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Abstract: Non-photorealistic rendering (NPR) with explicit brushstroke representation is essential for
both high-grade imitating of artistic paintings and generating commands for artistically skilled robots.
Some algorithms for this purpose have been recently developed based on simple heuristics, e.g., using
an image gradient for driving brushstroke orientation. The notable drawback of such algorithms is
the impossibility of automatic learning to reproduce an individual artist’s style. In contrast, popular
neural style transfer (NST) algorithms are aimed at this goal by their design. The question arises:
how good is the performance of neural style transfer methods in comparison with the heuristic
approaches? To answer this question, we develop a novel method for experimentally quantifying
brushstroke rendering algorithms. This method is based on correlation analysis applied to histograms
of six brushstroke parameters: length, orientation, straightness, number of neighboring brushstrokes
(NBS-NB), number of brushstrokes with similar orientations in the neighborhood (NBS-SO), and
orientation standard deviation in the neighborhood (OSD-NB). This method numerically captures
similarities and differences in the distributions of brushstroke parameters and allows comparison of
two NPR algorithms. We perform an investigation of the brushstrokes generated by the heuristic
algorithm and the NST algorithm. The results imply that while the neural style transfer and the
heuristic algorithms give rather different parameter histograms, their capabilities of mimicking
individual artistic manner are limited comparably. A direct comparison of NBS-NB histograms
of brushstrokes generated by these algorithms and of brushstrokes extracted from a real painting
confirms this finding.

Keywords: non-photorealistic rendering; brushstroke rendering; neural style transfer; oil paintings;
postimpressionism; realism; pointillism; brushstroke style; statistical analysis; painting robot

MSC: 90C90; 90C59; 68U10

1. Introduction

Throughout history, technology has greatly expanded the creative and professional
possibilities of artists, providing them with new and more powerful tools and enabling
them to create novel artistic styles and art forms. Computer graphics, and in particular non-
photorealistic rendering (NPR), have a great influence on the development of contemporary
art and are often used to create web content [1–5], for robotic painting [6–8], as a tool for
creating comics [9], and, of course, for imitating artistic paintings [10,11].

NPR algorithms can be divided into two main classes: pixel-based and stroke-based
rendering. Pixel-based rendering (PBR) implies operation with bitmaps. Such types of
algorithm are more widespread due to the way images are stored on computers. Nowadays,
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the most frequently encountered pixel-based rendering technique for mimicking artistic
paintings is neural style transfer (NST) [12,13]. Neural style transfer was first proposed in
a paper by Gatys et al. [14]. The original algorithm used a convolutional neural network
(CNN) trained on paintings by well-known artists. The network extracted the style from
the paintings and applied it to the selected photo.

Since then, many improvements to neural style transfer have been proposed. For exam-
ple, one of the possible solutions is the use of a generative adversarial neural network (GAN)
instead of a convolutional neural network. A GAN, proposed by J. Goodfellow et al. [15],
consists of two parts, a generator, and a discriminator. While training, they compete with
each other: the generator learns to “fool” the discriminator, which in its turn learns to
better distinguish the generated images from the real ones [16–18]. In the papers [19,20],
a feed-forward neural network for style transfer was used, which made it possible to
decrease the running time of the method.

Stroke-based rendering (SBR) is another approach to mimicking artistic paintings.
The paper [21] defines SBR as a process of generating a digital artwork using special render-
ing marks , for example, hatches, brushstrokes, or other primitives. For convenience, we
will further consider only brushstrokes as rendering marks. Such algorithms do not neces-
sarily require machine learning and sometimes can synthesize brushstrokes using simple
heuristics, for example, determine brushstrokes randomly, or apply them in accordance
with image edges or image gradient, or using any other local image features [21–23]. This
determined the relative popularity of such algorithms before the mid-2010s when the ma-
chine learning boom had begun. A special feature of these algorithms is that brushstrokes
are generated in an explicit manner, contrary to PBR, where the image consists of pixels
and brushstroke texture is only an illusion. This provides multiple options inaccessible
to common PBR algorithms: generating realistic-looking artworks using brushstroke li-
braries [24,25], controlling painting robots equipped with artistic tools [6,26–29], or creating
labeled data for training brushstroke extraction algorithms [30].

A promising idea is to combine machine learning and SBR. The first attempts at this
go back to the mid-2010s [31], but only recently have several powerful algorithms of this
type been developed [32]. One of the most interesting works in this field is [33], where
the authors proposed training an NST algorithm to minimize the loss function associated
not with pixels but with parameterized brushstrokes. This improved a common drawback
of the traditional NST approach, which often ignores or distorts brushstroke patterns.
However, it also opens prospects of the neural style transfer algorithms to be used in
robotic artistic painting or even in robot-assisted painting restoration, once the program
learns to capture an individual artist’s manner well.

Both the heuristic and the NST algorithms have their pros and cons. Heuristic al-
gorithms are simpler to implement, have shorter running times, and need less powerful
computers. However, they usually have a huge number of parameters, manually set by the
developer or the user, and their automated tuning to the individual style of a particular
artist is difficult. While the heuristic algorithm tries to mimic the way an artist thinks
during painting, the NST algorithm provides a quite opposite approach, trying to imitate
the final result, close to an original style, in terms of optimizing the loss function. Its design
seems to be more versatile and should provide better image stylizing.

