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Abstract: Haros graphs are a graph-theoretical representation of real numbers in the unit interval.
The degree distribution of the Haros graphs provides information regarding the topological structure
and the associated real number. This article provides a comprehensive demonstration of a conjecture
concerning the analytical formulation of the degree distribution. Specifically, a theorem outlines
the relationship between Haros graphs, the corresponding continued fraction of its associated real
number, and the subsequent symbolic paths in the Farey binary tree. Moreover, an expression that is
continuous and piecewise linear in subintervals defined by Farey fractions can be derived from an
additional conclusion for the degree distribution of Haros graphs.
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1. Introduction

The study of the structure of real numbers has been approached from a variety of per-
spectives [1-4]. The representation by continued fractions and the representation through
the Farey tree are examples of canonical representations [5—7]. Recent graph-theoretical
research has provided a new representation of real numbers using Haros graphs [8]. These
graphs are swayed by the approach of Horizontal Visibility Graphs to the quasiperiodic
route [9-12]. Furthermore, Haros graphs are similar to other structures, such as Farey
graphs [13-15]. Haros graphs provide a graph description of the unit interval [0, 1] estab-
lishing a one-to-one correspondence with the well-known Farey sequences F},, where

]-'n:{sE[O,l]IOSPS‘?S”/ (;w):l}-

The Haros graph set G is recursively generated from an initial graph (defined as two nodes
joined by an edge) and the concatenation graph-operator & shown in Figure 1. Hence, the
set G may be represented as a binary tree (see Figure 1). Since lim,, F,, = [0, 1], the bijection
can be extended to the unit interval, where rational numbers are associated with finite
Haros graphs, and irrational numbers correspond to infinite Haros graphs.

Consequently, a one-to-one correspondence T exists between real numbers x € [0, 1]
and Haros graphs 7(x) = Gy € G. One of the main features investigated in [8] is the
degree distribution P(k, x) of Haros graphs Gy, which is the probability that a randomly
selected node in Gy has degree k. The degree distribution was deemed a fruitful tool
because Haros graphs are uniquely determined by the degree sequence [16], whereas the
degree distribution is a marginal distribution of the degree sequence. Indeed, the degree
distribution for the three initial values of k confirms:
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X, k:2 1_x, k:2
Pk,x<1/2)={ 1-2x, k=3 P(kx>1/2)={ 2x—1, k=3 1)

In contrast to the initial values, which are related to the real number x associated with
Gy, the closed form of the degree distribution P(k, x) has only been drawn for degrees k > 5.
Taking the above fact into account, this paper outlines two theorems to complete the degree
distribution expression, based on two distinct approaches. Initially, a complete description
of P(k,x) is provided only in terms of the continued fraction of x or, alternatively, in
terms of the Haros graph creation process codified along the symbolic binary path. The
second result demonstrates the properties of P(k, x) as a continuous real-valued piecewise
linear function.
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Figure 1. Six levels of the Haros graph tree with Haros graphs G,/ associated with the corresponding
rational fractions p/q (due to space constraints, only two of these are shown at the sixth level). The
first level is formed by two copies of the initial graph Gy. The graph operator merges the two nearby
extreme nodes, adding a connection to the resulting graph that connects the new extreme nodes.

On the left, the Haros graph G,,; is generated by concatenating G;,4 (blue) and G;,3 (red), i.e.,
Ga/7 = G174 ® Gyya.

This paper is separated into four sections. Section 2 gives a brief overview of Haros
graphs and their connections to Farey sequences, continued fractions, and the Farey binary
tree. Section 3 provides the two main results: the first theorem states the closed form of
P(k, p/q) with respect to truncations of the continued fraction of p/g, whereas a second
theorem rewrites the preceding result using the position of p/g in the Farey binary tree.
Section 4 concludes the work. In addition, Appendix A includes detailed proofs for the
assertions in Section 3.

