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Abstract: (1) Background: There was a need for 3D image reconstruction from a series of 2D projec-
tions in medical applications. However, additional exposure to X-ray projections may harm human
health. To alleviate it, minimizing the projection numbers is a solution to reduce X-ray exposure,
but this would cause significant image noise and artifacts. (2) Purpose: In this study, a method was
proposed for the reconstruction of a 3D image from a minimal set of 2D X-ray projections using
a B-spline-based deformable transformation. (3) Methods: The inputs of this method were a 3D
image which was acquired in previous treatment and used as a prior image and a minimal set of
2D projections which were acquired during the current treatment. The goal was to reconstruct a
new 3D image in current treatment from the two inputs. The new 3D image was deformed from the
prior image via the displacement matrixes that were interpolated by the B-spline coefficients. The
B-spline coefficients were solved with the objective function, which was defined as the mean square
error between the reconstructed and the ground-truth projections. In the optimization process the
gradient of the objective function was calculated, and the B-spline coefficients were then updated.
For the acceleration purpose, the computation of the 2D and 3D image reconstructions and B-spline
interpolation were implemented on a graphics processing unit (GPU). (4) Results: When the scan
angles were more than 60◦, the image quality was significantly improved, and the reconstructed
image was comparable to that of the ground-truth image. As the scan angles were less than 30◦, the
image quality was significantly degraded. The influence of the scan orientation on the image quality
was minor. With the application of GPU acceleration, the reconstruction efficiency was improved by
hundred times compared to that of the conventional CPU. (5) Conclusions: The proposed method
was able to generate a high-quality 3D image using a few 2D projections, which amount to ~ 20%
of the total projections required for a standard image. The introduction of the B-spline-interpolated
displacement matrix was effective in the suppressing noise in the reconstructed image. This method
could significantly reduce the imaging time and the radiation exposure of patients under treatment.

Keywords: image reconstruction; B-spline; deformable; graphics processing unit

MSC: 68U10

1. Introduction

A 3D image, such as computed tomography (CT) or cone-beam CT (CBCT), can be
generated from a series of 2D projections acquired in a single X-ray scan. They have been
widely used in radiation therapy for target localization [1–4]. CBCT imaging delivers a
radiation dose to a large volume of the patient’s body and collects the residual dose on
the detectors. As the accumulated imaging doses to patients could be significant and
increase the risk of secondary cancer induction [5–7], there is a demand for low-dose CBCT
with an adequate image quality in clinic. For reducing the imaging dose, two parameters
(exposure level and projection number) were needed to be adjusted. However, reducing the
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exposure level will lead to increased noise in the reconstructed images, while reducing the
projection number will violate the Nyquist–Shannon sampling theorem, leading to serious
streak artifacts.

To solve these issues, compressed sensing methods based on the total variation (TV)
have been developed to improve the image quality of low-dose CT/CBCT [8–12]. Although
these methods successfully reduce the noise and streak artifacts, they also tend to over-
smooth the edge information. Alternatively, other compressed-sensing-based methods
used prior images for low-dose CBCT [13]. In the prior-image-constrained compressed
sensing (PICCS) method, prior images were used as an additional constraint to minimize
the image’s total variation [14]. Adaptive-prior-image-constrained compressed sensing
(APICCS) was then proposed to enhance the image quality of PICCS [15,16]. The rigid
or deformable registration between the prior image and the reconstructed volume was
then incorporated to improve the image quality [17,18]. Moreover, a motion model was
introduced to further reduce the scan angle needed for CBCT reconstruction [19–21].

Based on the compressed sensing theory, images can be reconstructed from limited-
view and limited-angle projections [22]. However, these methods generally require the
sparseness prior of the image, which may be not valid. Based on the deformable transform,
images can be reconstructed from prior images [23–27]. Lei et al. proposed a deformable
field map method to reconstruct 3D images from limited-angle 2D projections. The missing
information was made up of highly correlated prior images. However, due to the high
fluctuation of the gradient derived from the objective function, the resulted deformation
field map comes with a higher deviation, which could result in the failure of the image
transformation [28,29]. To solve this issue, the gradient or deformation field map should be
smoothed in a rational way.

