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Abstract: Energy conservation, emission reduction, and green and low carbon are of great significance
to sustainable development, and are also the theme of the transformation and upgrading of the
manufacturing industry. This paper concentrates on studying the energy-efficient hybrid flowshop
scheduling problem with consistent sublots (HFSP_ECS) with the objective of minimizing the energy
consumption. To solve the problem, the HFSP_ECS is decomposed by the idea of “divide-and-
conquer”, resulting in three coupled subproblems, i.e., lot sequence, machine assignment, and lot
split, which can be solved by using a cooperative methodology. Thus, an improved cooperative
coevolutionary algorithm (vCCEA) is proposed by integrating the variable neighborhood descent
(VND) strategy. In the vCCEA, considering the problem-specific characteristics, a two-layer encoding
strategy is designed to represent the essential information, and a novel collaborative model is
proposed to realize the interaction between subproblems. In addition, special neighborhood structures
are designed for different subproblems, and two kinds of enhanced neighborhood structures are
proposed to search for potential promising solutions. A collaborative population restart mechanism
is established to ensure the population diversity. The computational results show that vCCEA can
coordinate and solve each subproblem of HFSP_ECS effectively, and outperform the mathematical
programming and the other state-of-the-art algorithms.

Keywords: hybrid flowshop scheduling; energy efficiency; consistent sublots; collaborative coevolu-
tionary algorithm; variable neighborhood descent

MSC: 90B30

1. Introduction

With the changing climate and environment, green development, energy saving, and
emission reduction become the themes of transformation and upgrading of the manu-
facturing industry. Advanced production scheduling technology can effectively improve
production efficiency and reduce energy consumption in the manufacturing industry, en-
hancing the core competitiveness of enterprises. As a branch of scheduling problems, the
hybrid flowshop scheduling problem (HFSP) [1] has a very strong industrial application
background, such as microelectronics, furniture, textile, petrochemical, and pharmaceutical
fields [2–5]. In HFSP, a group of jobs need to go through a series of processing stages
in succession and each stage has multiple identical machines. The goal of the HFSP is
to determine the job sequence and machine assignment of these jobs at each stage with
considering production constraints. The problem is a very complex combinatorial opti-
mization problem [6], and even on a very small scale, it proves to be NP-hard [1]. In the
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most research on the HFSP [7], each job is treated as a whole, and the job cannot proceed
to the next stage before the completion of the processing at a given stage [8]. In the actual
production scenario [9,10], a job, called a lot in the following, usually consists of a number
of identical items. When the lot is large, items already processed completely on a machine
need to wait a long time in the output buffer of this machine, whereas the downstream
machine may be idle. This scenario will have a negative impact on the production efficiency
and lead to unnecessary energy consumption. Therefore, it is very important to develop
a scheduling methodology suitable for this scenario to enhance the energy efficiency and
core competitiveness of such factories.

In this paper, we introduce the technique of lot streaming into the HFSP, resulting in a
novel problem, i.e., lot streaming HFSP. The lot streaming, first introduced by Reiter [11] in
the context of job shop scheduling, is preferable for implementing the time-based strategy
and widely adopted by top-notch companies to improve their customer service. Lot
streaming is the process of splitting a large lot into several sublots and scheduling those
sublots in an overlapping fashion to accelerate progress [12]. That is, the lot streaming is
used to divide a lot with a large number of items into several sublots with a small number of
items. Each sublot can be transported to the downstream stage for processing immediately
after its completion at the upstream stage and does not have to wait for the completion
of the entire lot. This method can effectively reduce the production cycle and improve
production efficiency so that products can be delivered to customers faster, and more orders
can be accepted within a limited time. Moreover, this method can effectively increase
machine utilization, reduce machine idle time, and thus reduce energy consumption.

According to the lot streaming studies, the lot division methods [13] are equal sublots,
consistent sublots, and variable sublots. With equal sublots, a lot can be divided into several
sublots with equal size, i.e., each sublot contains the same number of items, and the number
and size of sublots remain unchanged throughout the processing process. Consistent
sublots mean that a lot is divided into several sublots that may have different sizes, and the
number and size of sublots remain unchanged throughout the processing process. Equal
sublots can also be understood as a specific case of consistent sublots. Unlike consistent
sublots, in variable sublots [14], the number and size of sublots may change throughout
the processing process. In real production, variable sublots are rarely used because their
diverse nature seriously increases the difficulty of production management. Moreover, its
comprehensive cost performance is not high for most enterprises. In contrast, consistent
sublots are often used in most enterprises’ actual production.

In sum, the energy-efficient HFSP with consistent sublots (HFSP_ECS) is the focus of
our study. To solve the problem, three coupled subproblems must be addressed, i.e., lot
sequence, machine assignment, and lot split. Thus, the HFSP_ECS is much more complex
than the classical HFSP, and obviously NP-hard. With its NP-hard property, the meta-
heuristics are suggested to solve the problem. In addition, when using the metaheuristics,
in order to obtain a globally optimal solution, the three subproblems must be coevolved
and addressed simultaneously [15,16]. It is therefore natural to employ the cooperative
coevolutionary algorithm (CCEA) [17]. Its design is inspired by the natural phenomenon
that the coexisting species promote each other and coevolve. The algorithm adopts the
strategy of “divide and conquer”, which decomposes an optimization problem into several
subproblems. In addition, the whole problem is optimized by a reciprocal evolutionary
mechanism driven by cooperative or competitive interactions between subproblems [18].
The local search strategy also plays an important role in CCEA. This paper develops an
improved cooperative coevolutionary algorithm (vCCEA) by integrating the variable neigh-
borhood descent (VND) strategy [19]. The vCCEA can solve the whole problem by evolving
the subproblems simultaneously and interacting between the subproblems. In addition,
considering the problem-specific characteristics, a two-layer encoding strategy is designed
to represent the solution information and a novel collaborative model is proposed to realize
the interaction between subproblems. Special neighborhood structures are designed for
different subproblems and two kinds of enhanced local disturbance strategies are pro-
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posed to search for potential promising solutions. This algorithm mainly contains four
processes, i.e., initialization process, cooperative coevolutionary process, VND processes,
and population restart processes. First, an archive that holds several complete solutions
is initialized and two populations based on these solutions are built in the initialization
process. Then, the two populations and archive coevolve through the collaborative model
in the coevolutionary process. While in the cooperative coevolutionary process, the VND
process is used to generate a new solution. With the evolution proceeding, the population
restart process can be triggered to ensure the population diversity.

The main contributions of this study are as follows. (1) An energy-efficient hybrid
flowshop scheduling problem with consistent sublots (HFSP_ECS) is studied and a mathe-
matical model is developed for it. (2) An improved cooperative coevolutionary algorithm
based on the idea of “divide-and-conquer” is proposed by integrating the VND strategy.
(3) A novel collaborative model suitable for the specific characteristics of HFSP_ECS is
designed to realize the interaction between the populations and the archive. (4) Two kinds
of enhanced local neighborhood structures are proposed to search for potential promising
solutions.

The remaining of the paper is organized as follows. A brief literature review is
provided in Section 2. Section 3 describes HFSP_ECS in detail and a linear integer program-
ming model (MILP) is established for a better representation of this problem. Section 4
introduces the algorithm process of vCCEA and improvement strategies in detail. In
Section 5, the experimental study design is presented and the results are analyzed. Finally,
some conclusions are given and future research prospects are outlined in Section 6.

2. Literature Review

Although HFSP has been studied for several decades, little research has been carried
out on energy-efficient HFSP with lot streaming. Most of the existing studies have been
conducted with the objective of minimizing the production cycle to optimize HFSP with lot
streaming, and little attention has been paid to the energy consumption in the production
process. The following is a first review of the HFSP with lot streaming in detail, and then
the existing research results on green scheduling are analyzed. Finally, the characteristics
of the research problem in this paper are summarized.

With the development of a multi-species small-scale production model in recent years,
more and more scholars are focusing on the HFSP with lot streaming. Depending on the
number of lots, the lot streaming HFSP can be divided into two main categories, i.e., single-
lot HFSP and multiple-lot HFSP. The single-lot HFSP means that only one lot needs to
be processed, and how to divide lots and how to sort sublots are two major problems,
i.e., sublot size and sublot sequence. Zhang et al. [12] studied a special two-stage HFSP
with single-lot that the first stage has multiple identical machines and the second stage
only has one machine. They first formulated the problem as an MILP considering the equal
sublots, and proposed a heuristic to reach an effective solution. For the same problem,
Liu [20] used linear programming and rotation methods to solve the sublot sequence and
sublot size, respectively. Moreover, an effective heuristic rule is proposed for the general
HFSP with equal sublots. Cheng et al. [21] studied a two-stage HFSP that the first stage
only has one machine and the second stage has two parallel machines. Assuming that the
number of sublots are known, the closed-form expressions are used to obtain the best sublot
sizes. Then, according to the best sublot sizes, the upper bound of the sublot quantities is
defined, and an algorithm combining closed-form expressions is used to obtain the global
optimal solution. In addition, a heuristic is proposed for the case where the number of
sublots is unknown.

