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Abstract: The article describes a multi-grid algorithm for integrating the Reynolds equation for
hydrodynamic pressures in the lubricating film of a heavy-loaded journal bearing. This equation
is the basic one in solving the tasks of designing friction units of piston- and rotary machines.
Lubrication sources of various configurations in the form of grooves and holes located on the friction
surfaces were taken into account. The version of the multi-grid algorithm developed by the authors is
based on Brandt’s work. At each level of grids, not only the convergence of the solution is controlled,
but also the rate of convergence. The pressure equation was approximated by finite differences using
the control volume method and passed to a system of algebraic equations, which were solved by the
Seidel method. Bessel formulas were used as the interpolation operator. The function for taking into
account the non-Newtonian properties of the lubricant is based on the power law. Comparison of the
developed algorithm with other versions showed high efficiency. The use of multi-grid algorithms
makes it possible to perform multi-variant calculations of the dynamics of heavily loaded bearings.
As a result of the calculations, the characteristics of the connecting rod bearing of the heat engine, as
well as the multilayer bearing of the turbocharger, are presented.

Keywords: multi-grid algorithm; hydrodynamic pressures; journal bearing; non-Newtonian fluids;
highly viscous boundary layer
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1. Introduction

In the classical hydrodynamic theory of lubrication, the movement of fluid in a thin
lubricating film of tribo-units is described by three fundamental laws [1–3]:

• preservation of momentum in a limited volume of liquid;
• preservation of mass in the form of a flow continuity equation;
• preservation of energy, which reflects the equality of the change in time of the total

energy of the allocated volume of liquid and the superposition of the work of the
mass forces applied to this volume, and the amount of heat supplied from an external
source per unit time.

For heavily loaded tribo-units, the equations of motion of their moving elements are
added to the equations compiled on the basis of conservation laws.

Theories and methods for studying hydrodynamic tribo-units are characterized by a
set of methods for solving interrelated tasks [4–6]:

1. Solving the equations of dynamics of multi-mass mechanical systems, including the
equations of motion of moving elements of tribo-units to determine the trajectory of
the center of the journal in the bearing.
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2. Solutions to tasks of continuous medium dynamics for determining pressures in a
lubricating layer separating friction surfaces of non-ideal geometry with an arbitrary
law of their motion.

3. Assessment of the thermal state of the system “shaft-lubricating film-bush”.
4. Determination and optimization of integral hydro-mechanical characteristics of bear-

ings.

A comprehensive solution of the above tasks is the main condition for creating tribo-
units with an increased capacity and reliability that meet modern requirements and working
conditions.

However, the joint solution of these tasks causes great difficulties, since it requires the
development of highly efficient mathematical techniques and methods, algorithms and
calculation technologies.

Usually, various methods for solving tasks of dynamics are divided into two main
groups: numerical methods of continuum mechanics and methods for modeling multi-
mass mechanical systems. Typical representatives of the first class are the finite element
method (FEM) or the finite difference method (FDM), which is mainly used for calculations
involving all kinds of deformable structures, viscous liquids and gases [7–9].

The algorithm presented in the article can be used to evaluate the performance of
various friction units of machines and mechanisms, including: multilayer plain bearings of
turbocharger rotors; heavily loaded crankshaft bearings of an internal combustion engine;
piston-ring-cylinder connection; diesel engine bearings and large steam turbine bearings.

2. Formulation of the Problem/Literature Review

The Reynolds equation is the basic one when calculating the performance of multilayer
plain bearings of lightly loaded turbocharger rotors, determining their stability characteris-
tics [10], as well as when calculating the hydro-mechanical characteristics of heavily loaded
bearings of thermal machines and mechanisms. Wear resistance, thermal stress, fatigue
life of the antifriction layer of liners directly or indirectly depend on the hydro-mechanical
characteristics of the bearings. The Reynolds equation for hydrodynamic pressures in a
thin lubricating film in a coordinate system fixed on a bearing is written as [11]:

∂

∂ϕ

[
Fρh

n+2 ∂p
∂ϕ

]
+

1
a2

∂

∂z

[
Fρh

n+2 ∂p
∂z

]
=

∂

∂ϕ

{
Fωρh

}
+

∂

∂τ

(
ρh
)

. (1)

Here z = 2z/B, −1 < z < 1, a = B/2r, t = ω0t, p = (p− pa)· ψ2/µ0ω0, ρ = ρ/ρ0;
µ = µ/µ0; h = h/h0; ψ = h0/r; ω = ω/ω0; τ = ω0t, h is lubricating layer thickness; µ
is effective (calculated) lubricant viscosity; h0, µ0, ρ0, ω0 is characteristic thickness of the
lubricating film, lubricant viscosity, density, journal rotation speed; p, pa is hydrodynamic
and atmospheric pressure; ω is absolute angular velocity of rotation of the journal; r, B is
bearing radius and width

F =

(
φ

2
− φ1

φ0
φ1

)
, Fω = ω1 + ω21

(
1− φ1

φ0

)
, φk =

1∫
0

yk

µ
dy.

Dimensionless lubricating film thickness h and its derivative ∂h/∂τ are determined
by the formulas h = 1 − χ cos(ϕ− δ), ∂h/∂τ = − .

χ cos(ϕ− δ) − χ
.
δ sin(ϕ− δ), where

χ = e/h0, e is absolute eccentricity of the journal center;
.
χ,

.
δ are derivatives with respect to

dimensionless time.
When integrating Equation (1) in region Ω = (ϕ ∈ 0.2π; z ∈ −a, a), the Swift–Stieber

boundary conditions are most often used, which are written in the form of the following
restrictions on the function p(ϕ, z):

p(ϕ, z = ±a) = pa; p(ϕ, z) = p(ϕ + 2π, z); p(ϕ, z) ≥ 0,
p(ϕ, z) = pS on (ϕ, z) ∈ ΩS, S = 1, 2 . . . S∗,

(2)
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where ΩS is lubrication source area where the pressure is constant and equal to the supply
pressure pS, S∗—number of sources.

The scan of the lubricating film in the presence of lubrication sources of various shapes
on the friction surface is shown in Figure 1, where axis Oϕ coincides with the axis of
symmetry of the lubricating film. Loops Sα and Sβ limit, respectively, closed (not in contact
with the ends of the bearing) and open (in contact with the ends) grooves; Sγ is the square
introduced into the design model to approximate the contour of the hole.
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In closed grooves, i.e., in areas Sα that include boundaries ∂Sα, α = 1, 2, . . . , α∗, the pres-
sure is set equal to the supply pressure ps. In open grooves, i.e., in areas Sβ, β = 1, 2, . . . , β∗,
the change in the dimensionless pressure along the coordinate z is described by a linear
function pβ

(
ϕ ∈ Sβ, z

)
= p− + 0.5(p+ − p−)·(z + a)/a, where p± are the dimensionless

pressures at the endfaces, i.e., at z = ±a. In particular, if an excess z = −a pressure is
maintained at ps, and the end z = a connects with the atmosphere (p+ = 0), this equation
will take the form pβ

(
ϕ ∈ Sβ, z

)
= ps − 0.5ps(z + a)/a.

