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Abstract: The oscillation of a first-order differential equation with several non-monotone delays is
proposed. We extend the works of Kwong (1991) and Sficas and Stavroulakis (2003) for equations
with several delays. Our results not only essentially improve but also generalize a large number of
the existing ones. Using some numerical examples, we illustrate the applicability and effectiveness of
our results over many known results in the literature.
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1. Introduction

In this paper, we study the oscillation of the equation

x′(t) +
m

∑
r=1

br(t)x(τr(t)) = 0, t ≥ t0, (1)

where br, τr ∈ C([t0, ∞), [0, ∞)) such that lim
t→∞

τr(t) = ∞, r = 1, 2, . . . , m.

In the particular case m = 1, Equation (1) has the form

x′(t) + b(t)x(τ(t)) = 0, t ≥ t0, (2)

where b, τ ∈ C([t0, ∞), [0, ∞)), such that lim
t→∞

τ(t) = ∞.

By a solution of Equation (1), we mean a continuous function x(t) on [t0 − t̄, t0],
t̄ = inf

t≥t0
{τr(t), 1 ≤ r ≤ m} that is continuously differentiable on [t0, ∞) and satisfies

Equation (1) for all t ≥ t0. A solution x(t) is called oscillatory if it has arbitrary large zeros
in any interval [t1, ∞), t1 ≥ t0; otherwise, it is called nonoscillatory. If Equation (1) has
at least one eventually positive or eventually negative solution, it is called nonoscillatory;
otherwise, it is called oscillatory.

It should be noted that the oscillatory behaviour for solutions of Equations (1) and (2)
is totally different. In fact, all solutions of Equation (2) with τ and b as constants are
oscillatory if and only if bτ > 1

e ; see ([1] Thorem 2.2.3). However, the oscillation problem of
Equation (1) in its simplest form (with constant delays and coefficients) is not complete. As a
result, the oscillation theory is very interested in establishing necessary and/or sufficient
oscillation conditions for Equation (1).

In the last few decades, the oscillation problem of functional differential equations has
received much attention from mathematicians; see, for example, [1–37]. The reader is referred
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to [1,2,4–6,9,10,12,13,17,20,22,23,26] and [1,2,7,8,11,14,15,17–19,24,27,30–32,34–37] for the oscil-
lation of Equations (1) and (2), respectively. The results on oscillation criteria of most of these
works have iterative forms. Many sharp oscillation criteria for both Equations (1) and (2)
with slowly varying coefficients have been established by [18–20,34]. Further new oscilla-
tion conditions for Equation (2) with a non-monotone delay have been obtained by [7,8].
These conditions are expressed in terms of the numbers L∗ = lim supt→∞

∫ t
h(t) b(v)dv and

k∗ = lim inf
t→∞

∫ t
h(t) b(v)dv, where h(t) is a nondecreasing continuous function on [t1, ∞)

for some t1 ≥ t0 such that τ(t) ≤ h(t) for all t ≥ t1; see, for a non-decreasing delay
case, [15,24,30,32,35].

Several oscillation criteria for Equation (1) were established, but we will only highlight
some of them. First, we need to define the following notation.

Assume that there exist nondecreasing continuous functions σl(t) and σ(t) on [t1, ∞)
for some t1 ≥ t0 such that τl(t) ≤ σl(t) ≤ σ(t) ≤ t, l = 1, 2, . . . , m. Additionally, we define

τmax(t) = max
1≤l≤m

τl(t),

L(t) = max
1≤l≤m

Ll(t), Ll(t) = sup
t0≤s≤t

τl(s), l = 1, 2, . . . , m, (3)

γ = lim inf
t→∞

∫ t

σ(t)

m

∑
r=1

br(s)ds, γl = lim inf
t→∞

∫ t

σl(t)
bl(s)ds, l = 1, 2, . . . , m,

η = lim inf
t→∞

∫ t

τmax(t)

m

∑
r=1

br(s)ds, ηl = lim inf
t→∞

∫ t

τl(t)
bl(s)ds, l = 1, 2, . . . , m,

D(ω) =


0, if ω > 1/e,

1−ω−
√

1−2ω−ω2

2 , if ω ∈
[
0, 1

e

]
.