Compared with the single-lot HFSP, more research focuses on multiple-lot HFSP. Potts
and Baker [22] first showed how to use equal sublots in the one-job model and analyzed
equal-sized sublots as a heuristic procedure. After that, they cited some difficulties in
multiple-lot scheduling. Kalir and Sarin [23] studied a multiple-lot HFSP with small
equal sublots, and proposed a heuristic called bottleneck minimal idleness with the ob-



Mathematics 2023, 11, 77 4 of 27

jective of minimizing the maximum completion time. Naderi and Yazdani [24] studied a
multiple-lot HFSP with setup time constraints. Assuming that the number of sublots were
known, an MILP was established and an imperialist competitive algorithm was proposed.
Zhang et al. [25] studied the HFSP with equal sublots, and a discrete fruit fly optimization
algorithm was developed for solving this problem, where two main search procedures
were designed to balance the exploration and exploitation abilities of the algorithm. For
the same problem, Zhang et al. [26] proposed an effective migrating birds optimization
algorithm with the objective of minimizing the total flow time, and a heuristic rule was
introduced to address the case that the sublots from different lots have the changes to reach
the downstream stage at the same time.

The multiple-lot HFSP studied above were all with equal sublots, and this means that
sublots from the same lot have the equal size. When the sublots from the same lot are not
equal in size, the multiple-lot HFSP is called HFSP with consistent sublots. For example,
Ming Cheng and Sarin [13] studied a two-stage HFSP where the first stage only had one
machine and the second stage had two identical machines. They used some conclusions
from the single-lot scheduling problem, and proposed a mathematical programming-based
heuristic method for this problem. Zhang et al. [27] studied a special two-stage HFSP
where the first stage had multiple identical machines and the second stage only had a single
machine. Additionally, two heuristic strategies were proposed to solve two subproblems,
i.e., lot sequence, and lot split. Nejati et al. [28] studied a multiple-lot k-stage HFSP with
a specific production scenario. They improved the genetic algorithm and simulated an
annealing algorithm for this particular problem, and the effectiveness of the improved
strategy was verified. Lalitha et al. [29] studied a special k-stage HFSP where the front k-1
stages only had one machine per stage and the last stage had multiple machines. An MILP
was developed and some small-scale problems were solved by the optimizer. A two-stage
heuristic algorithm was proposed to solve medium–large scale problems, hierarchically.
Zhang et al. [30] studied an HFSP with consistent sublots and considered the setup and
transportation operations. A collaboration operator was proposed and a collaborative
variable neighborhood descent algorithm was developed based on this operator.

Green development, energy saving, and emission reduction are of great significance
to sustainable development. Qin et al. [31] studied an HFSP with an energy-saving crite-
rion, and considered blocking constraints. A mathematical model for HFSP with blocking
constraints and energy-efficient criterion was developed and an improved iterative greedy
algorithm based on the swap operator was proposed. Duan et al. [32] studied a heteroge-
neous multi-stage HFSP with energy-efficient for large metal component manufacturing,
and an improved NSGA-II combined with the moth-flame optimization algorithm (NSGA–
II–MFO) with the objective of minimizing the maximum completion time and carbon
emission was proposed. Dong et al. [33] studied a distributed two-stage re-entrant green
HFSP, a two-level mathematical model and an improved hybrid slap swarm and NSGA-III
algorithm with the objectives of minimum completion time, total carbon emission and total
energy consumption was proposed. Geng et al. [34] studied an energy-efficient re-entrant
HFSP with considering customer order constraints under Time-of-Use (TOU) electricity
price, and a memetic algorithm with an energy saving strategy was proposed to solve
this problem.

In summary, both the lot streaming HFSP and the green HFSP have had a certain
number of research results. Compared with these studies, the characteristics of our study
can be summarized as follows. A k-stage energy-efficient HFSP with consistent sublots is
studied in this paper, and the number of machines per stage is not limited. While Ming
Cheng and Sarin [13] and Wei Zhang et al. [27] studied the special two-stage HFSP, and
Lalitha et al. [29] studied a special k-stage HFSP that the first k-1 stages only have one
machine at each stage and the last stage has multiple machines. Compared with these
studies, the HFSP_ECS studied in this paper has a wider scope of application. In study of
Ming Cheng and Sarin [13] and Naderi and Yazdani [24], the sublots from different lots can
be mixed and cross-processed, but they are prohibited in our research. This is because in
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real production, the machine needs to be adjusted accordingly before processing different
products. Assuming that sublots are allowed to be mixed, the machine will be in a state of
frequent adjustment, which has a serious impact on productivity and increases unnecessary
energy consumption. Additionally, in the above studies on lot streaming, the research
focuses on minimizing the completion time without considering the energy consumption
in the process. However, in the actual production, energy consumption is a non-negligible
factor. In our study, all machines were turned on and off uniformly, and there was a positive
correlation between energy consumption and minimized completion time.

3. Problem Description

The HFSP_ECS addressed can be described as follows. A set of lots J is to be consecu-
tively processed in a series of K stages. Each stage k has Mi ≥ 1 identical parallel machines
and at least one stage has the number of machines greater than one, i.e., Mi > 1. Each lot to
be processed is made up of a group of identical items. The consistent sublots is employed to
split a lot to several sublots with assuming that the maximum sublot quantities are limited.
Each sublot contains a certain number of items, and the number of the items contained in
a sublot is defined as the sublot size. The number and size of the sublots do not change
during the K processing stages. At the same stage, different sublots from the same lot are
processed continuously on the same machine. Similarly, the items from the same sublot
need to be processed continuously. The sublots can proceed to the next stage immediately
after its completion of the previous stage. The processing time of a sublot is the product of
the sublot size and the item processing time. The processing energy consumption of the
sublot is the product of the unit energy consumption and processing time. The idle energy
consumption of a machine is the product of unit idle energy and idle time, the idle time,
and the idle energy consumption per unit. The scheduling task of the HFSP_ECS is to solve
the three subproblems’ lot sequence, machine assignment, and lot split, and its objective is
to minimize the energy consumption. The assumptions are summarized as follows:

• All machines are available at time 0, and all machines turn off uniformly at the end of
the process.

• Assume an infinite buffer between stage and allow the machine to be idle.
• Each lot must be processed through all stages, and only one machine can be selected

at the same stage, and interrupt and preemption are not allowed during processing.
• One machine can at most process only one item at the same time, and the items from

the same sublot need to be processed continuously.
• Each lot is divided into several sublots and the sublot quantities are limited by a

maximum value.
• The sublots of each lot can be processed at the next stage immediately after the

completion of the previous stage.
• The first sublot can be started as soon as it arrives at this stage. After the remaining

sublots reach the stage, it also needs to wait for the previous sublots to complete
processing before it can be processed.

• Sublots from different lots are not allowed to be mixed during processing; if two lots
are processed on the same machine, the later lot will not be processed until all the
sublots of the previous lot have been processed.

• Machine setup and transport operations are included in the machining process.

