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Abstract: The human microbiome has been recently shown to be associated with disease risks and
has important implications in risk stratification and precision medicine. Due to abundant taxa in
the human body, microbiome data are high-dimensional and compositional. Dirichlet distributions
and their generalization are used to characterize the dependence structures of microbial data.
Another existing method for fitting microbiome data employed Gaussian graphical model using the
centered log-transformation (CLR). However, Dirichlet distributions are not able to infer networks
or to estimate some extremely rare probabilities. On the other hand, it is hard to interpret the
network analysis results using CLR. Furthermore, the data analysis showed that there is a lack
of efficient multivariate distributions for fitting microbiome data, which results in inadequate
statistical inferences. In this paper, we propose new multivariate distributions for modeling the
dependence structures of the high dimensional and compositional microbiome data using inverse
gamma distributions and copula techniques. The data analysis in the American gut project shows
our proposed methods perform well.

Keywords: copula; dependence analysis; goodness-of-fit test; Kendall’s correlation coefficient;
microbiome; multivariate distribution; parametric estimation
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1. Introduction

The human microbiome is a gathering of microbes that inhabit different sites of the
human body, including bacteria, archaea, and fung. The research on low-price high-
throughput sequencing analyses has substantially facilitated the characterization of the
compositions and diversities of the human microbiome. It provides a chance to carry
out large-scale population-based microbiome studies to identify novel risk factors and to
improve the risk prediction of diseases. Over the past two decades, increased research has
focused on studying the structure, function, and dynamics of microbiome data, referring
to all of the taxa and their genes in a well-defined environment [1]. Technical advance-
ments and reduced costs in sequencing have led to large-scale studies such as the human
microbiome project (HMP) and the American gut project (AGP), which characterize the
microbiome of largely healthy individuals [2,3]. Most of the early research focused on
microbial diversity and taxonomic classification. More recently, research has focused on
differential abundance analysis and understanding how the host environment is associated
with the microbiome [4–7]. The human microbiome is known to be associated with complex
diseases, such as obesity, inflammatory bowel disease, and rheumatoid arthritis [8–10].

Despite these advances, little is known about inter-microbial interactions. Much of
the lack of information on microbial interactions comes from the fact that most standard
statistical methods for correlation or network analysis cannot be directly applied to such
high-dimensional, compositional, and sparse data. To analyze microbiome data, there are
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two methods in the literature for modeling the distributions of the relative abundance
data of many taxa. One method is utilizing multivariate normal distributions to model
correlation structures of taxa by means of the centred log ratio transformation (CLR) or
alternative log ratio transformations (ALR), and the other is using Dirichlet multinomial
distribution to model taxa counts [11,12]. Dirichlet distributions are not quite flexible
enough to fit many real data sets in microbiome studies. Moreover, the lack of dependence
structure analysis hinders further statistical inferences in microbiome studies [13].

For modeling microbial dependence structures with multivariate normal distributions,
two of the most common methods, SparCC and SPIEC-EASI, are used. SparCC uses the
additive log-ratio transformations and assumes that the underlying unobserved counts are
correlated through log-ratio [14]. In contrast, SPIEC-EASI uses the CLR and assumes that
the network of interactions is generated from a precision matrix [15]. While the log-ratio
transformations are common in compositional data analysis, they are not particularly
fitting for data with excessive zeros [16], as is the case with microbial sequencing data. The
normality assumption of such data often does not hold (see, e.g., Figure 1a below), and
they require the use of pseudo-counts, thus forcing the assumption that the true absolute
abundance (AA) for every taxa is non-zero in each sample. Figure 1 shows that there are
large departures between the estimated contour plots of samples and the contour plots
based on the estimated normal distribution with CLR or the estimated Dirichlet distribution.
Furthermore, the corresponding results from such transformations are difficult to interpret
and are sensitive to the choice of reference groups; as Feng et al. [17] pointed out, the results
of standard statistical tests performed on log-transformed data are often not relevant for
the original, non-transformed data.

To model the high-dimensional and compositional data in microbiome studies, we
propose two classes of multivariate distributions on a simplex. A new class of multivariate
distributions on a simplex is composed of variable transformation of inverse gamma
distributions since most datasets show that a single taxonomy can be characterized by an
inverse Gamma distribution. Another new class of multivariate distributions on simplex
is constructed by means of copula techniques. Copulas are functions that join univariate
uniform distribution functions to form multivariate distributions and are powerful for
characterizing the dependence structures of random variables [18].