2. Preliminaries

The Farey binary tree is a canonical way of representing the set of rational numbers in

[0,1] as a binary tree starting with the fractions 0/1,1/1—the elements of the Farey sequence

JF1—and creating new irreducible fractions by the mediant sum of two consecutive fractions
in F:

P r_prPtr

= . 2
q S q+s @
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The binary tree representation allocates each rational number to a level k of the tree,
denoted /). For instance, the three first levels consist of:

01 1 12
61 - {1,1}, 82— {2}/ 53— {3,3}-

This representation is closely related to the continued fraction, a powerful technique
for representing a real number in the interval [0, 1] as

1

X = = [my,az,a3,...].
a +

az +

1
as+...

The relationship was presented in [7], and it has been established that a number with
a continued fraction expression [a1, a3, a3, . ..] is associated with a symbolic binary path in
the Farey binary tree L"1R"2L% .., where L1 is interpreted as a sequence of g symbols L
(if the symbolic path is finite, the last symbol has an index a,, — 1). Therefore, since every
irrational number has an infinite continued fraction, the irrational numbers are reachable
through an infinite path in the Farey binary tree. Moreover, the continued fraction allows a
sequence of rational so-called convergents [6] defined as:

{ Pk = k- Pk—1t Pk—2 @)
Gk = Ak Gk—1 T Jk—2,

with initial values p_» = 0,9_2 = 1,p_1 = 1,and q_; = 0, where

. Pk g — —
khj?o i khj?o[al’ ey = ay,ap,...] = x.

As stated in the preceding section, the Haros graphs set G provides a graph-based
representation of the unit interval [0, 1]. The primary objective is to reproduce, in a graph
scenario, the mediant sum—described in Equation (2)—that was utilized to construct
Fu [1]. The concatenation graph is depicted in Figure 1, and Flanagan et al. [17] provide a
comprehensive definition. Every Haros graph G (except for the initial graph) is therefore
described as G = Gy @ Gg, where Gy, Gr are also Haros graphs. However, just as the
mediant sum only takes to two nearby fractions in Farey sequences, Haros graphs only can
be concatenated if G, and Gp are also adjacent.

In order to analyze the topological structure of a Haros graph, the probability distri-
bution degree P(k, x) proves to be a useful instrument. Equation (1) identifies the three
first values of k, although by construction P(k,0) = P(k,1) = 0. In addition, for degrees
k > 5, Theorem 2, in [8], determines that the degree values for which P(k,x) = 0 rely on
the symbol repetition—RR or LL—in the symbolic path of the Haros graph tree to reach
Gx. Moreover, the same research conjectures follow for the closed form of P(k, x). The aim
is to provide a formal proof of this claim.

Prior to this, a brief explanation of the emergence of degrees k > 5 is provided: the
emergence of degrees k > 5 occurs if there is a change in symbol L — Ror R — L in the path
of the Haros graph tree. Consequently, the degree it emerges, or not, is related to the level at
which this symbolic change occurs. Suppose that we have covered the path L*1R?2 ... L%-1.
Next, the downstream of R% generates a new degree, which had previously appeared as
a boundary node before the shift in direction (the node resulting from the identification
of the extreme nodes). Specifically, in the first downstream R, the degree appears in the
merging node, and the number of nodes with this degree increases by one with each
descent. Therefore, when we reach R%~1, there will be 0 + (ay — 1) = ax — 1 nodes of that
degree. In addition, the Haros graph achieved is associated with pr/qx = [a1, ..., ax].
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Now;, in order to reach the Haros graph associated with [ay, ..., a, a5, 1], we must
descend to R and then a;1 — 1 times to L. If there were a; — 1 nodes of that degree
previously, a new descent will result in a; nodes. Then, performing a descent L%+1~1
requires concatenating the Haros graph reached by R% with a;, 1 — 1 copies of the Haros
graph reached by R%~1, so that the resultant Haros graph has (a; — 1) - (axq — 1) + a5 =
(ap — 1) - (ary1) + 1 nodes of that degree.

In other words, the emergence of the degree occurs, according to the recursive
equation g, = qy—2 + an - gu—1, where the terms a; correspond to the continued fraction
[ax —1,a5,1,...,ay], with initial conditions g_1 = 0,99 = 1. Hence, this recursive equation
converges to the denominator of the continued fraction [ay — 1, a5, 1, ..., am).