The set of restrictions on the function p(ϕ, z) for the bearing with lubrication sources
will be written for the moment in the form.

p(ϕ, z) = p(ϕ + 2π, z) =


≥ 0, Ω ∈ (0 ≤ ϕ ≤ 2π,−a ≤ z ≤ a) ;
p±, z = ±a ;
pν(ϕ, z) ∈ Sν, ν = 1, 2, . . . , ν, ν = α, β, γ.

(3)

The location of the sources is given by the coordinates of their geometric centers
(angles ϕα, ϕβ, ϕγ), and their length by the formulas:

bk
νϕ = mk

ν·∆k
ϕ,bk

νz = nk
ν·∆k

z; mk
ν = int(bϕ/∆k

ϕ), nk
ν = int(bz/∆k

z) (4)

where bk
ϕ, bk

z are dimensionless extensions of sources in the direction of the axes ϕ and z on
the grid k; ∆k

ϕ, ∆k
z are grid step sizes k; mk

ν, nk
ν are scale factors.

Recently, preference has been increasingly given to numerical-analytical methods
based on finite-difference approximation of differential operators of a boundary value
task with free boundaries, which make it possible to obtain solutions for bearings of
arbitrary geometry. Among the numerical methods, the most widely used methods are
finite difference methods (FDM) [12–14] and variation difference methods using finite
element (FEM) [15–18] approximating models.
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Numerical methods based on finite-difference approximation of the boundary value
task of hydrodynamic pressure make it possible to obtain solutions for bearings with a
complex geometry of the lubricating layer, and to take into account the presence of lubricant
sources on the friction surface; the algorithms for their implementation are flexible and
universal.

The Reynolds Equation (1) after its difference approximation is reduced to a system
of algebraic equations, which, taking into account restrictions (2), is usually solved by
the iterative Seidel method, and less often using one of the well-known modifications
of the method of longitudinal-transverse sweeps [19]. The algorithm for implementing
restrictions (2) is that each time during iterations at some point in the region Ω the condition
p > 0 is not met, the pressure at this point is reset to zero. This technique was used by
El-Bach and El-Tayeb [20] when calculating the pressure field in a bearing lubricated with
carbonated lubricants.

An economical way to find a solution to Equation (1) is associated with the use of
multi-grid algorithms [21], in which the carrier region Ω is approximated by a sequence of
rectangular grids S1, S2, . . . Sk, with appropriate step sizes

Sk =


ϕi = ∆ϕ(i− 1) ; i = 1, . . . , Mk; Mk = M·2(k−1); ∆k

ϕ = 2π/Mk;
zj = −a + ∆z(j− 1); j = 1, . . . , Nk; Nk = N·2(k−1) + 1 ; ∆k

z = 2a/Nk;
k = 1, . . . , k.

(5)

where M and N is number of discretization nodes of the plane Ω in coordinate directions ϕ
and z on the first (largest) grid; k is number of grids (sampling levels); ∆k

ϕ and ∆k
z are grid

steps by coordinates ϕ and z: ∆(1) = 2∆(2) = 4∆(3) = . . . = 2k−1∆(k).
When using multi-grid algorithms [21–24], the time spent on integrating the Reynolds

equation is reduced by several orders of magnitude. In this regard, the popularity of multi-
grid algorithms for integrating second-order equations, to which the Reynolds equation
belongs, is understandable. The idea of multi-grid algorithms was first presented in the
work of P.P. Fedorenko [23] and further developed by Brandt [21,24]. The effectiveness
of their application was demonstrated in the works of V.N. Prokopiev et al. [25,26], who
showed that the use of multi-grid algorithms for integrating the Reynolds equation reduces
the time spent by dozens of times [25]. The authors of [27] successfully considered geometric
multi-grid methods that use information about grids of different nesting levels to solve
nonlinear tasks described by parabolic type equations. They showed that a significant
advantage of nonlinear multi-grid methods is the absence of the need for linearization and
the construction of Jacobians, which somewhat simplifies the software implementation of
these algorithms.

Among the numerical methods for solving equations for pressures in a thin lubricating
layer, not only FDM, but also FEM have received the most widespread use in recent years
in the literature. In the work of Byung-Jik Kim and Kyung-Woong Kim [28], the Reynolds
equation was solved by the finite element method. FEM have found wide application for
statically loaded bearings in solving EHD lubrication tasks [28–30] due to the extremely
simple docking of hydrodynamic and elastic subproblems. The disadvantage of such
calculations is the excessive cost of resources for the solution.

More than 1000 billion floating point operations per second (1 TFLOPS) of computing
power is required to solve many of today’s tasks. A large number of computational
algorithms using the sequential programming model have been developed at present.
However, it is not always possible to create an efficient parallel algorithm to implement
many of them.

Often, to obtain an approximate solution with high accuracy, a grid with a high
density of nodes is used, while the calculation time increases significantly, and thus the
use of multiprocessor computers becomes relevant to reduce the calculation time. For
example, D.V. Degi and A.V. Starchenko [31], when solving the task of the flow of a viscous
incompressible fluid in a cavity with a moving top cover, used the obtained property of
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parallel algorithms to speed up calculations on grids with more than 106 nodes by several
tens of times. There are other works [32–34] that use the power of supercomputers to
solve engineering tasks, including tasks of hydrodynamics. It was noted in [33] that the
development of software packages for solving hydroaerodynamic tasks, such as ANSYS
CFX, ANSYS FLUENT, STAR-CD, FlowVision, etc., has reached a high level of efficiency,
accuracy, and flexibility. All these packages allow solving tasks of continuum mechanics
using models built on the basis of the Navier–Stokes equations. However, the difficulty
of using such powerful and, for the most part, commercial packages is due to the need to
simultaneously solve the tasks of hydrodynamics, the theory of elasticity, heat transfer, etc.
There are also tasks with the correct assignment of boundary conditions, matching of input
and output data when using different packages. This is especially noticeable when solving
elasto-hydrodynamic tasks requiring the use of iterative procedures.

Methods for solving tasks on pressure in a thin lubricating layer, for the most part,
are designed to find the pressure distribution in a Newtonian fluid layer. The rheological
properties of any fluid in shear are fully characterized by its viscosity. The viscosity of a
lubricant is practically the only parameter that can be used to characterize and take into
account the rheological behavior of a lubricant when determining hydrodynamic pressures
using the Reynolds equation. Therefore, the task of substantiating the mathematical model
of viscosity is fundamental. Existing attempts to apply these methods for a lubricant
with non-Newtonian properties lead to an unjustified increase in the calculation time and
simplification of the applied mathematical models.