Several smoothing methods for deformable transformations can be found in image
registration algorithms, including demons registration, viscous fluid registration, B-spline
registration and thin-plate splines. Among them, B-spline is the most popular one because
of its flexibility and robustness which provide the ability to represent the complex spatial
distribution of the data and image in 3D [30,31]. B-spline is used to define the displacement
matrixes which map voxels in a moving image to those in a reference image. The individual
voxel movement between the two images is parameterized in terms of the uniformly
spaced control points that are aligned with the voxel grid, and the displacement vectors are
obtained via the interpolation of the control point coefficients using piecewise continuous
B-spline basis functions. B-spline interpolation is computationally intensive and requires
hours for higher image resolutions [32].

As there are many computation intensity components in CBCT reconstruction, it is
more efficient to implement them on a graphics processing unit (GPU) which can handle
multiple similar tasks through parallel computation [33]. Its effectiveness was already
demonstrated in accelerating image reconstruction tasks, including DRR [34], CBCT [35],
4DCT [36], etc. The integrated GPU-CPU platform can potentially be applied to different
medical image applications, such as medical image segmentation and registration [37,38].
Also, GPUs paved the way for various promising real-time and on-line clinical appli-
cations, such as tumor motion tracking [39], respiration motion tracking and cardiac
motion tracking [40].

In this study, a B-spline-based deformable transformation method was proposed for
3D CBCT reconstructions. Instead of the real-value form of the displacement matrixes in
traditional methods, the B-spline coefficients of the displacement matrixes were employed.
These coefficients were optimized by minimizing the objective function and finally interpo-
lated the real-value displacement matrixes. For acceleration purposes, the computation
of 2D and 3D reconstructions were implemented on a GPU. The proposed method was
evaluated through a clinical head-and-neck case and compared with the traditional method.
Finally, the influence of the scan angle and scan orientation on the image quality was
analyzed, and the advantage of this method was discussed.
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2. Methods
2.1. Deformation-Based Reconstruction Method

The traditional method used the real-value displacement matrixes to transform the
prior image into the target image. In the following, V0 and V are the prior image and
target image, and D is the displacement matrix. The transformation from V0 to V can be
formulated as

V = V(D) = V0
(

i + Dx
ijk, j + Dy

ijk, k + Dz
ijk

)
, i, j, k = 1, . . . , n, (1)

where Dx
ijk, Dy

ijk, Dz
ijk are the displacements matrixes along x, y, and z axes, respectively. n is

the image size, and ijk are the 3D indexes of voxel. V was transformed from V0 through
trilinear interpolation as described below.

i =
⌊

i + Dx
ijk

⌋
, j =

⌊
j + Dy

ijk

⌋
, k =

⌊
k + Dz

ijk

⌋
î = i + Dx

ijk − i0, ĵ = j + Dy
ijk − j0, k̂ = k + Dz

ijk − k0

u1 = (1− k̂) ∗V0i,j,k + k̂ ∗V0i,j,k+1, u2 = (1− k̂) ∗V0i,j+1,k + k̂ ∗V0i,j+1,k+1
v1 = (1− k̂) ∗V0i+1,j,k + k̂ ∗V0i+1,j,k+1, v2 = (1− k̂) ∗V0i+1,j+1,k + k̂ ∗V0i+1,j+1,k+1
w1 = (1− ĵ) ∗ u1 + ĵ ∗ u2, w2 = (1− ĵ) ∗ v1 + ĵ ∗ v2
Vijk = (1− î) ∗ w1 + î ∗ w2

(2)

Here, i, j, k are the three-dimensional indices of grid adjacent to the voxel coordinates,
and î, ĵ, k̂ are the corresponding fractional parts. (u1, u2),(v1, v2) and (w1, w2) are pairs of
weights along three axes.

The fidelity of target image could be guaranteed by approximating its projections to
the ground-truth projections. The 2D projections Y can be calculated from V as

Y = P(V) = P(V(D)), i, j, k = 1, . . . , n, (3)

where P is the projection operator implemented by ray-tracing algorithm. As there are
not enough equations in (3), to solve this ill-posed problem, the regularization term was
introduced. Here, the bending energy defined as below was employed to enforce the
flatness of D.