Nevertheless, no extensive research on quantifying the image stylizing qualities of
the NST and heuristic approaches has been conducted. Thus, in order to clarify this
question, we propose a new experiment design for comparing two brushstroke rendering
algorithms. In our experiment, we consider six brushstroke features in images generated
by these algorithms from a test image set. For each feature, a histogram is built, and then,
four correlation tests for these histograms are carried out: similar artist test, method 1 vs.
method 2 test, similar image test, and real painting test. A detailed description of these
tests is given in Section 3. As the result of applying our experimental approach, we obtain
numerical estimates of whether these brushstroke rendering algorithms have different
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rendering styles, and whether one or another algorithm is superior in style variation and
mimicking a real artist’s style.

The main findings of the paper are as follows:

• a method for quantifying brushstroke rendering results based on correlation analysis
of feature histograms,

• a comparison of the heuristic algorithm from [8] with the NST algorithm from [33],
using the proposed method.

According to the results, future research directions can be outlined, including ad-
ditional steps for proper style learning, the introduction of different loss functions, and
so on.

The paper is organized as follows. Section 2 provides an overview of current ap-
proaches for the efficient comparison of NPR algorithms. In Section 3, the materials and
methods are described, test images are presented, and the brushstroke features under inves-
tigation are described. In Section 4.2, the results of the brushstroke analysis are presented.
In Section 6, a discussion and brief conclusions are given.

2. Related Work
Methods for Evaluating the Effectiveness of NPR Algorithms

Non-photorealistic rendering (NPR) techniques have gained increasing popularity in
recent years due to their ability to produce images with unique and artistic style. Methods
for evaluating non-photorealistic rendering algorithms usually examine human perception,
where people are asked to compare stylized images of different approaches and give
their opinion [34–39]. However, there are also quantitative approaches for evaluating
non-photorealistic rendering algorithms.

For example, Mandryk et al. [34,35] presented a study that aimed to evaluate the im-
pact of non-photorealistic rendering (NPR) algorithms on participants’ emotional responses.
The study included five commonly used NPR approaches, two blurring techniques, and the
original image. Participants rated the four dependent measures (arousal rating, valence
rating, dominance rating, aesthetic rating) on a nine-point scale. According to the results,
the NPR algorithms had a dampening effect on participants’ emotional responses in terms
of arousal and valence. Santella et al., in [36], suggested that viewers’ attention is drawn to
areas where detail is locally preserved in meaningfully abstracted images, as opposed to
uniformly high- or low-detail images. The results of the study support the idea that artists
use details to control interest and understanding. Additionally, the study suggests that eye
tracking can be a useful tool for evaluating non-photorealistic rendering (NPR) systems.

A method for comparing non-photorealistic rendering images with hand-drawn im-
ages is proposed by Maciejewski et al. [40]. They compared hand-drawn and computer-
generated stippling images, with large sample sizes, using GLCM (gray-level co-occurrence
matrix) texture analysis. The authors found discrepancies between hand-drawn and
computer-generated texture statistics, and that hand-drawn texture statistics have a higher
correlation with real textures.

The task of choosing metrics for quantifying non-photorealistic rendering algorithms
is indeed complex, as the choice of these metrics often depends on the goal of creating a
non-photorealistic image. Fréchet inception distance (FID) is used to evaluate the quality of
images generated by GAN [41,42]. In the paper, the authors presented empirical evidence
that FID is a reasonable metric due to its robustness to network selection for mode-off
and encoding. The scoring issues for neural style transfer are well explored in [43], which
proposes a method (ArtFID) for quantifying style transfer models with respect to stylization
efficiency. In [44], the authors propose three factors to evaluate and improve the quality
of neural style transfer: content fidelity factor, global effects such as colors and textures,
and a local patterns factor which consists of two parts, one is to assess the similarity of the
local pattern counterparts directly, and the other is to compare the diversity of the retrieved
pattern categories.
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3. Materials and Methods

This section describes the investigated algorithms, and the test sets of images, giving
some examples of artworks generated from these images.

3.1. Neural Style Transfer with Explicit Brushstrokes

In the work by Kotovenko et al. [33], an approach was proposed for explicit brush-
stroke generation using neural style transfer technology. This approach is based on the
original method of neural style transfer by Gatys et al. [14], in which image content ele-
ments and image style elements are retrieved and stored, and then, the image is iteratively
generated from white noise until content and style losses are minimized. The content loss
Lcontent is defined as the Euclidean distance between the rendered image Ir and the content
image Is in the VGG feature space:

Lcontent = ||Il
r − Il

s||2, (1)

where l denotes the layer number of the VGG-19 network.
To extract the style features of the image, a gradient descent optimization is used,

starting from the white noise to find another image that matches the Gram matrix repre-
sentation of the input image. This minimizes the root-mean-square distance between the
elements of the Gram matrix of the style image Gl

s and the Gram matrix of the rendered
image Gl

r from the l-th layer of the VGG-19 network. The contribution of a layer l to the
total losses equals:

El =
1

2N2
l M2

l
||Gl

r − Gl
s||2,

where Nl is the number of feature maps in a layer l, and Ml is the height multiplied by the
width of the feature map. Then, the total style loss Lstyle is:

Lstyle =
L

∑
l=0

ωlEl , (2)

For more details, the reader is referred to the original work [45].
In contrast to the method of Gatys et al., instead of optimizing the generated image

pixel by pixel to minimize content and style loss, Kotovenko et al. optimize parame-
terized brushstrokes, minimizing content and style loss defined by equations similar to
Equations (1) and (2). Brushstrokes are parameterized by location, color, width, and shape.
The brushstroke shape is modeled as a quadratic Bézier curve:

B(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, t ∈ [0, 1]

A set of parameterized brushstrokes is converted to pixel values on the canvas using
an explicitly differentiable function. The renderer is a function:

R : RN×F → RH×W×3,

where N is the number of strokes, F is the number of stroke parameters, and H and W are
the height and width of the image to render.