3. The Ideology of Multi-Grid Algorithms for Integrating Second-Order
Differential Equations

Equation (1) with conditions (2) in the grid domain Sk with grid steps ∆k
ϕ and ∆k

z is
approximated by finite differences and with difficulties in the form of a difference equation.

Lk pk = Fk, (6)

where L is a differential operator, and Lk pk are the expressions corresponding to it, including
values pk at neighboring nodes, Fk is the right side of Equation (1).

Task (4) with a constraint p ≥ 0 is called the linear complementarity task and is solved
by any iterative method in two stages.

The solution of complementarity tasks is considered in detail in [23,35].
Firstly, after the s-th iteration, the preliminary pressure value is found.

pk,s+1/2 = pk,s + ∆pk,s+1 (7)

and then its projection
pk,s+1 = max

(
0, pk,s+1/2

)
(8)

Such a two-stage iterative method is hereinafter referred to as the projection method.
The simplest version of the multi-grid algorithm studied by the author implements

R.P. Fedorenko [23] and looks like this. We start the solution on the first (largest) grid. The
convergent solution of Equation (6) is found using projection iterations (7, 8), achieving the
specified accuracy. The resulting solution is transferred to the grid of the next finer level

pk+1 = Ik+1
k pk, (9)

where the symbol Ik+1
k means the interpolation operation from Sk to Sk+1 and is used as an

initial approximation to find a convergent solution, which is then passed to the next lower
level, etc. This algorithm is called the direct multi-grid algorithm (DM) [23,24].

The modern version of the multi-grid algorithm for integrating second-order differen-
tial equations, which includes the Reynolds equation, developed in collaboration, is based
on the A. Brandt scheme and is further called AMA (multi-grid adaptive algorithm).
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As in the direct multi-grid algorithm, the solution obtained on a coarse grid k is
interpolated to a finer grid (k + 1) and used as an initial approximation for the solution
obtained using this intermediate grid.

A series of projection iterations is carried out on the grid (k + 1) to suppress the high-
frequency components of the error (smoothing the errors of the solution Vk+1). After each
iteration, the convergence of the solution is controlled∥∥∥∇pk

∥∥∥
s
≤ εk, (10)

as well as the rate of convergence∥∥∥∇pk
∥∥∥

s
/
∥∥∥∇pk

prev

∥∥∥
s
≤ η (11)

Here, the operator ‖•‖s is a pre-selected norm, ε is a small number,

∇pk = pk,s+1 − pk,s, ∇pk
prev = pk,s − pk,s−1 (12)

η = 0.5 is theoretical rate of convergence.
If, after several projection iterations, condition (10) is not satisfied, but condition (11)

is met, which means the convergence slows down, we switch to a coarser grid, i.e., grid of
the previous level. On a coarse grid, we determine the correction that needs to be made to
the smoothed approximate solution p̃k+1 obtained on the grid (k + 1).

We replace the equation on a fine grid.

Lk+1
(

pk+1 + Vk+1
)
− Lk+1 pk+1 = r̃k+1, (13)

where
r̃k+1 = (Fk+1 − Lk+1 pk+1) (14)

is the residual.
By equivalent equation on a coarse grid

Lk+1
(

Ik
k+1 pk + Vk

)
− Lk

(
Ik
k+1 pk

)
= Ik

k+1r̃k+1 (15)

Here Ik
k+1 and Ik

k+1 are interpolation operators (optionally) from Sk+1 to Sk. To avoid
the appearance of additional nonlinear terms in Equation (14), instead of Vk, we introduce
a new unknown wk, which represents the sum of the initial (preliminary) approximation
p̃k+1 = pk+1

prev and correction Vk+1 on a coarse grid.
As a result, Equation (15) takes the form

Lkwk = f k, (16)

where
f k = Lk

(
Ik
k+1 p̃k

)
+ Ik

k+1r̃k+1. (17)

Note that not solution wk itself, but function Vk = wk − Ik
k+1 p̃k is an approximation

on a coarse grid of a smoothed function Vk defined on (k + 1) grid. Therefore, if wk is the
solution to Equation (15), then the approximation found earlier on a fine grid is refined
using the ratio:

pk+1
re f = pk+1

prev + Ik+1
k

(
wk − Ik

k+1 pk
prev

)
(18)

4. Difference Approximation of the Reynolds Equation for Non-Newtonian Fluids

To integrate Equation (1) with constraints (2) or (3), uniform grid domains (4) were
introduced.
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The grid with the number (k + 1) is the result of splitting the cells of the k-th grid in
half. The ratio between the sizes of grid cells of adjacent levels

∆(1) = 2∆(2) = 4∆(3) = 2k−1∆(k)

Equation (1) in divergent form takes the form:

∂ B
∂ ϕ

+
∂ C
∂ z

= M(ϕ, t), (19)

where

B =
(

φ
2
− φ1

φ0
φ1

)
h

n+2 ∂ p
∂ ϕ ; C =

(
φ

2
− φ1

φ0
φ1

)
h

n+2 ∂ p
∂ z ;

M(ϕ, z) =
(

ω1 + ω21

(
1− φ1

φ0

))
∂h
∂ϕ −

.
χ cos(ϕ− δ)− χ

.
δ sin(ϕ− δ) + ∂h∆

∂τ .
(20)

When constructing difference algorithms for the numerical differential solution of
tasks, it is important that the construction of the finite-difference scheme be conservative,
i.e., correctly reflecting the main backbones (mass, heat, energy, etc.) underlying the original
differential task.

Integrating Equation (19) over the area Sij (Figure 2), and passing in its left side to the
contour integral, we obtain a conservative scheme in the form.(

Bi+ 1
2 ,j − Bi− 1

2 ,j

) 1
∆ϕ

+
(

Ci,j+ 1
2
− Ci,j− 1

2

) 1
∆z

= Mij, (21)

where

Bi± 1
2 ,j =

((
φ

2
− φ1

φ0
φ1

)
h

n+2 ∂ p
∂ ϕ

)m+1

i± 1
2 ,j

; (22)

Ci,j± 1
2
=

((
φ

2
− φ1

φ0
φ1

)
h

n+2 ∂ p
∂ z

)m+1

i,j± 1
2

; (23)

Mij =

(
ω1 + ω21

(
1− φ1

φ0

))
∆h
∆ϕ
− .

χ cos
(

ϕ− δm+1
)
− χ

.
δ sin

(
ϕ− δm+1

)
+

∆h∆

∆t
(24)

and the index (m + 1) denotes the time layer.
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Approximating the spatial derivatives by central differences, we find (subscripts
(m + 1) omitted):

aij pij + ai−1,j pi−1,j + ai+1,j pi+1,j + ai,j−1 pi,j−1 + ai,j+1 pi,j+1 = bij. (25)

Here

ai−1,j =
1

∆2
ϕ

((
φ

2
− φ1

φ0
φ1

)
h

n+2
)

i− 1
2 ,j

; ai+1,j =
1

∆2
ϕ

((
φ

2
− φ1

φ0
φ1

)
h

n+2
)

i+ 1
2 ,j

;

ai,j−1 = 1
∆2

z

(
φ

2
− φ1

φ0
φ1

)
h

n+2
i ; ai,j+1 = 1

∆2
z

(
φ

2
− φ1

φ0
φ1

)
h

n+2
i ;

aij = −(ai−1,j + ai+1,j + ai,j−1 + ai,j+1); bij = Mji.