E(D) =
n

∑
k=1

n

∑
j=1

n

∑
i=1

3

∑
m=1

(∂Dx
ijk

∂x

)2

+

(
∂Dy

ijk

∂y

)2

+

(
∂Dz

ijk

∂z

)2
 (4)

The objective function was then established as

min E(D) s.t. ‖P(V)−Y‖ = 0 (5)

This problem could be transformed to an unconstraint problem with a weight µ

f (D) = ‖P(V)−Y‖+ µ ∗ E(D) (6)

The gradient of f(D) could be derived as

∇ f (D) = 2P−1(P(V(D)−Y))∇V(D) + µ ∗ ∇E(D) (7)

where P−1 is the inverse projection operator which backprojects 2D projections onto 3D
volume. ∇V(D) could be calculated with respect to D along three axes.
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∂Vijk
∂Dz

ijk
= ∂w1

∂Dz
ijk
∗ (1− î) + ∂w2

∂Dz
ijk
∗ î

=

(
∂u1

∂Dz
ijk
∗
(
1− ĵ

)
+ ∂u2

∂Dz
ijk
∗ ĵ
)
∗
(
1− î

)
+

(
∂v1

∂Dz
ijk
∗
(
1− ĵ

)
+ ∂v2

∂Dz
ijk
∗ ĵ
)
∗ î

=

 (
−V0i,j,k + V0i,j,k+1

)
∗
(
1− ĵ

)
+
(
−V0i,j+1,k + V0i,j+1,k+1

)
∗ ĵ

 ∗ (1− î
)
+

 (
−V0i+1,j,k + V0i+1,j,k+1

)
∗
(
1− ĵ

)
+
(
−V0i+1,j+1,k + V0i+1,j+1,k+1

)
∗ ĵ

 ∗ î

(8a)

∂Vijk

∂Dy
ijk

=
∂w1

∂Dy
ijk
∗
(
1− î

)
+

∂w2

∂Dy
ijk
∗ î = (−u1 + u2) ∗

(
1− î

)
+ (−v1 + v2) ∗ î (8b)

∂Vijk

∂Dx
ijk

= −w1 + w2 (8c)

∇E could be calculated with respect to D as below.

∂E
∂D = −2(Dx

i+1,j,k − Dx
i,j,k) + 2(Dx

i,j,k − Dx
i−1,j,k)− 2(Dx

i,j+1,k − Dx
i,j,k)

+2(Dx
i,j,k − Dx

i,j−1,k)− 2(Dx
i,j,k+1 − Dx

i,j,k) + 2(Dx
i,j,k − Dx

i,j,k−1)

= 12Dx
i,j,k − 2Dx

i+1,j,k − 2Dx
i−1,j,k − 2Dx

i,j+1,k − 2Dx
i,j−1,k − 2Dx

i,j,k+1 − 2Dx
i,j,k−1

(9)

When both∇V(D) and∇E(D) were obtained,∇ f (D) in Equation (7) could be solved.

2.2. B-Spline Interpolation

The uniform cubic B-spline basis functions were employed in this study. The real-
value displacement matrix was interpolated from B-spline coefficients. In 3D case, the
deformation field at any given voxel was determined with the 64 control points in the
immediate vicinity of the voxel’s housing tile. B-spline interpolation was performed for
each voxel with respect to the 64 control point coefficients as follows

Dx
ijk = Φ(Ix) =

3

∑
l=0

3

∑
m=0

3

∑
n=0

βl(u)βm(v)βn(w)Ix
lmn (10)

where Ix
lmn is the spline coefficient defining the x component of the displacement vector for

one of the 64 control points. Nx, Ny and Nz are voxels per region (VPR) defining the distance
between control points in terms of voxels in the x, y and z directions, respectively. The
volume was, therefore, segmented by the B-spline control point grid into many equal-sized
tiles of dimensions Nx × Ny × Nz. The three-dimensional indices xt, yt and zt of the tile for
the voxel at x, y and z was given by bi/Nxc,

⌊
j/Ny

⌋
, bk/Nzc, respectively. The coordinates

of the voxel within its tile were u = i/Nx − xt, v = j/Ny − yt, w = k/Nz − zt.
The uniform cubic B-spline basis functions were given by βl(u), βm(v) and βn(w) along

the x, y and z axes, respectively.

