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Abstract: Follow-up experimental designs are popularly used in industry. In practice, some important
factors may be neglected for various reasons in the first-stage experiment and they need to be added
in the next stage. In this paper, we propose a method for augmenting supersaturated designs with
newly added factors and augmented levels using the Bayesian D-optimality criterion. In addition, we
suggest using the integrated Bayesian D-optimal augmented design to plan the follow-up experiment
when the newly added factors have been allowed to vary in an appropriate region. Examples and
simulation results show that the augmented designs perform well in improving identified rates of
latent factor effects.
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1. Introduction

In industrial applications, screening experiments are frequently utilized at the early
stages of experiments which remove the negligible, or inactive, factors in further experi-
ments. Due to their economy and flexibility, supersaturated designs (SSDs) are often used
to plan a screening experiment when the number of factors is large and the experimental
runs are expensive or time-consuming. SSDs introduced by Satterthwaite [1] are defined
as having fewer runs than the effects to be estimated; the first systematic construction
was provided by Booth and Cox [2] via the computer search. In the literature, most of the
SSDs are used for experiments where main effect models are assumed. Since all factorial
effects cannot be estimated simultaneously, and a variety of sub-models are identifiable,
model selection can be achieved by many analysis methods, such as forward selection,
stepwise, all-subsets regression, best-subset selection, simulated annealing model search
(Wolters and Bingham [3]), partial least squares methods (Zhang et al. [4]; Yin et al. [5]),
shrinkage methods, including smoothly clipped absolute deviation (SCAD, Li and Lin [6])
and Dantzig selector (Phoa et al. [7]), sure independence screening approach (Drosou and
Koukouvinos [8]), group screening methods (Jones et al. [9]; Weese et al. [10]) and Bayesian
methods (Beattie et al. [11]; Huang et al. [12]). Drosou and Koukouvinos [13] developed a
new algorithm, the SVR-RFE, using the minimization of the weight vector as a criterion so
as to detect the most significant variables. Some of these methods used in the paper will be
introduced briefly in Section 2.2.

Screening experiments often leave some problems unresolved; thus, follow-up exper-
iments are needed in such situations. For SSDs, Gupta et al. [14] augmented two-level
designs with additional runs to create a new class of “extended E(s2)-optimal” designs,
and the idea was extended by Gupta et al. [15] to s-level designs; Qin et al. [16] stud-
ied the augmenting method for mixed-level SSDs and their method covers the work
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of Gupta et al. [14,15] as two special cases. For uniform designs, Qin et al. [17] and
Gou et al. [18] considered the augmenting strategy for two-level and three-level designs
under the wrap-around L2-discrepancy. In general, however, some information would
surely have been obtained even if an experiment has failed to achieve the intended goal,
and the information gathered should be carefully incorporated to plan the experiment in the
next stage. Gutman et al. [19] adopted Bayesian D-optimality to add runs to existing SSDs
using information from the initial experiment as prior information, and Zhang et al. [20]
suggested using Bayesian Ds-optimality to augment the SSDs. All the above-mentioned
studies are merely on row augmented designs.

However, in many follow-up designs, some additional factors may be added in the
sequential stage since they may have been neglected in the first stage due to limited
resources and knowledge or any other reasons, the aforementioned methods cannot handle
this situation. Yang et al. [21] introduced an example from an industrial production showing
the necessity of a column augmented design (CAD), the factor of reaction pressure is not
considered to be significant initially. Thus, this factor was fixed as the standard atmosphere
pressure (0.1 MPa), in order to limit the number of runs for saving cost. However, after
analysis of the initial experiment, it was shown that the reaction pressure may be an
important factor and need further investigation in the follow-up stage. In a word, there
are many disappointing situations in an experiment. For instance, the present main effect
model might not capture the nonlinear relationship between factors and response, so the
level sizes of the factors should be augmented to at least three in such a situation. In the
literature of uniform CADs, Yang et al. [21] proposed mixed two- and three-level uniform
CADs under the wrap-around L2-discrepancy. Liu et al. [22] further discussed the work of
Yang et al. [21] under the Lee discrepancy, and Hu et al. [23] proposed augmented uniform
q-level designs measured by the average mixture discrepancy. However, these methods
did not use the information acquired from the previous experiments and did not augment
the factors’ level sizes. In this paper, Bayesian D-optimal criterion will be used to augment
SSDs with newly added factors, and the analysis results from the initial-stage design can
be included as prior information.

The next section reviews the relevant background firstly, then we propose the new
augmenting strategies for SSDs using information from the initial runs in Section 3 for two
cases; the levels of the newly added factors are fixed at some definite values or allowed
to vary in some ranges. Section 4 displays the performances of the augmented designs
by highlighting two examples, and Section 5 discuss the simulation performances. Some
concluding remarks are provided in Section 6.

2. Preliminaries

The approach for developing Bayesian D-optimal designs in the context of the linear
model will be briefly introduced firstly in this section; then, we are going to review some
model selection methods that will be used later.

