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Abstract: The oscillation of a first-order differential equation with several non-monotone delays is
proposed. We extend the works of Kwong (1991) and Sficas and Stavroulakis (2003) for equations
with several delays. Our results not only essentially improve but also generalize a large number of
the existing ones. Using some numerical examples, we illustrate the applicability and effectiveness of
our results over many known results in the literature.
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1. Introduction

In this paper, we study the oscillation of the equation

m

X))+ Y b (t)x(te(t) =0,

r=1

t> tO/ (1)

where by, T, € C([tg, ), [0,00)) such that tlim T (t) =00, r=1,2,...,m.
—» 00

In the particular case m = 1, Equation (1) has the form

x'(t) +b(t)x(T(t)) =0, t> to, 2

where b, T € C([ty, 00), [0,0)), such that tlirn T(t) = oo.
—» 00

By a solution of Equation (1), we mean a continuous function x(t) on [ty — £, to],
F= gltf{’cr(t), 1 < r < m} that is continuously differentiable on [ty, c0) and satisfies
=10

Equation (1) for all + > ty. A solution x(t) is called oscillatory if it has arbitrary large zeros
in any interval [, ), t; > t; otherwise, it is called nonoscillatory. If Equation (1) has
at least one eventually positive or eventually negative solution, it is called nonoscillatory;
otherwise, it is called oscillatory.

It should be noted that the oscillatory behaviour for solutions of Equations (1) and (2)
is totally different. In fact, all solutions of Equation (2) with T and b as constants are
oscillatory if and only if bt > % ; see ([1] Thorem 2.2.3). However, the oscillation problem of
Equation (1) in its simplest form (with constant delays and coefficients) is not complete. As a
result, the oscillation theory is very interested in establishing necessary and/or sufficient
oscillation conditions for Equation (1).

In the last few decades, the oscillation problem of functional differential equations has
received much attention from mathematicians; see, for example, [1-37]. The reader is referred
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to[1,2,4-6,9,10,12,13,17,20,22,23,26] and [1,2,7,8,11,14,15,17-19,24,27,30-32,34-37] for the oscil-
lation of Equations (1) and (2), respectively. The results on oscillation criteria of most of these
works have iterative forms. Many sharp oscillation criteria for both Equations (1) and (2)
with slowly varying coefficients have been established by [18-20,34]. Further new oscilla-
tion conditions for Equation (2) with a non-monotone delay have been obtained by [7,8].
These conditions are expressed in terms of the numbers L* = limsup, ., |, ht ) b(v)dv and
k= litrg io?f fht(t) b(v)dv, where h(t) is a nondecreasing continuous function on [t;, o0)
for some t; > tp such that 7(t) < h(t) for all t > t;; see, for a non-decreasing delay
case, [15,24,30,32,35].

Several oscillation criteria for Equation (1) were established, but we will only highlight
some of them. First, we need to define the following notation.

Assume that there exist nondecreasing continuous functions ¢;(t) and o(t) on [t1, c0)
for some t; > to such that 7j(t) < oy(t) < o(t) <t,1=1,2,...,m. Additionally, we define

Tmax(t) = max Tl(t)

1<I<m
L(t) = max L;(t), L;(t)= sup 7(s), 1=12,...,m, (©)]
1<I<m to<s<t

t
—hmmf/ Zb ds, :h}gio?f - bi(s)ds, 1=1,2,...,m,

t m t
= lim inf /me Y. br(s)ds, g =l nf ./w) bi(s)ds, 1=1,2,...,m,
0, if w>1/e,
D(w) = ; (4)
Lo/l it we o],

Finally, let A(g) be the smaller real root of the transcendental equation A = e,
0<g< % Now, we mention some results from the literature that are related to our study.