With the above description and assumptions, to better describe and solve this problem,
an MILP [30] is established, the notations and constraints are described as follows:

Objective:
Minimize(Emax) (1)

Constraints:
Cmax ≥ CK,j,L ∀j ∈ {1, 2, . . . , J} (2)
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Mk

∑
i=1

Dk,j,i = 1 ∀k ∈ {1, 2, . . . , Mk}, ∀j ∈ {1, 2, . . . , J} (3)

L

∑
e=1

Nj,e = Tj ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (4)

Nj,e ≥ 0 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (5)

Nj,e + (1−Wj,e)× G ≥ 1 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (6)

Nj,e −Wj,e × G ≤ 0 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (7)

Wj,e ≥Wj,e+1 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L− 1} (8)

S1,j,1 ≥ 0 ∀j ∈ {1, 2, . . . , J} (9)

Ck,j,e = Sk,j,e + Pk,j × Nj,e ∀k ∈ {1, 2, . . . , K}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (10)

Sk+1,j,e − Ck,j,e ≥ 0 ∀k ∈ {1, 2, . . . , K− 1}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (11)

Sk,j,e+1 − Ck,j,e ≥ 0 ∀k ∈ {1, 2, . . . , K}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L− 1} (12)

Yk,j,j1,i + Yk,j1,j,i ≤ Dk,j,i ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J}, j1 ∈ {1, 2, . . . , J},
∀e ∈ {1, 2, . . . , L− 1}, i ∈ {1, 2, . . . , Mk}

(13)

Yk,j,j1,i + Yk,j1,j,i ≤ Dk,j1,i ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J},
j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk}

(14)

Yk,j,j1,i + Yk,j1,j,i ≥ Dk,j,i + Dk,j1,i − 1 ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J},
j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk}

(15)

Sk,j,1 − Ck,j1,L + G× (3−Yk,j1,j,i − Dk,j,i − Dk,j1,i) ≥ 0 ∀k ∈ {1, 2, . . . , K}, ∀j! = j1,
j ∈ {1, 2, . . . , J}, j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk}

(16)

Eprocess =
K

∑
k=1

J

∑
j=1

L

∑
e=1

Nj,e × EPk,j (17)

Eidle =
K

∑
k=1

Mk

∑
i=1

(Cmax −
J

∑
j=1

Tj × Pk,j × Dk,j,i)× EIk (18)

Emax = Eprocess + Eidle (19)

Equation (1) indicates that the optimization objective minimizes the energy consump-
tion Emax. Equation (2) requires Cmax to be greater than or equal to the completion time of
the last sublot of all lots in the last stage. Equation (3) requires that only one processing
machine can be selected for each lot at the same stage. Equation (4) indicates that the sum
of the items contained in all sublots from the same lot must equal the number of items
contained in this lot. Equation (5) defines that the number of items contained in each
sublot of lots is greater than or equal to 0. Equations (6) and (7) represent the value of
Wj,e. Equation (8) shows that the nonempty sublot in the lots is expected to precede the
empty sublot. Equation (9) make sure the start processing time is a non-negative number.
Equation (10) shows the calculation method of completion time. In Equation (11), the sublot
is required to complete the processing of the previous stage before starting the next stage
of processing. Equation (12) expresses that the sublots from the same lot are processed in
numbered order at each stage. Equation (13) defines Yk,j,j1,i and Yk,j1,j,i. They cannot take
the value of 1 at the same time. Equations (14) and (15) are dual constraints, similar to
Equation (13), emphasize that the machine can only process one lot at a time. Equation (16)
indicates that at the same machine, the later lot can be processed only after the previous lot
has been processed; otherwise, the equation does not work. Equations (17) and (18) give the
calculation method of total process energy and total idle energy, respectively. Equation (19)
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shows that the total energy consumption is equal to the sum of the total process energy
consumption and the total idle energy consumption.

4. Improved vCCEA for Solving HFSP_ECS Problem

The proposed vCCEA is developed in this section. First, the design motivation
and the algorithm framework are illustrated. After that, the components of vCCEA,
involving solution encoding and decoding strategies, initialization strategy, cooperative
coevolutionary strategy, VND strategy, and the population restart mechanism, are described
in detail. Finally, the whole algorithm procedure is given.

4.1. The Motivations and Framework of vCCEA

The HFSP_ECS is a highly complex combinatorial optimization problem. Recall that
when solving the HFSP_ECS, three subproblems must be addressed simultaneously: lot
sequence, machine assignment and lot split. These subproblems are not independent
but highly coupled. That is, if only one subproblem is optimized, the global optimal
solution is almost impossible to be obtained. Therefore, the CCEA is employed, which
uses the idea of “divide and conquer” to achieve global optimization by optimizing each
subproblem as well as implementing the interaction between subproblems. Among three
subproblems, the machine assignment is generally addressed by the proposed heuristic
rules [35]. This paper still uses heuristic rules to solve this subproblem, and this rule is
incorporated into the decoding strategy. For the other two subproblems, two populations
are set up, each of which corresponds to a subproblem. These two populations are lot
sequence population and lot split population, which represent lot sequence subproblem
and lot split subproblem, respectively. In addition, an archive is also created, where a
number of references or complete solutions are stored. It aims to establish collaborative
relationships among the individuals from lot sequence and lot split populations in the
collaborative coevolutionary process.

The whole algorithm consists of an initialization process, cooperative coevolutionary
process of two populations, VND processes, and population restart processes. First, the
archive and the two populations are initialized. Then the novel cooperative model was
used to control the populations for the cooperative coevolution. In the cooperative coevo-
lutionary process, each individual from the population collaborates with one reference
randomly selected from the archive to construct a complete solution. This complete solution
is perturbed by the VND process to generate new individuals for updating the population
and archive. In this process, different neighborhood structures are designed for individuals
from different populations. Moreover, a restart strategy is designed for the individuals who
have not been updated for several generations in the population to prevent the algorithm
falling into local optima. The vCCEA framework is shown in Figure 1.

4.2. Ending and Decoding
4.2.1. Solution Encoding

Recall that this problem contains three subproblems: lot sequence, machine assign-
ment, and lot split. Based on the problem specific characteristics, a two-layer encoding strat-
egy is adopted in this paper. The first layer uses a permutation ΠJ =

{
π1, π2 . . . πj . . . πJ

}
to represent the scheduling order of the lots. Where πj indicates the lot index and J repre-
sents the total number of the lots. Note that a legitimate permutation requires that each lot
only appears once [36]. The lot that appears in advance in the permutation is given higher
processing priority, and the scheduling order of lots in subsequent stages is determined by
the heuristic rules mentioned in the solution decoding. The second layer uses a matrix ZJ×L
with J rows and L columns to represent the lot split, where each row represents the seg-
mentation information of a lot. A complete solution consists of two parts: lot permutation
and lot split matrix, which can be expressed as

〈
ΠJ , ZJ×L

〉
.
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Here, a simple illustrative example is given for illustrating the solution encoding. In
this example, there are five lots and two stages. The first stage has two parallel machines,
i.e., M1 and M2, and the second stage contains three parallel machines, i.e., M3, M4, and
M5. The unit idle energy consumption of machines M1 and M2 is 2, and the unit idle energy
consumption of machines M3, M4, and M5 also is 2. Lot size, sublot size, item processing
time and other specific production data are given in Table 1. According to the above
encoding strategy, the encoding for this simple example can be expressed as 〈Π5, Z5×3〉,
where the first layer is a legal permutation-based encoding vector Π5 = {3, 5, 1, 4, 2}. This
permutation indicates that the current scheduling order is 3,5,1,4,2. In other words, lot 3
was processed first, followed by lot 5, lot 1, lot 4, and lot 2. The matrix Z5×3 serves as the
second layer, and is shown in Equation (20). Using lot 5 as an example, the lot 5 is divided
into three sublots. The first sublot size is 1, the second sublot size is 1, and the third sublot
size is 2.

Z5×3 =


1 2 2
2 3 3
2 2 2
1 2 2
1 1 2

 (20)
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Table 1. Illustrative example of HFSP_ECS.

Lot Lot Size
Sublot Size Single Item

Process Time
Energy Consumption

Per Unit Time

Sublot1 Sublot2 Sublot3 Stage1 Stage2 Stage1 Stage2

Lot1 5 1 2 2 1 2 3 2
Lot2 8 2 3 3 1 1 4 3
Lot3 6 2 2 2 2 2 2 4
Lot4 5 1 2 2 2 2 3 3
Lot5 4 1 1 2 1 2 1 2

4.2.2. Solution Decoding

The solution decoding can transform the solution into a feasible schedule, and it mainly
solves two problems, lot sequence and machine assignment. For machine assignment, we
give priority to idle machines, thus, the “first available machine” rule (FAM) [37] is adopted
in this paper. Regarding the lot sequence, the lot scheduling order at stage is determined by
the permutation ΠJ =

{
π1, π2 . . . πj . . . πJ

}
, while the lot sequence of subsequent stages

is determined by the “first-come–first-served” rule. That is, the lot completed earlier at
the previous stage is given priority to be scheduled at the following stages. In HFSP_ECS,
the sublot of a lot can be immediately transported to the downstream stage for processing
when the sublot completes the processing at the current stage. Based on this feature, the
“first-come–first-served” rule based on sublot preemption is adopted, i.e., the lot whose
first sublot completes the processing at the previous stage first has higher priority at the
downstream stage. Under this rule, if the completion time of the first sublots of some lots
at the previous stage is equal, the completion time of their second sublots is compared, and
so on.