2.1. Bayesian D-Optimality

Consider the linear model

y = β01n + β1x1 + · · ·+ βkxk + ε = Xβ + ε, (1)

where y is an n× 1 vector of observations, β0 is the intercept term, 1n is an n× 1 column
vector with all elements unity, xi is an n × 1 vector of settings for the ith variable, X
is the n × p model matrix with p = k + 1, and β is the p × 1 vector of coefficients to
be estimated. Assume ε is the noise vector and ε ∼ N

(
0n, σ2In

)
, where 0n is an n × 1

column vector with all elements zero, and In is an identity matrix of order n. Let the prior
distribution of the parameters be β | σ2 ∼ N

(
β0, σ2R−1), where R is a prior covariance

matrix, and the conditional distribution of y given β is y | (β, σ2) ∼ N
(
Xβ, σ2In

)
. Then,
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the posterior distribution for β given y would be β | y ∼ N
(

b, σ2(X′X + R)−1
)

, where

b = (X′X + R)−1(X′y + Rβ0).
When the design of an experiment is used to collect data and perform estimation,

the process can contain three stages generally. Firstly, select an optimal design D under
some criteria; then, perform the experiment in terms of the design D and collect response
y; finally, consider an appropriate model and estimate the parameters β where X is the
corresponding model matrix. If the model assumed is valid, the quality of design D
determines the accuracy of parameters estimation. In this way, if we aim to find an optimal
design to reduce Var(β | y) = σ2(X′X + R)−1, the posterior variances of the parameter
estimates in model (1), which can be accomplished by maximizing |X′X + R|, and then the
design acquired this way, is called a Bayesian D-optimal design.

2.2. Variable Selection Methods

Four variable selection methods will be employed to screen the significant effects later:
the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani [24],
the SCAD by Fan and Li [25], the minimax concave penalty (MCP) by Zhang [26] and the
Dantzig selector (DS) by Candes and Tao [27].

The LASSO, MCP and SCAD are all members of the penalized least squares. A form
of penalized least squares is defined as

(y− Xβ)T(y− Xβ) +
k

∑
j=1

pλ

(∣∣β j
∣∣),

where pλ(·) is a penalty function, and λ is a tuning parameter.
The l1 penalty pλ(|β|) = λ|β| results in LASSO. Although the LASSO has many

attractive properties, the shrinkage introduced by the LASSO results in a significant bias
toward zero for large regression coefficients, SCAD and MCP are proposed to diminish this
bias. The SCAD defined on [0, ∞) is given by

p′λ(θ) =


λ, if θ ≤ λ,
γλ−θ
γ−1 , if λ < θ ≤ γλ,

0, if θ > γλ,

for λ ≥ 0 and γ > 2. The MCP defined on [0, ∞) is given by

p′λ,γ(θ) =

{
λ− θ

γ , if θ ≤ γλ,
0, if θ > γλ,

for λ ≥ 0 and γ > 1.
In the simulations, we select tuning parameter λ using a data-driven approach, 10-fold

cross-validation (CV), and set the tuning parameter γ = 3.7 for SCAD and γ = 3 for MCP,
the values suggested for linear regression in Fan and Li [25] and Breheny et al. [28]. In
this paper, we apply coordinate descent algorithms to LASSO, SCAD and MCP regression
models. We implement these algorithms through the publicly available R package “ncvreg”.

The DS constitutes a popular shrinkage type of the variable selection method. While
under some conditions the estimates from LASSO and DS may have similarities
(James et al. [29]), they differ conceptually in that the LASSO is based on a regularized
likelihood function, whereas the DS is based on an estimating equation. The estimator β̂ is
the solution to

min
β
‖β‖1 s.t.

∥∥∥XT(y− Xβ)
∥∥∥

∞
≤ δ, (2)
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where ‖β‖1 = ∑k
j=0
∣∣β j
∣∣ is the l1 norm, ‖a‖∞ = max(|a0|, . . . , |ak|) is the l∞ norm, and δ is

a tuning constant.
Candes and Tao [27] suggested rewriting (2) as a linear program solved by linear

program solvers in the following generic form with inequality constraints:

max
x

(c + λc̄)>x s.t. Ax ≤ b + λb̄, x ≥ 0, (3)

where A =

(
X>X −X>X
−X>X X>X

)
, b =

(
X>y
−X>y

)
, c = −1, b̄ = 1, c̄ = 0, x =

(
β+

β−

)
,

β+
j = βj · I

(
βj > 0

)
and β−j = βj · I

(
βj < 0

)
, and I(·) is the indicator function.

In this paper, we solve the DS by applying the parametric simplex method (Pang et al. [30])
to the linear program and set the regularization factor λ = 0.01 in (3). The algorithm is
conducted by function “dantzig” and “dantzig.selector” in R package “fastclime” where
the number of the maximum path length is set to be 100. Note that, for the Dantzig selector
variable selection method, the values λ = 0.01 and maximum path length 100 are based on
multiple attempts; we also tried other values of λ such as 0.05, 0.1, 0.5 and so on, and the
results are similar.

3. Optimal CADs

Generally, there may be a few factors influencing the performance of a system or
process, however some factors may not be explored in the present design because of limited
expenditure or time constraint, these factors have been set to a constant value or allowed to
vary in an appropriate region temporarily. In fact, these potential factors may exert some
effects on the response; the research on their impact would be restarted when the condition
of follow-up experiments is conducive to adding new factors such as the availability of
adequate funds. Section 3.1 deals with the CAD for held-constant factors, and Section 3.2
proposes an augmenting strategy to plan the next-stage experiment with new factors
allowed to vary in some ranges separately.

Assume D1(n1, k1) is an initial two-level design with n1 runs and k1 factors adopted
for the screening experiment in the first stage, each factor setting can be coded as 1 or
−1, as usual. There are r = k2 − k1 new factors which need to be explored in the next
experiment, as suggested by experts; D2(n2, k2) denotes the design that would be used to
plan the experiment in the next stage with n2 runs and k2 factors, where k2 > k1.