Infante et al. [23] showed that if

S

S
L T br(sp)dsy i

i 1) 7(s1)
o) Lity bi(sr)e 11 1
lim sup | | | | / b;, ( f1<) e s > —, (5)

t—oo =1 |i;=1

or )
L1(A(m)—€)by(s1)ds
lim sup | lim sup H H / bi ( " T s > Lm, 6)
e—0+ | tooo i1 |i=17oilt m
then Equation (1) is oscillatory.
Koplatadze [26] established the condition
m | om ot m f:il((:)) (H;’Ll bi, (51)) " @ (s1)dsy " 1 1
limsup [T|]] bi (s)e "™ 2 s| >——]]D(), @
t—oo =1 |i=1"ei(b) m i=1
m t m . % X
where @1 (t) = 0 and @,(t) = eHi=1 Sy (T Bi) ‘D“l(s)ds, 0=23,....
Braverman et al. [10] introduced a recursive criterion, namely
t m
lim sup / Y be(s)gi(L(t), 7r(s))ds > 1, 8)
t—ro0 L(t) ;)34
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where

() = exp{ /: ilbr@)dg},

Praa(t,s —exp{/ Zb’ el o §))d§}, leN. 9)
Chatzarakis and Péics [12] obtained the sufficient condition
) £ 1+In(A
lim sup / Y be(s)@i(L(s), T(s))ds > 1+ In(Ar) _ D(n). (10)
t—oo  JL(t) ;4 A1)

Attia et al. [5] introduced the condition

1
. " m _D(-y; m t m 1
lim sup ( (l_[ ) Qa(s) ) +7H1_21m(7’)e =t Joy () ry=1 brl(”ds) > (D)
1=

t—0c0 i=1 oi(

where0 < 1, < 1,1=1,2,...,m,and

(s)

(M) =€) [0 T by (s2)ds2

I‘S. (s) Z r(s1)ds1 T 1)

01 () =" L o) [ oG

r=1 1’1)

51,

fore € (0, A(7y)).
Bereketoglu et al. [9] defined the sequence {0/(t) }¢>0 by

)

1
m t t
. frl-(s) 0r-1(s1)ds1 _
en(f1 pie ) ] v

S

() = m@bi(t

o) = ilbra)

i=1"°r

and obtained the condition

1
i, () m
) ot S kg @els1)dsy 1 n
limsup [ [H t b, (s)e i) ds] > <1 - HD(’)/J), (12)
i=1|i;= i=1

where ¢/ € N.
Attia and ElI-Morshedy [6] improved (5) and (7) with ¢ = 3 and proved that Equation (1)
is oscillatory if

i=1 i=1

L= m m m 1_% r m
lim sup (m (H D(’yi)> Z R, (t) + Z;Zmr (HD(%)> Ri(t)> >1-— HD(%‘), (13)
] r=1 r= i=1
where

(A —e) [11

1
= m t i (£) s~m Iz (u1>)::';:1 bry (up)duy mn
Rr(t) = (l | / (t) bi(u)ef'ri(u) ):rlzl brl (ul)e 1 duldu (14)

i=170

andr=1,2,...,m,5>0,e € (0, A(1)).

The purpose of this work is to improve and extend the method introduced by Kwong [29]
for Equation (1) with non-monotone delays. Based on this, we obtain some new oscillation
criteria that improve and generalize many existing ones reported in the literature. The sig-
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nificance of some of our results over the previous works is shown by using an illustrative
example. In particular, it is shown that our results can examine the oscillation property,
while many iterative oscillation criteria fail to do so for any number of iterations.

2. Main Results

In what follows, we will use the following notation:
M, (t) = max{L,(t),...,Ln(t)}, r=1,2,...,m, t>tg, (15)

where L, (t) is defined by (3). It is clear that

M, (t) > (1), Ty (), .., T (£), r=1,...,m (16)
and
Ml'(i’) ZM](t), i>ji,j=1...,m
Additionally, we define p, and the sequence {Q);(v, u) }?0:0' v > u > tg as follows:
1
p,—hmmf/ Zbk prgg r=12,...,m (17)
M;(t) k=r
and
(v, u) = el T b (@m@)d | e N,
with

Q( ) 1/ plzor
o,u) =
° M) —e,  pr >0, e € (0 A(p)):

The proof of the following result follows from [37].

Lemma 1. Let x(t) be an eventually positive solution of Equation (1). Then,

lim inf x(t)

min me(Pﬂ/ r=1,2,...,m.

Lemma 2. Let | € N. Then,
x(u) > x(v)y(v,u), v>u,
where x(t) is a positive solution of Equation (1).

Proof. Since x(t) is a positive solution of Equation (1), then, x(t) is eventually nonincreas-
ing for all sufficiently large t. In view of (16), it follows from Equation (1) that

x'(t) + x(My (¢t 2 by (1) for all sufficiently large .