The system of linear algebraic Equation (25) is a detailed record of the operator
Equation (6), and the ideology of multi-grid algorithms described above was used to solve
it.

The set of restrictions on the function p(ϕ, z) for the bearing with lubrication sources
is used in the form (3).

In multi-grid algorithms for integrating the Reynolds equation on a coarse (first) grid,
the sources were specified as pressure lines for the groove and points for the hole. On the
second and third grids, the sizes of the sources were calculated by Equation (4), and thus,
their boundaries could be set with the accuracy of the sizes of the cells of the finest grid ∆k

ϕ,

∆k
z.

When solving Equation (1), the non-Newtonian properties that modern lubricants
have are taken into account.

5. Modeling Non-Newtonian Properties of Lubricants

Lubricant is an integral element of the design of many friction units. Traditionally,
when modeling friction units, the viscosity-temperature properties of lubricants are taken
into account. However, modern oils are structurally complex substances and their rheologi-
cal behavior differs from that of a Newtonian fluid. The main feature of the rheological
behavior of many oils is the nonlinearity of the dependence of viscosity on shear rate,
which must be taken into account when calculating the hydromechanical characteristics of
friction units, for example, rotor bearings of turbochargers of internal combustion engines.
Thus, there was a need for a complex rheological model of the lubricant. This model should
take into account viscosity as a function of lubricant temperature, hydrodynamic pressure
in a thin lubricant layer and shear rate:

µ
(
T, p,

.
γ
)
=


µ1·C1e(C2/(T+C3))+β(T)·p, 1 ≤ .

γ ≤ 102;
(I2)

(n(T)−1)/2·C1e(C2/(T+C3))+β(T)·p, 102 ≤ .
γ ≤ 106;

µ2·C1e(C2/(T+C3))+β(T)·p,
.
γ > 106,

(26)

where
.
γ =
√

I2, I2 = (∂Vx/∂y)2 + (∂Vz/∂y)2, C1, C2, C3 are constants, which reflect empiri-
cal features of the lubricant.

At Section 1 in the range of shear rates from 1 to 102 s−1 the oil behaves as a Newtonian
fluid with a viscosity µ1. At Section 2 in the range of shear rates from 102 to 106 s−1 it is
characteristic that the decrease in viscosity follows a power law. In Section 3, where the
shear rate is greater than 106s−1, the oil behaves as a Newtonian fluid with the viscosity µ2.

The effect of natural or synthetic surfactants on the rheological behavior of oils in
thin films is of great technical interest. In order to take into account the phenomenon
of formation of a boundary layer on the metal surfaces of friction units, the following
rheological model was proposed [36–39]:

µi = µ0 + µs exp(hi/lh) (27)
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where µs is the parameter representing the conditional value of viscosity at infinitesimal
distance from the limiting surface. We assume that the viscosity of hydrocarbon oils near a
solid surface is equal to the viscosity of solid paraffin.

Dependence (27) in this case describes the change in viscosity µ(h) with distance of hi
from the metal surface.

In a layer limited by two surfaces, possible distinctions between the adsorptive prop-
erties and the structuring influence of various materials need to be considered. These
distinctions are described by parameters lh1, lh2

µi = µ0 + µs

(
exp

(
−hi
lh1

)
+ exp

(
hi − h

lh2

))
(28)

Calculation of hs and lh is carried out by numerical methods proceeding from:{
µe f = µ(µ0, h, hs, lh)

F
(

µe f , hs

)
= Fmin.

(29)

The model of the additive interaction of the adsorptive layers (28) allows us to explain
a number of experimental data. It can be also used for an explanation of the dependence
of the viscosity of suspensions on the sizes of particles. However, this model does not
consider the interaction of the adsorptive layers formed on two surfaces. Therefore, it can
be applied only at thickness values of the lubricant layer which considerably exceed 2hs,
i.e., in the presence of a lubricant with the usual viscosity.

With further increase of loading inevitably there is an interaction of the adsorptive
layers as described in [37,38].

Thus, the value of viscosity across the thickness of the lubricating layer varies from
value µs, which lies within [104. . . 106] Pa·s, to the values of viscosity in the middle of
the lubricating layer µ∗

(
T, p,

.
γ
)
. Figure 3 schematically shows the change in the viscosity

of the lubricant along the y coordinate, directed along the normal to the friction surface.
Coordinate y1 corresponds to the value of the boundary lubricating layer hs. Coordinate x
corresponds to the change in the angular ϕ coordinate.
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Generalizing models (26) and (28), we write down the rheological model for the
viscosity of the lubricant at each point of the discrete grid in three coordinates (ϕ, z, y)
characterizing the position of the elementary volume of the lubricant enclosed between
two friction surfaces,

µ = µ∗
(
T, p,

.
γ
)
+ (1− ϑ)µs exp(−yk/lh), yk = 0 . . . h, ϑ =

{
0, hmin < hcrit.;
1, hmin ≥ hcrit.,

, (30)
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where µ∗
(
T, p,

.
γ
)

is determined by expression (26).
When solving technical tasks of modeling friction units with lubrication, the influence

of the boundary lubricating layer appears only at those moments of time when the calcu-
lated minimum layer thickness becomes less than the allowable value infhmin < hcrit., i.e.,
with a possible transition from the hydrodynamic friction mode to the mixed one.

When calculating the field of hydrodynamic pressures in a thin lubricating layer
of non-Newtonian fluids (Equation (1)), the viscosity model (30) takes into account the
non-Newtonian properties of the lubricant and presence of adsorption layers.

6. Numerical Implementation of Multi-Grid Algorithms

To determine the discretization parameters, namely, the number of discretization
nodes of the region Sk (Equation (5)) along the coordinate directions ϕ and z, the number
of grids (sampling levels) and the size of the grid steps along the coordinates, we used the
calculated values of the hydromechanical characteristics obtained by solving the system of
algebraic Equation (25) by the Gauss–Seidel projection method with varying calculation
accuracy ε. As reference values of hydromechanical characteristics, we used the calculation
results obtained in [26] for a given accuracy ε = 10−6 on a fine mesh with the number of
nodes Mk = 192, Nk = 49.

The characteristics were calculated for the symmetrical bearing with a dimensionless
width a = 0.5 at µ = 1, ω21 = 1, δ = 0 as a function of the relative eccentricity χ and the
parameter q̃= 2

.
χ/|ω21|.