In order to extract brushstroke features, we supplied the program with an additional
code, saving the brushstroke map generated by the program into a vector PLT file, as our
previous program does [8,46].

Brushstrokes in PLT format are written in HP-GL/2 notation and require color, width,
and sets of coordinates for each stroke. All the needed parameters are present in the
renderer function. So, on the last call of the renderer function, the final parameters of the
brushstrokes are duplicated into a file (see Figure 1) with the following modifications:
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• for coordinates, 1 pixel is equated to 1 mm, which means coordinates are multiplied
by 40 for the HP-GL coordinate system;

• for image readability, the initial range of widths is mapped onto an interval [4,8].

Figure 1. Fragment of the flowchart for the neural style transfer algorithm. Parameterized strokes
are present only during brushstroke optimization; thus, they are exported right before the start of
pixel optimization.

3.2. Gradient Algorithm for Brushstroke Rendering

There are some variants and modifications of heuristic algorithms for brushstroke
rendering. Here, we describe the algorithm from [8] with slight simplifications, which
are not principal in our case. The algorithm has several parameters, eight of which are
explicitly determining the rendering process, and includes several subroutines, which are
described further. The main feature which distinguishes this algorithm from variants given
in works [23,30] is using a constant brush width. On the one hand, this was the requirement
of our robotic setup, on the other hand, this slightly simplifies the rendering process while
preserving good results.

For controlling local brushstroke direction, we first compute the brushstroke gradient
of the source image Im with the function [U, V] ← Gradient(Im), where U and V are
matrices of partial derivatives:

U =
∂Im
∂x

,

V =
∂Im
∂y

.

In order to improve brushstroke coherence, the matrices U and V are additionally
filtered, as described in [7]. The parameter brushSize defines the diameter of the brush
in pixels. In the current Algorithm 1, a brushstroke is a trace of a circle with diameter
brushSize over a curved line—the brushstroke skeleton. The skeleton consists of small
straight fragments of length from 1 to maxFrag pixels. During the rendering process, we
attempt to start a brushstroke from each pixel Im(i, j) of a picture, one by one. Having
taken the current pixel, first, we determine whether the error between the canvas and the
source image is greater than εstart:

‖Cnvs(i, j)− Im(i, j)‖ ≥ εstart.
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Algorithm 1 Gradient-Based Brushstroke Rendering
Set:
Im—source N ×M image,
Cnvs—canvas (N ×M bitmap),
Niter—number of iterations,
Cover—overlap coefficient,
brushSize—brush diameter,
maxFrag—maximal fragment,
minLen—minimal stroke length,
maxLen—maximal stroke length,
εstart—local error tolerance for starting a stroke,
εa—local error tolerance for accepting a stroke fragment,
Strokes—structure for keeping strokes,
[U, V]← Gradient(Im);
for k← 1..Niter do

for i← 1..N do
for j← 1..M do

if err(i, j) > εstart then
// Begin a new stroke
col ← MeanColor(Im, i, j, brushSize)
stroke← InitializeStroke(i, j, col)
f lag← 1;
while f lag do

// Find a new stroke fragment
r ← maxFrag
while r ≥ 1 do

α← GetDirection(stroke, U, V)
nX ← i + round(r cos α)
nY ← j + round(r sin α)
if TestFragment(εa, stroke, nX, nY, brushSize, Cover, Cnvs)
then

stroke.add(nX, nY)
break

else
r ← r− 1

end
end
// Test if the stroke ended
if Length(stroke) ≥ maxLen or r = 0 then

f lag← 0
end

end
// Remember the stroke
if Length(stroke) ≥ minLen or r = 0 then

Strokes.add(stroke)
Cnvs.DrawStroke(stroke)

end
end

end
end

end

Then, we use a function MeanColor(Im, i, j, brushSize) to average the color of the
source image over a circle with diameter brushSize. It is used further as a brushstroke
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color col. Then, a function InitializeStroke(i, j, col) creates a stroke and assigns the current
values of pixel coordinates i, j to its first point. Then, we try to find the first fragment of
the brushstroke. A step of length r = maxFrag pixels is made perpendicularly to the local
gradient, and a new fragment of the brushstroke ending in points nX, nY is tested with the
function TestFragment(εa, stroke, nX, nY, brushSize, Cover, Cnvs). This function estimates
the error between the new fragment painted on the canvas Cnvs and compares the error
between this newly painted region of the canvas and a corresponding fragment of a source
image. Cover is the overlap coefficient: a number that allows the current brushstroke to
overlap other brushstrokes. It defines the area of the brushstroke Sover which is allowed to
cover previously painted pixels of the canvas: Sover ≤ CoverSb, where Sb is the total area of
the brushstroke. If the error is greater than the allowed value εa, r is deceased by 1 pixel,
and new trials to find the next fragment of the brushstroke repeat until r becomes zero or a
new fragment is eventually accepted.

We determine the brushstroke ending if its length is greater than the maximal allowed
value maxLen or if the new fragment was not accepted. If the generated brushstroke has a
length greater than the minimal length minLen, then a function Strokes.add(stroke) adds it
into the set of brushstrokes Strokes and this stroke is painted on a virtual canvas with the
function Cnvs.DrawStroke(stroke).

As the practice shows, several painting iterations help to cover the canvas with
brushstrokes more densely. Niter is the total number of iterations for painting over the
canvas. Moreover, parameters could vary within different iterations which were used in
the algorithm for generating strokes for artistic painting with a robot [29,46].