Using ([17] Lemma 2.1.2) and the nonincreasing nature of x(t), we obtain

), [ o =0
x(t) 7 | A1) —er, p1 >0,

where €1 > 0 is sufficiently small.

Therefore,

X(]J\c/l(ltgt)) > Oo(v,u) for all sufficiently large ¢, for v > u > ty. (18)
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Dividing Equation (1) by x(t) and integrating from u to v, v > u, we have

x(v) T x(v1)
Consequently,
0 wm (1, (1))
x(u) — x(v)e‘f“ Zlq:l bkl (”1)7,((2,1) d”ll 0> (20)
Then,

0 v-m x(Mq(v1))
x(u)Zx(v)ef“ Yig =1 by (o) Za) “don,

From this and (18), we obtain
x(u) > x(v)ef'f Z;!ll:l br, (vl)QO(verkl (v1))doy — X(U)Ql (ZJ,M).

Accordingly,
X(Tkl(i’)) Z X(t)()l(t,’fkl(t)), k1 = 1,2,.... (21)

Substituting into (20), we have
x(u) > x(v)ef“v Li=1 by (1)1 (o1, (00))dor _ x(0) (v, u), v>u
Repeating this procedure ! times, we derive
x(u) > x(v)y(v,u) v>u
The proof is complete. [
Lemma 3. Assume that B, > 1,r € {1,2,...,m} such that

lim inf M

minf =@ =P 22)

Then, for all sufficiently large t,

£ MO e ) X ) 1+1In(B, —¢) x(t)
b (v)elw®@ =h=1"k 5oy g < r - , 23
Joy 2 ST B-e amay P

where € € (0, By).

Proof. Clearly, x(f) is eventually nonincreasing for all sufficiently large t. From (20),

we have o o)
v m b X Tkl ?}1 d
x(u) = x(v)el Tt I 00l e 0> u. (24)

By using (22), for sufficiently small €, 0 < € < B;, we have

X(M;(t))
x(t)

Then there exists f € (M,(t), t) such that

> B —e>1 for all sufficiently large ¢. (25)

Integrating Equation (1) from f to t, we obtain
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v)—x() + [ T boxinondot [ no)rnioi =0 @9

In view of (16), it follows that
T (v) < M, (v), t<o<t k=rr+1,...,m

From this and (24), we obtain

0) (1, (1))
[-(Mr<)2k1=1bk1(vl) ,f(l )1 dvy

x(1%(v)) = x(M;(v))e %@ ’1 , I<ov<t, k=rr+1,...,m

Substituting this into (26), we obtain
~ t m Mr(v) v-m b Ty d
x(t) — x(F) + / Y x(My(0)) by ()el v Ham P OV g
tok=r
Using the nonincreasing nature of x(t), we have

R e W)
x(t) —x(F) + x(Mr(t))/— Z bk(v)efT'(v) Tiy =1 b (00— dvldv <0,
b=y

that is,
t m My (0) —m X(Tkl(%)) _
J YF g by (01) — 55— doy x(t) x(t)
bi(v)e’ @ “h=1"" x(vq) do < _
J; Lo WD) D) o,
_ 1 x@)
By —e  x(M(t))
By (19), we obtain

MO\ &, xm@), L B x(M(0) 1))
1“( x(0) )‘/ o DT = [ Y o) T e e

From this, (24), and (25), we obtain

Ly Mr(o *(ty (01)) -
Z bk(l))ejrr(v) ) ):1?1:1 bkl (v1) x(lvl) dvq do < M
" = Br — €

Combining this with (27), we obtain

t m My (0) —m (1 (01)) B
ST by (o) s don 1+In(B,—¢)  x()
) b(v)e’m@) Zh=tth o) Ty < — .
/ru) (o) =T B e (M, ()

The proof is complete. [

Remark 1. It should be noted that when p, > 0, the number B, in the preceding lemma can be
chosen as A(py) according to ([17] Lemma 2.1.2).
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Theorem 1. Assume thatr € {1,2,...,m}, ny € Nand ny € Ny. If p, > 0and

. bt & 1+ In(B;?
lim sup / . Y bi(0) Q11 (Mi(0), T4 (0))do > % —D(pr), (28)
") k=r r

then every solution of Equation (1) is oscillatory, where

—n )\(Pr)/ n2 = 0/
Br<{
hgnmf Qu, (£, M (1)), np=1,2,....
— 00

Proof. If not, let x(t) be a positive solution of Equation (1). From ([17] Lemma 2.1.2),

we obtain
x(M;(t)) >

lim inf > Ap,) > BY.