Taking into account the symmetry of the diagram of hydrodynamic pressures relative
to the axis z, only the region 0 ≤ z ≤ a was considered. The initial array of values pij(ϕ, z)
was assumed to be zero, and in expression (10) the norm was used:

∥∥∥∇pk
∥∥∥

s
=

∣∣∣∣∣∑i,j ps+1
ij −∑

i,j
ps

ij

∣∣∣∣∣
∑
i,j

ps
ij

(31)

The integrals required to calculate the characteristics were calculated using the Simp-
son method. The maximum hydrodynamic pressure pmax and the coordinate ϕmax cor-
responding to it were determined in two stages. Initially, at z = 0, by enumeration over
all nodes of the grid of a given level, node ϕi was found, in which p is maximum. At the
second stage pmax and ϕmax were clarified. To do this, in the vicinity of the i-th node, using
the approximate differentiation formula based on the Lagrange interpolation formula, we
determined the derivative

∂ p
∂ ϕ

=
1

∆ϕ

[
1
2

pi−1(2η − 3)− pi(2η − 2) +
1
2

pi+1(2η − 1)
]

,

where η = (ϕ− ϕi−1)/∆ϕ—interpolation step.
By equating the derivative ∂ p/∂ ϕ to zero, the relative value ηmax was determined, by

which point ϕmax is separated from point ϕi−1:

ηmax =
pi+1 − 4pi + 3pi−1

2
(

pi+1 − 2pi + pi−1
) .

The maximum pressure pmax was calculated using Newton’s interpolation formula

pmax = pi−1 +
(

pi − pi−1
)
ηmax +

1
2
(

pi+1 − 2pi + pi−1
)
ηmax(ηmax − 1),

and the coordinate corresponding to it, from the obvious relation

ϕmax = ϕi−1 + ηmax∆ϕ
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All calculations were performed with rougher termination criteria for the number
of iterations: ε = 10−4; ε = 10−3. It was found that at ε = 10−3, the relative errors ∆ of
calculating the dimensionless lubricant consumption Q at χ ≥ 0.9 can reach 15%; for other
characteristics, these errors do not exceed 5%. At ε = 10−4, the errors in determining all the
characteristics of the lubricating layer are not higher than 2.5%. As the grid level decreases
(Mk = 96, Nk = 25 and ε = 10−4), the errors increase and at χ = 0.975 they reach the
value of 5%. In the operating range of eccentricities 0.1 ≤ χ ≤ 0.95, the relative errors in
determining all characteristics do not exceed 3%. Similar results were obtained for other
values a from the range 0.25 ≤ a ≤ 1.5. Taking this into account, the sizes of ∆ϕ and ∆Z cells
of the finest grid (k = 3) were selected from condition Mk = 96, Nk = 25; in expression (10),
which controls the convergence according to the norm (31), εk = 10−4 was taken. On the
intermediate grid (k = 2), the number of grid nodes was reduced to (Mk ×Nk) = (48× 13),
and on the first (k = 1), the coarsest mesh, up to (Mk × Nk) = (24× 7).

In the DM algorithm, convergence criterion εk = 10−4 remained unchanged at the
second and first discretization levels. In the AMA algorithm, when moving from the third
to the second grid, according to the criterion of slowing down the convergence rate (11)
in expression (10), εk = δ̃

∥∥∥∇Pk+1
∥∥∥. The value of δ̃ = 0.125 was selected by numerical

experiments from the range recommended by Brandt.
As operator Ik+1

k for transferring grid functions from the coarse grid (the lower level)
to the fine grid (the higher level), locally one-dimensional linear or cubic interpolation
operators are usually used.

However, linear interpolation did not provide sufficient accuracy. The use of cubic in-
terpolation led to the appearance of unwanted negative values of the interpolated function.
A rather simple and accurate method of interpolation turned out to be a method based on
Bessel formulas (numbering of nodes is shown in Figure 4):

f 1
2
= 1

16 [ f (−1) + 9 f (0) + 9 f (1)− f (2)] ;

f 3
2
= 1

16 [ f (−1)− 5 f (0) + 15 f (1) + 5 f (2)] ;

f− 1
2
= 1

16 [ f (2)− 5 f (1) + 15 f (0) + 5 f (−1)] .
(32)
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Figure 4. Node numbering when transferring grid functions from the coarse grid to the fine one.

When switching from the coarse to the fine grid, the values of the function at coinciding
nodal points (points with integer numbers in Figure 4) are preserved. At points belonging
only to a fine grid (points with fractional numbers in Figure 4), the values of the functions
are recalculated first in the direction of axis ϕ, and then z. At points adjacent to the
boundaries of the integration region, formulas for f−1/2 and f3/2 are applied, and at other
points—for f1/2.

Inequality pi(ϕi, zi) ≥ 0 from conditions (2) requires that pk be non-negative at every
point. Condition (3) ensures that pk+1 is non-negative at each iteration.

Moreover, with an appropriate choice of operator Ik
k+1, approximations pk are also

non-negative. However, Equation (16) does not preserve non-negativity when returning
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from Sk to Sk+1, which was observed when debugging the algorithm. Of course, all
negative components of pij are set to zero already at the first projection iteration by Sk+1,
but, nevertheless, their appearance slowed down the convergence. To ensure the non-
negativity of hydrodynamic pressures immediately after returning from the grid Sk, after
the calculation according to Equation (18), the AMA initially using the following procedure
was provided:

pk=1 =

{
pk+1

re f , if pk+1
re f ≥ 0;

pk+1
prev, if pk+1

re f < 0.

An alternative procedure, which turned out to be more efficient, is written as

pk=1 =

{
pk+1

re f , if pk+1
re f ≥ 0;

0, if pk+1
re f < 0.

(33)

In the DM algorithm, all negative values of pk+1 from Equation (9) are set to zero. In
the developed version of AMA, the same operators for transferring solutions and residuals

from fine grids to coarse ones (Ik
k+1 = Ik

k+1) were used. Five- and nine-dot operators were
tested:

Ik
k+1 ≡

1
16

0 2 0
2 8 2
0 2 0

,
1

16

1 2 1
2 4 2
1 2 1


The latter expression is ultimately preferred. Thus, in AMA, the recalculation of grid

functions θ̃ = p, r̃ when transferring from the fine grid to the coarser grid is performed by
the formula

θ̃k = Ik
k+1θ̃k+1 = 1

16

[
θ̃k+1

i−1,j−1 + 2θ̃k+1
i−1,j + θ̃k+1

i−1,j+1 + 2θ̃k+1
i,j−1 + 4θ̃k+1

i,j + 2θ̃k+1
i,j+1+

+θ̃k+1
i−1,j−1 + 2θ̃k+1

i+1,j + θ̃k+1
i+1,j+1 ] .

(34)

The scheme of the final version of the AMA is shown in Figure 5.
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Different levels of the grid are marked with numbers 1, 2, 3. The maximum allowable
numbers of iterations at each level are marked with numbers next to the circles. The
converged solution is shown by double lines.