Furthermore, human microbiota can be influenced by environment changes and life-
style changes. Microbiome data are compositional and sparse. A few taxa are abundant,
most taxa are rare (present in <10% subjects), and there are zero counts for some taxa . This
could be caused by sampling zero (low sequence depth) or structural zeros (absent taxa).
To deal with sampling zeros, we could enlarge the sequencing depth. However, in our
settings, we ignore sampling zeros and only deal with structural zeros by zero-inflated
distributions.

The remainder of this paper is organized as follows. Section 2 constructs the new class
of multivariate distributions on a simplex by variable transformation of inverse gamma dis-
tributions. In Section 3, using the copula techniques, we propose a new class of multivariate
distributions on a simplex with a Gaussian copula and a Farlie–Gumbel–Morgenstern
copula. The real data from the American gut project (AGP) is analyzed to demonstrate
the effectiveness of the proposed new multivariate distributions in Section 4, and some
conclusions are given in Section 5.
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Figure 1. The contour plots of Faecalibacterium (OTU1) and Bacteroides (OTU2) from AGP in the
upper panel and taxa Clostridium (OTU3) and Escherichia (OTU4) on the lower panel. In (a), AA is
the absolute abundance that describes the OTU counts for taxa. The black lines are the estimated
contour plots of samples, and the red lines are the contour plots of estimated distributions, which
shows that there are large departures between the estimated contour plots of samples and the
contour plots based on the estimated normal distribution with CLR (a) or the estimated Dirichlet
distribution (b).
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2. Multivariate Distributions on Simplex via Inverse Gamma Distributions

Suppose there are k + 1 microbial taxa, and denote Y = (Y1, . . . , Yk+1)
T as the true

relative abundance (RA) of microbial taxa. The RA has a compositional structure with
∑k+1

j=1 Yj = 1, and the vector Y lies on the k-dimensional simplex Sk,

Sk :=

{
(y1, . . . , yk)

T : yi > 0, i = 1, . . . , k,
k

∑
i=1

yi ≤ 1

}
(1)

To construct the distributions of Y, the inverse Gamma distributions on (0, ∞) are
employed since most datasets show that a single taxonomy can be characterized by an
inverse Gamma distribution (IG). Let X1, . . . , Xk+1 be independent random variables on
(0, ∞) and have the inverse Gamma distributions Xj ∼ IG(α, β j) with its density function

f (x; α, β j) =
βα

j

Γ(α)
x−α−1exp(

−β j

x
), for x > 0, (2)

where α > 0 is the shape parameter and β j > 0 are the scale parameters for j = 1, . . . , k + 1.
For a given subject, we assume that the k taxa have the same shape parameter α, but the
scale parameters β j vary. With the following transformation,

Yj =
Xj

∑k+1
j=1 Xj

, Yk+1 = 1−
k

∑
j=1

Yj, for j = 1, . . . , k, (3)

The RA of microbial taxa Y has the multivariate distribution on the k-dimensional
simplex Sk with its density function as

f (y; α, β1, . . . , βk+1) =
Γ((k + 1)α)

Γ(α)k+1

k+1

∏
j=1

βα
j

k+1

∏
j=1

y−α−1
j

(
k+1

∑
j=1

β j

yj

)−(k+1)α

, (4)

for y = (y1, . . . , yk+1)
T and 0 < yj < 1, ∑k+1

j=1 yj = 1 for j = 1, . . . , k + 1. We denote Y =

(Y1, . . . , Yk+1)
T ∼ MSIG(α; β1, . . . , βk+1). The special case of this multivariate distribution

when α = 1
2 was first introduced by Carlton [19] and further discussed in Favaro et al. [20].