According to the above encoding and decoding strategies, the Gantt chart of the
schedule for the illustrative example in Section 4.2.1 is shown in Figure 2. Here, the
(a, b) represents a sublot, where a is the lot number, b is the sublot number, and then the
minimum energy consumption is 555.
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4.3. Algorithm Initialization

At the beginning of the algorithm, an archive and two collaborative populations need
to be initialized. The archive

{〈
ΠR[1], ZR[1]

〉
,
〈

ΠR[1], ZR[1]
〉

, . . . ,
〈

ΠR[PS], ZR[PS]
〉}

is made

up of PS combinations. Each combination
〈

ΠR[ind], ZR[ind]
〉

, ind = 1 . . . PS represents a

complete solution, where ΠR[ind] represents the lot sequence for solution ind. Similarly,
ZR[ind] represents the lot split for solution ind. When the archive is initialized, the two
components of each solution are initialized in two different ways. The lot sequence is
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initialized by a random way, while the lot split is determined by the uniform initialization
method [38]. The uniform initialization procedure is described as follows.

Procedure Uniform initialization

Step1. Each lot is evenly divided into several sublots. For the jth lot, the size of each sublot is

Nj,e =
⌊

Tj/L
⌋

,where b cmeans the nearest integer that is smaller than Tj/L.

Step2. For the jth, the remaining size rj is obtained that rj = Tj −∑L
e=1 Nj,e.

Step3. For the jth, rj is added to any sublot randomly.

The two populations are the lot sequence population and the lot split population. The
lot sequence population consists of PS individuals, i.e.,

{
Π[1] , Π[2] , . . . , Π[ps]

}
. That is, each

individual only represents the lot sequence of a solution, this population is initialized with
the lot sequences of the solutions in the archive, i.e., Π[ind] = ΠR[ind] for ind = 1, 2, . . . , PS.
Obviously, the individuals in lot sequence population are indeed not the complete solutions,
such that they cannot be evaluated directly. To evaluate each Π[ind], a collaborator must be
identified to build an evaluable solution. Here, the lot split individual ZR[ind] is determined
as the collaborator, and the index of this collaborator is recorded by Col1[ind] = ind,
where ind = 1, 2, . . . , PS. The individual Π[ind] and its collaborator Z[Col1[ind]] construct a
complete solution

〈
Π[ind], Z[Col1[ind]]

〉
. The energy consumption value of the solution is

also that of the individual Π[ind]. Similarly, the lot split population consists of PS lot split
matrix initially, i.e.,

{
Z[1], Z[2], . . . , Z[PS]

}
where Z[ind] for ind = 1, 2, . . . , PS. The individual

ΠR[ind] is determined as the collaborator for
{

Z[1], Z[2], . . . , Z[PS]
}

, and the index of this

collaborator is recorded by Col2[ind] = ind, where ind = 1, 2, . . . , PS. Individual Z[ind]

in this population and a lot sequence collaborator Π[Col2[ind]] comprise a new solution〈
Π[Col2[ind]], Z[ind]

〉
. The energy consumption value of the solution is also that of the

individual Z[ind].

4.4. Cooperative Coevolution Process

The whole cooperative coevolutionary process can be divided into two parts: evolution
of the lot sequence population and evolution of the lot split population. The evolution of
the lot sequence population is first performed. Through this process, individuals in the lot
sequence population are updated on the one hand, and certain solutions in the archive can
obtain better information of lot sequences on the other hand. Then, the evolution of the
lot split population is performed. This process aims to update individuals in the lot split
population and ensures that solutions in the archive can obtain better lot split information.
Through the above two processes, the evolution of both populations is achieved and the
solutions in the archive are also updated during the evolution process. The two processes
are described in detail below.

4.4.1. Evolution of the Lot Sequence Population

In the evolution process of the lot sequence population, a complete solution is first
constructed by individual Π[ind] from lot sequence population and its collaborator Z in the
archive. To maintain the diversity of the population and to avoid premature convergence,
the last collaborator ZR[Col1[ind]] of Π[ind] that is pointed by the index is not used. Instead,
the lot split matrix ZR[rand] is randomly selected from the archive as the current collaborator,
where rand is a randomly generated integer between 1 and PS. The combined solution
here can be expressed as

〈
Π[ind], ZR[rand]

〉
. Then, the VND process is performed on lot

sequence Π[ind] of the combined solution. A new lot sequence individual Π′ [ind] is gen-
erated by individual Π[ind], and the solution

〈
Π[ind], ZR[rand]

〉
comes to

〈
Π′ [ind], ZR[rand]

〉
.
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According to the VND characteristics [39], as long as a new individual Π′ [ind] is generated,
the performance of the new solution

〈
Π′ [ind], Z[rand]

〉
needs to be evaluated first. If the

objective value of
〈

Π′ [ind], Z[rand]
〉

is better than
〈

Π[ind], Z[rand]
〉

, then the archive and

the population will be updated by a new solution
〈

Π′ [ind], Z[rand]
〉

. Otherwise, the VND

process continues. If the whole VND process fails to find a good Π′ [ind], then the evolution
of the individual is ended for this time.

The process of updating the archive and lot sequence population can be described
as follows. If the objective value of the new solution

〈
Π′ [ind], ZR[rand]

〉
is better than〈

Π[ind], ZR[Col1[ind]]
〉

, the solution
〈

Π[ind], ZR[Col1[ind]]
〉

will be updated by the new solution〈
Π′ [ind], ZR[rand]

〉
, i.e., Π[ind] = Π′ [ind], Col1[ind] = rand. Note that the last collaborator

ZR[Col1[ind]] may have been changed in the evolutionary process of the lot split population.
At the same time, the archive is attempted to be updated. If the objective value of the new
solution

〈
Π′ [ind], ZR[rand]

〉
is better than

〈
ΠR[rand], ZR[rand]

〉
, then the individual ΠR[rand]

will be updated by individual Π′ [ind], i.e., ΠR[rand] = Π′ [ind]. The above process is repeated
from ind = 1 to ind = PS. Given the above, the coevolutionary process for the individuals
Π[ind] in the lot sequence population is shown in Figure 3.
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An efficient neighborhood structure plays a key role in the whole algorithm. To design
a good neighborhood structure, the problem characteristics must be exploited. When
the lot sequence population evolves, the neighborhood structure only works on the lot
sequence. That is, a new individual Π′ [ind] is formed by perturbing the individual Π[ind] in
the neighborhood structure. Therefore, to obtain a better lot sequence, three neighborhood
structures are specially designed based on a solution encoding strategy, and the VND
process is used to switch the neighborhoods. Two of these neighborhood structures are
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the insert and swap operations that are widely used in HFSP problems, referred to as lot
insertion and lot swap. However, when solving the large-scale problems, a single insertion
or swap may not effectively perturb the current solution. Therefore, a lot swap operation
with a large search range is proposed by improving the lot swap, called the Enhanced lot
swap in this instance. The lot insertion is not enhanced here since its high time complexity.
The three neighborhood structures for lot sequence are described below: (1) Lot insertion.
A new lot sequence is formed by taking a random lot from the lot sequence and inserting
it into a randomly different position. (2) Lot swap. Take two lots at random from the lot
sequence and exchange their positions in the sequence. (3) Enhanced lot swap. Perform l
times of the lot swap, where l is dynamically determined by the number of lots in the lot
sequence. We set l as L× J, where L is a real number between 0 and 1, and J is the number
of lots. Additionally, the detailed process of lot sequence population evolution is shown in
Algorithm 1.

Algorithm 1 Evolution of the lot sequence population

1: Define a set of neighborhood structures N1
k, k = 1, . . . , kmax

2: for ind = 1 to PS
3: rand← generate a random integer in [1− PS]
4:

〈
Π[ind], ZR[rand]

〉
← constitute a complete solution

5: Define Π← Π[ind]

6: Let k← 1 , Count← 0
7: while k ≤ kmax do
8: while Count < C do
9: Π′ [ind] ← Neighborhood(Π, N1

k)

10: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π, ZR[rand]
〉

11: Count← 0 , k← 1 , Π← Π′ [ind]

12: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π[ind], ZR[Col1[ind]]
〉

or ZR[Col1[ind]] was changed

13: Π[ind] ← Π′ [ind] , Col1[ind] = rand
14: end if
15: if

〈
Π′ [ind], ZR[rand]

〉
better than

〈
Π[rand], ZR[rand]

〉
16: Π[rand] ← Π′ [ind]

17: end if
18: else
19: Count ++
20: end if
21: end while
22: k ++
23: end while
24: end for

4.4.2. Evolution of the Lot Split Population

Similar to the evolution process of the lot sequence population, a complete solution is
constructed by individual Z[ind] from lot split population and its collaborator ΠR[rand] in the
archive, where rand is a randomly generated integer in the range [1, PS]. The constructed
solution here can be expressed as

〈
ΠR[rand], Z[ind]

〉
. After that, the VND procedure is

executed on the solution
〈

ΠR[rand], Z[ind]
〉

, and the neighborhood structure here only

works on the lot split. Through the VND process, Z[ind] becomes Z′ [ind], and thus, the
solution

〈
ΠR[rand], Z[ind]

〉
comes to

〈
ΠR[rand], Z′ [ind]

〉
. In the process, as long as a new

solution
〈

ΠR[rand], z′ [ind]
〉

is generated, the new solution
〈

ΠR[rand], Z′ [ind]
〉

is evaluated.

