.

Retraining rate (c). 0.6

Number of attacks (β) 6π/9

Input layer to implicit layer functions purelin

Implicit layer to output layer functions purelin

Number of neurons in the hidden layer 14

3.2. ISEO-BP Network Training

Using the calibrated parameters mentioned above, we trained the established algo-
rithm model in MATLAB according to the described algorithm steps. We conducted a
training simulation, and due to space limitations, some of the prediction results of ISEO-BP
after one run are presented in Table 3. The results demonstrate that ISEO-BP has good data
prediction accuracy and can achieve the goal of fault warning.
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Table 3. ISEO-BP partial prediction results.

Actuals Forecasts Actuals Forecasts Actuals Forecasts Actuals Forecasts

61.95 59.98 671.47 633.62 43.63 42.06 223.99 211.52
58.45 53.36 669.26 627.58 43.55 41.69 222.17 210.36
57.19 55.96 673.80 630.96 43.53 41.43 221.18 209.69
62.98 59.89 672.45 639.88 43.57 42.45 221.51 208.38
59.94 56.83 669.72 637.98 43.56 42.06 221.92 210.59

Based on ISEO-BP prediction data, the hydraulic turbine early warning strategy can
be performed according to Equation (13).

|yac(i)− y f o(i)| > v i = 1, 2, · · · , L (13)

where yac denotes the true value of the hydraulic turbine operation; yfo denotes the predicted
value of ISEO-BP; L denotes the number of input points; v denotes the artificially set fault
warning criterion.

When Equation (13) is satisfied, it indicates that the equipment may be experiencing a
failure. In this case, a warning notification is sent to relevant personnel, who can proceed
with troubleshooting or wait for the next warning. The pseudocode for the warning strategy
is illustrated in Algorithm 1.

Algorithm 1: Warning strategy

Input: Input data of the hydraulic turbine (Quantity is L), v, Empty array A
Output: Whether to warn.
Obtain yfo using the trained ISEO-BP
for i = 1: L

if
|yac(i)− y f o(i)| > v

A(i) = 1
end if

end for
Issue an alert
Check the fault points according to A
Elevant personnel to check immediately or wait for the next time period to check
PS: The time period is set to ten minutes

Likewise, the fault warning strategy developed for hydraulic turbines can be adapted
for other devices. The trained network can be used to output point data, and when the out-
put data deviates from the value set by the decision maker, a fault warning determination
can be triggered.

3.3. ISEO-BP Application Analysis

Here, we have examined the potential application of ISEO-BP to determine its effectiveness
in providing early warnings for various failure modes of hydraulic turbines. Based on our
research, we have identified the nine most common failure modes that occur during hydraulic
turbine operation and have the greatest impact. These failure modes are listed in Table 4.

To assess the effectiveness of the trained ISEO-BP in failure warning, we collected
operational data and output data of hydraulic turbines during each of the nine identified
failure modes, with 20 sets of data for each mode. A warning was considered successful
if the predicted value of the turbine output data from ISEO-BP deviated from the actual
value by more than ten percent. The results of the evaluation are presented in Table 5.
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Table 4. Main fault types of hydraulic turbines.

Fault Models Fault Characteristics

Stator wire rod damage (F1) (1) Abnormal partial discharge data of generators
(2) Abnormal stator winding temperature

Air leakage from cartridge valve system (F2) (1) Abnormal oil level of governor oil tank
(2) Abnormal oil pressure of governor tank

Loose stator tooth pressure plate (F3)

(1) Stator core vertical vibration data abnormal
(2) Abnormal horizontal vibration data of stator core
(3) Abnormal temperature of stator tooth pressure plate
(4) Abnormal stator core temperature

Water guide oil basin leaking and dumping oil (F4)
(1) Abnormal oil level in water guide tank
(2) Abnormal oil temperature in water guide tank
(3) Abnormal temperature of water guide tile

Hydraulic turbine cavitation (F5)

(1) Abnormal water guide oscillation
(2) Abnormal tailwater inlet pressure pulsation
(3) Abnormal horizontal vibration of the top cover
(4) Abnormal vertical vibration of the roof

Shear pin shear off (F6)

(1) Shear pin shear off alarm
(2) Large water guide oscillation
(3) High horizontal vibration of the top cover
(4) Large vertical vibration of the top cover

Speed control system air leakage (F7) (1) Abnormal oil level data of governor tank
(2) Abnormal oil pressure data of governor tank

Excitation system overload (F8) (1) Abnormal excitation variable temperature data
(2) Abnormal excitation current data

Rotor grounding (F9)

(1) Abnormal excitation current
(2) Abnormal horizontal vibration of the stator core
(3) Abnormal high vertical vibration of stator core
(4) Abnormal excitation voltage

Table 5. ISEO-BP fault warning test results.