For the density function (4), the marginal density functions are

f (yj; α; β1, . . . , βk+1) =
βα

j

Γ(α)
(1− yj)

α+3

yα+1
j

∞∫
0

· · ·
∞∫

0

exp

[
−β j(1−yj)

yj( ∑
i 6=j

xi)
− ∑

i 6=j

βi
xi

]
( ∑

i 6=j
xi)α ∏

i 6=j
xα+1

i
∏
i 6=j

dxi, (5)

for j = 1, . . . , k + 1. Figure 2 shows the estimated marginal density functions by (5) are
fitting well for the sample density functions of Faecalibacterium (OTU1) and Bacteroides
(OTU2) from AGP.
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Figure 2. The estimated marginal density functions: the black line is estimated by the samples, the
gray line by Dirichlet distributions, and the red line is by MSIG distribution.

In the studies of the human microbiome, it is more expedient to consider the aver-
age total positivity [21] (and reverse regularity) of order two microbial taxa. Kendall’s
correlation coefficient is a measure of the difference between the probabilities of concor-
dance and discordance for two independent and identically distributed pairs of random
variables. It is the difference between the probabilities of concordance and discordance
for two independent and identically distributed pairs of random variables [22,23]. Let
Y = (Y1, . . . , Yk+1)

T ∼ MSIG(α; β1, . . . , βk+1) with the density given in (4). Because of the
transformation (3), the corresponding Kendall correlation coefficient of Yi and Yj is given by

τ(Yi, Yj) = E(sign(Yi −Yi′)sign(Yj −Yj′)) = E(sign(Xi − Xi′)sign(Xj − Xj′)) (6)

where (Yi′ , Yj′) is an independent copy of (Yi, Yj) and (Xi′ , Xj′) is an independent copy of
(Xi, Xj) for i 6= j, i, j = 1, . . . , k + 1. Since

P(Xi − Xi′ < 0) =
∫ ∞

0

∫ ∞

x

βα
i

Γ(α)
x−α−1exp(

−βi
x

)
βα

i
Γ(α)

y−α−1exp(
−βi

y
)dydx, (7)

then, the Kendall correlation coefficient of Yi and Yj is the same as that of two independent
IG random variables Xi and Xj, and we have that

τ(Yi, Yj) = P(Xi > Xi′)P(Xj > Xj′) + P(Xi < Xi′)P(Xj < Xj′)

−P(Xi > Xi′)P(Xj < Xj′)− P(Xi < Xi′)P(Xj > Xj′)

= 2

(
1− 2−2α

Γ(α)

∞

∑
l=0

Γ(2α + l)
2lΓ(α + l + 1)

)(
1− 2−2α+1

Γ(α)

∞

∑
l=0

Γ(2α + l)
2lΓ(α + l + 1)

)
,

(8)

which is only dependent on the parameter α, for i 6= j, i, j = 1, . . . , k + 1.

2.1. Paramter Estimation

Let y(1), . . . , y(n) be i.i.d samples from Y ∼ MSIG(α; β1, . . . , βk+1). The log-likelihood
function of parameters Θ = (α; β1, . . . , βk+1) is given by

`(Θ|y(1), . . . , y(n)) ∝ nα
k+1
∑

j=1
log β j + n log(Γ((k + 1)α))− n(k + 1) log(Γ(α))

−
n
∑

i=1

[
(α + 1)

k+1
∑

j=1
log y(i)j + (k + 1)α log

(
k+1
∑

j=1

β j

y(i)j

)]
,



Mathematics 2023, 11, 9 6 of 14

and we obtain the score functions

kβh =
n

∑
i=1

 ∑k+1
j 6=h

β j

y(i)j

βh + ∑k+1
j 6=h

β j

y(i)j


 n

∑
i=1

1

βh + ∑k+1
j 6=h

β j

y(i)j


−1

, h = 1, . . . , k + 1;

n(k +1)
(

Γ′((k+1)α)
Γ((k+1)α) −

Γ′(α)
Γ(α)

)
=

n
∑

i=1

[
k+1
∑

j=1
log y(i)j + log

(
k+1
∑

j=1

β j

y(i)j

)
(k +1)

]
− n

k+1
∑

j=1
log β j,

(9)

where Γ′(·) is the derivative function of Γ(·). The maximum likelihood estimation (MLE)
of Θ = (α; β1, . . . , βk+1) can be obtained by an iterative algorithm.