3. Main Results

The first presented result provides an explicit description of the degree distribution
related to the truncations of the continued fraction of p/g, the rational number associated
with Haros graph G, /,:

Theorem 1. Letp/q € [0,1/2], withp/q = [a1, ..., an). Then, the degree distribution P(k,p/q)
of the Haros graph G, is:

p/q, k=2
(q—2p)/q, k=3
0, k=4
P(k, P) =< syg, for values k = Zle a; +3,withVl=1,...,m—1, 4)
q where r(1) /s = a1 —1,...,am]
1/q, ifk=Y" a;i+2
0, otherwhise.

Proof. See Appendix A.1 for a complete proof. [

The theorem has several consequences: first, it unveils the whole expression for P(k, x)
providing a large amount of topological information. Moreover, as stated in the previous
section, the values k > 5 are related to the continued fraction and, consequently, with
the symbolic path reached in the Haros graph tree. In addition, the result reduces the
computational cost for obtaining the degree distribution P(k, p/q) of the Haros graph
Gp/4- Initially, we observe that the denominator of the n-th convergent g, of p/q verifies
Gn > ¢”*1, where ¢ is the Golden number [18]. Hence, as the Haros graph Gpn /an has
gn + 1 nodes, its growth is exponential, but Theorem 1 uses only continued fractions [3,19].

Let us illustrate an example: consider the Haros graph Gjg/23, where
10/23 = [a1, a3,a3] = [2,3,3]. Hence, the symbolic path in the Haros graph tree is L2R312
(see Figure 2 for an illustration). Numerically, its degree distribution is as follows:

10
7 k=2,
3
P k=
23/ 3/
0, k=4,
10 7
P k by = —_ =
(k33) =12 k=5 ®
2
%/ k - 8/
1
—, k=1
23’ 0,
0, otherwise.
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Figure 2. Haros graph Gyg,23. As 10/23 = [2,3, 3], it is clear that the binary symbolic path to reach
this Haros graph is LLRRRLL = L?R3L3~!. According to the boundary node convention, the extreme
nodes are identified as a single boundary node, while the total number of degrees is maintained.
Then, the degree sequence is [3,2,5,2,5,2,8,3,2,5,2,5,2,8,3,2,5,2,5,2,5,2,5+ 5 = 10].

Then, we can verify that there are ms5 19,23 = 7 nodes of degree k = 5 and that this
number corresponds with the denominator of the continued fraction

N W

[le — 1,613] = [2,3] = =
moreover, there are mg 19,23 = 2 nodes of degree k = 8, which is the denominator of the
continued fraction

-1 =[] =5

Lastly, k = 10 corresponds with the degree of the boundary node; therefore, it only
appears once.

With Theorem 1, we are able to provide a proof for the conjecture presented in [8].
Contrary to the previous finding, the subsequent theorem results in a formulation of the
degree distribution relating to the number x, but the computation of P(k, x) for every k
depends on the location of x in the subintervals given by the levels in the Farey binary
tree /.

Theorem 2. Let p/q € [0,1/2] and the associated Haros graph G,,,. Let us consider

2k75 2k74

U3 = {%}1:1 yand by_y = {%}jzl ; clearly, we have Vi = 1,...,255:
P2i-1 _ 4i _ Pai
< = < —. 6
-1 bi g (©)

Therefore, the degree distribution of the Haros graph G/, for degrees k > 5 is:

. i1 4a; . _
G2i-1-(P/q) — pai-1, if p/q € (pzf 1fl,l.)f\71:1f~--f2k °,
q2i—1 i

1

: ai P2 . k=5
—92i ) if e (2,2, vi=1,...,2,
P<k’Z> _ i (/) +pai, if p/q (bi qz) i -

PP
1/qg;,if ==L € ¥_,,
qj q 9 k—2

0, otherwise.