Fault Modes Early Warning Accuracy Rate

F1 19/20 (95%)

F2 17/20 (85%)

F3 18/20 (90%)

F4 16/20 (80%)

F5 18/20 (90%)

F6 14/20 (70%)

F7 17/20 (85%)

F8 14/20 (70%)

F9 17/20 (85%)

Upon conducting the test, we observed that ISEO-BP exhibited the highest accuracy in
warning about Stator wire rod damage (F1) among the nine fault types analyzed, achieving
an accuracy rate of 95%. Furthermore, the warning success rate for four fault types—
namely, Air leakage from cartridge valve system (F2), Loose stator tooth pressure plate (F3),
Hydraulic turbine cavitation (F5), and Speed control system air leakage (F7)—was 85% or
higher, falling within the reliable range. However, the warning success rate for Shear pin
shear off (F6), Water guide oil basin leaking and dumping oil (F4), and Excitation system
overload (F8) was low.

The setting of the early warning threshold may have some impact on the algorithm’s
effectiveness. Therefore, we conducted more extensive experiments, adjusting the thresh-
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olds to 5%, 10%, and 15% to test the sensitivity of ISEO-BP. The final results are displayed
in Table 6.

Table 6. IEO-BP sensitivity analysis.

Fault Modes Early Warning
Accuracy Rate (5%)

Early Warning
Accuracy Rate (10%)

Early Warning
Accuracy Rate (15%)

F1 19/20 (95%) 19/20 (95%) 18/20 (90%)

F2 19/20 (95%) 17/20 (85%) 17/20 (85%)

F3 18/20 (90%) 18/20 (90%) 18/20 (90%)

F4 17/20 (85%) 16/20 (80%) 16/20 (80%)

F5 18/20 (90%) 18/20 (90%) 17/20 (85%)

F6 17/20 (85%) 14/20 (70%) 14/20 (70%)

F7 19/20 (95%) 17/20 (85%) 17/20(85%)

F8 16/20 (80%) 14/20 (70%) 14/20(70%)

F9 18/20 (90%) 17/20 (85%) 17/20 (85%)

According to the results in Table 6, we can observe that as the warning threshold
decreases, most of the fault recognition rates increase. The accuracy of F4 and F6, which
performed poorly in the previous round of experiments, has also reached 80%. However, as
the warning threshold increases, the fault recognition rate of some patterns, such as F1 and
F5, decreases due to the sensitivity of data point changes. It is worth noting that although
the recognition accuracy may improve as the warning threshold becomes smaller, this may
lead to false recognition. In practical applications, decision-makers need to consider the
threshold setting holistically.

4. ISEO-BP Performance Analysis

Here, we analyze ISEO-BP’s performance. First, we analyze the improvement effect
of our introduced SCA strategy on the algorithm (Section 4.1) and then compare it with
other advanced methods to demonstrate the high performance of our proposed ISEO-BP
(Section 4.2).

4.1. SCA Effectiveness

To demonstrate the effectiveness of the SCA we introduced, we compared the RMSE
of neural network predictions after ISEO and SEO optimization. To compare across the
board, we set gmaxit to 30, 40, and 50 and Imaxit to 200, 300,500, and the only difference
between ISEO and SEO is that SCA is not integrated into SEO. The average final results
after 15 runs are shown in Table 7.

Table 7. SCA effectiveness comparison results.

Algorithm
Parameters SEO-BP ISEO-BP

gmaxit, Imaxit RMSE Number of First
Convergence RMSE Number of First

Convergence

30,200 75.36 121.68 73.48 110.36
30,500 73.28 308.56 72.52 288.56
40,200 74.68 122.37 73.98 109.32
40,500 72.93 262.56 71.62 248.63
50,200 72.28 113.28 70.96 103.06
50,500 71.86 296.89 70.16 272.59
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Based on the results presented in Table 7, we can observe that the prediction results
of ISEO-BP outperform those of SEO-BP under different parameter combinations. The
RMSE values for ISEO-BP are smaller than those of SEO-BP, and the convergence times
for ISEO-BP are also better than those for SEO-BP. These observations reflect the strong
performance of ISEO-BP and further illustrate the effectiveness of the positive cosine
optimization strategy introduced in this paper.

4.2. Comparison with Other Methods

To further evaluate the performance of the proposed ISEO-BP, we employed XG-
Boost [36], IBA-BP [37], GA-BP [38], PSO-BP [39], and multi-feature sparrow search algo-
rithm optimized support vector machine algorithm (MSSA-SVM) [40] to solve the afore-
mentioned cases, comparing their performance using two metrics: RMSE and R2. For
a detailed description of these metrics, interested readers can refer to the literature [41].
Additionally, we present a comparison of the solution efficiency for each algorithm to
illustrate the effectiveness of ISEO-BP from multiple perspectives. It should be noted
that the algorithms used for the above comparison are based on the literature, and other
parameters remain the same as in the previous section. To ensure fairness, we also ran each
algorithm 15 times to compare the evaluation results. Table 8 displays the average results
after these 15 runs, while Figure 4 shows the statistical results of the 15 runs.