2.2. Multivariate Goodness–of–Fit Testing

For given n samples y(1), . . . , y(n) in the k-dimensional simplex Sk, we can obtain
the estimated parameters Θ̂ = (α̂; β̂1, . . . , β̂k+1). A goodness-of-testing procedure is

necessary to test the hypothesis that the samples
{

y(i)
}n

i=1
come from the distribution

Y ∼ MSIG(α̂; β̂1, . . . , β̂k+1). For one-dimensional or low-dimensional data, there are
a wide variety of useful and powerful goodness-of-fit and two-sample testing proce-
dures, such as Kolmogorov–Smirnov (K-S) test. However, for high-dimensional (k > 3)
data, those tests rapidly lose statistical power because all finite samples are sparse in
high-dimensional settings owing to the “curse of dimensionality” [24]. In this paper, a
machine learning method for two-sample testing is employed, which was proposed by
Friedman [24] and further developed by Gretton et al. [25]. For the given observed sam-

ples
{

y(i)
}n

i=1
, we can obtain a set of score values

{
vi = F(y(i))

}n

i=1
, where F(y) is the

cdf of MSIG(α̂; β̂1, . . . , β̂k+1). At same time, with the “Monte Carlo” samples
{

z(i)
}n

i=1
from the distribution MSIG(α̂; β̂1, . . . , β̂k+1), we can obtain another set of score values{

wi = F(z(i))
}n

i=1
. Then, a univariate two-sample test, such as the K-S test, chi–squared

test, or Mann–Whitney test, can be used to test the goodness of fit based on the scores. The
testing procedure is as follows:

Step1. Generating n samples
{

xij
}n

i=1 from the distribution IG(α̂, β̂ j) for j = 1, . . . , k + 1.

With the transform (3), we can obtain n samples
{

z(i)
}n

i=1
from the distribution

MSIG(α̂; β̂1, . . . , β̂k+1) such that z(i) = (zi1, . . . , zi,k+1)
T , zij =

xij

∑k+1
j=1 xij

, zi,k+1 = 1−

∑k
j=1 zij, for j = 1, . . . , k, and i = 1, . . . , n.

Step2. By denoting F(y) the cumulative distribution function (cdf) of MSIG(α̂; β̂1, . . . , β̂k+1),

we obtain two samples
{

wi = F(z(i))
}n

i=1
and

{
vi = F(y(i))

}n

i=1
.

Step3. Using the one-dimensional two-sample test, such as the K-S test, chi–squared test, or
Mann–Whitney test, to test the hypothesis that the two samples {wi}n

i=1 and {vi}n
i=1

have the same distribution.
Step4. Repeating N (for example, N = 5000) times of Steps 1–3, we cannot reject the null

hypothesis if the percent of rejecting times of testing in Step 3 (i.e., the p-value < 0.05)
is less than 5%.

Friedman showed that the power of this testing procedurecan be highly sensitive to
the learning machine methods that are employed [24].

2.3. Zero-Inflated Distribution with Zero Counts for Absent Taxa

The above multivariate distribution assumes that all taxa have positive proportions.
However, for a given taxonomy j, they may be absent in some subjects. To consider the
zero-inflated structures, we introduce the zero-inflated inverse Gamma distributions [26].
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Let X∗1 , . . . , X∗k+1 be independent random variables on [0, ∞) and X∗j = (1− ∆j) + ∆jXj,
where ∆j follows a Bernoulli distribution ∆j ∼ Bernoulli(πj) with P(∆j = 1) = πj and
P(∆j = 0) = 1− πj, and Xj follows a inverse Gamma distribution Xj ∼ IG(α, β j) for
j = 1, . . . , k+ 1. Then, X∗j has a zero-inflated inverse Gamma distribution X∗j ∼ ZIIG(πj, α, β j)

with the probability density

f (x|πj, α, β j) = πδ
j

(
(1− π)

βα
j

Γ(α)
x−α−1exp(

−β j

x
)

)1−δ

, δ = I{x = 0}, (10)

for x ∈ [0, ∞). With the transformation

Yj =
X∗j

∑k+1
j=1 X∗j

, Yk+1 = 1−
k

∑
j=1

Yj, for j = 1, . . . , k, (11)

The RA of microbial taxa Y has the multivariate distribution on the k-dimensional
simplex Sk with its density function as

f (y; α, β1, . . . , βk+1) =
k+1
∏
j=1

π
δj
j (1− πj)

1−δj

Γ(
k+1
∑

j=1
(1−δj)α)

Γ(α)
∑k+1

j=1 (1−δj)

k+1
∏
j=1

β
(1−δj)α

j

k+1
∏
j=1

y
(−α−1)(1−δj)

j

(
k+1
∑

j=1

(1−δj)β j
yj

)−∑k+1
j=1 (1−δj)α

,

(12)

where δj = I{yj = 0} for y = (y1, . . . , yk+1)
T and 0 ≤ yj < 1, ∑k+1

j=1 yj = 1 for
j = 1, . . . , k + 1.