(4)

Finally, let λ(q) be the smaller real root of the transcendental equation λ = eλq,
0 ≤ q ≤ 1

e . Now, we mention some results from the literature that are related to our study.
Infante et al. [23] showed that if

lim sup
t→∞

m

∏
i=1

 m

∏
i1=1

∫ t

σi(t)
bi1(s)e

∫ σi1
(t)

τi1
(s) ∑m

l=1 bl(s1)e

∫ s1
τl (s1)

∑m
r=1 br(s2)ds2 ds1

ds


1
m

>
1

mm , (5)

or

lim sup
ε→0+

lim sup
t→∞

m

∏
i=1

 m

∏
i1=1

∫ t

σi(t)
bi1(s)e

∫ σi1
(t)

τi1
(s) ∑m

l=1(λ(ηl)−ε)bl(s1)ds1
ds

 1
m
 >

1
mm , (6)

then Equation (1) is oscillatory.
Koplatadze [26] established the condition

lim sup
t→∞

m

∏
i=1

 m

∏
i1=1

∫ t

σi(t)
bi1(s)e

m
∫ σi1

(t)

τi1
(s)

(
∏m

i2=1 bi2 (s1)
) 1

m
v`(s1)ds1

ds


1
m

>
1

mm −
m

∏
i=1

D(γi), (7)

where v1(t) = 0 and v`(t) = e∑m
l=1
∫ t

τl (t)
(∏m

i=1 bi(s))
1
m v`−1(s)ds

, ` = 2, 3, . . . .
Braverman et al. [10] introduced a recursive criterion, namely

lim sup
t→∞

∫ t

L(t)

m

∑
r=1

br(s)ϕl(L(t), τr(s))ds > 1, (8)
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where

ϕ1(t, s) = exp

{∫ t

s

m

∑
r=1

br(ζ)dζ

}
,

ϕl+1(t, s) = exp

{∫ t

s

m

∑
r=1

br(ζ)ϕl(ζ, τr(ζ))dζ

}
, l ∈ N. (9)

Chatzarakis and Péics [12] obtained the sufficient condition

lim sup
t→∞

∫ t

L(t)

m

∑
r=1

br(s)ϕl(L(s), τr(s))ds >
1 + ln(λ(η))

λ(η)
− D(η). (10)

Attia et al. [5] introduced the condition

lim sup
t→∞

 m

∏
i=1

(
m

∏
i1=1

∫ t

σi(t)
Qi1(s)ds

) 1
m

+
∏m

i=1 D(γi)

mm e∑m
r=1
∫ t

σr(t) ∑m
r1=1 br1 (s)ds

 >
1

mm , (11)

where 0 < γl ≤ 1
e , l = 1, 2, . . . , m, and

Qi1(s) = e
∫ s

σi1
(s) ∑m

r=1 br(s1)ds1
m

∑
r1=1

br1(s)
∫ s

τr1 (s)
bi1(s1)e

(λ(γ)−ε)
∫ σi1

(s)

τi1
(s1)

∑m
r2=1 br2 (s2)ds2

ds1,

for ε ∈ (0, λ(γ)).
Bereketoglu et al. [9] defined the sequence {$`(t)}`≥0 by

$0(t) = m

(
m

∏
i=1

bi(t)

) 1
m

$`(t) =
m

∑
r=1

br(t)

1 + m

(
m

∏
i=1

∫ t

σr(t)
bi(s)e

∫ t
τi(s)

$`−1(s1)ds1 ds

) 1
m
, ` = 1, 2, . . . ,

and obtained the condition

lim sup
t→∞

m

∏
i=1

 m

∏
i1=1

∫ t

σi(t)
bi1(s)e

∫ σi1
(t)

τi1
(s) $`(s1)ds1

ds

 1
m

>
1

mm

(
1−

m

∏
i=1

D(γi)

)
, (12)

where ` ∈ N.
Attia and El-Morshedy [6] improved (5) and (7) with ` = 3 and proved that Equation (1)

is oscillatory if

lim sup
t→∞

m

(
m

∏
i=1

D(γi)

)1− 1
m m

∑
r=1

R̄r(t) +
m

∑
r=2

mr

(
m

∏
i=1

D(γi)

)1− l
m r

∏
i=1

R̄i(t)

 > 1−
m

∏
i=1

D(γi), (13)

where

R̄r(t) =

 m

∏
i=1

∫ t

σr(t)
bi(u)e

∫ σi(t)
τi(u)

∑m
r1=1 br1 (u1)e

(λ(η)−ε)
∫ u1

τr1 (u1)
∑m

r2=1 br2 (u2)du2
du1 du


1
m

(14)

and r = 1, 2, . . . , m, η > 0, ε ∈ (0, λ(η)).
The purpose of this work is to improve and extend the method introduced by Kwong [29]

for Equation (1) with non-monotone delays. Based on this, we obtain some new oscillation
criteria that improve and generalize many existing ones reported in the literature. The sig-
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nificance of some of our results over the previous works is shown by using an illustrative
example. In particular, it is shown that our results can examine the oscillation property,
while many iterative oscillation criteria fail to do so for any number of iterations.