In accordance with the scheme of the AMA algorithm, the search for the solution
started on the grid of the lowest level (k = 1) (the largest grid) and was performed until the
convergence condition (10) was satisfied. With the help of the interpolation operator (32),
the converged solution was transferred as an initial approximation to the second level,
where iterations and estimation of the convergence rate (11) at each step continued.

If the convergence rate slowed down or all the iterations provided by the AMA
algorithm were performed, and the solution was not yet obtained, the transition to the
coarse grid (34) was performed, where Equation (16) was solved for the corrections. Then
the return to the fine mesh (18) was carried out, and so on, until a solution is found on
the second level grid. From numerical experiments it was found that the number of cycles
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(returns to the coarse grid) required to obtain the solution on the second grid does not
exceed three.

If the solution is obtained before all three cycles are completed, then the remaining
cycles are simply not executed, and this solution is considered obtained and transferred to
the third level grid as the initial approximation. On the third grid, the described procedure
is repeated, but the allowable number of cycles is increased to ten. In practice, in most
cases, two or three cycles are enough to find the solution on the third grid.

The effectiveness of multi-grid algorithms can be judged by estimating the total
number of conventional units ΣCU, which is to a certain extent proportional to the time
spent on obtaining the solution. A conventional unit is the “price” of one iteration on
the finest grid. Approximately, i.e., without taking into account the “price” of auxiliary
operations, for example, the transfer of grid functions from fine grids to large ones and
back is the “price” of one iteration on the grid k:

(УЕ)k = 4(k−k) (35)

Thus, the total “price” (in conventional units) of the solution obtained using k grids is
determined by summing the number of iterations Itk on grids with weight factors defined
by relation (34).

For an algorithm with three grid levels (three-grid algorithm)

∑ УЕ =
1

16
It1 +

1
4

It2 + It3 (36)

The number of iterations on grids and the total number of conventional units for
various algorithms for solving the Reynolds equation are presented in Tables 1 and 2, from
which it follows that multi-grid algorithms are more than an order of magnitude more
efficient than single grid ones in terms of time consumption. The adaptive algorithm (AMA)
is about twice as efficient as the DM algorithm.

Table 1. Comparison of the efficiency of algorithms for solving the Reynolds equation.

q The Total
“Price”

Dimensionless Eccentricity, χ

0.1 0.3 0.5 0.7 0.9 0.95 0.975

Single Grid Algorithm

−2.0 ΣCU = It3 735 743 747 747 741 738 737
0.0 ΣCU = It3 727 716 691 641 528 464 408
2.0 ΣCU = It3 721 699 662 593 430 345 272

Three Grid DM Algorithm

−2

It1 38 38 38 38 38 38 37
It2 50 49 46 45 40 36 34
It3 49 45 42 33 32 30 28

ΣCU 63.87 59.62 55.87 46.62 44.37 41.37 38.81

0

It1 37 36 35 33 27 24 21
It2 10 9 14 21 39 37 32
It3 2 2 6 6 63 70 62

ΣCU 6.81 6.5 11.68 13.31 74.43 80.75 71.31

2

It1 37 36 34 31 23 18 15
It2 7 8 19 36 43 36 28
It3 2 2 2 4 75 77 64

ΣCU 6.06 6.25 8.87 14.93 87.18 87.12 71.93
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Table 2. Comparison of the efficiency of algorithms for solving the Reynolds equation.

q The Total
“Price”

Dimensionless Eccentricity, χ

0.1 0.3 0.5 0.7 0.9 0.95 0.975

Adaptive AMA Algorithm with Three Grids

−2

It1 44 44 44 42 42 42 43
It2 23 24 26 19 19 19 21
It3 17 17 17 12 17 17 14

ΣCU 25.5 26.75 26.25 19.37 24.37 24.37 21.93

0

It1 39 38 39 37 33 32 27
It2 7 7 12 17 30 34 29
It3 2 2 5 7 27 32 28

ΣCU 6.18 6.12 10.43 13.56 36.56 42.5 36.93

2

It1 39 38 38 37 31 26 21
It2 7 7 12 17 34 34 29
It3 2 2 2 4 32 35 32

ΣCU 6.18 6.12 7.37 10.56 42.43 45.12 40.56

7. Examples of Using the Multi-Grid Algorithm

The use of multi-grid algorithms makes it possible to perform calculations of complexly
loaded tribo-units, taking into account the non-Newtonian properties of modern lubricants.

For multilayer plain bearings of a turbocharger, hydrodynamic pressure diagrams
were calculated in the internal lubricating layer of the support with various types of
lubrication sources on the bushing surface. The calculation results are shown in Figures 6–8
(χ = 0.5; E = 0; G = 1; a = 0.5).
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grooves.

The algorithm described above has been successfully applied to calculate the dynamics
of a flexible asymmetric turbocharger rotor. Turbochargers of different dimensions were
considered. For example, Turbochargers −7, 8, . . . 23. In these designs, the diameters of
the shafts varied from 8 to 16 mm. The ratio of external and internal clearances is varied
from 1.8 to 2.4. The rotor speed was varied from 10,000 rpm to 200,000 rpm.

To obtain a converged stable trajectory of the rotor in the space of the bearing clearance,
it is necessary to take 30,000–40,000 time steps. The use of the developed algorithm makes
it possible to reduce the calculation time by 8–10 times. For example, to calculate one
variant of the dynamics of the Turbochargers −8 rotor at a speed of 90,000 rpm on a fine
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(third) grid, 7 h must be spent. Using the adaptive algorithm reduces the calculation time
to 40 min.

The authors have experience in using an adaptive algorithm to calculate the dynamics
of large-sized steam turbine bearings (bearing diameter is 0.6 m; radial clearance is 1.15 mm;
bearing width is 0.335 m; rotor speed is 3000 rpm).

In addition, the adaptive algorithm was used to calculate the hydromechanical charac-
teristics (pressure, friction losses, minimum lubricating layer thickness, lubricant consump-
tion, etc.) of the ICE crankshaft plain bearings.

The use of the multi-grid AMA algorithm makes it possible to evaluate the effect of a
high-viscosity boundary layer on the hydromechanical characteristics of heavily-loaded
tribo-units. For this, the bearing of the lower head of the engine connecting rod with a
dimension of 13/15 was calculated. The results were obtained for two calculation options:

1. The lubricant is considered as a Newtonian fluid, the temperature in the lubricant
layer is constant, T = 100 ◦C, the boundary layer is not taken into account.

2. The lubricant is considered as a Newtonian fluid, the temperature in the lubricating
layer is constant, T = 100 ◦C, the presence of a boundary layer with parameters
µs = 106 Pa·s, lh = 56·10−9 m, obtained experimentally is taken into account.

The number of nodes along the thickness of the lubricating layer was assumed to be
300. The calculation results are shown in Table 3.

Table 3. Evaluation of the influence of a high-viscosity boundary layer on the hydromechanical
characteristics of heavily loaded tribo-units.