3. Multivariate Distributions on Simplex Using Copula Dependence Structures

Since the k + 1 microbial taxa Y = (Y1, . . . , Yk+1)
T lie on the k-dimensional simplex Sk

defined in (1), Y is a k-dimensional random vector. To characterize the dependence struc-
ture of the k-dimensional random vector, copula techniques are usually employed [18,23].
Copulas are multivariate distributions with uniformly distributed marginals on [0, 1]. Uti-
lizing copulas, the density function of a multivariate distribution can be decomposed into
the density weighting function and the product of marginal densities [27]. For a d-variate
random vector X = (X1, . . . , Xd) with joint cdf F(·) and marginal strictly increasing cdf
Fi(·) (i = 1, . . . , d), Sklars’s Theorem [28] states that there a d-variate copula cdf C(·) on
[0, 1]d exists such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

C(u1, . . . , ud) = F(F−1
1 (u1), . . . , F−1

d (ud)),
(13)

for all x = (x1, . . . , xd)
T ∈ Rd and u = (u1, . . . , ud)

T ∈ [0, 1]d, where F−1(·) is the inverse
function of F(·). Let f (x1, . . . , xd) and fi(xi) (i = 1, . . . , d) be the density function and the
marginal density functions of X = (X1, . . . , Xd), respectively. The corresponding copula
density and the density function of X have the following relationships:

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1, . . . , ∂ud
=

f (F−1
1 (u1), . . . , F−1

d (ud))

f1(F−1
1 (u1)), . . . , fd(F−1

d (ud))
,

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))∏d
j=1 f j(xj).

(14)
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The distributions of individual taxonomy are easily estimated, for example, Qiu et al. [13]
proposed two-parametric simplex distribution with its density function,

f (y) = (2πs(y(1− y))3)−1/2exp(− (y−m)2

2m(1−m)2y(1− y)s
))

where (s, m) are shaping parameters for 0 < y < 1. In this paper, we propose two
families of copulas, Gaussian and Farlie–Gumbel–Morgenstern copulas, to characterize
the dependence structures of microbial taxa such that the corresponding multivariate
distributions are good-of-fit for a given microbial data.

3.1. Gaussian Copula

Many new multivariate distributions are constructed based on the dependence struc-
tures of multivariate normal distributions, which are called Gaussian copulas. Let
Z = (Z1, . . . , Zk)

T ∼ N(0, R) with mean vector 0 and the k× k covariance matrix R,

R =
{

ρij : ρii = 1,−1 < ρij < 1 for i 6= j, ρij = ρji; i, j = 1, . . . , k
}

. (15)

Denote the cdf of Z by FZ(z1, . . . , zk); the corresponding copula of Z is given by

CZ(u1, . . . , uk) = FZ(Φ−1(u1), . . . , Φ−1(uk)), (16)

for (u1, . . . , uk)
T ∈ (0, 1)k, where Φ(·) is the cdf of standard normal distribution N(0, 1).

Suppose that the marginal distributions of the k + 1 microbial taxa Y = (Y1, . . . , Yk+1)
T

are Fj(yj) the cdf of Yj for j = 1, . . . , k, and Yk+1 = 1−∑k
j=1 Yj, the distribution function of

Y can be constructed with the copula (16) to be

FY(y1, . . . , yk; R) = P{Y1 ≤ y1, . . . , Yk ≤ yk}
= FZ(Φ−1(F1(y1)), . . . , Φ−1(Fk(yk))).

(17)

Fang et al. [18] show that Kendall’s correlation coefficient τ(Yi, Yj) of Yi and Yj is
given by

τ(Yi, Yj) =
2
π

arcsin(ρij), for i 6= j, i, j = 1, . . . , k, (18)

which depends only on ρij. Thus, the estimates of ρij can be obtained by the estimators of
Kendall’s correlation coefficient τ(Yi, Yj) of Yi and Yj.