Proof. See Appendix A.2 for a complete proof. [
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The theorem can be extended from rational numbers to all real numbers. Figure 3
depicts a numerical computation of P(k,x) for the first values of k > 5 verifying the
statement of Theorem 2. Moreover, this new formulation allows the following statement
to emphasize some aspects of the degree distribution P(k, x) as a real function over the
variable x:

0.51
1
i
0.4 i . .
i
x 0.3 ! . .
5 |
a 0.2
a0 i
0.1- i
i
0.0 ) . .
0 11 2 1 0 112 1 323 1
1 3 2 3 1 1 4 35 2 53 4 1
L] L]
4 4 o o
d L |
o o PP
o p
p L
L] L]
1121 323 1
4 35 2 53 4 1
X

Figure 3. The numerical computation of the degree distribution P(k, x) as a function of x for
k = 5,6,7,8, and for all Haros graphs G, with x € Fjgp. The red points represent removable
discontinuities, whereas the solid black lines shows the piecewise linear behavior. Due to the lack of
space, only the left upper panel of P(5, x) accurately shows that the red points represent the Haros
graph located in levels ¢, for k = 5 — 3 = 2, i.e., the Haros graph G;,, (without nodes of degree
k =5),and for x =5 —2 = 3, i.e,, the Haros graphs Gy /3, G,/3, where the degree k = 5 is located at
the boundary node.

Corollary 1. The degree distribution P(k, x) over the variable x is a piecewise linear and continuous
function, with the exception of the measure null set.

Now, let us illustrate the theorem by applying the result to the case when k = 5. Then,
it is a simple matter to confirm that if p/q € (1/3,1/2), then

P(k—S,p> :3.3_1:3;77_4.
q q q

In comparison, the continued fractions of rational numbers p/q € (1 /3,1/2) start
with the term a; = 2. In virtue of Theorem 1, the degree k = a; +3 = 5 would have a
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frequency of s() /g, where s(1) is the denominator of [a; — 1,43, ...,ay]. Let us examine
how the two expressions coincide:

1 -2 1
0" Rt i 1
2+ a2+
ay + - az 4
p 3p—q ( 1
—1= = a2—1)+ =
q—2p q—2p 1
as +
a4+"
q—2p _ 1
3p—q 1 ‘
P (a2—1)~|—71
as +
ll4+.'-
Hence, 3p — g is the denominator of the continued fraction [a, — 1,43, . .., a,,] according

to Theorem 1. This finding may be generalizable to all degree values k, requiring the
partition of [0, 1] by the levels ¢;_3 and ¢}_».

4. Conclusions

The topological properties of rational Haros graphs were investigated in detail. The
full formulation of the degree distribution P(k, x) of a Haros graph Gy was demonstrated.
Different methods were used to prove two theorems. The first theorem unveiled the
closed form of P(k, x) obtained by truncations of the continued fraction of x. With this
result, not only did we obtain the complete expression of the degree distribution, but we
also computed it more efficiently. The second theorem provided a piecewise linear and
continuous expression of P(k, x), except for a measure null set. This result confirmed a
conjecture presented in [8] revealing that the degree distribution exhibited a self-similar
behavior related to the subintervals defined by Farey fractions.

Funding: The author acknowledges funding from the Spanish Ministry of Science and Innovation
under project M2505 (PID2020-113737GB-100).

Data Availability Statement: Not applicable.
Acknowledgments: I am grateful to Bartolomé Luque and Lucas Lacasa for their guidance and advice.
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Appendix A
Appendix A.1. Proof of Theorem 1

Proof. The values k = 2,3, 4 are calculated in (1), while the value k = )" ; a; + 2 corre-
sponds to the degree of the boundary node, which has a frequency of 1 according to the the
results of Appendix B in [8].

Let us consider the Haros graph G, ,,, with p/q = [a1,...,a]. Thus, the symbolic
path in the Haros graph tree is L“1R"2 ... X1 with X = Lor X = R depending on
whether m is odd or even, respectively. In virtue of Theorem 2 presented in [8], it can
be determined that nonzero values of the degree distribution P(k, p/q) correspond to the
degrees k = 25’:1 a; + 3 for the values I = 1,2,...,m — 1. It remains, however, to determine
its precise value. To accomplish this, we conduct an induction exercise on the levels of the
Haros graph tree /;:
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Atlevel /4, the first Haros graph with degree k > 5 is associated to2/5 = [a1, a2] = [2,2]

proving that
2 2 1
P — e P — = —
(ul +3/5> <5/5) 5/

the value of the denominator of the continued fraction [a; — 1] = [2 —1] = [1] = 1/1. This
level also includes the Haros graph Gy /4, which fulfils the theorem because it contains only
the boundary node with degree k > 5.