2. Main Results

In what follows, we will use the following notation:

Mr(t) = max{Lr(t), . . . , Lm(t)}, r = 1, 2, . . . , m, t ≥ t0, (15)

where Lr(t) is defined by (3). It is clear that

Mr(t) ≥ τr(t), τr+1(t), . . . , τm(t), r = 1, . . . , m (16)

and
Mi(t) ≥ Mj(t), i ≥ j, i, j = 1, . . . , m.

Additionally, we define ρr and the sequence {Ωl(v, u)}∞
l=0, v ≥ u ≥ t0 as follows:

ρr = lim inf
t→∞

∫ t

Mr(t)

m

∑
k=r

bk(v)dv, ρr ≤
1
e

r = 1, 2, . . . , m (17)

and
Ωl(v, u) = e

∫ v
u ∑m

i=1 bi(ζ)Ωl−1(ζ,τi(ζ))dζ , l ∈ N,

with

Ω0(v, u) =

{
1, ρ1 = 0,

λ(ρ1)− ε1, ρ1 > 0, ε1 ∈ (0, λ(ρ1)).

The proof of the following result follows from [37].

Lemma 1. Let x(t) be an eventually positive solution of Equation (1). Then,

lim inf
t→∞

x(t)
x(Mr(t))

≥ D(ρr), r = 1, 2, . . . , m.

Lemma 2. Let l ∈ N. Then,

x(u) ≥ x(v)Ωl(v, u), v ≥ u,

where x(t) is a positive solution of Equation (1).

Proof. Since x(t) is a positive solution of Equation (1), then, x(t) is eventually nonincreas-
ing for all sufficiently large t. In view of (16), it follows from Equation (1) that

x′(t) + x(M1(t))
m

∑
k=1

bk(t) ≤ 0, for all sufficiently large t.

Using ([17] Lemma 2.1.2) and the nonincreasing nature of x(t), we obtain

x(M1(t))
x(t)

≥
{

1, ρ1 = 0,

λ(ρ1)− ε1, ρ1 > 0,

where ε1 > 0 is sufficiently small.

Therefore,

x(M1(t))
x(t)

≥ Ω0(v, u) for all sufficiently large t, for v ≥ u ≥ t0. (18)
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Dividing Equation (1) by x(t) and integrating from u to v, v ≥ u, we have

ln
(

x(u)
x(v)

)
=
∫ v

u

m

∑
k1=1

bk1(v1)
x(τk1(v1))

x(v1)
dv1, v ≥ u. (19)

Consequently,

x(u) = x(v)e
∫ v

u ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 , v ≥ u. (20)

Then,

x(u) ≥ x(v)e
∫ v

u ∑m
k1=1 bk1

(v1)
x(M1(v1))

x(v1)
dv1 .

From this and (18), we obtain

x(u) ≥ x(v)e
∫ v

u ∑m
k1=1 bk1

(v1)Ω0(v1,τk1
(v1))dv1 = x(v)Ω1(v, u).

Accordingly,
x(τk1(t)) ≥ x(t)Ω1(t, τk1(t)), k1 = 1, 2, . . . . (21)

Substituting into (20), we have

x(u) ≥ x(v)e
∫ v

u ∑m
k1=1 bk1

(v1)Ω1(v1,τk1
(v1))dv1 = x(v)Ω2(v, u), v ≥ u.

Repeating this procedure l times, we derive

x(u) ≥ x(v)Ωl(v, u) v ≥ u.

The proof is complete.