3.2. Farlie–Gumbel–Morgenstern (FGM) Copula

As an alternative to a multivariate normal distribution, the FGM copula has been
widely studied and applied to statistical modeling in various research fields [29–31]. Let
U = (U1, . . . , Uk)

T be a random vector that follows a k-dimensional FGM copula with its
cdf CFGM(u1, . . . , uk; Θ),

CFGM(u1, . . . , uk; Θ) = P(U1 ≤ u1, . . . , Uk ≤ uk)

=
k

∏
j=1

uj

(
1 +

k
∑

i=2
∑

1≤j1<···<ji≤k
θj1···ji (1− uj1) · · · (1− uji )

)
,

(19)

where (u1, . . . , uk)
T ∈ [0, 1]k and Θ = {θj1···ji : 1 ≤ j1 < · · · < ji ≤ k, i = 2, . . . , k}

are dependence parameters since Θ ≡ 0 means that the random variables U1, . . . , Uk are
obviously independent. According to Johnson and Kotz [30], the 2k − k− 1 parameters Θ
have the following constraints:

1 +
k

∑
i=2

∑
1≤j1<···<ji≤k

θj1···ji δj1 · · · δji ≥ 0, δj = ±1, (20)
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for j = 1, . . . , k. With the cdf (19), we have the joint-density function of U given by

cFGM(u1, . . . , uk; Θ) =
∂k

∂u1 · · · ∂uk
CFGM(u1, . . . , uk; Θ)

= 1 +
k
∑

i=2
∑

1≤j1<···<ji≤k
θj1···ji (1− 2uj1) · · · (1− 2uji ).

(21)

For the given marginal distributions Fj(yj) of the cdf of Yj for j = 1, . . . , k , the
distribution function of microbial taxa Y = (Y1, . . . , Yk+1)

T can be constructed with the
copula (19) to be

FY(y1, . . . , yk; Θ) = P{Y1 ≤ y1, . . . , Yk ≤ yk}

=
k

∏
j=1

Fj(yj)

(
1+

k
∑

i=2
∑

1≤j1<···<ji≤k
θj1···ji (1−Fj1(yj1)) · · · (1−Fji(yji ))

)
,

(22)

where 0 < yj < 1 for j = 1, . . . , k, and yk+1 = 1 − ∑k
j=1 yj. The Kendall’s correlation

coefficient τ(Yi, Yj) of Yi and Yj is given by

τ(Yi, Yj) = 4
∫∫
[0,1]2

C(ui, uj)dC(ui, uj)− 1

=
θij

9
(θij − 8), for i 6= j, i, j = 1, . . . , k,

(23)

which depends only on θij.
Thus, the estimates of θij can be obtained by the estimators of Kendall’s correlation

coefficient τ(Yi, Yj) of Yi and Yj, but all of the parameters Θ = {θj1···ji : 1 ≤ j1 < · · · <
ji ≤ k, i = 2, . . . , k} should satisfy the constraints in (20) . Shih et al. [32,33] provided the
maximum likelihood estimates of Θ with the constrains in (20).

3.3. Multivariate Distributions with Zero-Inflated Marginal Distributions

Let the k + 1 microbial taxa Y = (Y1, . . . , Yk+1)
T lie on the k-dimensional simplex Sk

defined in (1). When there are proportions with zero counts for absent taxa, the zero and
the non-zero responses are assumed to occur from two different processes; then, we could
use two-part models to characterize the marginal distributions. Define that ∆j = I{Yj = 0}
and Y∗j = Yj|(Yj > 0). Let f ∗j (y, ωj) and F∗j (y, ωj) be the pdf and cdf of Y∗j , respectively,
where ωj is a parameter (or a parametric vector). Assume that ∆j ∼ Bernoulli(πj) with
P(∆j = 1) = πj and P(∆j = 0) = 1− πj. Then, the marginal random variable Yj has the
probability density,

f j(y) = π
δj
j

(
(1− πj) f ∗j (y, ωj)