In the current research, the following parameters were used: brushSize = 4, εstart = 2,
εa = 16, maxFragment = 4, maxLen = 15, minLen = 2, Cover = 0.4, Niter = 1.

The generated brushstrokes are then saved as lines with a predefined width in the PLT
file, with the structure as described before.

3.3. Brushstroke Features

In order to read a PLT file with brushstrokes, a program in MATLAB 2021 was written.
This program collects data and calculates specific features of brushstrokes, distinguishing
the personal style of each painter as it was captured by the program. The works [47,48]
give a comprehensive description of these features, and here we briefly review them.

1. Length. Brushstroke length along the skeleton of the brushstroke. For each brushstroke,
consisting of N pixels with coordinates xk, yk, k = 1. . . N , the length Lb is calculated
as the sum of the distances between neighboring points:

Lb =
N−1

∑
k=1
‖(xk+1 − xk, yk+1 − yk)

>‖.

2. Straightness. Brushstroke straightness is defined as the Pearson correlation coefficient
(PCC) between the horizontal and vertical coordinates of pixels located on the brush-
stroke skeleton. If the skeleton is a perfectly straight line, the correlation coefficient
will be equal to one; if the skeleton is curved, the absolute value of the coefficient will
be less than one. Suppose the brushstroke contains N pixels, with coordinates xi, yi,
i = 1. . . N, the straightness St is defined as:

St =
N ∑N

i=1 xiyi −∑N
i=1 xi ∑N

i=1 yi√
(N ∑N

i=1 xi
2 − (∑N

i=1 xi)2)(N ∑N
i=1 yi

2 − (∑N
i=1 yi)2)

.

3. Orientation. To obtain the brushstroke orientation, we use an alternative to the defini-
tion in [48]. For each brushstroke with xi, yi coordinates set, a linear least squares fit
is found using the polyfit function in MATLAB. The brushstroke orientation is defined
as the slope of the approximating linear polynomial, i.e., as α = arctan(k), where k is
the first coefficient of the linear polynomial.
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4. Number of brushstrokes in the neighborhood (NBS-NB). A brushstroke j is a neighbor to a
brushstroke i if the distance between the centers of these brushstrokes does not exceed
the threshold value s: |xci − xcj | < s and |yci − ycj | < s, where the threshold value is
set to 200, as in [48]. NBS-NB is the total number of strokes that are neighbors of i.

5. Number of brushstrokes with similar orientations in the neighborhood (NBS-SO). A brush-
stroke j has a similar orientation as i if the difference between their orientations is
below a threshold value. The threshold value is set to 0.35, as in [48].

6. Orientation standard deviation in the neighborhood (OSD-NB). For any brushstroke i,
we compute the orientation standard deviation for all brushstrokes in the neighbor-
hood as:

σ =

√√√√ 1
N

N

∑
i=1

(αi − α)2,

where αi is the orientation of the i-th stroke in the neighborhood, N is the number
of brushstrokes in the neighborhood, and α is the mean orientation of all neighbor-
ing brushstrokes.

Features such as width, elongatedness (the ratio between the length and the width),
broadness, and homogeneity are less informative in the current study and are not taken
into account.

3.4. Test Set

For tests, eight images have been considered. They include seven paintings by Vincent
van Gogh, Georges Seurat, and Isaac Ilyich Levitan, and one standard test image, “Lenna”.
The given three artists were chosen because they all have unique painting styles that are
visually easy to distinguish. A popular and well-recognized standard image, “Lenna”, is
needed for rendering in different styles. These images are given in Figure 2. Additionally,
some information on the source image resolution is provided. As one can see, these images
are similar in size.

Figure 2. The test set: (a) Vincent van Gogh, “Chestnut Tree in Blossom”, 1890, 651× 518 pixels;
(b) Vincent van Gogh, “Wheat Fields at Auvers under Clouded Sky”, 1890, 516× 654 pixels; (c) Vincent
van Gogh, “Vase with Irises Against a Yellow Background”, 1890, 646× 515 pixels; (d) Georges Seurat,
“The Bridge at Courbevoie”, 1886–1887, 515× 623; (e) Georges Seurat, “Le Chahut”, 1889–1890,
622 × 515 pixels; (f) Isaac Ilyich Levitan, “Oak”, 1880, 527 × 517 pixels; (g) Isaac Ilyich Levitan,
“Village on the River Bank”, 1883, 515× 616 pixels; (h) “Lenna”, 512× 512 pixels.
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3.5. Design of the Experiment

We propose the following experimental design. Considering two programs, one
using the NST algorithm and another using the heuristic algorithm, we run them on var-
ious images from a test set and investigate the parameters of brushstrokes generated by
these programs. For a numerical assessment of the individual manner of drawing brush-
strokes, we consider six brushstroke features, adopted from work [48]: length, straightness,
orientation, orientation standard deviation in the neighborhood (OSD-NB), number of
brushstrokes in the neighborhood (NBS-NB), and number of brushstrokes with similar
orientations in the neighborhood (NBS-SO). Brushstroke color is out of the scope of this
research, partially because NST and heuristic approaches give totally different results as
seen by an eye, which is because color rendering is a separate difficult problem. To capture
and estimate differences and similarities between parameters, we first build parameter
histograms for each image, and then we perform a correlation analysis of these histograms.
We perform the following tests:

1. Similar artist test. Given nine paintings in three different styles, three artworks in each
one, we render them to themselves with the NST algorithm and compare brushstroke
parameter distributions. This test aims to learn whether the implementation of the
style transfer algorithm from [33] is capable of adapting its results to an individual
brushstroke rendering manner.