βl(u) =


(1− u)3/6 : l = 0(
3u3 − 6u2 + 4

)
/6 : l = 1(

−3u3 − 3u2 + 3u + 1
)
/6 : l = 2

u3/6 : l = 3

βm(v) =


(1− v)3/6 : m = 0(
3v3 − 6v2 + 4

)
/6 : m = 1(

−3v3 − 3v2 + 3v + 1
)
/6 : m = 2

v3/6 : m = 3

βn(w) =


(1− w)3/6 : n = 0(
3w3 − 6w2 + 4

)
/6 : n = 1(

−3w3 − 3w2 + 3w + 1
)
/6 : n = 2

w3/6 : n = 3

VPR was an important parameter which controlled the approximation quality of
B-spline curve for the target image. The fine VPR reduced the approximation error but
caused higher computation costs. The coarse VPR increased the approximation error but
was more time efficient. The balance between the accuracy and efficiency was investigated
in the latter section.
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2.3. B-Spline-Based Reconstruction Method

With B-spline-interpolated displacement matrix D, Equations (1) and (3) were
reformulated as

V = V(Φ(I)) and Y = P(V) = P(V(Φ(I))) (11a)

and the objective function of Equation (5) was updated as

minE(Φ(I)) s.t. ‖P(V(Φ(I)))−Y‖ = 0 (11b)

The gradient of the objective function was then expressed as:

∇ f (Φ(I)) = 2P−1(P(V(Φ(I)))−Y)∇V(Φ(I)) + µ ∗ ∇E(Φ(I)) (12)

The gradient ∇V could be calculated using chain rule as

∇V(Φ(I)) =
∂V
∂I

=
∂V
∂Φ

∂Φ
∂I

(13)

Combining Equation (2) and Equation (11), ∂V
∂Φ could be calculated as

∂Vijk

∂Φx
ijk

= −w1 + w2 (14a)

∂Vijk

∂Φy
ijk

= ∂w1
∂Φy

ijk
∗
(
1− î

)
+ ∂w2

∂Φy
ijk
∗ î

= (−u1 + u2) ∗
(
1− î

)
+ (−v1 + v2) ∗ î

(14b)

∂Vijk
∂Φz

ijk
= ∂w1

∂Φz
ijk
∗ (1− î) + ∂w2

∂Φz
ijk
∗ î

=

(
∂u1

∂Φz
ijk
∗
(
1− ĵ

)
+ ∂u2

∂Φz
ijk
∗ ĵ
)
∗
(
1− î

)
+

(
∂v1

∂Φz
ijk
∗
(
1− ĵ

)
+ ∂v2

∂Φz
ijk
∗ ĵ
)
∗ î

=

 (
−V0i,j,k + V0i,j,k+1

)
∗
(
1− ĵ

)
+
(
−V0i,j+1,k + V0i,j+1,k+1

)
∗ ĵ

 ∗ (1− î
)
+

 (
−V0i+1,j,k + V0i+1,j,k+1

)
∗
(
1− ĵ

)
+
(
−V0i+1,j+1,k + V0i+1,j+1,k+1

)
∗ ĵ

 ∗ î

(14c)

According to the definition of Φ(I) in Equation (10), ∂Φ
∂I is given by

∂Φ
∂I

=
3

∑
l=0

3

∑
m=0

3

∑
n=0

βl(u)βm(v)βn(w) (15)

The bending energy function could also be updated as

E(I) =
n

∑
k=1

n

∑
j=1

n

∑
i=1

3

∑
m=1

(∂Φx
ijk

∂x

)2

+

(
∂Φy

ijk

∂y

)2

+

(
∂Φz

ijk

∂z

)2
 (16)

and its discrete form is

E(I) =
n

∑
k=1

n

∑
j=1

n

∑
i=1

3

∑
m=1


(

Φx
i+1,j,k −Φx

i,j,k

)2
+
(

Φx
i,j,k −Φx

i−1,j,k

)2

+
(

Φx
i,j+1,k −Φx

i,j,k

)2
+
(

Φx
i,j,k −Φx

i,j−1,k

)
+
(

Φx
i,j,k+1 −Φx

i,j,k

)2
+
(

Φx
i,j,k −Φx

i,j,k−1

)2

 (17)

∇E could be calculated using chain rule as

∇E(Φ(I)) =
∂E
∂I

=
∂E
∂Φ

∂Φ
∂I

.
∂E
∂Φ

(18)
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where

∂E
∂Φ = −2(Φx

i+1,j,k −Φx
i,j,k) + 2(Φx

i,j,k −Φx
i−1,j,k)− 2(Φx

i,j+1,k −Φx
i,j,k)