Lemma 3. Assume that Br > 1, r ∈ {1, 2, . . . , m} such that

lim inf
t→∞

x(Mr(t))
x(t)

≥ Br. (22)

Then, for all sufficiently large t,

∫ t

Mr(t)

m

∑
k=r

bk(v)e
∫ Mr(v)

τk(v)
∑m

k1=1 bk1
(v1)

x(τk1
(v1))

x(v1)
dv1 dv ≤ 1 + ln(Br − ε)

Br − ε
− x(t)

x(Mr(t))
, (23)

where ε ∈ (0, Br).

Proof. Clearly, x(t) is eventually nonincreasing for all sufficiently large t. From (20),
we have

x(u) = x(v)e
∫ v

u ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 , v ≥ u. (24)

By using (22), for sufficiently small ε, 0 < ε < Br, we have

x(Mr(t))
x(t)

> Br − ε > 1 for all sufficiently large t. (25)

Then there exists t̄ ∈ (Mr(t), t) such that

x(Mr(t))
x(t̄)

= Br − ε.

Integrating Equation (1) from t̄ to t, we obtain
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x(t)− x(t̄) +
∫ t

t̄

m

∑
k=1

bk(v)x(τk(v))dv = 0.

That is,

x(t)− x(t̄) +
∫ t

t̄

r−1

∑
k=1

bk(v)x(τk(v))dv +
∫ t

t̄

m

∑
k=r

bk(v)x(τk(v))dv = 0. (26)

In view of (16), it follows that

τk(v) ≤ Mr(v), t̄ ≤ v ≤ t, k = r, r + 1, . . . , m.

From this and (24), we obtain

x(τk(v)) = x(Mr(v))e
∫ Mr(v)

τk(v)
∑m

k1=1 bk1
(v1)

x(τk1
(v1))

x(v1)
dv1 , t̄ ≤ v ≤ t, k = r, r + 1, . . . , m.

Substituting this into (26), we obtain

x(t)− x(t̄) +
∫ t

t̄

m

∑
k=r

x(Mr(v))bk(v)e
∫ Mr(v)

τk(v)
∑m

k1=1 bk1
(v1)

x(τk1
(v1))

x(v1)
dv1 dv ≤ 0.

Using the nonincreasing nature of x(t), we have

x(t)− x(t̄) + x(Mr(t))
∫ t

t̄

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 dv ≤ 0,

that is,

∫ t

t̄

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 dv ≤ x(t̄)

x(Mr(t))
− x(t)

x(Mr(t))

=
1

Br − ε
− x(t)

x(Mr(t))
.

(27)

By (19), we obtain

ln
(

x(Mr(t))
x(t̄)

)
=
∫ t̄

Mr(t)

m

∑
k=1

bk(v)
x(τk(v))

x(v)
dv ≥

∫ t̄

Mr(t)

m

∑
k=r

bk(v)
x(Mr(v))

x(v)
x(τk(v))
x(Mr(v))

dv.

From this, (24), and (25), we obtain

∫ t̄

Mr(t)

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 dv ≤ ln (Br − ε)

Br − ε
.

Combining this with (27), we obtain

∫ t

Mr(t)

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 dv ≤ 1 + ln (Br − ε)

Br − ε
− x(t)

x(Mr(t))
.

The proof is complete.

Remark 1. It should be noted that when ρr > 0, the number Br in the preceding lemma can be
chosen as λ(ρr) according to ([17] Lemma 2.1.2).
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Theorem 1. Assume that r ∈ {1, 2, . . . , m}, n1 ∈ N and n2 ∈ N0. If ρr > 0 and

lim sup
t→∞

∫ t

Mr(t)

m

∑
k=r

bk(v)Ωn1+1(Mk(v), τk(v))dv >
1 + ln(B̄n2

r )

B̄n2
r

− D(ρr), (28)

then every solution of Equation (1) is oscillatory, where

B̄n2
r ≤

{
λ(ρr), n2 = 0,

lim inf
t→∞

Ωn2(t, Mr(t)), n2 = 1, 2, . . . .

Proof. If not, let x(t) be a positive solution of Equation (1). From ([17] Lemma 2.1.2),
we obtain

lim inf
t→∞

x(Mr(t))
x(t)

≥ λ(ρr) ≥ B̄0
r .