Hydromechanical Characteristics Calculation
Option 1

Calculation
Option 2

Relative Error
δ, %

Mean integral power loss due to friction
N, W 601.2 722.9 20.2

Mean-integral value of the temperature of
the lubricating layer, T, ◦C 107.3 115.4 7.6

Mean integral end flow through tribo-unit
Q, l/s 0.01818 0.01479 18.6

Mean integral value of the minimum
thickness of the lubricating layer hmin, µm 4.048 5.006 23.7

Maximum hydrodynamic pressure in the
lubricating layer for the loading cycle

suppmax, MPa
276.9 292.6 5.7

The smallest value of the minimum
thickness of the lubricating layer for the

loading cycle infhmin, µm
2.215 2.638 19.1

As can be seen from the results obtained, when the high-viscosity boundary layer is
taken into account in the calculation process, hydromechanical characteristics are obtained,
the values of which differ significantly from similar data obtained without taking into
account the adsorption layer. Due to the influence of the highly viscous boundary layer,
friction losses increase by 20%, and the thickness of the lubricating layer increases by 23%.

8. Conclusions

1. To solve the Reynolds equation when determining the field of hydrodynamic
pressures, an adaptive multi-grid algorithm based on a finite-difference approximation
of differential operators of a boundary value task with free boundaries is presented. The
application of this algorithm makes it possible to obtain the field of hydrodynamic pressures
in the lubricating layer of heavily loaded tribo-units with irregular geometry, taking into
account the presence of various shaped lubricant supply sources on the friction surfaces.

2. In the course of numerical studies, the best ratios of the number of nodes M and
N of the discretization of region Sk along the coordinate directions ϕ and z, as well as
k—the discretization level, were established. To obtain a solution with an accuracy of
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ε = 10−4, it is necessary to discretize the carrier area of the tribo-unit in such a way that the
number of nodes on the last (finest) grid is not less than Mk = 96, Nk = 25. The number
of iterations on the finest grid compared to the single-grid method is reduced from 500 to
3 . . . 5. In this case, the relative errors in calculating the field of hydrodynamic pressures
in the lubricating layer of a non-Newtonian fluid do not exceed 10−4, and the errors in
determining all characteristics of the lubricating layer do not exceed 2.5%. The maximum
level discretization to achieve a given precision of ε = 10−4 is 3.

3. The algorithm has been developed for calculating hydrodynamic pressures in the
lubricating layer, taking into account the non-Newtonian properties of the lubricant, in
particular, the dependence of viscosity on shear rate and pressure.

4. The results obtained showed that taking into account high-viscosity layers leads
to an increase in the calculated minimum thickness of the lubricating layer by 40–45%,
temperature by 6–7%, and maximum hydrodynamic pressures by 4–5%.

The complexity of performing multivariant calculations was that in order to be able to
take into account the adsorbed high-viscosity layer, it is necessary to increase the number of
grid nodes to at least 300 in the process of constructing a discrete grid over the thickness of
the lubricating layer. With a larger partition, it is impossible to obtain a result reflecting the
effect of the adsorbed layer, since the thickness of this layer for different types of lubricants
ranges from 0.3 to 10 microns.

Author Contributions: Conceptualization, E.Z.; Methodology, E.Z., I.M. and I.L.; Validation, E.Z.;
Formal Analysis, E.Z.; Investigation, E.Z. and I.L.; Resources, E.Z. and I.L.; Data collection, E.Z.,
I.M. and I.L.; Writing original drafts, E.Z. and I.L.; Writing—Review and Editing, E.Z. and V.H.;
Visualization, V.H.; Oversight, I.L.; Project Administration, E.Z.; Funding Acquisition, E.Z. and
I.L. All authors contributed significantly to the completion of this manuscript by conceived and
developed the study, and wrote and improved the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation grant number 22-29-20156.

Data Availability Statement: Not available.

Acknowledgments: The authors thank South Ural State University (SUSU) for supporting.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cameron, A. Theory of Lubricants in Engineering; Mashgiz: Moscow, Russia, 1962; 296p.
2. Kodnir, D.S. Contact Hydrodynamic Lubrication of Machine Parts; Mashinostroenie: Moscow, Russia, 1976; 632p.
3. Korovchinsky, M.V. Theoretical Foundations of the Operation of Journal Bearings; Mashgiz: Moscow, Russia, 1959; 403p.
4. Rozhdestvensky, Y.; Lazarev, E.; Doikin, A. Effect of the Heat Insulating Coating of the Piston Crown on Characteristics of the

piston-Cylinder Liner Pair. Procedia Eng. 2016, 150, 541–546. [CrossRef]
5. Prokopiev, V.N.; Boyarshinova, A.K.; Gavrilov, K.V. Algorithm of mass conservation during calculating the dynamics of loaded

sliding supports. Probl. Mech. Eng. Reliab. Mach. 2004, 4, 32–38.
6. Zakharov, S.M.; Zharov, I.A. Tribological criteria for assessing the performance of internal combustion engines crankshafts journal

bearings. Frict. Wear 1996, 17, 606–615.
7. Vorozhtsov, E.V. Difference Methods for Solving Problems of Continuum Mechanics; Publishing House of NSTU: Nizhny Novgorod,

Russia, 1998; 86p.
8. Dmitrienko, Y.I. Nonlinear Continuum Mechanics; Fizmatlit Publishing House: Moscow, Russia, 2009; 624p.
9. Prosvetov, G.I. Continuum Mechanics; Alfa-Press Publishing House: Moscow, Russia, 2011; 112p.
10. Zadorozhnaya, E.A.; Cherneyko, S.V.; Kurochkin, M.I. A study the axial and radial rotor stability of the turbo machinery with

allowance the geometry of the surface and properties of the lubricating fluid. Tribol. Ind. 2015, 37, 455–463.
11. Rozhdestvensky, Y.; Gavrilov, K.; Doikin, A. Forced Diesel Piston Tribological Parameters Improvement. Procedia Eng. 2017, 206,

647–650. [CrossRef]
12. Petrusev, A.S. Difference Schemes and Their Analysis; MIPT Publishing House: Moscow, Russia, 2004; 89p.
13. Jagadeesha, K.M.; Nagaraju, T.; Sharma, S.C.; Jain, S.C. 3D Surface Roughness Effects on Transient Non-Newtonian Response of

Dynamically Loaded Journal Bearings. Tribol. Trans. 2012, 55, 32–42.
14. Yang, Y.-K.; Jeng, M.-C. Analysis of Viscosity Interaction and Heat Transfer on the Dual Conical-Cylindrical Bearing. Tribol. Trans.