If
〈

ΠR[rand], Z′ [ind]
〉

is better than
〈

ΠR[rand], Z[ind]
〉

, then the solution
〈

ΠR[rand], Z′ [ind]
〉
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is used to update the archive and lot split population. Otherwise, the VND process
continues to find a potentially better solution. The process of updating the archive and
lot split population can be described as follows: If the solution

〈
ΠR[rand], Z′ [ind]

〉
is better

than
〈

ΠR[Col2[ind]], Z[ind]
〉

, then the Z[ind] and the Col2[ind] will be updated by Z′ [ind] and

ΠR[rand], i.e., Z[ind] = Z′ [ind], Col2[ind] = rand. It should also be noted that ΠR[Col2[ind]]

may have been changed as the lot sequence population evolves. At the same time, if
the objective value of the solution

〈
ΠR[rand], Z′ [ind]

〉
is better than

〈
ΠR[rand], ZR[rand]

〉
, set

ZR[rand] = Z′ [ind]. This process is shown in Figure 4.
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In the evolution process of the lot split population, to obtain high-quality individuals
Z′ [ind], three neighborhood structures acting only on the lot split part are specially designed,
and the VND process is used to switch the neighborhood. The three perturbation strategies
for lot split are described below: (1) Lot split mutation. As shown in Figure 5, from the
lot split matrix, a lot with two or more sublots are randomly selected. Reduce a random
number in distribution U [1,5] from the size of one sublot and add the number to the size of
another sublot. (2) Enhanced lot split mutation. Perform l times lot split mutation, where
l is dynamically determined by the number of lots. We set l as L× J, where L is a real
number between 0 and 1, and J is the number of lots. (3) Stochastic splits. All lots are
redivided into sublots in a random manner. The procedure of the evolution of the lot split
population is given in Algorithm 2.
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Algorithm 2 Evolution of the lot split population

1: Define a set of neighborhood structures N2
k, k = 1, . . . , kmax

2: for ind = 1 to PS
3: rand← generate a random integer in [1− PS]
4:

〈
ΠR[rand], Z[ind]

〉
← constitute a complete solution

5: Define Z ← Z[ind]

6: Let k← 1 , Count← 0
7: while k ≤ kmax do
8: while Count < C do
9: Z′ [ind] ← Neighborhood(Z, N2

k)

10: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[rand], Z
〉

11: Count← 0 , k← 1 , Z ← Z′ [ind]

12: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[Col2[ind]], Z[ind]
〉

or ΠR[Col2[ind]] was changed

13: Z[ind] ← Z′ [ind] , Col2[ind] = rand
14: end if
15: if

〈
ΠR[rand], Z′ [ind]

〉
better than

〈
ΠR[rand], ZR[rand]

〉
16: Z[rand] ← Z′ [ind]

17: end if
18: else
19: Count ++
20: end if
21: end while
22: k ++
23: end while
24: end for
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4.5. Coevolutionary Population Restart

With the evolving of the algorithm, the diversity of the two populations might be
reduced. In this case, the efficiency of the population coevolution may be poor. To avoid
the algorithm falling into the local optimality, two different restart strategies are adopted
for the populations. For the lot sequence population, an individual Π[ind] is reinitialized if it
has not been improved in a predetermined number of R consecutive generations. The novel
individual should contain valuable information about the original individual and remain
somewhat different from the original individual. For this purpose, a two-point crossover
(TPX) method was used, as illustrated in Figure 6. Where two parent lot sequences are
randomly selected from the archive because good solutions are stored in an archive. For the
lot split population, an individual Z[ind] is also reinitialized if it has not been updated in a
predetermined number of R consecutive generations. Due to the lot split matrix is different
from the regular sequence, the classical TPX might produce infeasible schedules. Therefore,
a cooperative selection operator is proposed. When determining the split information for
one lot, two solutions are selected at random from the archive and compared based on
their objective values, and the split information for this lot comes from the better one. The
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process is repeated from the first lot to the last lot. Here, we use Z[ind]
j to represent the lot

split information for lot j in individual ind, and this process is shown in Algorithm 3.

Algorithm 3 Lot split population restart

1: for j = 1 to j = J
2: Randomly select two solutions in archive 〈Πa, Za〉 and

〈
Πb, Zb

〉
3: if 〈Πa, Za〉 better than

〈
Πb, Zb

〉
4: Z[ind]

j ← Za
j

5: else
6: Z[ind]

j ← Zb
j

7: end if
8: end for
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4.6. The Algorithm Procedure

With the above description, the whole vCCEA is displayed in Algorithm 4. Where
the UpdateBestSolution(〈Π, Z〉) means update the optimal solution using solution 〈Π, Z〉,
and the Age(〈Π, Z〉) represents the number of consecutive update failures of the solution
composed of individual Π (or Z) and their collaborators.

Algorithm 4 Lot split population restart

1: Initialize algorithm parameters, including PS, C, L, R.
2: Define the termination criterion T.
3: Define a set of neighborhood structures N1

k , k = 1, . . . , kmax and N2
k , k = 1, . . . , kmax

4: Initialize archive and two populations

5: Find the best solutions
〈

Πbest, Zbest
〉

in archive
6: while T is not satisfied do
7: for ind = 1 to PS
8: rand← generate a random integer in [1− PS]
9:

〈
Π[ind], ZR[rand]

〉
← constitute a complete solution

10: Define Π← Π[ind]

11: Let k← 1 , Count← 0
12: while k ≤ kmax do
13: while Count < C do
14: Π′ [ind] ← Neighborhood(Π, N1

k)

15: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π, ZR[rand]
〉

16: UpdateBestSolution(
〈

Π′ [ind], ZR[rand]〉)

17: Count← 0 , k← 1 , Π← Π′ [ind]

18: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π[ind], ZR[Col1[ind]]
〉
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19: Π[ind] ← Π′ [ind] , Col1[ind] = rand
20: Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
← 0

21: else
22: Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
++

23: end if
24: if

〈
Π′ [ind], ZR[rand]

〉
better than

〈
Π[rand], ZR[rand]

〉
25: Π[rand] ← Π′ [ind]

26: end if
27: else
28: Count ++
29: end if
30: end while
31: k ++
32: end while
33: end for
34: for ind = 1 to PS
35: rand← generate a random integer in [1− PS]
36:

〈
ΠR[rand], Z[ind]

〉
← constitute a complete solution

37: Define Z ← Z[ind]

38: Let k← 1 , Count← 0
39: while k ≤ kmax do
40: while Count < C do
41: Z′ [ind] ← Neighborhood(Z, N2

k)

42: if
〈

ΠR[rand], Z′[ind]
〉

better than
〈

ΠR[rand], Z
〉

43: UpdateBestSolution
(〈

ΠR[rand], Z′ [ind]
〉)

44: Count← 0 , k← 1 , Z ← Z′ [ind]

45: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[Col2[ind]], Z[ind]
〉

46: Z[ind] ← Z′ [ind] , Col2[ind] = rand
47: Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
← 0

48: else
49: Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
++

50: end if
51: if

〈
ΠR[rand], Z′ [ind]

〉
better than

〈
ΠR[rand], ZR[rand]

〉
52: Z[rand] ← Z′ [ind]

53: end if
54: else
55: Count ++
56: end if
57: end while
58: k ++
59: end while
60: end for
61: for ind = 1 to PS
62: if Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
> R

63: Restart1(Π[ind]), Age
(〈

ΠR[Col2[ind]], Z[ind]
〉)
← 0

64: end if
65: if Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
> R

66: Restart2(Z[ind]), Age
(〈

ΠR[Col2[ind]], Z[ind]
〉)
← 0

67: end if
68: end for
69: end while
70: Output the best solution

〈
Πbest, Zbest

〉
.
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5. Experimental Analyses

In this section, the performance of the proposed vCCEA is evaluated by experimental
design and results analysis. The simulation experiment environment of this paper is a
PC with 3.60 GHz Intel Core i7 processor and 32 GB RAM. The vCCEA and all compared
algorithms are written in the Visual Studio 2019 C++, and run on the release x64 platform.
In the algorithm test, the maximum running time is used as the algorithm termination to
ensure fairness. In addition, it is considered that the algorithm has practical significance
only when it can solve the problem in an acceptable time. Therefore, the termination
condition is set as t × J × K milliseconds, where J indicates the number of lots and K
represents the number of stages, respectively. Referring to the literature [30], t is set as 80.