3.1. Bayesian D-Optimal CADs

Firstly, a common situation is that each new factor is fixed at a certain value in the
experiment of the previous stage. Therefore, it is reasonable to assume that researchers
would explore their effects on the response in the region near the fixed value in the next-
stage experiment; thus, the code “0” can be used to denote the fixed value, then the initial
design can be written as D∗1 (n1, k2) = (D1, 0n1×(k2−k1)

). Without further prior information,
these new factors are set at three levels in the following design, which means that the levels
of each new factor are at an equal distance around the fixed value.

Let X1 be a model matrix corresponding to the initial design D∗1 (n1, k2) with n1 runs
and response vector y1, and X2 be the additional n2 rows with response vector y2 for the
second design D2. That is

X =

(
X1
X2

)
, y =

(
y1
y2

)
. (4)

Once the data from the first stage have been collected, variable selection methods can
be employed to identify active factors and the information from the analysis may be used as
a prior to plan the next-stage design. Gutman et al. [19] pointed out that the experimenters
can classify a factor as a primary term (highlighted by an analysis method or several
methods), secondary term (if there is an indication that the term may be active, but it is not
predominant), or potential term (with little evidence to suggest it is active). Furthermore,
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the prior covariance matrix R would be set in terms of the classification. Considering the
situation that some existing experimental factors’ level sizes may be augmented to three as
well as new factors needing to be added, we modify the classification method to make it
appropriate for mixed-level designs; the grouping is applied to the effects, not for factors,
then quadratic effects can be involved.

The classification information for effects comes from two ways, data analysis for the
initial design and advice given by experts or operators. For the former, we refer to the
practice of Zhang et al. [20]: an effect is specified to the primary group which is considered
as active with a high possibility if its identified rate is no less than 75% with multiple data-
analysis methods. Those effects that have not been identified by any methods would be
classified into the potential group, and the others whose identified rates belong to (0, 75%)
constitute the secondary group. The threshold and analysis methods can be adjusted
according to experience and background knowledge. For the second kind of information,
some concern the factors included in the initial design and the others are for the new factors,
and a blocking factor might be added to describe the potential system difference between
the two stages. Anyway, group classification for effects would be enriched and adjusted,
effects of new factors and those factors augmented to three levels suggested by experts
would be specified to the primary group, some effects advised strongly by experts would be
put into appropriate groups too, even if initial data analysis fails to give such an indication.
Then, the prior variance can be set similarly as DuMouchel and Jones [31]; the coefficients
for effects in the primary group are specified to have a diffuse prior variance tending to
infinity, which implies that they are likely to be much different from zero. On the other
hand, effects in the potential group are unlikely to be significant, and it is proper to assume
that they have a relative small variance. For those terms in the secondary group, they may
or may not be active, so their prior variance should be finite, but larger than that for the
potential terms. We assume that the primary group contains an intercept and its size is p1,
and p2 and p3 are the sizes for the secondary group and potential group, respectively. We
point out that the blocking effect should be classified in an appropriate group following
advice from experts. When effects corresponding to X have been reordered in accordance
with the sequence: the primary group, the secondary group and the potential group, then
the prior covariance matrix R would be

R =

0p1×p1 0p1×p2 0p1×p3

0p2×p1 Ip2 /γ2 0p2×p3

0p3×p1 0p3×p2 Ip3 /τ2

, (5)

where τ2 < γ2. Gutman et al. [19] set τ2 = 5 and γ2 = 100.
Therefore, a Bayesian D-optimal column augmented design (BD-CAD) is created by

choosing D2 to maximize
|X1

TX1 + X2
TX2 + R|. (6)

The coordinate-exchange algorithm can be used to find the local or approximately global
optimal design to maximize (6); the details are given in Algorithm 1.
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Algorithm 1 Search for BD-CAD

1: Analyze initial design D1(n1, k1) under the linear main effect model, screen active fac-
tors with multiple methods, for example, the four variable selection methods mentioned
above.

2: Combine professional advice and experiences with the results from the data analysis,
determine which factors need to be expanded to three levels, classify effects into three
groups and set the prior variance matrix R of parameters.

3: Obtain model matrix X1 for D∗1 (n1, k2) under the model adjusted.
4: Generate a uniform random number from [−1, 1] for each coordinate xij in D2(n2, k2),

and obtain its corresponding model matrix X2. Then, compute the value of (6); this is
the Bayesian D-optimal criterion value that we will improve by changing the design
matrix D2(n2, k2) element by element.

5: Improve the resulting starting design on a coordinate-by-coordinate basis. Go through
the n2k2 coordinates one by one, find the value in the set {−1,+1} for two-level factors
and {−1, 0,+1} for factors augmented to three levels that optimize the Bayesian D-
optimality criterion value in Equation (6). If the value in (6) is improved, the old value
of the coordinate is replaced with the new one. Repeat this process until no more
exchanges are made.

6: Repeat Step 4 and Step 5 M times; the design with the largest value of (6) in Step 5 is
an approximate BD-CAD.

7: return D2(n2, k2), the design is a good choice to plan the next-stage experiment under
the Bayesian D-optimal criterion.

3.2. Integrated Bayesian D-Optimal CADs

In some practical experiments, some factors that have a significant impact on the
response may have not been controlled strictly at a certain level; for these allowed-to-vary
factors, the procedure proposed in last subsection is not suitable. We assume these factors
vary in a feasible range χ to make the first-stage experiment proceed successfully.