2. NST vs. heuristic test. Given three paintings in different styles, we render them
with the NST and heuristic algorithms and compare the brushstroke parameter dis-
tributions. This test aims to quantify similarities and differences between the two
considered approaches.

3. Similar image test. Given one standard image, we render it with the NST program in
three different styles and with the heuristic program and then compare brushstroke pa-
rameter distributions. This test aims to determine whether differences between these
algorithms are substantiated mostly by their design or mostly by the content image.

4. Real painting test. Given one image and one parameter which is not radically different
in the results given by the two considered algorithms, we compare its distribution
with that of the real image investigated in [48]. This test aims to determine which
approach gives results closer to the real painting, or whether both are closer to each
other than to the real painting.

So, while the results have been obtained on a relatively small sample set, we can
answer the questions of whether the obsolete (heuristic) and the state-of-the-art (NST)
approaches are comparable in their ability to render brushstrokes, or whether one is better,
and whether it is possible, at least in some cases, to render brushstrokes in the manner of a
particular artist well enough, as the proposed tests allow.

4. Results

This section reports the results of brushstroke rendering for both programs and gives
their comparison in terms of the previously introduced metrics.

4.1. Examples of Brushstroke Rendering

Images from the test set were rendered by both programs. In order to estimate the
quality of both programs visually, we show two examples. The first example concerns the
work “Chestnut Tree in Blossom” by Vincent van Gogh. Figure 3 illustrates the original
image, the results of two renderings, and also a brushstroke map (brushstroke skeletons on
a distinctively visible background) which helps to see the structure of brushstrokes for the
rendering by the gradient algorithm. This image was used in the first and the second tests,
see the further text of the paper.

The second example concerns the image “Lenna” (Figure 4). Using the neural style
transfer algorithm, this image was stylized with artworks of the three considered artists:
Van Gogh’s “Vase with Irises Against a Yellow Background”, Seurat’s “The Bridge at
Courbevoie”, and Levitan’s “Oak”. For comparison, the image “Lenna” was also ren-
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dered with the gradient algorithm. These four renders are then used in the first, third,
and fourth tests.

Figure 3. Example of rendering the work “Chestnut Tree in Blossom” by Van Gogh: (a) an original
image, (b) a render with the NST algorithm (painting to itself), (c) a render with the gradient algorithm,
(d) brushstrokes map for the result of the gradient algorithm.

Figure 4. Example of rendering the image “Lenna”: (a) a render with the NST algorithm, stylized with
Van Gogh’s “Irises...”, (b) a render with the NST algorithm, stylized with Seurat’s “Bridge...”, (c) a render
with the NST algorithm, stylized with Levitan’s “Oak”, (d) a render with the gradient algorithm.

4.2. Painting-to-Itself by the NST Algorithm Test

The first test is aimed at determining whether there is distinguishable evidence of
affecting the style image on the brushstroke features when using the NST algorithm. This
test involved the entire test set. The images “Chestnut. . . ” and “Wheat. . . ” by Van Gogh,
“Bridge. . . ” and “Le Chahut” by Seurat, and “Oak” and “Village. . . ” by Levitan were
styled by themselves with the NST algorithm. The image Lenna was stylized with Van
Gogh’s “Irises. . . ”, Seurat’s “Bridge. . . ”, and Levitan’s “Oak”, as shown in Figure 4a–c.
Examples of parameter histograms and correlation tables are given in Figures 5 and 6.
Figure 5 gives histograms of brushstroke lengths within nine rendered images, and Figure 6
shows correlation coefficients between histograms. One can see that there is no obvious
dependency between the artist and the length distribution.
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Figure 5. Brushstroke length for three paintings by three different painters: Levitan, Seurat, Van Gogh.
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Figure 6. Absolute values of correlations for brushstroke lengths distributions from Figure 5.

The other histograms and correlation tables are presented in Appendix A. In order to
summarize the results of the first test, we present the most significant absolute values of
correlations |ρ| in Table 1. No relation between style and absolute values of correlations can
be found. For some parameters, such as length and orientation, the source image matters.
Nevertheless, the main hypothesis, that the style image affects the brushstroke features,
is disproved.
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Table 1. Maximal absolute values of correlations of the first test.

Feature Images |ρ|

Length
Seurat Lenna (Bridge), Van Gogh Lenna (Iris) 0.3911
Seurat Le Chahut, Van Gogh Lenna (Iris) 0.3255
Van Gogh Chestnut, Seurat Lenna (Bridge) 0.2452

Straightness
Levitan Lenna (Oak), Seurat Lenna (Bridge) 0.99564
Seurat Le Chahut, Seurat Lenna (Bridge) 0.98714
Levitan Lenna (Oak), Seurat Le Chahut 0.987

Orientation
Levitan Lenna (Oak), Seurat Lenna (Bridge) 0.93126
Van Gogh Lenna (Iris), Seurat Lenna (Bridge) 0.90229
Van Gogh Chestnut, Seurat Le Chahut 0.8997

NBS-NB
Levitan Village, Seurat Bridge 0.94412
Levitan Lenna (Oak), Seurat Lenna (Bridge) 0.9184
Seurat Lenna (Bridge), Levitan Lenna (Oak) 0.9082

NBS-SO
Seurat Le Chahut, Seurat Bridge 0.90952
Levitan Lenna (Oak), Seurat Bridge 0.86419
Levitan Oak, Van Gogh Lenna (Iris) 0.8639

OSD-NB
Levitan Village, Seurat Le Chahut 0.83429
Levitan Oak, Van Gogh Chestnut 0.7028
Seurat Lenna (Bridge), Van Gogh Lenna (Iris) 0.6884

4.3. Painting-to-Itself by NST and Gradient Algorithms Test

In this test, a comparison was made between two brushstroke generation algorithms:
the neural style transfer and the heuristic-based algorithms. This test aimed to quantify
similarities and differences between rendering results of the two investigated algorithms.