5.1. Experimental Dataset and Performance Indicators

In this paper, two benchmark sets β1 and β2 are designed to verify the validity of the
vCCEA. Where 48 small-scale instances are designed in β1 to study the difference between
the MILP and the vCCEA in solving HFSP_ECS, and 100 medium–large scale instances
solved by the metaheuristic algorithm are designed in β2 to verify the performance of
vCCEA. In β1, the number of lots is J comes from {6, 8, 10, 12, 14}, and the number of
stages S comes from {3, 5, 8}. Thus, there are 15 different combinations of J × S that can be
obtained. In β2, the number of lots in J comes from {20, 40, 60, 80, 100}, and the number
of stages is S comes from {3, 5, 8, 10}. Similarly, there are 20 different combinations in β2.
For β1, only one instance is randomly generated per combination. For β2, five instances
are randomly generated per combination. Thus, there are 15 small scale instances and
100 medium–large scale instances in β1 and β2, respectively. In β1 and β2, the number of
parallel machines at each stage is randomly generated from the range [1, 5]. In addition,
the number of items for each lot is obtained from a uniform distribution U[50, 100], the
processing time of items at each stage is randomly sampled from the uniform distribution
U[1, 10], the processing energy consumption per unit time is obtained from the range [2, 5],
the energy consumption per idle unit of the machine takes a value in the range [1, 3], and
the maximum number of sublots is set as 5. In this study, time is measured in seconds, and
energy consumption is measured in joules, and the relative percentage increase (RPI) is
used as the performance metric. The RPI is calculated as in Equation (21).

RPI =
Eavg − Ebest

Ebest
× 100 (21)

where Eavg is the average energy consumption of an instance solved by the given algorithm
independently performed several times, and Ebest is the best result obtained by all the
compared algorithms. Algorithms with smaller RPI values will have better performance.

5.2. Parameter Setting

Appropriate parameters are very important to the metaheuristics, which can effectively
improve their efficiency and robustness. There are four parameters in the vCCEA proposed
in this paper, including the number of solutions in the archive (PS), the maximum number
of consecutive failures in a neighborhood during the VND process (C), the parameters (L)
that control the number of executions in the two enhanced neighborhood structures and
the maximum number of successive generations (R) of updating the individual in two
populations unsuccessfully. We first determine the value level of each parameter through
preliminary experiments, where the details of value levels are shown in Table 2. To verify
the influence of each parameter and its value at different levels, an orthogonal array L16 is
designed using the Taguchi experimental method to determine their combinations and is
displayed in Table 3. For the combinations in Table 3, five instances with different scale
problems are selected from benchmark set β2, and the five different problem scales are
20× 5, 40× 5, 60× 5, 80× 5, and 100× 5. Each instance is run independently 20 times, and
the RPI value of each instance is calculated. Then, as shown in Table 3, the average RPI
value of the five instances in each combination is collected as the response value.
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Table 2. Parameter level factor.

Parameters
The Level of Parameter

1 2 3 4

PS 5 10 15 20
C 5 10 15 20
L 0.1 0.2 0.3 0.4
R 50 100 150 200

Table 3. Orthogonal array and response values.

Combination
Parameter Response

(RPI)PS C L R

1 5 5 0.1 50 0.084
2 5 10 0.2 100 0.0711
3 5 15 0.3 150 0.0384
4 5 20 0.4 200 0.0653
5 10 5 0.2 150 0.0688
6 10 10 0.1 200 0.0766
7 10 15 0.4 50 0.0406
8 10 20 0.3 100 0.0480
9 15 5 0.3 200 0.0806
10 15 10 0.4 150 0.0601
11 15 15 0.1 100 0.0884
12 15 20 0.2 50 0.0623
13 20 5 0.4 100 0.0706
14 20 10 0.3 50 0.0664
15 20 15 0.2 200 0.0748
16 20 20 0.1 150 0.0803

The trend of the parameter level is shown in Figure 7, and Table 4 gives the significance
rank of each parameter of the vCCEA. According to Figure 7 and Table 4, it can be concluded
that parameter L has the greatest impact on the algorithm among these parameters. This
is because the parameter L is related to the VND strategy. In the process of VND, the
good or bad neighborhood structure has an important influence on the algorithm. A good
neighborhood structure can promote the exploration ability of the algorithm and speed
up the convergence. For parameter PS, a larger population size can accommodate more
potential solutions and help the algorithm search globally. However, it does not support
longitudinal and deep search in a limited running time. Too small a population size is not
conducive to global search. For parameter C, a too small value will not make full use of each
neighborhood perturbation strategy and a too large value will waste the computational
time. For parameter R, if the value is set too small, the good information of advanced
individuals in the two populations cannot be fully utilized, and if the value is set too large,
the diversity of the population cannot be guaranteed and the algorithm may converge
prematurely. Therefore, the appropriate parameters are critical for vCCEA. Through the
above parameter experiment and analysis, the best parameter combination we can obtain
is PS = 10, C = 15, L = 0.3 and R = 150. This parameter combination is used in the
following experiments.

5.3. Evaluation of the Algorithm Components and Strategies

In this subsection, the algorithm components and strategies are validated and analyzed
for effectiveness. Our algorithm contains the VND process, collaborative model, and two
enhanced neighborhood structures, and these three strategies are not independent but
highly coupled. To verify the effect of each of the three components and the cooperation
between them, three other versions of vCCEA are constructed, vCCEA_1, vCCEA_2, and
vCCEA_3, where the vCCEA_1 is the vCCEA that removes the VND process. The vCCEA2
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is used to verify the validity of the collaboration model. The VCCEA_3 is the vCCEA that
remove the two enhanced neighborhood structures during the VND process. And the β2
is used to verify vCCEA and the other three versions of vCCEA. For each instance in β2,
the four algorithms are independently run 20 times. For each algorithm, the RPI value of
each instance is obtained first. Then, the average RPI of five instances from the same scale
problem is calculated and represented by the average RPI values (ARPI). The results are
shown in Table 5.
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Table 4. The average RPI response values.

Level PS C L R

1 0.0647 0.0760 0.0823 0.0633
2 0.0585 0.0686 0.0693 0.0695
3 0.0729 0.0606 0.0584 0.0619
4 0.0730 0.0640 0.0592 0.0743

Delta 0.0145 0.0155 0.0240 0.0124
Rank 3 2 1 4

From Table 5, we can clearly see that the whole vCCEA is the best performer. In the
other three versions of the vCCEA, the vCCEA_1 is the worst one. In the cooperative
coevolutionary process, the VND process is used to generate new individuals Π(or Z).
With the same perturbation strategy, the result of neighborhood switching using VND
process is obviously better than that of traditional neighborhood perturbation. Thus, the
VND process is crucial to the algorithm. Among these 20 problems with different sizes, the
vCCEA_2 is worse than the vCCEA. It can be seen that the collaborative model proposed
in this paper is effective. By comparing vCCEA_3 and vCCEA, the validity of the two
enhanced neighborhood structures is proven. These two enhanced neighborhood structures
can enlarge the search area of the VND process, and it is beneficial for the vCCEA to find
the potential promising solution in a larger solution space.
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Table 5. Comparison of vCCEA components.