Though the levels of the r = k2 − k1 factors in the first stage are unknown, we can use
D∗∗1 (n1, k2) = (D1, Du

1 ) to denote the initial design, where

Du
1 =

 z1 · · · zr
...

. . .
...

zr(n1−1)+1 · · · zrn1

 (7)

with the elements unknown. However, zi can be regarded as a random number in an
interval. For each fixed setting z = (z1, z2, . . . , zrn1) corresponding to Du

1 , we can obtain a
model matrix X1(z) from the “design” D∗∗1 under some appropriate assumptions for the
model; then, maximizing (6) under this setting can achieve an optimal CAD according to
the procedure of the last subsection. However, what we are looking for is an augmented
design with global optimality in a more general context, which should be relatively robust
and independent of settings for Du

1 . Thus, we propose an integrated Bayesian D-optimal
criterion over the region χ for new factors added,∫

· · ·
∫

χ f (z1, z2, . . . , zrn1)dz1 · · ·dzrn1∫
· · ·
∫

χ dz1 · · ·dzrn1

, (8)

where
f (z1, z2, . . . , zrn1) = |X1(z)TX1(z) + X2

TX2 + R| (9)

is the determinant of the posterior covariance inverse matrix under a setting for Du
1 . The

design D2 maximizing (8) is an appropriate choice to plan the follow-up experiment for
the situation of adding allowed-to-vary factors; the resulting final design can be called an
integrated Bayesian D-optimal column augmented design (IBD-CAD).
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In practical application, the multiple integration can be computationally complex
for large rn1; in such a situation, one can take N Halton sequences (Halton [32]), zi =
(z1, z2, . . . , zrn1) for i = 1, . . . , N, to obtain an approximation of (8)

1
N

N

∑
i=1
|X1(zi)

TX1(zi) + X2
TX2 + R| (10)

using the quasi-Monte Carlo method. That is, an approximate integrated Bayesian D-
optimal augmented design can be obtained by choosing D2 to maximize (10); the final
design produced by such a procedure can be called an approximate IBD-CAD.

4. Explanatory Examples

When it is discovered that a few factors ignored for some reasons in the preliminary
experiment may influence the performance of a process or system, we would start to
consider them in the next-stage experiment when some conditions are available. Choosing
in which design to arrange the next-stage experiment depends on the type of factors added,
held-constant or allowed-to-vary; in the previous trials, BD-CAD is suitable for the first
case, and it is better to choose IBD-CAD for the latter. Two small-scale simulated examples
would be used to demonstrate the procedure to find a BD-CAD and IBD-CAD with the
proposed methods, respectively; the screening accuracy for the resulting CADs would also
be explored. The number of factors ignored in the previous experiments are often assumed
to be relatively small, so in the examples we consider that there are two held-constant or
allowed-to-vary factors that may exert some effects on the response.

Example 1 (CAD for the held-constant factors). Assume that two factors are held-constant
and the remaining thirteen factors in Table 1 are planned by a two-level E(s2)-optimal SSD(8, 13)
presented in Gutman et al. [19] in the initial experiment. Table 1 is for the first-stage experiment
where the code “0” denotes the specified value for two held-constant factors.

Table 1. Initial design with thirteen factors planned by E(s2)-optimal SSD(8, 13).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 y

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 37.79
2 1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1 1 0 0 1 −8.31
3 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 0 0 1 3.87
4 1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 −1 0 0 1 37.60
5 −1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 0 0 1 7.67
6 −1 1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 0 0 1 19.34
7 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 −1 0 0 1 8.66
8 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 −1 0 0 1 7.10

Suppose that the true model between response and the factors is

y = 8x4 + 6x5 + 9x11 + 7x14 + 10x2
11 + δx16 + ε, ε ∼ N(0, 1), (11)

where δ denotes the blocking effect which illustrates the shift between the two stages
when one expects the response to experience a drift over time, and x16 equals +1 in the
initial design and −1 in the augmented design. Consider there is a moderate blocking
effect, δ = 4, here. Note the factor x14 is assumed to be active in the true model, though
it is not considered as a design factor in the initial experiment. In addition, assume the
curvature exists in the relationships between the 11th factor and the response. The responses
generated from model (11) are listed in Table 1 too.

Since the initial design is an SSD, the main effect model would be applied to analyze
the design. Certainly, the blocking effect, the significance of two held-constant factors and
the quadratic effect of x2

11 cannot be explored temporarily. Four methods mentioned in
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Section 2 can be used to screen active factors from this SSD(8, 13). It turns out that three
factors x4, x5, x11 are identified as significant by all four methods, and none of the other
factors have been detected.

It is assumed that after a period of time, the conditions for starting the next-stage
experiment have been met. Suppose some experts combine the results of data analysis with
the experience of operators and give advice as follows: for the 3rd and 11th factor, at least
three settings are required in order to detect the curvature on the system. Moreover, the
two held-constant factors may have a significant effect on the response, so they should be
handled as design factors and their effects in the area near their specified values should be
detected. In addition, there may exist a blocking effect and we classify it into the secondary
group. Considering these demands and the screening results from the initial design, the
effects are divided into three groups,

primary group: {intercept, β3, β4, β5, β11, β14, β15, β2
3, β2

11, β2
14, β2

15},
secondary group: {δ},
potential group: {β1, β2, β6, β7, β8, β9, β10, β12, β13}.