This, together with Lemma 2, leads to

lim inf
t→∞

x(Mr(t))
x(t)

≥ lim inf
t→∞

Ωn2(t, Mr(t)) ≥ B̄n2
r

and

x(τk1(t))
x(t)

≥ Ωn1(t, τk1(t)) for all sufficiently large t, k1 = 1, 2, . . . , m. (29)

Since ρr > 0, one can choose Br = B̄n2
r in Lemma 3. Then, (23) implies that

∫ t

Mr(t)

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)
x(τk1

(v1))

x(v1)
dv1 dv ≤

1 + ln
(

B̄n2
r − ε

)
B̄n2

r − ε
− x(t)

x(Mr(t))
. (30)

By (29), we obtain

∫ t

Mr(t)

m

∑
k=r

bk(v)e
∫ Mr(v)

τr(v) ∑m
k1=1 bk1

(v1)Ωn1 (v1,τk1
(v1))dv1 dv ≤

1 + ln
(

B̄n2
r − ε

)
B̄n2

r − ε
− x(t)

x(Mr(t))
.

In view of Lemma 1, we have

lim sup
t→∞

∫ t

Mr(t)

m

∑
k=r

bk(v)Ωn1+1(Mk(v), τk(v))dv ≤
1 + ln

(
B̄n2

r − ε
)

B̄n2
r − ε

− D(ρr).

Letting ε→ 0, we have a contradiction to (28). The proof is complete.

Theorem 2. Assume that r ∈ {1, 2, . . . , m} and n ∈ N. If

lim sup
t→∞

∫ t

Mr(t)

m

∑
k=r

bk(v)Ωn+1(Mk(t), τk(v))dv > 1− D(ρr), (31)

then every solution of Equation (1) is oscillatory.

Proof. Assume that x(t) is a positive solution of Equation (1). Integrating Equation (1)
from Mr(t) to t, we have

x(t)− x(Mr(t)) +
∫ t

Mr(t)

m

∑
k=1

bk(v)x(τk(v))dv = 0. (32)
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Using (24) from the proof of Lemma 3, we obtain

x(τk(v)) = x(Mk(t))e
∫ Mk(t)

τk(v)
∑m

k1=1 bk1
(v1)

x(τk1
(v1))

x(v1)
dv1 , Mk(t) ≤ v ≤ t.

Substituting from this into (32), we obtain

x(t)− x(Mr(t)) + x(Mr(t))
∫ t

Mr(t)

m

∑
k=1

bk(v)e
∫ Mk(t)

τk(v)
∑m

k1=1 bk1
(v1)

x(τk1
(v1))

x(v1)
dv1 dv = 0.

From this and Lemma 2, we obtain

∫ t

Mr(t)

m

∑
k=1

bk(v)e
∫ Mk(t)

τk(v)
∑m

k1=1 bk1
(v1)Ωn

(
v1,τk1

(v1)
)

dv1 dv ≤ 1− x(t)
x(Mr(t))

.

This together with Lemma 1, implies that

lim sup
t→∞

∫ t

Mr(t)

m

∑
k=r

bk(v)Ωn+1(Mk(t), τk(v))dv ≤ 1− D(ρr).

This contradiction completes the proof.

Next, we introduce some corollaries for Equation (2). To this end, let ḡ(t) and the
sequence {ωl(v, u)}∞

l=0, v ≥ u ≥ t0, be defined, respectively, by

ḡ(t) = sup
u≤t

τ(u), t ≥ t0

and

ω0(v, u) =

{
1, µ = 0,

λ(µ)− ε, µ > 0, ε ∈ (0, λ(µ)),

ωl(v, u) = e
∫ v

u b(ζ)ωl−1(ζ,τ(ζ))dζ , l ∈ N,

where

µ = lim inf
t→∞

∫ t

τ(t)
b(ζ)dζ = lim inf

t→∞

∫ t

ḡ(t)
b(ζ)dζ, µ ≤ 1

e
.

According to Theorems 1 and 2, we have, respectively, the following corollaries:

Corollary 1. Assume that n1 ∈ N and n2 ∈ N0. If µ > 0 and

lim sup
t→∞

∫ t

ḡ(t)
b(v)ωn1+1(ḡ(v), τ(v))dv >

1 + ln( ¯̄Bn2)
¯̄Bn2

− D(µ), (33)

then every solution of Equation (2) is oscillatory, where

¯̄Bn2 ≤
{

λ(µ), n2 = 0,

lim inf
t→∞

ωn2(t, ḡ(t)), n2 = 1, 2, . . . .