We assume the result holds for all levels of the Haros graph tree ¢, with x < n. Let
us verify that it is satisfied at level x = n + 1. To accomplish this, we consider an arbitrary
Haros graph G/, at level n, where p/q = [ay, ..., am]. Henceforth, we demonstrate that
both its left and right descendants satisfy Equation (4).

Let us suppose, without loss of generality, that the last descents that result until we
reach G/, are left descents L, as seen in Figure Al. Moreover, Cvitanovic et al. [20]
showed that if p/q = [ay, ..., 4], then its left descendant is expressed in a continued frac-
tion as [ay, ..., an + 1], whereas the right descendant has a continued fraction expression
[a1,...,am —1,2].

[ah_,_’aer]_] [al,...,am—LQ]

Figure Al. Diagram of the descendants of the Haros graph Gp /40 with p/q = [aq,...,am]. Let us
suppose that the Haros graph G,,, contains a symbolic path that terminates in 4,, — 1 descents
to the left L (the result is analogous for descents to right R). The continued fraction for the left
descendant of the Haros graph is [ay,...,a, + 1], whereas the right descendant has a continued
fraction [ay,...,am —1,2].

Let us start by dealing with the left descendant. This case is depicted in Figure A2,
which illustrates how this descendant is formed by concatenating the convergent of order
m — 1 of p/q with p/q itself. By setting a value I € {1,2...,m —2}, we will be in the
degree k; = Y.!_, a; + 3. Now, it is clear that the number of nodes with degree k; in the
left descendant is equal to the total of the number of nodes with that degree in its two
ascendants G, /4., and Gy /,.
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[(11, oy G+ 1]

Figure A2. Diagram of the construction for the left descendant of G, /,, where p/q = [ay,..., am].

The left descendant is expressed as [a1, . .., 4, + 1] and is obtained by concatenating G and

Pm-1/Gm-1
Gp/q, where py_1/q,-1 is the convergent of order m — 1 of p/g.

By induction hypothesis, the denominators of the continued fractions are the number
(I,m) (ILm-1)

of nodes of degree k; of its ascendants, denoted by s/~ and s, ', respectively. Hence,
we have:
r(l}m)
Sfl,r‘Zl) = [al+1 -1,..., am}/ (Al)
p/q
and
(I,m—1)
/
S’(gz,i_n =1 —1,...,a, 1] (A2)
r/q

This notation also reflects that the term of Equation (A2) is the previous convergent of
Equation (A1). The recursivity of the continued fractions (shown in Equation (3)) entails:

(1m)
p/q

(I m=2)

(Im-1)
r/q )

s p/q

=5 +ay - s (A3)

()

Denoting by s; ’ the number of nodes with degree k; in the left descendant, we obtain
the conclusion that:

n (1,m) (Im=1) _ ([ (I,m=2) (Im-1) (I,m—1)
LT Sprg TSpg T (Sp/q Fm sy ) TS0/
_ (I m=2) (Im—1)
= Sy —i—(am—i—l)-sp/q , (A4)

where the right-hand side of Equation (A4) is the denominator of the continued fraction
441 —1,...,a, + 1], as we aimed to demonstrate.

The value [ = m — 1 is required to complete the study of the left descendant; therefore,
it is necessary to check the result for the degree k,,, 1 = Z;’:ll a; + 3. The reason for separate
consideration is that G, /4, , does not contain the degree k;, 1. Nonetheless, this degree
first appears at the level Z?:ll a; + 1 of the Haros graph tree, i.e., as the boundary node of
the right descendant of G, /4. ;- The number of nodes with that degree will increase
by one with each successive left descent until the Haros graph G, is reached. Moreover,
the induction hypothesis applied to p/q determines that there are s;';l;l’m) nodes of this
degree, i.e., the denominator of

1
am — 1

[am — 1] =
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Therefore, there will be s;";;l’m) + 1 nodes, or equivalently, there will be a,, nodes

of this degree. This number is the denominator of the truncated continued fraction
[(am + 1) — 1] = [ay,], thus finishing the study of the left descent.