Based on the classification, the prior covariance matrix R can be determined.
The main effect model would still be used to analyze the CAD; note that for three-level

factors, the quadratic effects would also be included in the model as well as the linear
effects,

y = β0 + β1x1 + · · ·+ β15x15 + β3,3x2
3 + β11,11x2

11 + β14,14x2
14 + β15,15x2

15 + δx16 + ε. (12)

We employ Algorithm 1 with 1000 initial random designs to add n2 = 7 runs to
obtain the BD-CAD, the augmented seven runs are shown in Table 2. In Table 2, factors
x3 and x11 are already at three levels in the second stage, and the settings of these two
factors are relatively symmetrical, each with two high and low levels and three interme-
diate levels, while for the newly added factors x14 and x15, the intermediate levels are
relatively less . Considering that the two factors x14 and x15 were fixed at the intermediate
level in the previous experiment, from the formal point of view, this additional design is
quite reasonable.

Table 2. Additional seven runs of the BD-CAD for the SSD(8, 13).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 y

9 −1 −1 1 −1 1 1 −1 1 1 1 −1 −1 −1 1 −1 −1 2.33
10 1 1 0 1 −1 −1 1 −1 −1 −1 1 1 1 0 −1 −1 16.19
11 −1 −1 1 −1 1 1 −1 1 1 1 0 −1 −1 0 1 −1 −6.14
12 1 1 −1 1 −1 −1 1 −1 −1 −1 1 1 1 1 1 −1 24.38
13 −1 −1 0 −1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −10.82
14 −1 −1 0 −1 1 1 −1 1 1 1 0 −1 −1 1 0 −1 2.08
15 1 1 −1 1 −1 −1 1 −1 −1 −1 0 1 1 −1 −1 −1 −8.02

After obtaining the augmented seven runs of CAD, a set of random numbers is
generated as observations for response according to the model (11). Then, for all 15
“observations”, the four methods mentioned in Section 2.2 are applied to select significant
effects; all methods identify effects β4, β5, β11, β14, β11,11, δ (blocking effect) as significant
effects, and no other effect is selected by any method.

Example 2 (CAD for the allowed-to-vary factors). Assume x14, x15 are allowed-to-vary in the
initial stage; the initial design and model are still the same as those in Example 1. Note that one can
observe the response when there are “uncontrollable” factors in practice, but we cannot obtain the
random numbers as observations for response without specific values of these factors when doing
simulations. Here, for the sake of simplicity, we use mean interpolation, that is, we take a fixed value
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of 0 as the value of the two allowed-to-vary factors in the initial stage; thus, we can still use the
effect classification result to augment the row and column directly.

The assumptions of advice from experts and operators are similar to before except
that we suppose that no mean shift exists here. The responses in the first-stage design are
32.53, −14.22, −1.68, 34.63, 3.06, 16.18, 6.62 and 4.05, in order. According to Section 3.2, we
can add rows and columns according to the IBD-CAD criterion; the augmented seven runs
with M = 200 and N = 100 are shown in Table 3.

Table 3. Additional seven runs of the IBD-CAD for the SSD(8, 13).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 y

9 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 −1 −0.17
10 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 6.07
11 1 −1 −1 1 1 1 −1 −1 1 1 0 −1 1 1 1 21.54
12 −1 1 0 −1 1 −1 1 1 1 −1 −1 1 −1 1 −1 −8.98
13 −1 −1 0 1 1 1 −1 1 1 1 0 −1 −1 −1 0 13.37
14 −1 1 1 −1 −1 −1 1 −1 −1 −1 0 1 1 0 −1 −22.14
15 1 1 0 −1 −1 −1 1 −1 −1 −1 1 1 1 0 1 11.34

After obtaining the IBD-CAD and following the analysis procedures like before, the
truly significant effects β4, β5, β11, β14, β11,11 are identified as significant effects by all the
four methods and no other effect is selected by any method.

In practical application, the appropriate augmenting scheme is selected according to
the value of the newly added factors. When each newly added factor has been fixed at a
value accurately in the first-stage experiment, the pattern of BD-CAD is a great fit. However,
in many cases, the newly added factors may change in some regions, or we can not know
their values in the first stage for various reasons, or there may be some measurement errors
in some practical experiments; the IBD-CAD may be more proper for such situation. That
is, the IBD-CAD has a wider range of applications and a simple scale simulation can show
that its performance is also satisfying.

Assume the initial experiment with thirteen factors has been planned by the design
given in Example 1 and the model is the same; however, when the next phase of the
experiment can be carried out, the initial settings of the newly added factors have been lost.
Now one can have three choices to arrange the next-stage experiment, column augmenting
with D-optimal criterion (D-CAD), which is to maximize |X1

TX1 + X2
TX2| for model (12),

BD-CAD and IBD-CAD. All these criteria are aimed at optimizing X2. In the analysis of
significant effects, the settings of the newly added factors in the initial stage are all plugged
in as 0. A total of 300 repetitions are performed and the effects identification results from
the comprehensive designs are given in Table 4. Here, we take M = 1000 to obtain the
D-CAD and BD-CAD, and M = 100 and N = 100 to obtain the IBD-CAD.

Table 4. Summary of simulation results from different CADs with seven runs added.