+2(Φx
i,j,k −Φx

i,j−1,k)− 2(Φx
i,j,k+1 −Φx

i,j,k) + 2(Φx
i,j,k −Φx

i,j,k−1)

= 12Φx
i,j,k − 2Φx

i+1,j,k − 2Φx
i−1,j,k − 2Φx

i,j+1,k − 2Φx
i,j−1,k − 2Φx

i,j,k+1 − 2Φx
i,j,k−1

(19)

Combining Equations (13) and (15) into Equation (12),∇ f (I) could be finally obtained as

∇ f (Φ(I)) =
[

2P−1(P(V)−Y) ∗ ∂V
∂Φ

+ µ ∗ ∂E
∂Φ

]
∗

3

∑
l=0

3

∑
m=0

3

∑
n=0

βl(u)βm(v)βn(w) (20)

2.4. Evaluation

The proposed method was implemented in an iterative manner as shown in Figure 1.
Initially, the B-spline coefficients and the displacement matrixes were set to zero. The
gradient of the objective function was then calculated, and the B-spline coefficients were
updated based on the resulting gradient. After certain iterations, the optimization process
converged when the value of ∇ f was less than the threshold or the maximum number
of iterations reached. The real-value displacement matrixes were interpolated from the
optimized B-spline coefficients. Then, the target image was transformed from the prior
image via the resulted real-value displacement matrixes. Finally, the approximation errors
of B-spline-interpolated displacement matrix and the reconstructed target image were
calculated for analysis.
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Figure 1. The flowchart of B-spline-based reconstruction method.

To evaluate the similarity between the reconstructed target image (VR) and the ground-
truth target image (VT), three intensity-based statistical metrics, normalized cross correla-
tion, mutual information and mean absolute percentage error, were employed. Normalized
cross correlation (NCC) was defined as

NCC
(

XR, XT
)
=

(
XR − µR)(XT − µT)

σRσT (21)
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where µR and µT are means of VR and VT and where σR and σT are standard deviations of
VR and VT. Mutual information (MI) was defined as

MI
(

VR, VT
)
= ∑

xR∈VR
∑

xT∈VT

p
(

xR, xT
)

log2
p
(

xR, xT)
p(xR)p(xT)

(22)

where p(xR) and p(xT) are the normalized histograms of VR and VT and where p(xR, xT) is
the joint histogram of VR and VT. In order to calculate the intensity difference between two
images, the mean absolute percentage error (MAPE) was defined as

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ xR
i − xT

i
xT

i

∣∣∣∣∣ (23)

where xR
i and xT

i are the voxels of images VR and VT and where n is the total number
of voxels.

The proposed method was examined using a clinical head-and-neck patient. The
CBCT image size was 256 × 256 × 256, and the cone-beam projection size was 512 × 384.
The full-angle reference CBCT and target CBCT were reconstructed with FDK method using
two sets of CB projections that were acquired on two separate days. The CB projections
were acquired at every 0.55◦. The influence of scan angle (30◦, 45◦, 60◦ and 90◦) and
scan orientation (central angle at 0◦, 45◦ and 90◦) were investigated. The accuracy of
our method was evaluated by comparing the limited-angle CBCT (target image) to the
full-angle CBCT (ground-truth) that was reconstructed with Feldkamp–Davis–Kress (FDK)
method. The reconstruction and evaluation codes were built on the open-source platform,
Plastimatch, which provides B-spline-based image registration and GPU-based image
reconstruction toolkits.

3. Results

The images reconstructed using the proposed and FDK methods on the clinical head-
and-neck case is shown in Figure 2. The projections were acquired with a 0◦ scan orientation
and a 60◦ scan angle. The prior image that was reconstructed using a full-angle scan with
the FDK method is shown in Figure 2a. The target image that was reconstructed with the
FDK method using a limited-angle scan is shown in Figure 2b. The target image that was
reconstructed with the B-spline-based reconstruction method using a limited-angle scan is
shown in Figure 2c. As the ground-truth image, the target image that was reconstructed
with the FDK method using a full-angle scan is shown in Figure 2d. The similarity between
the images in Figure 2c,d was high, which indicated that the proposed method could
generate comparable images, using a limited-angle scan, to the ground-truth image, using
a full-angle scan.