)1−δj
, δj = I{y = 0}, (24)

for j = 1, . . . , k. To construct the multivariate distribution of Y, we assume that ∆1, . . . , ∆k
have the multinomial distribution with its probability mass function

g(δ1, . . . , δk; π1, . . . , πk) = P{∆1 = δ1, . . . , ∆k = δk}
= ∏k

j=1 π
δj
j ×∏k

j=1(1− πj)
1−δj ,

(25)

and the joint cdf of (Y∗1 , . . . , Y∗k ) is given by

fY∗(y1, . . . , yk; ω1, . . . , ωk) = c(F∗1 (y1, ω1), . . . , F∗k (yk, ωk))
k

∏
j=1

f ∗j (yj, ωj), (26)
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where c(u1, . . . , uk) is the density function of a copula C(u1, . . . , uk). Denote Υ = (π1, . . . , πk;
ω1, . . . , ωk; Θ) or Υ = (π1, . . . , πk; ω1, . . . , ωk; R), where Θ and R are the parameters in the
given copula function. Thus, the joint probability function of Y is given by

fY(y1, · · · , yk; Υ) =

∏k
j=1 π

δj
j + ∏k

j=1(1− πj)
1−δj ∏k

j=1 f ∗j (yj, ωj)
1−δj c̃

(
[F∗1 (y1, ω1)]

1−δ1 , · · · , [F∗k (yk, ωk)]
1−δk

)
,

(27)

where δj = I{yj = 0} for j = 1, . . . , k, c̃
(
[F∗1 (y1, ω1)]

1−δ1 , . . . , [F∗k (yk, ωk)]
1−δk

)
is the density

function of C(u1−δ1
1 , . . . , u1−δk

k ) at uj = F∗j (yj, ωj) for δj = 0 and j = 1, . . . , k. Note that

a0 = 1 and the marginal cdf C(u1−δ1
1 , . . . , u1−δk

k ) are also a copula .

3.4. Parameter Estimation and Goodness–of–Fit Testing

Let y(1), . . . , y(n) be i.i.d samples from the multivariate distribution with its pdf in (27).
To obtain the maximum likelihood estimates of parameters Υ, a two-stage approach is
employed [34]. The marginal distributions are first estimated based on partial maximum
likelihood methods. Given these marginal fits, the estimated cumulative distribution
functions are then obtained using the estimates of the parameters in copula. Denote
δij = I{y(i)j = 0} for j = 1, . . . , k, i = 1, . . . , n. The estimates of π’s can be obtained by

π̂j =
n

∑
i=1

δij/n, j = 1, . . . , k, (28)

and the estimates of ω’s maximize the log-likelihood functions.

`(ωj) =
n

∑
i=1

(1− δij) log( f ∗j (y
(i)
j , ωj)), j = 1, . . . , k. (29)

Then, the estimates of the parameters in copula can be obtained by maximizing the
likelihood function

Lik(Υ) =
n

∏
i=1

c̃
(
[F∗1 (y

(i)
1 , ω̂1)]

1−δi1 , . . . , [F∗k (y
(i)
k , ω̂k)]

1−δik
)

. (30)

When C(u1, . . . , uk) is an FGM copula, Shih et al. [33] provides the maximum likeli-
hood estimates of Θ. If C(u1, . . . , uk) is a Gaussian copula, the parameters R = (ρij) can
be estimated by the corresponding estimates of Kendall’s correlation coefficient τ(Y∗i , Y∗j )
based on (23).

When we obtain the estimates of parameters Υ, the machine learning method given in
Section 2.1 can be used for goodness-of-fit testing of the proposed multivariate distributions.
Shih et al. [33] provides a procedure of generating samples from FGM copulas, and
Fang et al. [18] gives a procedure of generating samples from Gaussian copulas.

4. Real Data Analysis

Now we apply our proposed methods to the datasets from AGP, a self-selected, open-
platform cohort [2]. The cohort consists of individuals mostly from the United States, with
some from the United Kingdom and Australia, who opted into the study by providing
informed consent and paying a fee to offset the cost of processing and sequencing. The
data, both 16S rRNA gene sequencing and self-reported meta-data, are publicly available
in The European Bioinformatics Institute repository under the accession ERP012803.