AEIR IEIR

D-CAD 0.433 0.163

BD-CAD 0.750 0.030

IBD-CAD 0.653 0.023

In Table 4, two measurements are employed to evaluate the performances: average
of active effect identified rate (AEIR) and average of inactive effect identified rate (IEIR).
We use the four aforementioned screening methods to identify significant effects. When
an effect is selected by three or four methods, we regard it as significant. We calculate the
AEIR by the average of the frequencies of the regarded significant effects which are all truly
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significant effects in the model, and calculate the IEIR by the average of the frequencies of
regarded significant effects which are not in the true model. Clearly, AEIR is the larger the
better, IEIR is the smaller the better. The performance of the D-CAD, as expected, is worse
compared with the other two procedures since this augmenting method does not make
the most of the information from the initial design, like the BD-CAD and IBD-CAD. The
BD-CAD has the highest AEIR since the augmenting plan is appropriate for this situation
where new factors are fixed at some values. However, when using IBD-CAD, we believe
that there is some uncertainty about the preliminary values of the new factors, so here the
approximated IBD-CAD has no advantage over the identification of active factors when
new factors have been fixed exactly. However, the IBD-CAD has the smallest IEIR among
the three CADs. Certainly, the AEIR for the approximated IBD-CAD is also acceptable and
it is 22% higher than the D-CAD.

Remark 1. Here, we emphasize that quadratic effects have been classified into the primary group
since they matter greatly to those factors augmented to three levels. That is also quite natural.
Because we want to explore the existence of curvatures, the corresponding factors are expanded to
three levels. In fact, if we put them into the secondary or potential group in the simulation, it is
likely that the middle level 0 will appear less or even none. That may be because if we classify the
quadratic effects into the secondary or potential group, it is considered that there is no evidence or
suggestion that the quadratic effects are important, so few middle level 0s will be allocated to the
augmented design to detect the quadratic effects.

Remark 2. For the run size of the augmented design n2, suppose that in the second phase of
the experiment, the number of parameters to be estimated in the model is m. Based on massive
simulations, we recommend that n2 is not less than m− n1; fewer runs would result in undesirable
identification. If we add more runs in Example 2, Table 4 would have more delicate results.

Remark 3. In coordinate-exchange algorithms, the numbers of random starting designs M and
Halton sequences N need to be determined. For BD-CADs, the algorithm runs for 0.82 seconds if
M = 100 and 6.49 seconds if M = 1000; for IBD-CADs, the algorithm runs for 10.5 seconds when
M = 10 and 52.34 seconds when M = 100 if we fix N = 100. The larger M, the more accurate
the criteria values (6) and (10); considering the time cost, we also carried out some simulations
for other values in the example: for the two kinds of augmented designs, we find that M = 100 is
enough and the impact of M on the identification of significant effects is not apparent. Similarly, the
larger N, the more accurate the integral approximation, but too large an N is a waste of time, so we
suggest N = 100. The system used for the simulations was an AMD Ryzen 7 4800H using parallel
execution provided by R package, parallel and foreach. The OS configuration was Windows 10.

5. Simulation Results

In this section, we carry out simulations to study the performances of the BD-CAD and
IBD-CAD, several analysis methods are used together to judge the power of various designs
in the simulations. The details of the general simulation protocol will be described firstly.

1. The initial designs. Two E(s2)-optimal designs, the SSD(8, 13) in Table 1 and SSD(7, 15)
presented in Gutman et al. [19], are taken to be the first-stage designs; the latter is
shown in Table 5.
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Table 5. E(s2)-optimal SSD(7, 15) presented in Gutman et al. (2014) [19].

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 −1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 1 −1 −1
2 −1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 −1 −1 1 1
3 −1 1 1 −1 1 1 −1 1 −1 1 1 1 1 1 −1
4 1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1
5 1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1
6 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1
7 1 −1 1 1 −1 1 1 1 1 −1 1 −1 1 1 1

2. The choice of significant effects in the true model.

(a) When the SSD(8, 13) is assumed as the initial design, we consider the true
model without interaction terms. Three of these 13 factors are randomly
selected as active factors, and their linear effects and one randomly selected
quadratic effect are assumed significant. Among the r newly added factors,
one factor is randomly selected and its linear effect is assumed significant.

(b) When SSD(7, 15) is assumed as the initial design, a significant two-factor
interaction will be included in the true model here. Similar to the last scenario,
three factors are randomly selected as active factors, and their linear effects
are assumed significant. For the significant interaction effect, at least one of its
parent main effects should be significant under the effect heredity principle.
Thus, here, its significant parent effect is selected randomly from the three
active factors and the other insignificant parent effect is randomly selected
from the rest factors. In addition, among the newly added factors, assuming a
randomly selected quadratic effect is significant.

3. The experts’ advice. Based on the analysis results of the initial experiment and their
experience, the experts may give advice in the following aspects: which factors need
to be studied at three levels because one may expect substantial curvature, which
new factors need to be added in the next-stage experiment, and whether the response
experiences a drift over time. We believe that most of the experts’ suggestions are
reasonable, but they are not all entirely correct. In view of this, we set the following
experts’ recommendations.

(a) For 2(a), besides the new factors, two factors need to be studied at three levels:
one is active, the other one is inactive. Both are selected randomly.

(b) For 2(b), we consider a more complicated situation where several experts
give different advice about two-factor interactions. First, they advise that
the two-factor interaction term in the true model is significant. Then, a few
two-factor interactions, each with one factor whose main effect is neither active
nor significantly identified, are suggested to be explored in the next-stage
experiment, as for the other factors’ effects among these two-factor interactions,
two of them inherit a different active parent main effect, respectively, and the
others inherit the effects in the primary group as parent main effects. Therefore,
the number of two-factor interactions advised by the experts is three plus the
number of effects in the primary group. In addition, one main effect, which
is in fact inactive, is suggested to be significant. A randomly selected active
factor and the new factors need to be augmented to three levels.