Let us now turn our attention to the right descendant, depicted in Figure A3. In this
instance, the concatenation occurs between the Haros graph G, /, and its right ancestor, i.e.,
the Haros graph associated with the continued fraction [ay, ..., a, — 1].

L

[a1,...;am —1,2]

Figure A3. Diagram of the construction for the right descendant of Gp /g where p/q = [a1,...,am].
The right descendant is expressed as [a1, ..., 4, + 1] and is obtained by concatenating the Haros
graphs G, /4, , and G/, where py,_1/qm—1 is the m — 1-th convergent of p/g.

Let us consider the degrees k; = 25:1 a;j+3,with | € {1,2,...,m —1}. The right
descendant is obtained by concatenating Gp/q® Gasp, where % = [m,...,am — 1]. Therefore,
we must represent the truncations of p/q and a/b, as well as their convergents, which are
indicated as follows:

7,(l}m)
;(71,:171) - [al+1 - 1/ e ,lefl,am]/ (AS)
Sp/a
and
pLm)
b
?ﬂm =lap =18 1,am—1]. (A6)
Sa/b

It is easy to show that the continued fractions in Equations (A5) and (A6) match in all
the terms with the exception of the last one; hence, all the denominators of the convergent

with t < m — 1, we verify that s;l}t‘; = sfll/’tb). Using the induction hypothesis, the recursive
(1)

Equation (3) for the convergent, and denoting by s’ the number of nodes of degree k; in
the right descendant, we have:

0 (Lm)  (Lm)

ST = Sy TSaj
- (S;l;:;fz) + (am) .3%71)) 6D 4 (g — 1) 50
= 6 () s )+ U+ (an—1) s )
= 250 20 (1) sy sy
= 2(s£l/";7*2) + (am — 1) ~s£l/";1*1)) i S‘(Zl/,?:ﬂ)
- 2 -

where the right-hand side of Equation (A7) is the denominator of the truncated contin-
ued fraction [a; 1 —1,...,4,-1,a, — 1,2]. Finally, the right descent has a single node
with degree

m—1 m
k=Y ai+(an—1)+3=) a+2.
i=1 i=1
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Kn(xl,...

This is the merging node obtained by the concatenating the extreme nodes of p/g and
a/b, in agreement with the denominator of the last truncated right descendant, which is
[2—1] = [1] = 1/1, thereby ending the proof. [I

Appendix A.2. Proof of Theorem 2

In order to demonstrate the result, we must introduce the continuants, recursively
defined polynomials stated by Euler, where:

Ko = 1,
Ki(x1) = xi;
Ky(x1,...,%0) = xp-Ky_1(x1,...,%5-1) + Ky—2(x1,...,x4-2), for n >2. (A8)

The continuants allow us to express the continued fractions as
K,_1(ar,...,a
E:[al,...,an]:—” 1(02 )

q Kp(a1, ..., a,) (A9)

In addition, two properties of the continuants must be introduced. The first generalizes
the definition (A8) Vm, with 1 < m < n as follows:

Ky(x1,...,xy) = K (x1, .o, Xm) - Knem (Xma1, -+, Xn)
+ Kp1(x1, -, xm1) Ky 1 (a2, -+ Xn)- (A10)
The second equality was established by Muir and Metzler in [21]:
,Xn) : anz(xZ, - ,xn_l) — Kn—l (xl, . ,Xn_l) . Kn—l (XZ, ey xn) = (—1)”. (A11)

Proof. The intervals, where the degree distribution P(k, p/q) > 0, are determined by the
elements a;/b; € {x_3, i.e., the Farey fractions of a certain level in the Farey tree, and their
descendants located at a lower level py;_1/q2i—1 € {x_5. Let us first establish that

aj

E = [al/- "/“T];
then, if r is even, we obtain
Pt a1 P =, —1,2), (A12)
q2i—1 q2i
whereas for r odd we have:
P a e 1) P = ey, — 1,2, (A13)
q2i q2i—1