ARPI vCCEA vCCEA_1 vCCEA_2 vCCEA_3

20_3 0.0716 0.4028 0.5022 0.2135
20_5 0.0328 0.111 0.0713 0.1105
20_8 0.0283 0.0671 0.0195 0.0553
20_10 0.0052 0.0617 0.0226 0.0487
40_3 0.0251 0.0841 0.0776 0.0988
40_5 0.02 0.0961 0.0766 0.1121
40_8 0.0195 0.0523 0.0148 0.056
40_10 0.0167 0.0501 0.0886 0.0578
60_3 0.0049 0.0379 0.0186 0.0431
60_5 0.0068 0.0582 0.0272 0.0597
60_8 0.0148 0.0623 0.0668 0.0707
60_10 0.0083 0.0571 0.017 0.0506
80_3 0.0032 0.0297 0.0085 0.0273
80_5 0.0142 0.0556 0.038 0.0549
80_8 0.0104 0.044 0.0141 0.0438
80_10 0.0193 0.0479 0.0321 0.0465
100_3 0.0141 0.0672 0.041 0.0649
100_5 0.0204 0.0631 0.0444 0.0532
100_8 0.0192 0.0773 0.0318 0.0749

100_10 0.0189 0.0416 0.0278 0.0371
Mean 0.0187 0.0784 0.062 0.069

5.4. Evaluation of the vCCEA on the Small-Scale Instances

This section focuses on the differences between vCCEA and MILP when solving the
small-scale problems. We use the Gurobipy 9.1.2 optimizer to run the MILP on the instances
in β1, and the maximum running time is limited to 3600 s. In addition, the vCCEA is used
to solve the instances in β1, and the termination condition is set to 80× J × K. The results
are shown in Table 6.

Table 6. The validation results of MILP.

Problem
MILP vCCEA

Objective Time (s) RPI Objective Time (s) RPI

6_3 48,421 4.36 0 48,421 1.453 0
6_5 169,894 8.13 0 169,894 2.406 0
6_8 364,151 10.13 0 364,151 3.844 0
8_3 104,164 20.06 0 104,164 1.921 0
8_5 220,119 154.4 0 220,119 3.203 0
8_8 369,027 46.73 0 369,027 5.125 0

10_3 122,068 17.41 0 122,068 2.406 0
10_5 223,049 3600 0 223,049 4 0
10_8 612,361 3600 0 612,361 6.406 0
12_3 222,509 3600 0 222,509 2.906 0
12_5 311,630 3600 0 311,630 4.813 0
12_8 612,660 3600 0 612,660 7.688 0
14_3 237,372 3600 0 237,372 3.375 0
14_5 281,607 3600 3.678 271,617 5.609 0
14_8 684,055 3600 0.1826 683,506 8.984 0

From Table 6, it can be concluded that for small-scale instances, both the MILP and
vCCEA can find optimal solutions. The MILP and vCCEA find the same results for the
first 13 instances in β1. In addition, for instances 14_5 and 14_8, the vCCEA revealed
better results. As the complexity of the problem increases, the effectiveness of the MILP is
gradually inferior to the vCCEA. For large-scale instances, the MILP model has difficulty in
providing a good solution in a short time. As we know that time is a non-negligible factor
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in actual production, thus the near-optimal solutions are required in an acceptable time.
Therefore, with the increasing size of the instances, the advantages of vCCEA become more
and more obvious.

5.5. Evaluation of vCCEA on the Medium–Large Scale Instances

Next, the performance of the proposed vCCEA is evaluated on the medium–large
scale instances in β2. Here, we collected five metaheuristic algorithms for comparisons,
namely, CVND [30], GA [40], GAR [24], VMBO [41], and DABC [42], which are those
presented for the HFSP in the literature most recently and have been proven to have
excellent performance. For the HFSP_ECS, three highly coupled subproblems need to
be solved, i.e., lot sequence, machine assignment, and lot split. Due to the specificity
of the problem, we retain the original characteristics of each comparison algorithm and
modify it to adapt to our problem. All algorithms use the same double-layer encoding
and decoding strategies as proposed in this paper, and select the corresponding lot split
operator from this article. As these comparison algorithms have been partially changed
for adapting to our problem, their parameters are also optimized and adjusted on the
original basis by using the DOE method to ensure that these algorithms can play with
better performance. For each instance in β2, each algorithm is run independently 20 times,
and the average energy consumption and the ARPI of five instances from the same scale
problem are calculated. The experimental results are given in Table 7. Additionally, to more
visually demonstrate the differences between these six algorithms, the means and 95% least
significant difference (LSD) confidence intervals [43] were analyzed. Figure 8 shows the
confidence interval comparisons between vCCEA and each algorithm, and Figure 9 shows
the confidence interval comparison among all algorithms, where the X-axis represents the
various algorithms and the Y-axis is the ARPI value.

Table 7. Comparison results of vCCEA and other algorithms on β2.

Problem
vCCEA CVND GA GAR VMBO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI

20_3 104,859.2 0.0716 105,168.8 0.367 105,241.6 0.4366 105,622.4 0.8 105,118.9 0.3194 105,380.9 0.5695
20_5 286,304.1 0.0328 286,558.3 0.1216 286,650.9 0.154 287,162.9 0.3329 286,555.6 0.1207 286,341.3 0.0458
20_8 556,484.2 0.0376 556,780.2 0.0908 556,746.2 0.0847 557,223.5 0.1705 556,616.3 0.0614 556,421 0.0262
20_10 674,734.2 0.0135 675,111.7 0.0695 675,225 0.0863 675,640 0.1478 674,985.4 0.0507 674,824.4 0.0269
40_3 249,561.5 0.0251 249,702.6 0.0817 249,803.9 0.1223 250,206.8 0.2838 249,746.1 0.0991 249,831.4 0.1333
40_5 435,346.9 0.024 435,831.7 0.1353 435,944.6 0.1613 436,981.2 0.3994 435,847.7 0.139 436,000.1 0.1741
40_8 1,040,283 0.0228 1,040,946 0.0865 1,041,001 0.0918 1,042,108 0.1982 1,040,757 0.0683 1,040,905 0.0825
40_10 1,150,216 0.0186 1,151,282 0.1113 1,151,477 0.1282 1,153,416 0.2969 1,151,298 0.1127 1,151,912 0.1661
60_3 406,475.4 0.0049 406,556.5 0.0248 406,668.4 0.0524 406,839.1 0.0943 406,672.4 0.0533 406,640 0.0454
60_5 772,749.8 0.0068 772,993.9 0.0384 773,326.6 0.0815 773,701.2 0.1299 773,183 0.0629 773,111.7 0.0536
60_8 1,272,264 0.0205 1,272,954 0.0747 1,273,432 0.1123 1,277,052 0.3969 1,273,614 0.1266 1,275,208 0.2519
60_10 1,781,242 0.0082 1,782,288 0.0669 1,782,747 0.0927 1,784,128 0.1703 1,782,522 0.0801 1,782,387 0.0725
80_3 538,223.9 0.0032 538,356.1 0.0278 538,429.4 0.0414 538,612.1 0.0753 538,420.2 0.0397 538,330.7 0.0231
80_5 1,105,906 0.0143 1,106,629 0.0796 1,106,944 0.1081 1,107,842 0.1893 1,106,768 0.0922 1,107,026 0.1155
80_8 1,666,493 0.0105 1,668,307 0.1193 1,667,385 0.064 1,668,484 0.13 1,667,195 0.0526 1,667,606 0.0772
80_10 2,381,343 0.0193 2,382,087 0.0506 2,382,973 0.0878 2,385,528 0.1951 2,382,764 0.079 2,383,807 0.1228
100_3 647,384.2 0.0141 647,558.7 0.041 647,756.7 0.0716 648,072.5 0.1204 647,836.8 0.084 647,836.7 0.084
100_5 1,225,888 0.0203 1,226,310 0.0548 1,226,695 0.0862 1,228,023 0.1946 1,226,821 0.0965 1,227,563 0.1571
100_8 2,474,499 0.0179 2,477,750 0.1493 2,476,969 0.1178 2,477,487 0.1387 2,475,958 0.0769 2,476,269 0.0895