According to the experimental design, images of different styles are needed in this
experiment. So, three paintings by three different artists were selected: “Chestnut. . . ” by
Vincent van Gogh, “Bridge. . . ” by Georges Seurat, and “Oak” by Isaac Levitan. Figures 7–9
show histograms of the most informative features: length, straightness, and OSD-NB, for
the two algorithms under study, where the upper plots correspond to the neural style
transfer, and the lower plots correspond to the gradient algorithm. Figures 10–12 show
the correlations of the obtained histograms for each selected feature. Histograms and their
correlations for other features (orientations, NBS-NB) are presented in Appendix B.

The length histograms in Figure 7 show that the NST algorithm tends to generate
averagely longer strokes while the gradient algorithm prefers shorter strokes. In Figure 7,
one also can see how similar the histograms from the same algorithm are to each other,
and there is almost no difference between the histograms of different patterns within the
same algorithm. This is also confirmed by the correlation diagram in Figure 10. This is
especially notable for the gradient algorithm, which generates approximately the same
variability in brushstroke lengths.

From Figure 8 it is seen that the gradient algorithm generates much more straight strokes.
Histograms for the orientation standard deviation, as one can see from Figure 9, are

sufficiently different for the two investigated algorithms. Larger and more diverse values
of the OSD-NB feature are given by the NST algorithm. The more coherent brushstrokes
given by our implementation of the gradient algorithm are partially due to the nature of
the algorithm itself and partially due to high noise suppression in the gradient obtained by
filtering, as described in [7].

Table 2 summarizes the results of the correlation analysis.
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Figure 7. Brushstroke length for two paintings by three different painters: Levitan, Seurat, Van Gogh.

Figure 8. Brushstroke straightness for three paintings by different painters: Levitan, Seurat, Van Gogh.
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Figure 9. Brushstroke OSD-NB for two paintings by three different painters: Levitan, Seurat,
Van Gogh.

VanGogh C
hestnut (N

ST)

Seurat B
rid

ge  (N
ST)

Levita
n O

ak  (N
ST)

VanGogh C
hestnut (G

RAD)

Seurat B
rid

ge (G
RAD)

Levita
n O

ak (G
RAD)

VanGogh Chestnut (NST)

Seurat Bridge  (NST)

Levitan Oak  (NST)

VanGogh Chestnut (GRAD)

Seurat Bridge (GRAD)

Levitan Oak (GRAD)

length histogram correlation

0.173

1

0.1584

0.06748

0.07843

0.07332

1

0.06921

0.03415

0.001109

0.008931

1

0.04366

0.06712

0.05735

1

0.8556

0.9332

1

0.9798 1

Figure 10. Brushstroke length for three paintings from different painters: Levitan, Seurat, Van Gogh.

From Table 2 one can see that there is a strong correlation between the length, straight-
ness, and orientation histograms generated with the gradient algorithm, but the other
parameter histograms are correlated more randomly. This means that the rendering results
from the gradient algorithm are closer to each other in these features. Furthermore, this
means that there is a notable difference between brushstrokes generated by these two
algorithms, at least, in the investigated features.
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Figure 11. Brushstroke straightness for two paintings by three different painters: Levitan, Seurat,
Van Gogh.
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Figure 12. Brushstroke OSD-NB for three paintings from different painters: Levitan, Seurat,
Van Gogh.

4.4. Similar Image Test

In this test, an image, “Lenna”, was rendered with the NST algorithm using three style
images and with the gradient algorithm, as shown in Figure 4. This test aimed to find out
whether there could be a notable difference between brushstroke features rendered with
different styles using the NST algorithm, and the gradient algorithm was used as a referent
rendering solution. The test determines whether the difference between two results from
the NST algorithm is more significant than the difference between results from the NST
and the gradient algorithms.

After running the test, we found the most significant differences in the following
features, given in Figures 13–15: length, straightness, and orientation.
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Table 2. Maximal absolute values of correlations of the second test.

Feature Images |ρ|

Length
Levitan Oak (GRAD), Seurat Bridge (GRAD) 0.97981
Van Gogh Chestnut (GRAD), Levitan Oak (GRAD) 0.93316
Seurat Bridge (GRAD), Van Gogh Chestnut (GRAD) 0.8556

Straightness
Levitan Oak (GRAD), Seurat Bridge (GRAD) 0.99993
Van Gogh Chestnut (GRAD), Levitan Oak (GRAD) 0.99981
Seurat Bridge (GRAD), Van Gogh Chestnut (GRAD) 0.9997

Orientation
Levitan Oak (GRAD), Seurat Bridge (GRAD) 0.98387
Van Gogh Chestnut (GRAD), Levitan Oak (GRAD) 0.95169
Van Gogh Chestnut (GRAD), Seurat Bridge (GRAD) 0.9377

NBS-NB
Van Gogh Chestnut (GRAD), Seurat Bridge (NST) 0.92878
Levitan Oak (NST), Seurat Bridge (NST) 0.90668
Van Gogh Chestnut (GRAD), Levitan Oak (NST) 0.8839

NBS-SO
Van Gogh Chestnut (GRAD), Van Gogh Chestnut (NST) 0.8371
Levitan Oak (NST), Van Gogh Chestnut (GRAD) 0.82775
Levitan Oak (NST), Seurat Bridge (NST) 0.82

OSD-NB
Levitan Oak (NST), Van Gogh Chestnut (NST) 0.70276
Levitan Oak (GRAD), Seurat Bridge (GRAD) 0.5791
Seurat Bridge (NST), Seurat Bridge (GRAD) 0.55502

Figure 13. Brushstroke length histograms for rendering results for “Lenna” image.