Let us suppose, without loss of generality, the case » odd, and consider a rational number

se (1721—1 = [ucl,...,ocﬁrl],ﬁ

=(ag,...,0] ).
q2i—1 b; o r]>

Then, the first r terms of the continued fraction are determined as follows:

E = [061,. . .,Oér,br+1,. . ,bm]
q
Furthermore, if a;/b; = [a1,...,a:] € {3, thenk = Y[, «; + 3. Let us verify that

the numerator of the expression gy;_1 - (p/q) — p2i—1 stated in Theorem 2 and the term
s(") stated in Theorem 1 have the same value for the degree k = Y, a; + 3. Hence,
applying the continuant expression in Equation (A9) to p/q and py;_1/42i—1 (described in
Equation (A12)), and the property presented in Equation (A10), we obtain:
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Goi1-P—4q-pP2ic1 = K(ag,...,er+1)-K(ag, ..., 00, bp41,...,bm)

—K(aq, ..., 00,bp01,...,bm) K(ag, ..., 0r+1)

= K(ay,...,ar+ 1) [K(ag, ..., ar) - K(bys1,..., bm)
+K(a, ..., 0p-1) - K(byyo, ..., bu)]
—K(ag, ..., 0p+1) - [K(aq,...,ar) - K(bpi, ..., bu)
+K(ag,...,0p-1) - K(byyo, ..., bu)]

= K(byy1,-. bm) - [K(ag,...,ar +1) - K(ag, ..., ar)
—K(ag, ..., a0r+1)-K(ay,..., )]
+K(bri2, .- bm) - [K(,..., 00 +1) - K(ag, ..., a,_1)
—K(ag, ..., 0r+1)-K(ag,...,001)]. (A14)

Using the definition (A8) for K(a, ..., &, + 1), we obtain:
K(aq,...,00+1) = K(ay,...,00) + Koy, ..., 0,_1), (A15)

and applying the Equation (A11), we obtain the following value for the first bracket in
Equation (A14):
K(ay,...,ar+1)-K(ag,...,a,) — K(ag,...,ar+1) -
=K(a1,...,ar) K(ag, ..., 00) +K(ag, ..., 00 1) -
—K(ag,...,0p) - K(ag,...,ar) —K(ag,...,a,_1) - K
=K(ay,...,0,1) - K(ag, ..., ) ( )

In addition, for the second bracket in Equation (A14), we have:

K(aq,...,00+1) -K(ag,..., 0, 1) — K(ag,..., 0, +1
=K(ay,...,0r) - K(ag, ..., 00_1) + K(aq, ..., 00_1) -
—K(ag, ..., 00) - K(aq, ..., 0, 1) — K(ag,...,a,1) -

-K Kyyeee, By q
(‘XZI' '-/lxl’fl

(all sty lx}’—]

~ R

=K(ay,...,0r) K(ag, ..., 00 1) — K(ag, ..., ) - K(aq, ..., 2,1
=(-1)"=-1
Therefore, Equation (A14) is simplified as follows:
q2i-1-P—q-p2i-1 = K11, bm) — K(byi2,.. ., bm), (Al6)
where the right-hand side is:

K(byy1,.-.,bm) — K(byyo, ..., by)

= br+1 . K(br+2,. . .,bm) —|— K(br+3, .. ,bm) - K(by+2,. . ,bm)

= (br+1 — 1) . K(bﬂ,z, ceey bm) + K(br+3, e ,bm)
=K(byy1 — 1,42, ..,bm), (A17)

i.e., it is the denominator of the truncated continued fraction [er -1,..., bm], as we
aimed to demonstrate. Observe that if r is even, p,;/qy; has a continued fraction ex-
pression [a1,...,a, + 1], and the argumentation would be valid with the opposite sign

—fq2i - P+ g - Pai-
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It remains to verify the result for rational numbers:

p ai P2i
—el—=la,..., 00, — = l01,...,0,—1,2], ].
e (5= o], B = oy - 1,2],)