Corollary 2. Assume that n ∈ N0. If

lim sup
t→∞

∫ t

ḡ(t)
b(v)ωn+1(ḡ(t), τ(v))dv > 1− D(µ), (34)

then every solution of Equation (2) is oscillatory.
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Remark 2.

(1) It should be noted that

Ω1(v, u) = exp

{∫ v

u

m

∑
i=1

bi(ζ)Ω0(ζ, τi(ζ))dζ

}
≥ exp

{∫ v

u

m

∑
i=1

br(ζ)dζ

}
= ϕ1(v, u).

Therefore, conditions (28) with r = 1 and n2 = 0 and (31) with r = 1 improve (10) and (8),
respectively.

(2) Condition (33) with n2 = 0 generalizes the condition

lim sup
t→∞

∫ t

τ(t)
b(v)dv >

1 + ln(λ(µ))
λ(µ)

− D(µ),

due to Jaros̆ and Stavroulakis [24] when τ(t) is nondecreasing. Additionally, if there exits
n2 ∈ N0 such that ¯̄Bn2 ≥ λ(µ), then condition (33) improves the preceding condition.

3. Numerical Examples

The choice of Mr(t) is necessary for the validity of conditions (28) and (31) when
r < m. In fact, if Mr(t) is replaced by Mj(t), r < m, r < j ≤ m, i.e., conditions (28) and (31)
have, respectively, the form

lim sup
t→∞

∫ t

Mj(t)

m

∑
k=r

bk(v)Ωn1+1(Mk(v), τk(v))dv >
1 + ln(B̄n2

r )

B̄n2
r

− D(ρr)

and

lim sup
t→∞

∫ t

Mj(t)

m

∑
k=r

bk(v)Ωn1+1(Mk(t), τk(v))dv > 1− D(ρr), (35)

then these conditions may not be sufficient for the oscillation. We show this fact in the
following example:

Example 1. Consider the differential equation

x′(t) +
1
2e

x(t− 1) +
1

2e6 x(t− 6) = 0.

This equation has the nonoscillatory solution x(t) = e−t. However, as we will show, condition
(35) with j = 2 and r = 1 is satisfied. Let

b1(t) =
1
2e

, τ1(t) = t− 1, b2(t) =
1

2e6 , τ2(t) = t− 6.

Then,
M1(t) = t− 1, M2(t) = t− 6.

Clearly,

lim sup
t→∞

∫ t

M2(t)

2

∑
k=1

bk(v)Ωn1+1(Mk(v), τk(v))dv > lim sup
t→∞

∫ t

M2(t)

2

∑
k=1

bk(v)dv

=
3
e
+

3
e6 > 1,

and hence, condition (35) with j = 2 and r = 1 holds.

It is noticeable that the previous works give numerical examples to illustrate the
effectiveness of their results over some special cases from earlier publications, especially
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the iterative conditions. In the following example, we prove the oscillation property, while
all the previous iterative conditions fail to do so for any number of iterations.

Example 2. Consider the differential equation

x′(t) + b1(t)x(τ1(t)) + b2(t)x(τ2(t)) = 0, t ≥ 2, (36)

where

b1(t) =


0 if t ∈ [6i, 6i + 2],
10
9 (t− 6i− 2)α if t ∈ [6i + 2, 6i + 2.9],

α if t ∈ [6i + 2.9, 6i + 4],
−α
2 (t− 6i− 4) + α if t ∈ [6i + 4, 6i + 6],

i ∈ N0,

b2(t) = β, τ1(t) = t− δ where 0 < δ < 1, and

τ2(t) =


t− 1 if t ∈ [3l, 3l + 1],
− 1

2 t + 9
2 l + 1

2 if t ∈ [3l + 1, 3l + 1.2],
7
6 t− 1

2 l − 3
2 if t ∈ [3l + 1.2, 3l + 3],

l ∈ N0.

It follows from (3) that L1(t) = τ1(t) = t− δ and

L2(t) =


t− 1 if t ∈ [3l, 3l + 1],
3l if t ∈ [3l + 1, 3l + 9

7 ],
7
6 t− 1

2 l − 3
2 if t ∈ [3l + 9

7 , 3l + 3],
l ∈ N0.

Please see Figure 1,

Figure 1. The graphs of the functions b1(t), τ2(t), and L2(t) are shown in subfigures (a), (b), and (c),
respectively.

Therefore,
M1(t) = t− δ and M2(t) = L2(t).