t—oo  x(t)

This, together with Lemma 2, leads to

L X(M(E) n
—_ > > 2
htrgg\f R hmgf Qu, (£, M, (t)) > B,

and

x(T, ()

Xt > O, (t, 1, (1)) for all sufficiently large t, kh=12,...,m (29)

Since pr > 0, one can choose B, = B;? in Lemma 3. Then, (23) implies that

t m My (v) «m X(Tkl (v1)) 1 1 an -
Jerto) Ly =1 by (01) — 55— do +1In(B” —¢) x(t)
b T () 1=1"K1 x(vq) do < — - . 0
/ 2 be(v)e ' R x(M(t)) 0

By (29), we obtain

/ Z br(v TiAy ! L =1 by (01) Oy (Ul/Tkl(UI))dvld 1+ lr_l (B> —¢) x(t) '
() =y B2 —¢ x(M, (1))

_ oo 1+In(B2 —¢
lim sup / " 1; by (0) Qg 1 (M (v), T (v) )dv < Bfg:e) — D(pr).

Letting e — 0, we have a contradiction to (28). The proof is complete. [

Theorem 2. Assume thatr € {1,2,...,m}and n € N. If

imsup [ Zbk Qi (My (1), 7(0))do > 1= Dpr), Q)

t—o0

then every solution of Equation (1) is oscillatory.

Proof. Assume that x(t) is a positive solution of Equation (1). Integrating Equation (1)
from M, (t) to t, we have

() — x(My () + /A; Y kilbk(v)x('rk(v))dv —0. (32)
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Using (24) from the proof of Lemma 3, we obtain
M) o (7, (h))d
21 (0)) = x(My(£))el o) Tha=bia 00 == dor. M (t) <v <t
Substituting from this into (32), we obtain
t m My (8) —m b (1 ('”1)>d
(0) = x(Mr(0) + x(M () [ 3 bufopelil it 0Ty
Mi(t) k=1

From this and Lemma 2, we obtain

t m My (t) —m
J YF g by (01)Qn <v1,Tk (01))5101 x(t)
bi(v)e’ @ ~F=1"" 1 dv<1— ——-—.
Sy 20 <1 m)

This together with Lemma 1, implies that

fimsup [ 37 0u(0)000a (M (1), (o) < 1= D).

This contradiction completes the proof. [

Next, we introduce some corollaries for Equation (2). To this end, let §(f) and the
sequence {w;(v,u)}°,, v > u > tg, be defined, respectively, by

u<t
and
(0,1) {1' H=0
wolv,u) =
Apu)—e,  u>0, ec (0, Alp)),

wi(v,u) = e]fb(é)wm(éﬁ(é))dé, €N,
where t ’ )

p=Hminf | B =Ymint [ O, k<

According to Theorems 1 and 2, we have, respectively, the following corollaries:
Corollary 1. Assume that ny € Nand ny € Ny. If u > 0and

t S 1+ 1:1(]112)

limsup [ b(v)wn,41(8(v), 7(0))dv —D(u), (33)
t—o0 3(t) an
then every solution of Equation (2) is oscillatory, where
= /\("l/l), ny = 0/
By, < <. . -
2 liminf wy, (¢, §(t)), np=12....
t—o0
Corollary 2. Assume that n € Ny. If
t
lim sup b(v)wy4+1(3(t), T(v))dv > 1— D(n), (34)

t—00 3(t)

then every solution of Equation (2) is oscillatory.
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Remark 2.
(1) It should be noted that

(o= [ Encacni) > onf [ Evi) = oo

Therefore, conditions (28) with r = 1 and ny = 0 and (31) with v = 1 improve (10) and (8),
respectively.
(2)  Condition (33) with ny = 0 generalizes the condition

. t 1+ In(A(n))
limsu b(v)dv > ———~+~
Pl G ) ®) Ap)

due to Jaros and Stavroulakis [24] when T(t) is nondecreasing. Additionally, if there exits
ny € Ny such that By, > A(u), then condition (33) improves the preceding condition.