Table 8. Performance comparison results of different algorithms.

Algorithms RMSE R2 CPU/s

XGBoost 72.92 97.85 22.78
IBA-BP 71.85 98.35 21.91
GA-BP 72.56 98.12 22.56
ISEO-BP 70.71 98.97 21.64
PSO-BP 70.89 98.68 22.02
MSSA-SVM 71.53 98.55 21.60Mathematics 2023, 11, x FOR PEER REVIEW 15 of 18 

 

 

  

 

Figure 4. Box plot of algorithm performance comparison results (+represents outliers).  

In addition, we tested the six algorithms for fault warning using the method in Sec-

tion 3.2, the final results are shown in Table 9. Table 9 displays the average results for the 

three different thresholds. 

Table 9. Fault warning test results. 

Algorithms Early Warning Accuracy Rate (%) 

XGBoost 76 

IBA-BP 80 

GA-BP 82 

ISEO-BP 88 

PSO-BP 85 

MSSA-SVM 79 

According to the results presented in Table 8, our proposed IEO-BP attains optimal 

values for RMSE and R2. Meanwhile, MSSA-SVM achieves the best CPU time, with IEO-

BP taking second place in this metric. However, the increase in CPU time corresponds to 

an improvement in accuracy. The statistical analysis reveals that IEO-BP is stable across 

all three indices, further highlighting its superiority. 

In addition, based on the fault test results in Table 9, IEO-BP’s early warning efficacy 

surpasses other advanced methods. Overall, IEO-BP demonstrates exceptional perfor-

mance in this study. 

  

Figure 4. Box plot of algorithm performance comparison results (+represents outliers).



Mathematics 2023, 11, 2274 15 of 18

In addition, we tested the six algorithms for fault warning using the method in
Section 3.2, the final results are shown in Table 9. Table 9 displays the average results for
the three different thresholds.

Table 9. Fault warning test results.

Algorithms Early Warning Accuracy Rate (%)

XGBoost 76
IBA-BP 80
GA-BP 82
ISEO-BP 88
PSO-BP 85
MSSA-SVM 79

According to the results presented in Table 8, our proposed IEO-BP attains optimal
values for RMSE and R2. Meanwhile, MSSA-SVM achieves the best CPU time, with IEO-BP
taking second place in this metric. However, the increase in CPU time corresponds to an
improvement in accuracy. The statistical analysis reveals that IEO-BP is stable across all
three indices, further highlighting its superiority.

In addition, based on the fault test results in Table 9, IEO-BP’s early warning efficacy
surpasses other advanced methods. Overall, IEO-BP demonstrates exceptional performance
in this study.

5. Conclusions and Future Work

The hydraulic turbine is a crucial component for ensuring the seamless operation
of the entire hydroelectric power plant chain and maintaining its reasonable and stable
functioning. Providing accurate fault warnings for it is of great importance to enhance
operational efficiency. In this paper, we introduce a fault warning method called ISEO-BP
to improve the hydraulic turbine fault warning level. First, we enhanced the SEO using the
positive cosine strategy, effectively addressing its existing limitations. Then, we optimized
the BP neural network with ISEO and proposed our fault warning strategy. Experimental
results indicate that our proposed ISEO-BP achieves higher prediction accuracy compared
to other methods. ISEO-BP attained optimal values for all three performance metrics: RMSE,
R2, and CPU time, as illustrated in Table 8. Moreover, the fault warning effect test (Table 9)
revealed that ISEO-BP improved accuracy is higher. This enhancement can effectively
accomplish the purpose of fault warning and foster the high-quality development of the
entire hydropower plant operation.

However, while our paper presents an effective solution to the hydraulic turbine fault
warning challenge, there remains room for further exploration. Future researchers can sug-
gest more efficient fault warning strategies to optimize SEO using adaptive optimization
approaches and local search operators [30,31], combine SEO with other heuristics [32–34],
and develop more reasonable and effective BP neural network activation functions [35–37] to
further increase efficiency. Addressing uncertainty and ambiguity is essential in real-world
applications; one way to tackle this issue is by extending neural networks to fuzzy neural
networks [38–40]. Fuzzy logic can manage fuzzy or uncertain inputs, allowing neural net-
works to better handle uncertainty and ambiguity in the real world [42–44]. Investigating
the use of neural networks to learn and establish a mapping relationship between inputs
and outputs, and then employing this mapping relationship in a fuzzy control system to
achieve control of fuzzy variables, would be an interesting avenue to explore [45–49].

In conclusion, we encourage researchers to expand the ISEO-BP presented in this paper
by applying the proposed warning strategy to more devices [50–52]. This will contribute
to further enhancing the accuracy and efficiency of hydraulic turbine fault warnings and
promoting the development of the entire hydropower plant operation.
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