Figure 14. Brushstroke straightness histograms for rendering results for “Lenna” image.
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Figure 15. Brushstroke orientation histograms for rendering results for “Lenna” image.

The most significant correlations are summarized in Table 3.

Table 3. Maximal absolute values of correlations of the third test.

Feature Images |ρ|

Length
Lenna (Seurat), Lenna (Van Gogh) 0.3911
Lenna (Levitan), Lenna (Seurat) 0.2399
Lenna (Van Gogh), Lenna (Seurat) 0.1856

Straightness
Lenna (Levitan), Lenna (Seurat) 0.99564
Lenna (Van Gogh), Lenna (Seurat) 0.96133
Lenna (Levitan), Lenna (Van Gogh) 0.9591

Orientation
Lenna (Levitan), Lenna (Seurat) 0.93126
Lenna (Van Gogh), Lenna (Seurat) 0.90229
Lenna (Levitan), Lenna (Van Gogh) 0.8639

NBS-NB
Lenna (Levitan), Lenna (Seurat) 0.91844
Lenna (Van Gogh), Lenna (Seurat) 0.90822
Lenna (Levitan), Lenna (Van Gogh) 0.898

NBS-SO
Lenna (Levitan), Lenna (Van Gogh) 0.84841
Lenna (Seurat), Lenna (Levitan) 0.83553
Lenna (Van Gogh), Lenna (Seurat) 0.8088

OSD-NB
Lenna (Gradient), Lenna (Seurat) 0.70927
Lenna (Van Gogh), Lenna (Seurat) 0.68831
Lenna (Gradient), Lenna (Van Gogh) 0.6879

From Table 3 it is clear that, in all tests the correlations between the NST results are
more significant, which points out significant mutual similarities between the brushstroke
structures generated with the NST algorithm. So, there is no determined evidence that
different style images lead to a significant difference in rendering results. Correlations for
the Lenna images are presented in Appendix C.

4.5. Real Painting Test

In this test, the histogram of the parameter NBS-NB, available from the literature [48],
is compared to histograms obtained with the NST and the gradient algorithms. This test
aims to find out whether the algorithms match an observation from the real painting.

From Figure 16, one can see that the NBS-NB histograms for the synthetic images
are significantly different from the NBS-NB histogram of the real painting. Moreover,
histograms for both of the synthetic images are more similar. Figure 17 confirms this
observation numerically: the correlation coefficient between histograms for both algorithms
is notably higher in comparison with the correlation coefficients between the real and
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synthetic images. This means that the algorithms gave results more different from the real
painting than from each other.

Figure 16. Brushstroke NBS-NB histograms for rendering results for “Chestnut...” image and its
value estimated from the real painting.
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Figure 17. Absolute values for the correlation coefficients between NBS-NB histograms for rendering
results for “Chestnut...” image and its value estimated from the real painting.

5. Discussion

While in the current study we compare only two algorithms: the gradient-based and
the neural style transfer algorithms, there is a number of other approaches to stroke-based
rendering. One approach that was out of the scope of this research is optimization-based
rendering. As an optimization method, the genetic algorithm (GA) is often proposed as a
reliable and parallelizable global search method [49–51]. Recently, many modifications of
GAs have been proposed, for example, the Cartesian genetic programming, which uses
a more economical implementation of paint rendering and can be easily accelerated on
GPU [49]. It was shown that GAs outperform the stochastic descent method [52], but may
be less efficient than other simple algorithms in the artistic rendering problem. For example,
in [5] it was shown that the simulated annealing algorithm could obtain better rendering
results in terms of mean squared error when compared to the HillClimber and plant
propagation evolutionary algorithms.

In most research, the target function is complex, being designed to minimize the
mean squared error between the source and rendered images while satisfying a certain
aesthetics criterion, e.g., closeness of fit between the actual image gradient distribution and
the normal distribution [53], using a minimal number of strokes and occupying a maximum
area of canvas [51]. Since the design of optimization-based methods allows an arbitrary
construction of the target function, other criteria for the “goodness” of the rendering results
can also be easily incorporated into the optimization-based rendering algorithm. In the
current study, the criteria for “goodness” were outlined explicitly in terms of histogram
correlations, but modern machine learning techniques may provide these criteria implicitly
by constructing a classifier that would be capable of distinguishing a particular artistic style
without the need to interpret it by a human [54].

6. Conclusions and Future Research

In this paper, a novel method for quantifying brushstroke rendering results, based
on correlation analysis of feature histograms, is proposed. This is the first time when the
correlation of histograms is used for this purpose. This method ignores the horizontal and
vertical scale of histograms and therefore is applicable to rendering results of images with
different sizes and with a different number of brushstrokes.
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Using this method, extensive research has been performed for comparing render-
ing results by the neural style transfer (NST) algorithm and the heuristic gradient al-
gorithm. The research involved distributions of six features of brushstrokes, including
length, straightness, orientation, number of neighboring brushstrokes (NBS-NB), number
of brushstrokes with similar orientations in the neighborhood (NBS-SO), and orientation
standard deviation in the neighborhood (OSD-NB). Using the test set of eight test images,
four various tests have been carried out: painting-to-itself by the NST algorithm (test 1),
painting-to-itself by the NST and gradient algorithms (test 2), rendering the similar image
(test 3), and comparison with the real image (test 4). The results of all of the tests point out
a notable difference between paintings rendered with the NST algorithm and the gradient
algorithm. The tests also discovered the insufficient diversity between paintings rendered
with different style images for the NST algorithm, and, predictably, even more similarity
between paintings rendered with the gradient algorithm. The main contributions of this
paper are:

• A novel method for quantifying brushstroke rendering results based on correlation
analysis of feature histograms is proposed.