The images that were reconstructed with the deformation-based reconstruction method
as described in Section 2.1 are shown in Figure 3. The projections were acquired with a 0◦

scan orientation and 30◦/45◦/60◦/90◦ angles. It was noticed that there was strong noise in
the target images that were reconstructed with 30◦, 45◦ and 60◦ scan angles. The image
quality of the reconstructed images became worse as the scan angle decreased. Among the
four images, the image that was reconstructed with a 90◦ scan angle (Figure 3d) showed
the best quality and was closer to the ground-truth image (Figure 2d).

The images that were reconstructed with the proposed B-spline-based reconstruction
method using a limited-angle scan as described in Section 2.3 are shown in Figure 4. The
setting of this reconstruction was the same as the one used in Figure 3. It was noticed that
the noise in the images as shown in Figure 4 was greatly suppressed comparing to that in
the images in Figure 3. The image quality with the 60◦ and 90◦ scan angles was better and
was closer to that of the ground-truth image (Figure 2d). The image quality with the 90◦

scan angle (Figure 4d) was the best but required 50% more projections than that with the
60◦ scan angle (Figure 4c).
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Figure 2. The comparison between images reconstructed with the different reconstruction methods.
(a) Prior image acquired reconstructed with FDK method using full-angle scan. (b) The target image
reconstructed with FDK method using limited-angle scan. (c) The target image reconstructed with
B-spline-based reconstruction method using limited-angle scan. (d) The target image reconstructed
with FDK method using full-angle scan.
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angle. (c) Image reconstructed with 60◦ scan angle. (d) Image reconstructed with 90◦ scan angle.
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Figure 4. The images reconstructed with the B-spline-based reconstruction method as described in
Section 2.3. (a) Image reconstructed with 30◦ scan angle. (b) Image reconstructed with 45◦ scan angle.
(c) Image reconstructed with 60◦ scan angle. (d) Image reconstructed with 90◦ scan angle.

The influence of the scan orientation on the image quality was also investigated. The
images that were reconstructed with the FDK method and the proposed method with a
0◦ scan orientation and a 60◦ scan angle are shown in Figure 2b,c. The images that were
reconstructed with both methods with a 45◦ scan orientation and a 60◦ scan angle are
shown in Figure 5a,b, while the images that were reconstructed with both methods with a
90◦ scan orientation and a 60◦ scan angle are shown in Figure 5c,d. The images as shown in
Figure 3a–c that were reconstructed with the FDK method with three scan orientations were
significantly different. The images as shown in Figures 2c and 5b,d that were reconstructed
with the proposed method with three scan orientations were similar to each other. This



Mathematics 2023, 11, 69 9 of 12

indicated that the influence of the scan orientation on the image quality of the reconstructed
image was minor.
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Figure 5. The image reconstructed with different scan orientations with the FDK and proposed
methods. (a) Image reconstructed with 45◦ scan orientation with FDK method. (b) Image recon-
structed with 45◦ scan orientation with the proposed method. (c) Image reconstructed with 90◦

scan orientation with FDK method. (d) Image reconstructed with 90◦ scan orientation with the
proposed method.

The accuracy of the B-spline-interpolated displacement matrix and the reconstructed
target image with respect to the different settings of the VPR and scan angles were investi-
gated. In Table 1, the final B-spline-interpolated displacement matrix was compared to the
ground-truth displacement matrix which was obtained from the deformable transformation
between the prior and ground-truth images. For a combination of the scan angle and VPR,
three similarity metrics (NCC, MI and MAPE) were calculated. The result showed that, with
a smaller VPR and a larger scan angle, the similarity between the resulted and ground-truth
displacement matrixes was higher. In Table 2, the final reconstructed target image was
compared to the ground-truth target image. For a combination of the scan angle and VPR,
the same three similarity metrics were calculated. The result showed that, with a smaller
VPR and a larger scan angle, the similarity between the reconstructed and ground-truth
images was higher.

Table 1. The accuracy of the B-spline-interpolated displacement matrix.

Scan Angle VPR = 60 VPR = 30 VPR = 5

NCC MI MAPE NCC MI MAPE NCC MI MAPE

30◦ 0.62 0.72 0.31 0.83 1.21 0.13 0.88 1.31 0.11

60◦ 0.76 0.99 0.20 0.89 1.25 0.19 0.93 1.33 0.06

90◦ 0.85 1.08 0.15 0.94 1.29 0.08 0.97 1.37 0.05

Table 2. The accuracy of the reconstructed target image.