(c) The blocking effect needs to be detected and it is classified into the primary
group.

4. The number of newly added factors, r. We add r = 1, 2, 3, 4 three-level factors,
respectively, in the second stage.

5. The number of added runs n2. For 2(a), the model is simple and there is no interaction,
so we add n2 = 6, 9, 12 runs in the augmented designs in the simulations. However,
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for 2(b), n2 = 9, 12, and 15, follow-up runs will be planned in the next-stage designs
since the model is more complicated than the former one.

6. The size of significant effects including the blocking effect. The regression coefficients
are drawn from β ∼ N(µ, 1), µ = 4, 6, 8, respectively.

7. Analysis methods. The four methods aforementioned in Section 2.2 are used to
identify effects. Effects selected by three or four methods are regarded significant.

8. The blocking effect is significant.

In our simulations, the levels of the newly added factors are set to be 0 in the first-stage
experiment, and we think it is reasonable for the following two reasons. If the levels of
the newly added factors are determined to be 0 in the initial experiment, certainly, the first
augmenting scheme BD-CAD is more reasonable. However, considering the measurement
error or disturbance in the experiment, the second follow-up scheme IBD-CAD can also
be used. On the other hand, when the accurate levels of the newly added factors in the
first stage are unknown, the second augmenting procedure is more reasonable, but the first
scheme is also feasible in consideration of interpolation with the middle value in its range
of variation.

In general, the BD-CAD or approximated IBD-CAD searching with coordinate-exchange
algorithm is a locally optimal design. To make the likelihood of finding the globally optimal
design large, one should repeat the exchange algorithm a large number of times. For our
simulation, only a few factors are involved and the number of follow-up runs is small; too
many random starts are not necessary. In our simulation, the number of random starts
M = 100 and the number of Halton sequences N = 100 can produce desirable outcomes,
so here we do not make further investigation. Certainly, for general cases, to ensure that
either we find the globally optimal design or a design with an optimal criterion value that
is very close to the global optimum, a large number of random starts is needed.

For the sake of understanding and avoiding redundancy, we only take the settings
of the SSD(8, 13) in 2(a), 3(a) as an example to elaborate the simulations. In each of the
300 iterations, the whole procedure is as follows.

1. From the columns of the SSD(8, 13), three columns are randomly assigned as the
active factors; then, one column from the three is randomly selected to compute the
quadratic term. The blocking factor equals +1 in the initial design and −1 in the
augmented design. The coefficients for three linear main effects, one quadratic effect
and a blocking effect are obtained by sampling from N(µ, 1).

2. The remaining 10 columns (inactive effects) in the SSD(8, 13) are assigned a coefficient
of exactly zero.

3. r column vectors are added with all elements zero to the SSD(8, 13), one column is
randomly selected and its coefficient for linear effect is obtained by sampling from
N(µ, 1).

4. The response vector is generated from the model in (1) with errors εi generated from
N(0, 1).

5. The analysis methods introduced in Section 2.2 are used to identify the active factors,
then the effects grouped according to the results and suggestions from experts.

6. The prior covariance matrix R is assigned, then n2 runs are generated as described in
Sections 3.1 and 3.2; we can obtain the BD-CAD and approximated IBD-CAD with
two procedures.

7. The response vector for the second-stage design is generated as before.
8. The four methods are used to identify the significant effects for all observations from

the ‘big’ design, which combines the initial design with the augmented design, the
declared ‘significant’ effects are determined by at least three analysis methods.

At the end of 300 iterations, the performances are reported in Figures 1–3. Since, AEIR
is the-larger-the-better, and IEIR is the-smaller-the-better, in the figures, the higher solid
line is the better, since it means that the corresponding augmenting procedure can identify
all the active effects with a higher probability under the same analysis methods. However,
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the lower dotted line is the better, the design corresponding to the lower dotted line may
screen out the inactive effects with a lower probability.

Figure 1 shows the screening results for augmented experimental data with r, with
the number of newly added factors in the second stage increasing. First of all, we note
that there is no significant difference between two augmenting methods, especially for
the SSD(8, 13). Furthermore, as expected, the difficulty of identifying active effects from
more factors will increase with the same number of experimental runs; both procedures
perform worse in terms of AEIR when there are more factors added in the next-stage
design providing the same magnitude of coefficients. However, IEIR begins to show a weak
upward trend when r increases from 2 to 4, meaning that the screening procedure is a bit
cautious for r = 1; to avoid missing some active effects, IEIR tends to include more factors
in the model. For the SSD(7, 15) with a bigger model including two-factor interactions, we
take the settings as 2(b), 3(b) and the simulation procedure is similar to the procedure of
the SSD(8, 13). The second augmenting plan shows a number of advantages, though they
are not particularly obvious. At the same time, we note that in order to achieve the same
level for AEIR, a relatively complex model and economical initial design may require more
follow-up runs, especially as here, many suggestions from experts are improper and the
model considered for the augmented design may not follow the effect sparsity principle.
Too many inappropriate suggestions create significant uncertainty; the IBD-CAD performs
a little bit better.

(a) (b)

Figure 1. AEIR and IEIR versus the number of newly added factors r for β ∼ N(6, 1). (a) SSD(8, 13),
n2 = 12. (b) SSD(7, 15), n2 = 15.