2004, 47, 77–85. [CrossRef]

http://doi.org/10.1016/j.proeng.2016.07.039
http://doi.org/10.1016/j.proeng.2017.10.531
http://doi.org/10.1080/05698190490279092


Mathematics 2023, 11, 54 18 of 18

15. Ebrat, O.; Mourelatos, Z.P.; Vlahopoulos, N.; Vaidyanathan, K. Calculation of Journal Bearing Dynamic Characteristics Including
Journal Misalignment and Bearing Structural Deformation. Tribol. Trans. 2004, 47, 94–102. [CrossRef]

16. Nagaraju, T.; Sharma, S.C.; Jain, S.C. Performance of Externally Pressurized Non-Recessed Roughened Journal Bearing System
Operating with Non-Newtonian Lubricant. Tribol. Trans. 2003, 46, 404–413. [CrossRef]

17. Khushnood, S.; Malik, A.; Rashid, B.; Azim, R.A. Experimental and Finite Element Analysis of Hydrodynamic Lubrication of
Rotary Diesel Fuel Injection Pump. Tribol. Lubr. Eng. 2004, 2, 1015–1024.

18. Kim, T.-J.; Han, J.-S. Comparison of the Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor
Crankshaft in Both Finite and Short Bearing Models. Tribol. Trans. 2004, 47, 61–69. [CrossRef]

19. Alimov, I.; Pirnazarova, T.; Kholmatova, I. On a numerical method for solving the hydrodynamic problem of underground
leaching. J. Phys. Conf. Ser. 2019, 1260, 102001. [CrossRef]

20. El-Butch, A.M.A.; El-Tayeb, N. Surface Roughness Effects on Thermo-Hydrodynamic Lubrication of Journal Bearings Lubricated
with Bubbly Oil. Tribol. Lubr. Eng. 2004, 2, 999–1006. [CrossRef]

21. Brant, A.; Cryer, C.W. Multigrid Algorithms for the Solution of Linear Complementarity. Problems Arising from Free Boundary
Problems. SIAM/J. Sci. Stat. Comput. 1983, 4, 655–684. [CrossRef]

22. Samarsky, A.A.; Nikolaev, E.S. Methods for Solving Grid Equations; Science: Moscow, Russia, 1978; pp. 73–103.
23. Fedorenko, R.P. On the rate of convergence of one iterative process. Zh. Vychisl. Mat. Mat. Fiz. 1964, 4, 559–564.
24. Brant, A. Multi-Level Adaptive Solution to Boundary. Value Problems. Math. Comput. 1977, 31, 333–390. [CrossRef]
25. Prokopiev, V.N.; Boyarshinova, A.K.; Zadorozhnaya, E.A. Multinet integration algorithms of Reynolds equation in the dynamics

problems of complex-loaded plain bearings. Probl. Mech. Eng. Reliab. Mach. 2005, 5, 16–21.
26. Prokopiev, V.N.; Boyarshinova, A.K.; Zadorozhnaya, E.A. Adaptive multigrid algorithm for integrating the Reynolds equation for

hydrodynamic pressures in the lubricating layer of heavily loaded journal bearings. Bull. SUSU 2001, 6, 61–67.
27. Maksimov, D.Y.; Filatov, M.A. Study of Nonlinear Multigrid Methods for Solving Single-Phase Filtration Problems. M.V. Keldysh

IPM 2011, 26. Preprints. Available online: http://library.keldysh.ru/preprint.asp?id=2011-43 (accessed on 1 September 2019).
28. Byung-Jik, K.; Kyung-Woong, K. Termo-Elastohydrodinamic Analysis of Connecting Rod Bearing in Internal Combustion Engine.

J. Tribol. 2001, 123, 444–454.
29. Olson, E.G.; Booker, J.F. EHD Analysis with Distributed Structural Inertia. Trans. ASME 2001, 123, 463–468. [CrossRef]
30. Genka, O. Solution of an elastic-hydrodynamic problem for dynamically loaded connecting rod bearings. In Problems of Friction

and Lubrication; American Society of Mechanical Engineers: New York, NY, USA, 1985; Volume 3, pp. 70–76.
31. Degi, D.V.; Starchenko, A.V. Numerical solution of the Navier-Stokes equations on computers with parallel architecture. Bull.

Tomsk State Univ. Math. Mech. 2012, 2, 88–98.
32. Bogoslovsky, N.N.; Esaulov, A.O.; Starchenko, A.V. Parallel implementation of the SIMPLE CFD algorithm. In Siberian School

Seminar on Parallel Computing; Tomsk University Press: Tomsk, Russia, 2002; pp. 118–124.
33. Vasiliev, V.A.; Nitsky, A.Y.; Kraposhin, M.V.; Yuskin, A.V. Investigation of the possibility of hydroaerodynamic problems parallel

computing using the open source software package OpenFOAM. In Supercomputer Technologies and Open Source Software: A
Scientific Articles Collection; Chelyabinsk State University Publishing House: Chelyabinsk, Russia, 2013; pp. 19–26.

34. Shimkovich, D.G. Femap & Nastran: Engineering Analysis by the Finite Element Method; DMK Press: Moscow, Russia, 2008; 704p.
35. Popov, L.D. Introduction to the Theory, Methods and Economic Applications of Complementarity Problems: Textbook; Publishing House

of the Ural University: Yekaterinburg, Russia, 2001; 124p.
36. Muhortov, I.V.; Usoltsev, N.A.; Zadorozhnaya, E.A.; Levanov, I.G. Improved model of rheological properties of the boundary

layer of lubricant. Frict. Lubr. Mach. Mech. 2010, 5, 8–19.
37. Mukhortov, I.V. Multilayer Adsorption Lubricants and Its Inclusion in the Theory of Fluid Friction; Bulletin SUSU series “Engineering”;

SUSU Publishing Center: Chelyabinsk, Russia, 2011; Volume 18, pp. 62–67.
38. Mukhortov, I.; Zadorozhnaya, E.; Levanov, I. Multimolecular adsorption lubricants and its integration in the theory fluid friction.

In Proceedings of the STLE 68th STLE Annual Meeting & Exhibition, Detroit Marriott at the Renaissance Center, Detroit, MI,
USA, 5–9 May 2013; pp. 147–149.

39. Mukchortov, I.; Zadorozhnaya, E.; Levanov, I.; Pochkaylo, K. The influence of poly-molecular adsorption on the rheological
behaviour of lubricating oil in a thin layer. FME Trans. 2015, 43, 218–222.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/05698190490278994
http://doi.org/10.1080/10402000308982644
http://doi.org/10.1080/05698190490279029
http://doi.org/10.1088/1742-6596/1260/10/102001
http://doi.org/10.1002/ls.5
http://doi.org/10.1137/0904046
http://doi.org/10.1090/S0025-5718-1977-0431719-X
http://library.keldysh.ru/preprint.asp?id=2011-43
http://doi.org/10.1115/1.1332396

	Introduction 
	Formulation of the Problem/Literature Review 
	The Ideology of Multi-Grid Algorithms for Integrating Second-Order Differential Equations 
	Difference Approximation of the Reynolds Equation for Non-Newtonian Fluids 
	Modeling Non-Newtonian Properties of Lubricants 
	Numerical Implementation of Multi-Grid Algorithms 
	Examples of Using the Multi-Grid Algorithm 
	Conclusions 
	References