100_10 2,907,226 0.0188 2,908,332 0.0569 2,908,726 0.0704 2,910,371 0.127 2,908,690 0.0692 2,910,773 0.1409
Mean 1,083,874 0.0202 1,084,575 0.0924 1,084,707 0.1126 1,085,725 0.2296 1,084,568 0.0942 1,084,909 0.1229
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Figure 8. Confidence interval graph. (a) Confidence intervals of vCCEA and CVND; (b) confidence
intervals of vCCEA and GA; (c) confidence intervals of vCCEA and GAR; (d) confidence intervals of
vCCEA and VMBO; (e) confidence intervals of vCCEA and DABC.
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40_8 1,040,283 0.0228 1,040,946 0.0865 1,041,001 0.0918 1,042,108 0.1982 1,040,757 0.0683 1,040,905 0.0825 
40_10 1,150,216 0.0186 1,151,282 0.1113 1,151,477 0.1282 1,153,416 0.2969 1,151,298 0.1127 1,151,912 0.1661 
60_3 406,475.4 0.0049 406,556.5 0.0248 406,668.4 0.0524 406,839.1 0.0943 406,672.4 0.0533 406,640 0.0454 
60_5 772,749.8 0.0068 772,993.9 0.0384 773,326.6 0.0815 773,701.2 0.1299 773,183 0.0629 773,111.7 0.0536 
60_8 1,272,264 0.0205 1,272,954 0.0747 1,273,432 0.1123 1,277,052 0.3969 1,273,614 0.1266 1,275,208 0.2519 
60_10 1,781,242 0.0082 1,782,288 0.0669 1,782,747 0.0927 1,784,128 0.1703 1,782,522 0.0801 1,782,387 0.0725 
80_3 538,223.9 0.0032 538,356.1 0.0278 538,429.4 0.0414 538,612.1 0.0753 538,420.2 0.0397 538,330.7 0.0231 
80_5 1,105,906 0.0143 1,106,629 0.0796 1,106,944 0.1081 1,107,842 0.1893 1,106,768 0.0922 1,107,026 0.1155 
80_8 1,666,493 0.0105 1,668,307 0.1193 1,667,385 0.064 1,668,484 0.13 1,667,195 0.0526 1,667,606 0.0772 
80_10 2,381,343 0.0193 2,382,087 0.0506 2,382,973 0.0878 2,385,528 0.1951 2,382,764 0.079 2,383,807 0.1228 
100_3 647,384.2 0.0141 647,558.7 0.041 647,756.7 0.0716 648,072.5 0.1204 647,836.8 0.084 647,836.7 0.084 
100_5 1,225,888 0.0203 1,226,310 0.0548 1,226,695 0.0862 1,228,023 0.1946 1,226,821 0.0965 1,227,563 0.1571 
100_8 2,474,499 0.0179 2,477,750 0.1493 2,476,969 0.1178 2,477,487 0.1387 2,475,958 0.0769 2,476,269 0.0895 

100_10 2,907,226 0.0188 2,908,332 0.0569 2,908,726 0.0704 2,910,371 0.127 2,908,690 0.0692 2,910,773 0.1409 
Mean 1,083,874 0.0202 1,084,575 0.0924 1,084,707 0.1126 1,085,725 0.2296 1,084,568 0.0942 1,084,909 0.1229 

As seen in Table 7, the vCCEA is the best one among these algorithms, which obtains 
best results for 19 of the 20 different problems in 2β . The DABC algorithm finds the op-
timal solution for the remaining one scale problem, with the scale being 20×8. The last row 
of Table 7 gives the average energy consumption and average RPI for all instances. It is 
obvious that vCCEA has the best results among all the algorithms. In addition, according 
to the confidence intervals shown in Figures 8 and 9, it can clearly be seen that the perfor-
mance of the proposed vCCEA is obviously better than that of the other five algorithms. 
To further evaluate the performance of the algorithm, we analyze the convergence of the 
algorithm, and the convergence curves of these algorithms on two examples are given. 

Figure 9. Confidence interval graph for these six algorithms.

As seen in Table 7, the vCCEA is the best one among these algorithms, which obtains
best results for 19 of the 20 different problems in β2. The DABC algorithm finds the optimal
solution for the remaining one scale problem, with the scale being 20 × 8. The last row
of Table 7 gives the average energy consumption and average RPI for all instances. It is
obvious that vCCEA has the best results among all the algorithms. In addition, according to
the confidence intervals shown in Figures 8 and 9, it can clearly be seen that the performance
of the proposed vCCEA is obviously better than that of the other five algorithms. To further
evaluate the performance of the algorithm, we analyze the convergence of the algorithm,
and the convergence curves of these algorithms on two examples are given. These two
examples are from 40 × 5 and 80 × 10, respectively, and the convergence curves are shown
in Figures 10 and 11. The X-axis represents the running time of the algorithm, and the
Y-axis represents the energy consumption value.
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Figure 10. The convergence curve for instances of 40 × 5.
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From Figures 10 and 11, the convergence speed of vCCEA is the fastest, and the
convergence degree is also better than that of the other algorithms. This is closely related to
the cooperative coevolutionary strategy and VND process in the proposed vCCEA. Two
populations in the algorithm evolve separately using the VND process specifically designed
for them and constantly interacting with the archive. As well as with the population
restart strategy, the local search capability of the vCCEA can be ensured, and it also
balances the diversity and density of the populations, which further improves the algorithm
performance.

Therefore, through the above analysis, the conclusion can be drawn that the vCCEA
can effectively solve HFSP_ECS and the robustness of the vCCEA can be guaranteed.

6. Conclusions

In this paper, the energy-efficient flowshop scheduling problem with consistent sublots
(HFSP_ECS) is studied, and it supports the overlap of successive operations within a multi-
stage manufacturing system. This is a highly complex combinatorial optimization problem
that consists of three highly coupled subproblems. We use the minimized energy consump-
tion as the optimization objective. By limiting the maximum number of sublots, a linear
integer programming model (MILP) of the addressed problem is established and its validity
is verified by the Gurobi optimizer. An improved cooperative coevolutionary algorithm
(vCCEA) is proposed by integrating the variable neighborhood decent (VND) strategy. In
vCCEA, with the consideration of the problem-specific characteristics, a two-layer encoding
strategy is designed, and a novel collaborative interaction model is proposed. Addition-
ally, to ensure the local search ability of the algorithm, different neighborhood structures
are designed for different subproblems, and two kinds of enhanced local neighborhood
structures are proposed to search for potential promising solutions. To avoid trapping
into the local optima, a population restart mechanism is designed. Moreover, through a
large number of experiments on different benchmark sets, the effectiveness of the proposed
strategies is proved. The experimental results show that vCCEA is significantly better than
the mathematical programming and the other algorithms in solving the HFSP_ECS.

For the HFSP_ECS, the maximum sublot quantities is limited in this paper, so in the
future, how to divide the lots and the number of sublots is a direction of our research.
At the same time, we will consider more production constraints in the future, such as
setup, blocking, transportation, and delivery time. In addition, the realistic manufacturing
processes always have multi-objective characteristics and variability. This requires us
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to consider more optimization objectives and weigh the relationship between multiple
objective functions. Furthermore, the possible emergencies during production are also
required and studied to derive useful dynamic and rescheduling strategies.

Author Contributions: C.L.: conceptualization, methodology, data curation, software, validation,
writing—original draft. B.Z.: conceptualization, methodology, software, validation, writing—original
draft. Y.H.: conceptualization, methodology, software, validation, writing—original draft. Y.W.: con-
ceptualization, methodology, supervision, writing—original draft. J.L.: conceptualization, methodol-
ogy, visualization, investigation. K.G.: conceptualization, methodology, writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant numbers 61803192, 61973203, 62106073, 62173216, and 62173356. We are grateful for Guangyue
Youth Scholar Innovation Talent Program support received from Liaocheng University, the Youth
Innovation Talent Introduction and Education Program support received from the Shandong Province
Colleges and Universities, and the Natural Science Foundation of Shandong Province under grant
numbers ZR2021QE195.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

Notations
K Total number of stages.
k Index of stages, k ∈ {1, 2, . . . , K}.
J Total number of lots.
j Index of lots, j ∈ {1, 2, . . . , J}.
Mk Number of parallel machines at stage k.
i Index of machines at stage k, i ∈ {1, 2, . . . , Mk}.
Tj Total number of items of lot j.
L Maximum number of sublots of each lot.
e Index of the sublots, e ∈ {1, 2, . . . , L}.
Pk,j Item processing time of lot j at stage k.
EPk,j The energy consumption per unit time when lot j is processed on stage k.
EIk The energy consumption per unit time when the machine on stage k is idle.
G A positive large number.
Decision variables
Nj,e Number items of sublot e of lot j.
Sk,j,e Beginning time of sublot e of lot j at stage k.
Ck,j,e Ending time of sublot e of lot j at stage k.
Wj,e A binary variable. The value is 1 if items in the sublot e of lot j is greater than 0, and

0 otherwise.
Dk,j,i A binary variable. The value is 1 if lot j is scheduled on machine i at stage k, and 0 otherwise.
Yk,j,j1,i A binary variable. When lot j and lot j1 are scheduled on the same machine at stage k, the

value is 1 if lot j is processed before lot j1, and 0 otherwise.
Cmax Completion processing time for all lots.
Eprocess Total energy consumption for all machine processing.
Eidle Total energy consumption of all machines when they stay in the idle.
Emax The total energy consumption.
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