Figure 2 shows that the performances of the two augmenting methods tend to be better
with more runs added and they perform similarly since two augmented designs do not
show obvious differences from AEIR and IEIR. Considering the simplicity of calculation
and the fact it is time-consuming, the BD-CAD is more suitable. For the SSD(8, 13), both
augmenting plans perform badly in terms of AEIR or IEIR when adding six runs; the active
effects missed, in most cases, are quadratic terms; sometimes, the effects of the newly added
factors cannot be screened out. The reason is that if we just augment six runs on the basis
of the SSD(8, 13), the degrees of freedom are much less than the number of effects we need
to identify which include all the main effects in the initial analysis, four quadratic effects
and a blocking effect. However, the screening results improve soon when n2 = 9, and
Table 4 also tells us that the two augmenting plans performs well for coefficients a little bit
larger, when n2 = 7. The situation is roughly the same for the SSD(7, 15); adding fewer
runs makes it difficult to miss none of the active effects; more runs need to be added since
we are facing a more complicated model.
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(a) (b)

Figure 2. AEIR and IEIR versus the number of augmented design runs n2 for β ∼ N(6, 1), r = 2.
(a) SSD(8, 13). (b) SSD(7, 15).

Figure 3 shows the influence of the model coefficients. The screening performances
reveal that our augmenting methods are effective since both AEIR and IEIR are at the
acceptable levels. In addition, AEIR and IEIR for the two SSDs show different trends
with the model coefficients increasing, AEIR grows faster and IEIR falls faster too for the
SSD(8, 13). The assumption of the model for the design is simple; thus, the screening results
improve quickly when the coefficients increase a little. However, for the SSD(7, 15), the
model size is large and we assume several second-order interaction effects which are not
significant to be included in the model, so although AEIR improves with the increasing of
the coefficients, it is not as fast as that for the SSD(8, 13).

(a) (b)

Figure 3. AEIR and IEIR versus the size of significant effects β for r = 2. (a) SSD(8, 13), n2 = 12.
(b) SSD(7, 15), n2 = 15.

As far as IEIR is concerned, IEIR values obtained by IBD-CADs are generally lower
in three figures; thus, we conclude that the IBD-CAD is preferable to BD-CAD in most
circumstances. Especially, in Figures 1b and 3b, all AEIR values of IBD-CADs are higher
than those obtained by BD-CADs and all IEIR values of IBD-CADs are lower than those
obtained by BD-CADs, so the IBD-CAD is more suitable for the second-stage experiment
in the case of the initial design SSD(7, 15) with the true model including a two-factor
interaction.
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6. Concluding Remarks

Traditional SSDs can provide the low-cost identification for main effects models under
the effect sparsity assumption, that is the reason that we use them as the initial designs.
However, the screening probably results in a less-than-ideal performance which cannot
identify the active factors correctly.

Further, some additional factors ignored or not considered as design factors in the
early experiments may be added now. Therefore, it is necessary to proceed with the column-
augmented follow-up design. Comparing with previous researches, we first develop a
method to generate follow-up designs in terms of row augmenting, column augmenting,
augmenting-factors’ level sizes and using the information acquired from the previous
experiments to guide the follow-up designs. The previous researches only considered
one or two perspectives. In this paper, we propose the BD-CAD and IBD-CAD in light of
different situations: that the newly added factors have been fixed at certain values and
allowed to vary in ranges, respectively. In addition, we augment the levels of some specified
factors to detect the curvature effects. The initial design and augmented design can be
integrated into a prior information-guided factor screening and factor addition experiment
which can be applied to the identification of significant effects, including hereditary effects
and blocking effects under the second-order model, for the sake of reducing cost.

In practice, we apply BD-CAD or IBD-CAD according to different contexts, as dis-
cussed in Section 3: BD-CAD is applicable for held-constant factors and IBD-CAD is for
planning next-stage experiment when factors vary in an interval or range separately. How-
ever, in the simulations, when the new factors are allowed to vary in some ranges separately,
we cannot simulate this situation exactly, so we take a fixed value of 0 as the values of the
allowed-to-vary factors in the initial stage, just like the held-constant factors. As shown
by the simulation results, for different evaluation indicators, the preferable designs are
different. If the time cost is what we consider, BD-CAD is more suitable; if the IEIR is what
we consider, IBD-CAD is more suitable.

For the IBD-CAD, the multiple integration is approximated by the quasi-Monte Carlo
method in terms of N Halton sequences. However, a uniform design and Latin hypercube
design can also help to realize the approximation of integration and the work is in progress.

As highlighted by one referee, one idea is to take Laplace distribution as the noise
vector ε’s distribution instead of normal distribution. We considered that the noise vector
takes Laplace distribution with location parameter 0 and scale parameter 1; there is no
significant difference between Laplace distribution and normal distribution in terms of
AEIR and IEIR. For example, by taking the above Laplace distribution, we set r = 12,
n2 = 12, β = 6 and iterate 300 times. If we use BD-CADs, AEIR = 0.83 and IEIR = 0.26. If
we use IBD-CADs, AEIR = 0.88 and IEIR = 0.22.

The coordinate-exchange algorithm runs in polynomial time, which means that the
time it needs to find an optimal design does not increase when the size of the design and
the number of factors increase. Besides the cost of the coordinate-exchange algorithm, for
the BD-CAD, it takes a little time to screen active factors in the initial stage which can be
ignored; for the IBD-CAD, it takes n1k2

2 + n2k2
2 times more than the BD-CAD since we need

to calculate (9) using Halton sequences. The memory is available for storing the matrix X1
and X2. We provide the codes at https://github.com/apple369/CADesign accessed on
17 November 2022.
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