Clearly,

0 ≤ b1(t) ≤ α and t− 1.3 ≤ τ2(t) ≤ M2(t) ≤ t− 1.

Let

Z(t) =
∫ t

M2(t)
b2(v)e

∫ M2(v)
τ2(v)

∑2
k1=1 bk1

(v1)dv1 dv.
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Therefore,

Z
(
3(2i + 1) + 9

7
)

=
∫ 3(2i+1)+ 9

7
M2(3(2i+1)+ 9

7 )
b2(v)e

∫ M2(v)
τ2(v)

∑2
k1=1 bk1

(v1)dv1 dv

=
∫ 3(2i+1)+1

3(2i+1) βdv +
∫ 3(2i+1)+1.2

3(2i+1)+1 βe

∫ 3(2i+1)

− 1
2 v+ 9

2 (2i+1)+ 1
2
(α+β)dv1

dv

+
∫ 3(2i+1)+ 9

7
3(2i+1)+1.2 βe

∫ 3(2i+1)
7
6 v− 1

2 (2i+1)− 3
2
(α+β)dv1

dv

= β + 20
7

β

(
e

1
10 (α+β)−1

)
α+β > 0.6010602026

for β = 1
e and α = 13.9. In view of (17), we have

ρ2 = lim inf
t→∞

∫ t

M2(t)
b2(v)dv = lim inf

t→∞

∫ t

τ2(t)
b2(v)dv = lim

l→∞

∫ 3l+1

τ2(3l+1)
βdv =

1
e

,

and hence, λ(ρ2) = e, so one can choose B̄0
2 = λ(ρ2) = e. Therefore,

1 + ln(B̄0
2)

B̄0
2

− D(ρ2) < 0.59922.

Consequently,

lim sup
t→∞

∫ t
M2(t)

b2(v)Ω2(M2(v), τ2(v))dv ≥ lim sup
t→∞

Z(t)

≥ lim
t→∞

Z
(
3(2i + 1) + 9

7
)
> 0.59993

> 1+ln(λ(ρ2))
λ(ρ2)

− D(ρ2).

Then, according to Theorem 1 with n1 = 1 and n2 = 0, Equation (36) is oscillatory for β = 1
e ,

α = 13.9 and for all 0 < δ < 1. However, all previous results cannot be applied to this equation, as
we will show. It is clear that

0 ≤ b1(t) ≤ α, b2(t) =
1
e

, L1(t) = τ1(t) = t− δ

and
L2(t) = M2(t), L(t) = L1(t) and t− 1.3 ≤ τ2(t) ≤ M2(t) ≤ t− 1,

where L(t) and Li(t), i = 1, 2 are defined by (3). Next, we show that there exists a sequence of
positive real numbers {Al}l≥0 such that A0 = 1 and ϕl(t, τi(t)) ≤ Al (that is defined by (1)) for
some T > t0 and all t ≥ T, l = 1, 2, . . . . Since

ϕ1(v, τi(v)) = e
∫ v

τi(v)
∑2

k=1 bk(u)du ≤ e
∫ v

v−1.3(α+β) = e1.3(α+β) = A1 for all v.

ϕ2(v, τi(v)) = e
∫ v

τi(v)
∑2

k=1 bk(u)ϕ1(u,τi(u))du ≤ e
∫ v

v−1.3 ∑2
k=1 bk(u)A1du = e1.3(α+β)A1 = A2 for all v.

Similarly, we obtain

ϕl−1(v, τi(v)) ≤ e1.3(α+β)Al−2 = Al−1, l = 2, 3, . . . for all v.
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Clearly,

∫ t
L(t)

2
∑

i=1
bi(u)ϕl(L(t), τi(u))du =

∫ t
τ1(t)

2
∑

i=1
bi(u)e

∫ L(t)
τi(u)

2
∑

k1=1
bk1

(u1)ϕl−1(u1,τk1
(u1))du1

du

≤
∫ t

t−δ

2
∑

i=1
bi(u)e

∫ t
τ2(u)

2
∑

k1=1
bk1

(u1)ϕl−1(u1,τk1
(u1))du1

du

≤
∫ t

t−δ

2
∑

i=1
bi(u)e

∫ t
t−2.3

2
∑

k1=1
bk1

(u1)Al−1du1

du

≤ δ(α + β)e2.3(α+β)Al−1

for some T1 > t0, all t ≥ T and l ∈ N. Then, for every l ∈ N, one can choose δ sufficiently small
such that δ(α + β)e2.3(α+β)Al−1 < 1. Consequently,

lim sup
t→∞

∫ t

L(t)