In that case, the first r terms of the continued fraction of p/g are determined as:

g = a1, .0 — 1,1, b4, ..., byl

Reproducing the scheme of the demonstration in the last case, we obtain

—goi p+q-ps = —K(ag,...,0r—1,2)-K(ag,...,0r —1,1,bp42,...,bp)
+K(ag, ..o 00 —1,1,b,40,...,bm) - K(ag, ..., ar —1,2)

= —K(ay,...,ar—1,2) - [K(ag,...,0r —1,1) - K(by12, ..., by)

(a,... 00 —1) - K(bry3, ..., bm)]

+K(ag, ..., —1,2) - [K(ag,...,ar —1,1) - K(bys2, ..., by)

(a1,..., 00 —1) - K(brs3, ..., bm)]

(byio, - bm) - [K(ag, ..., 0r —1,2) - K(ag, ..., &)

—K(ap,...,ar —1,2) - K(ay, ..., )]

+K(bysz, ..., bm) - [K(ag, ..., ar —1,2) - K(ay, ..., 00 — 1)
(a1,...,0,1,2) - K(ag, ..., ar — 1)]. (A18)

Using the definition (A8) for K(ay, ..., a, —1,2), we have:

K(ag,...,ar—1,2)

2-K(ag,...,0r — 1)+ K(ag,...,a,_1)
2-[(ay —1)-K(ag,...,0p—1) +K(ay, ..., 00-2)] + K(ag, ..., a,_1)
= 2-(a)-K(ag,...,00-1) —2-K(ay,...,0p-1)

+2-K(ag, ..., 002) + K(ay, ..., 001)
= 2-(a)-K(ag,...,0p—1) —K(ag, ..., ap—1) +2-K(az, ..., ar2)
2-K(ag,...,0r) — K(ag, ..., p-1). (A19)

The first bracket in Equation (A18) is now:

K(aq,...,00, —1,2) - K(ag,...,ar) — K(ag,...,0r —1,2) - K(aq, ..., )
=2-K(ay,...,00) - K(ag,...,ar) — K(aq, ..., 0, 1) K(ag, ..., ar)
—2-K(ag, ..., 00) - K(aq, ..., ) +K(ag,..., 0, 1) K(ay, ..., a)
=K(ag, ..., 0, 1) - K(ag,...,0,) — K(aq,...,0, 1) - K(ag,...,a)

=(-1)"=-1

In addition, the second bracket requires the following equality:

K(aq,...,00 —1) = K(ay,...,0r) — K(ay,...,0,_1),
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resulting in:

K(ag,...,ar —1,2) - K(ay,..., 00 — 1) — K(aq, ..., 0, — 1,2) - K(
=2-K(ag,...,00) - K(ag,...,0, — 1) — K(ag,...,a, 1) - K(ay,..., 0, — 1
—2-K(ay, ..., ) - K(ag,...,0p — 1) + K(ag, ..., 1) - K(

=2-K(ag,..., ) K(aq,...,ar) —2-K(ag, ..., a) -

) - K(
—K(ag,...,0p_1) - K(ag,...,ar) + K(ag,...,0,_1) - K(
—2-K(ag, ..., 00) - K(ag, ..., 0,) +2-K(ay,...,0r) K(ag, ..., 0,1
+K(aq,..., 0, 1) - K(ag,...,0r) — K(a1,...,0,_1) - K(ag, ..., 0,1
=K(ay,...,0r) - K(ap, ..., 00 1) — K(aq,...,0,1) - K(ag,...,ar

Thus, Equation (A18) is simplified as:

—qoi-p+q-p2u= K(b7+2,. . .,bm) — K(b,urg, .. /bm) = K(br+2 -1, br+3, .. .,bm),

i.e., it is the denominator of the continued fraction [b,1» —1,...,by], or equivalently,
s+ for k = Zf;ll a;i+ (op —1)+1+3 = Y;_; «; + 3, as we want to demonstrate. To
conclude, if r is even, then py;_1/q2i-1 = [a1,..., &, — 1,2], and changing the sign to
equality qp;_1 - p — g - p2i—1 results in equivalent reasoning. [J
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