—D(p),

3. Numerical Examples

The choice of M;,(t) is necessary for the validity of conditions (28) and (31) when
r < m. In fact, if M,(t) is replaced by M;(t), r < m,r < j < m,i.e., conditions (28) and (31)
have, respectively, the form

lim sup /t 5 by (0) Oy (M (0), 7 (0))do > 0B gy

t—oo  JIM;(t) 1 =, B;?
and
timsup [ 3 ()01 (M(0), (o) > 1= Dipy), (35)
t—o0 ] )k r

then these conditions may not be sufficient for the oscillation. We show this fact in the
following example:

Example 1. Consider the differential equation

x'(t) + lx(t— 1)+

- x(t—6) = 0.

1
2e 6
This equation has the nonoscillatory solution x(t) = e~t. However, as we will show, condition
(35) with j = 2 and v = 1 is satisfied. Let

1 1
b](t) = 20’ Tl(t) =t—1, bz(t) = a6’ Tz(f) =t—6.
Then,
M(t)=t—1, My(t) =t —6.
Clearly,
t 2 ¢ 2
lim sup Y b (0) Q11 (Mi(0), 7(0))do > limsup / Y bi(v)do
tooo  JIMa(t) 1 t—oo JIMa(t) 12
3 3
= — + —6 > 1,
e e

and hence, condition (35) with j = 2 and r = 1 holds.

It is noticeable that the previous works give numerical examples to illustrate the
effectiveness of their results over some special cases from earlier publications, especially
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the iterative conditions. In the following example, we prove the oscillation property, while
all the previous iterative conditions fail to do so for any number of iterations.

Example 2. Consider the differential equation

X () + b (Dx(ri(t) + ba(Hx(ma(t) =0, t>2, (36)
where
0 ift € [6i, 6i + 2],
) F(t—6i—2)a ift € [6i+2,6i+29], .
bht) =1 4 ift € [6i +29, 6i+4], L €0
[

S(t—6i—4)+a ifte[6i+4,6i+6],
by(t) =B, r(t) =t —dwhere0 < 6 <1, and

t—1 ift € 31,31+ 1],
n(t) = —rt+31+% ifteB814+1,31+12], 1 €N,
Zt—21-3  ifte381+12,31+3],
It follows from (3) that L1(t) = 1y (t) = t — d and
t—1 ift € [3l,31+1],
Ly(t) =< 31 ift€314+1,31+7], 1 €N.
Tt—11-3 ifte38l+9,31+3],

Please see Figure 1,

AGH 72 (8)]

a

(a) (b) ()

Figure 1. The graphs of the functions b; (t), T2(t), and Ly (t) are shown in subfigures (a), (b), and (c),

respectively.
Therefore,
M(t)=t—9¢ and M;(t) = La(t)
Clearly,
0<b(t) <w and t—13<1n(t) < My(t) <t-—1
Let
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Therefore,
: 9 3(2i+1)+3 JoRS 52 by (or)doy
ZBRI+D+7) = fippien)eg R@em? T
7 .
f3(21+1) . (atB)do
= J3 2211111 o pdo+ [; 2211I11 :11 2 pe Rt Ll do
21+1)

3(2i+1)+2 fzv77 2i41)- (“JF.B)dZ’l

+ fs 2i+1 +172 ey v
‘B{e 10 (a+p) _ >

20

B+ P == > 0.6010602026

for B = % and o = 13.9. In view of (17), we have

t t 3l+1 1
02 = hmmf by (v)dv = liminf by(v)dv = lim Bdv = o

= JMy(t) tmoo Jn(t) [0 J1y(3141)
and hence, A(py) = e, so one can choose BY = A(p2) = e. Therefore,

1+ In(BY)

s~ Dip2) < 059922
2

Consequently,

Y

lim sup fM by (v) (M (v), T2 (v) )do limsup Z(t)

t—o0 t—o0

> lim Z(3(2i+1) + 7) > 0.59993
— 00
> L) _ g,

AMp2)

Then, according to Theorem 1 with ny = 1 and ny = 0, Equation (36) is oscillatory for B = =
« = 13.9 and for all 0 < § < 1. However, all previous results cannot be applied to this equation, as
we will show. It is clear that

Ogbl(t)ga, bz(t)zf, Ll(t):rl(t):t—é

and
Ly(t) = Mp(t), L(t) =Li(t) and t—-13<1(t) < My(t) <t-1,

where L(t) and L;(t), i = 1,2 are defined by (3). Next, we show that there exists a sequence of
positive real numbers { A;}>q such that Ag = 1 and ¢;(t,7;(t)) < A; (that is defined by (1)) for
someT > tgandallt > T,1=1,2,... . Since

¢1(v,7(0)) = e[ ) T b (u)du < elo1a(@tB) — o13(a+p) _ = A for all v.
92 (0, Ti(v)) = efl Y1 bi (1) @1 (1,7 () ) du < eJo-1a Tiot be(w)Avdu _ (13(atp)Ar _ Ay forall v.