2

∑
k=1

bi(u)ϕl(L(t), τi(u))du ≤ δ(α + β)e2.3(α+β)Al−1 < 1,

and hence (8) is not satisfied for every α,β and l ∈ N.
Let

I(t) =
2

∏
i=1

[
2

∏
i1=1

∫ t

σi(t)
bi1(s)e

∫ σi1
(t)

τi1(s)
∑2

l=1(λ(ηl)−ε)bl(s1)ds1 ds

] 1
2

.

In view of τ1(t) ≤ τ2(t), σl(t) ≤ t and λ(ηl) ≤ e, l = 1, 2, it follows that

I(t) ≤
2

∏
i=1

[
2

∏
i1=1

∫ t

σi(t)
bi1(s)e

e(α+β)(t−τ2(s))ds

] 1
2

.

Using the fact that σi(t) ≥ t− 1.3, i = 1, 2, we obtain

I(t) ≤
[

e5.2 e(α+β)
2

∏
i1=1

∫ t

t−δ
bi1(s)ds

] 1
2

×
[

e5.2 e(α+β)
2

∏
i1=1

∫ t

t−1.3
bi1(s)ds

] 1
2

≤
[
δ2e5.2 e(α+β)(max{α, β})2

] 1
2 ×

[
(1.3)2e5.2 e(α+β)(max{α, β})2

] 1
2

= 1.3 δ e5.2 e(α+β)(max{α, β})2.

Therefore, one can choose a δ sufficiently small such that 1.3 δ e5.2 e(α+β)(max{α, β})2 < 1
4 ,

so condition (6) cannot apply to Equation (36) for all α and β.
Since

R̄1(t) =

 2

∏
r=1

∫ t

σ1(t)
br(u)e

∫ σr(t)
τr(u) ∑2

l1=1 bl1
(u1)e

(λ(η)−ε)
∫ u1

τl1
(u1)

∑2
l2=1 bl2

(u2)du2
du1 du


1
2

≤

 2

∏
r=1

∫ t

t−δ
br(u)e

∫ t
τ2(u)

∑2
l1=1 bl1

(u1)e
e
∫ u1

τ2(u1)
(α+β)du2 du1 du

 1
2

.

then
R̄1(t) ≤ δ max{α, β}e2.6 (α+β)e1.3e(α+β)

. (37)
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Additionally,

R̄2(t) =

 2

∏
r=1

∫ t

σ2(t)
br(u)e

∫ σr(t)
τr(u) ∑2

l1=1 bl1
(u1)e

(λ(γ)−ε)
∫ u1

τl1
(u1)

∑2
l2=1 bl2

(u2)du2
du1 du


1
2

(38)

≤
(

2

∏
r=1

∫ t

t−1.3
br(u)e

∫ t
τ2(u)

∑2
l1=1 bl1

(u1)e1.3 e(α+β)du1 du

) 1
2

(39)

≤ 1.3 max{α, β}e2.6(α+β)e1.3 e(α+β)
. (40)

In view of γ1 = 0, it follows that D(γ1) = 0. From this, (37), and (38), we have

2

(
2

∏
r=1

D(γr)

) 1
2 2

∑
l=1

R̄l(t) + 4
2

∏
r=1

R̄r(t) = 4
2

∏
r=1

R̄r(t) ≤ 5.2δ(max{α, β})2e5.2 (α+β)e1.3e(α+β)
.

Hence, δ can be chosen such that 5.2δ(max{α, β})2e5.2 (α+β)e1.3e(α+β)
< 1, and so condition (13)

is not satisfied for Equation (36) for all α and β. Similarly, we can show that all the mentioned
iterative and non-iterative oscillation conditions cannot be applied to Equation (36) for all α and β.

4. Conclusions

In this work, we obtained new sufficient oscillation criteria for Equation (1). These
results extend and improve many known results in the literature. We showed that all
solutions of Equation (36) are oscillatory, while all the previous iterative conditions cannot
be applied to this equation for any number of iterations. Using the techniques given in
this work, the oscillation property for difference equations with several non-monotone
deviating arguments, as well as delay differential and difference equations with oscillating
coefficients, can be studied.
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