We focus on the fecal microbiome samples and restrict our samples to individuals who
reported not having inflammatory bowel disease or diabetes. We filtered data that showed
that OTUs were removed if present in fewer than 37% of samples . Samples were removed
if total sequencing depth fell below 10,800 sequence reads [15]. After filtering, there were
127 OTUs and 289 samples remaining in our dataset.
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To illustrate our methods, the analysis results of two OTUs are shown only in this
section. As shown in Figure 2, the sample density functions of Faecalibacterium (OTU1) and
Bacteroides (OTU2) from AGP are fitted well by the marginal distributions of MSIG distribu-
tion, where the parameters (α, β1, β2) are estimated to be (α̂, β̂1, β̂2)) = (0.351, 0.089, 0.036).
The parameters for the fitted Dirichlet distribution are estimated to be (α̂1, α̂2) = (0.0791,
0.0562). Figure 3 shows the contour plots from the estimated Dirichlet distribution (DD)
and MSIG, respectively. The p-values for the GOF test are 0.001 versus 0.567 between DD
and MSIG, which show that the proposed MSIG is goodness-of-fitting the data. Further-
more, the Kendall’s correlation coefficient between OTU1 and OTU2 is estimated to be
τ = −0.061 based on the samples, but the corresponding Kendall’s τ are calculated to be
−0.102 with DD and −0.057 with MSIG, respectively.
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Figure 3. A comparison of contour plots between MSIG and Dirichlet distribution. The black lines are
the estimated contour plots of samples. The red lines are the contour plots of the estimated Dirichlet
distribution (a). The blue lines are the contour plots of the estimated MSIG (b).

Black lines in both panels are the estimated contour plots for samples. Red lines in
the left panel are the contour plots of the estimated Dirichlet distribution. Blue lines in the
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right panel are the contour plots of the estimated MSIG. These figures show that MSIG is a
goodness-of-fit for the data.

Some individual taxa can not be fitted by the marginal distribution of MSIG. Figure 4a,b
shows that taxa Clostridium (OTU3) and Escherichia (OTU4) are fitted by the two-parametric
simplex distributions [13], where the corresponding parameters are estimated to be (m̂1, ŝ1) =
(0.249, 5.801) and (m̂2, ŝ2) = (0.125, 8.610). The Kendall’s correlation coefficient between
OTU3 and OTU4 is estimated to be τ = 0.448 based on the samples. We use the Gaussian
copula (GC) to fit the joint distribution of OTU3 and OTU4 with ρ̂ = 0.071. The contour
plots in Figure 4c show that the proposed multivariate distribution via Gaussian copula
fitted the joint distribution of OTU3 and OTU4 well, and the p-value for GOF test is 0.647.
However, Figure 1 (the right panel) shows that the contour plots of samples are a departure
from that of the Dirichlet distribution, of which the corresponding parameters are estimated
to be (α̂1, α̂2) = (0.444, 0.556); the Kendall’s τ = −0.407, and the p-value for the GOF test
is 0.001
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Figure 4. Multivariate distribution via Gaussian copula of taxa Clostridium and Escherichia. The
upper panel (a,b) illustrates the estimated marginal density functions: the black line is estimated by
the samples, the gray line by Dirichlet distributions, and the orange line is by Gaussian copulas. The
lower panel (c) shows the contour plots of the estimated Gaussian copulas.
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5. Discussions

The human microbiome has been recently shown to be associated with disease risks
and has important implications in risk stratification and precision medicine. The existing
methods for modeling microbiome dynamics focus on abundant taxa and ignore rare taxa.
Modeling both will be crucial to provide information about microbial causal interactions
and information for designing effective large-scale epidemiology. In this paper, we propose
two classes of multivariate distributions to characterize the dependence structures among
taxa in microbiome studies. Multivariate distributions on simplex via inverse Gamma
distributions (MSIG) are useful in regression analysis due to the close-form of their density
functions, but all of the Kendall’s correlation coefficients between two taxa are assumed
to be the same. The copula techniques are very useful to characterize the dependence
structures of random variables. We proposed two most popular copulas, Gaussian and
Farlie–Gumbel–Morgenstern copulas, to construct the multivariate distributions of taxa.
The data analysis shows that our methods perform well.

In this paper, we consider only the dependence structures of taxa at the fixed time
points. Some new methodologies for longitudinal observations to study the dynamics of
the microbiome community have to be developed, which will investigated in the future.
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