Similarly, we obtain

9110, 7;(v)) < 3@ FPA2 — 4, 1=2,3,... for all v.
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Clearly,

.2 JE) £ by ()1, ()
fL w)ei(L(t), Ti(u))du = [ L bi(we = 07
< fb( ) Syt )kz biy ()11 (11,7, (111) )iy
> s i\u)e !
i=1
Ji 23,(%, by (u1) Aj_qdi
ft p Z b;j(u)e 1=1 du
(06+,B) 2.3(a+B)A;_q

IN

IN

du

du

for some Ty > tg,allt > T and | € N. Then, for every | € N, one can choose ¢ sufficiently small

such that &(a + B)e*3(@ P41 < 1. Consequently,

t—o0

t 2
lim sup /L ) Z bi (1) @y (L(1), Ti(u))du < &(a + B)e23@HP A < q,
k=1

and hence (8) is not satisfied for every «, and I € N.
Let

2 2 t € S S
I(t) = HlH /a bi, (s)efnl Zz 1(Alm)=€)bi(s)dsy 5 ‘|

i=1 [iy=177i(t)
Inview of 7y (t) < (t), 07(t) < tand A(y;) < e, | =1,2, it follows that

1

10 <T1|T

i=1

1 / ()€ a+ﬁ)(t—fz(5))dsl

111

Using the fact that o;(t) > t — 1.3, = 1,2, we obtain

N—=

I < [52ev¢+[3 J‘:[l/ ] l52ea+ﬁ)lli[l/ ]
< [52 52e(0¢+‘B)(maX{“ ) }% {(1 3)2 52e(a+ﬁ)(max{a 1) }%

= 13552 °@HP) (max{a, ﬁ}) .

Therefore, one can choose a & sufficiently small such that 1.3 § €52 ¢(@+F) (max{a, B})* <

so condition (6) cannot apply to Equation (36) for all a and .
Since

A =€) [11 T2 by (up)duy 2
2 t 07 (ug) =1 2
Rl (t) == (I I/ ‘L'r u) E11 hll (ul) TI " g duldu)
(4
r=1

1

1
" 2
¢ ef (a+B)duy
( by (u () Xy =1 by () 200 Mgy |
y—1/t=0

Ri(t) < d max{a, B}e*® (a+B)et3elath)

IN
N

then

7

TN

(37)
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Additionally,
1
2 t o1 () 2 b (/\(7)*6),1;;1(“1)2]22:1 blz(uz)duzd 2
Ro)) = (TT/[ betwelrioFhatlr age) @)
r=1702(t)
2 :
t t O el
< (H/ br(u)effz(u) 2= by (r)et +B)gl”ldu) (39)
1 /t-13
< 1.3max{a,ﬁ}e2'6(“+ﬁ)el'3 E(a-%—ﬂ'). (@0)

In view of y1 = 0, it follows that D(-y1) = 0. From this, (37), and (38), we have
2 72 - 2 2 2 L3e(a+p)
2{TID() | Y R(t) +4][R(t) = 4J]Re(t) <5.26(max{a, p})*e>? (*+P)e .
r=1 r=1

Hence, & can be chosen such that 5.25(max{«, ﬁ})2e5'2 (a+p)e > 1 and so condition (13)
is not satisfied for Equation (36) for all & and B. Similarly, we can show that all the mentioned
iterative and non-iterative oscillation conditions cannot be applied to Equation (36) for all « and B.

4. Conclusions

In this work, we obtained new sufficient oscillation criteria for Equation (1). These
results extend and improve many known results in the literature. We showed that all
solutions of Equation (36) are oscillatory, while all the previous iterative conditions cannot
be applied to this equation for any number of iterations. Using the techniques given in
this work, the oscillation property for difference equations with several non-monotone
deviating arguments, as well as delay differential and difference equations with oscillating
coefficients, can be studied.
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