Scan Angle VPR = 60 VPR = 30 VPR = 5

NCC MI MAPE NCC MI MAPE NCC MI MAPE

30◦ 0.80 0.91 0.17 0.88 1.31 0.09 0.90 1.33 0.07

60◦ 0.88 1.22 0.12 0.94 1.51 0.07 0.96 1.55 0.04

90◦ 0.90 1.28 0.10 0.98 1.58 0.05 0.99 1.65 0.02

The running time on the CPU and GPU platforms were compared in Table 3. The
inputs were the 2D projections acquired with the 30◦ or 60◦ scan angle and the 3D prior
image. The dimensions of the 2D projections were 512 × 384, and the dimensions of
the 3D image was 256 × 256 × 256. The output was the 3D image in the dimensions of
256 × 256 × 256. The computation of the 2D and 3D image reconstructions and B-spline
coefficients were all accomplished on a GPU. Two popular graphics cards, Nvidia Geforce
GTX 1080 and Nvidia Geforce GTX 2080, were tested. The computer was equipped with
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a Intel Xeon 2609 CPU and a 64GB DRR4 memory. It showed that the running time on a
GPU was hundred times faster than that on a traditional CPU.

Table 3. Running time on CPU and GPU for different reconstruction tasks.

Tasks Reconstruction with 30◦ Scan Angle Reconstruction with 60◦ Scan Angle

Iterations
CPU GPU CPU GPU

Intel Xeon 2609 Nvidia 1080 Nvidia 2080 Intel Xeon 2609 Nvidia 1080 Nvidia 2080

100 11,000s 100s 75s 13,400s 120s 100s

200 19,000s 230s 200s 25,500s 250s 220s

4. Discussion

With a limited-angle scan, the proposed method could reconstruct images comparable
to the standard images reconstructed with a full-angle scan. This will significantly reduce
the time and dose during multiple data acquisition and would be beneficial for patients
under treatment. With the introduction of the B-spline interpolation, the image noise and
artifacts were suppressed, and the edge of the anatomical structures was improved. The
VPR had a certain effect on the image quality, but it could be minimized with smaller
values. With the acceleration of a GPU, the iterative CBCT reconstruction could be mostly
accomplished within 10 min. This would make it possible for several clinical scenarios.

There are many factors that could affect the image quality and accuracy of the recon-
structed images. Among them, the scan orientation and scan angle are the most important
ones. Our experiments showed that the scan orientation had a small influence on the
images, but the scan angle had a large influence on the resulting images. When the scan
angle was less than 30◦, there was strong noise and a larger structure discontinuity in the
reconstructed images. A larger scan angle would result in a better image but would take
more time for reconstruction computation. Therefore, to balance accuracy and efficiency, a
60◦ scan angle would be favorable for clinical use.

The introduction of the B-spline interpolation was effective for noise suppression. It
could also be feasible in the other types of limited-angle reconstruction methods, such
as total-variation-based and optical-flow-based reconstruction methods. In addition, this
method could also be used for the reconstruction of 4D-CT and 4D-CBCT with limited-
angle projections. In these 4D reconstruction tasks, the 3D volume in one phase could
be used as a prior image to predict the 3D volume of another phase. As a large amount
of projections is usually required in 4D applications, the reduction of the time and dose
resulted by the proposed method on data acquisition would be considerable.

It is also possible to extend this method to the other industrial domains, such as
magnetic resonance imaging, radar interferometry, electromagnetism, etc. As these fields
differ from medical imaging, it would be important to identify the proper setting and
parameters for them. For example, the imaging principle of MRIs would differ from that of
CT/CBCTs substantially. The former is generated by detecting the direction of the change
of protons in the water, while the latter is generated from the X-ray interaction with the
material on its path and finally deposing the residual radiation dose on the detectors. The
proper preprocessing and adjustments would be necessary.

5. Conclusions

A new B-spline-based limited-angle reconstruction method was developed and demon-
strated its feasibility in reconstructing high-quality images comparable to the standard
images. With the introduction of the B-spline interpolation, the image noise was signif-
icantly suppressed, and the contour of the anatomical structures was improved. With
the GPU acceleration, the limited clinical time of image reconstruction could be greatly
alleviated. Potentially, this reconstruction method could be used in the other industrial
domains, but proper preprocessing and adjustments would be needed.
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