• A comparison of the heuristic gradient-based algorithm with the NST stroke-based
algorithm using the proposed method is carried out.

• As a result, the paper offers valuable insights into the limitations of both current
style transfer and heuristic techniques and highlights the need for further research to
improve their effectiveness.

The advantage of our method for experimental evaluation of non-photorealistic rendering
algorithms is the ability to comprehensively assess how different algorithms can mimic such a
local style pattern as a brushstroke. Using correlation histograms instead of the histograms
themselves allows for comparing images with different numbers of brushstrokes, resolution,
and other parameters without any special normalization, and effectively distinguishes between
brushstroke patterns in paintings obtained by the compared algorithms.

The limitations of this method are the difficulty in comparing more than two methods,
and the need to perform many tests on different test images, since a high histogram
correlation coefficient may be obtained in a single experiment by chance.

The obtained results are controversial: while both the NST and the heuristic ap-
proaches gave distinctively different results, they both failed to render particular artistic
styles and did not succeed in producing results close to the real painting. Probably the main
reason for this result is that proper style learning needs some additional procedures, for in-
stance, extracting brushstrokes from the source image and the corresponding processing
procedures. Brushstroke-map extraction is a challenging task itself. Simple deterministic
approaches, such as the ones described in [47,48], can distinguish only prominent top-
layer brushstrokes, comprising approximately no more than 10% of all brushstrokes in
the painting. A possible step towards proper style learning was recently proposed in [30],
where a neural network DStroke was introduced, capable of extracting a dense brushstroke
map from a painting. In addition to brushstroke extraction, a different loss function could
be introduced, taking into account all the features investigated in the current research.
The difficulty of finding a proper loss function is well known in machine learning, so a
number of alternative loss function designs should be tested. In this regard, an idea to use
histogram correlation may be also fruitful for this task.

An alternative approach could be based on generating a machine-derived heuristic.
This heuristic may be obtained via optimization methods, e.g., genetic programming,
particle swarm optimization, etc. The objective function for this optimization procedure
would include the error between the brushstroke features of the style image and the
rendering result. This approach may be even more efficient if it would include some
information on the intermediate steps of a painting by an artist, or even a record of a full
painting process from scratch, since the heuristic is aimed at simulating an artist’s actions
during painting. To our knowledge, no open database exists which would provide such
data. One possible way to collect the required records is involving volunteer painters and
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recording all their actions via some digital data collecting tools. While this is not technically
difficult in digital painting, it becomes a challenge when using real media such as oil paints.
So, a special experimental setup and experiment design would need to be developed.
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Appendix A. Results for Test 1

Figure A1. Brushstroke straightness histograms for images in test 1.
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Figure A2. Brushstroke straightness histogram correlations for images in test 1.

Figure A3. Brushstroke orientation histograms for images in test 1.
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Figure A4. Brushstroke orientation histogram correlations for images in test 1.



Mathematics 2023, 11, 2255 22 of 30

Figure A5. NBS-NB histograms for images in test 1.
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Figure A6. NBS-NB histogram correlations for images in test 1.

Figure A7. NBS-SO histograms for images in test 1.
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Figure A8. NBS-SO histogram correlations for images in test 1.

Figure A9. OSD-NB histograms for images in test 1.
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Figure A10. OSD-NB histogram correlations for images in test 1.
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Appendix B. Results for Test 2

Figure A11. NBS-NB for three paintings of different painters in test 2.

Figure A12. NBS-SO for three paintings of different painters in test 2.

Figure A13. Brushstroke orientation for three paintings of different painters in test 2.
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Figure A14. NBS-NB histogram correlation for three paintings of different painters in test 2.
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Figure A15. NBS-SO histogram correlation for three paintings of different painters in test 2.
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Figure A16. Brushstroke orientation histogram correlation for three paintings of different painters in
test 2.
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Appendix C. Results for Test 3
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Figure A17. Brushstroke length histogram correlation for three paintings rendered with the NST
algorithm and one painting with the gradient algorithm in test 3.

Lenna (Van Gogh) Lenna (Seurat) Lenna (Levitan) Lenna (Gradient)

Lenna (Van Gogh)

Lenna (Seurat)

Lenna (Levitan)

Lenna (Gradient)

Straightness histogram correlation

0.8428

1

0.9613

0.9591

1

0.9956

0.7013

1

0.6928 1

Figure A18. Brushstroke straightness histogram correlation for three paintings rendered with the
NST algorithm and one painting with the gradient algorithm in test 3.
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Figure A19. Brushstroke orientation histogram correlation for three paintings rendered with the NST
algorithm and one painting with the gradient algorithm in test 3.
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Figure A20. NBS-NB histogram correlation for three paintings rendered with the NST algorithm and
one painting with the gradient algorithm in test 3.
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Figure A21. NBS-SO histogram correlation for three paintings rendered with the NST algorithm and
one painting with the gradient algorithm in test 3.
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Figure A22. OSD-NB histogram correlation for three paintings rendered with the NST algorithm and
one painting with the gradient algorithm in test 3.
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