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Abstract: Due to the unexpected breakdowns that can happen in various components of a production
system, failure to reach production targets and interruptions in the process of production are not
surprising. Since this issue remains for manufactured products, this halting results in the loss
of profitability or demand. In this study, to address a number of challenges associated with the
management of crucial spare parts inventory, a mathematical model is suggested for the determination
of the optimal quantity of orders, in the case of an unpredicted supplier failure. Hence, a production
system that has various types of equipment with crucial components is assumed, in which the crucial
components are substituted with spare parts in the event of a breakdown. This study’s inventory
model was developed for crucial spare parts based on the Markov chain process model for the case
of supplier disruption. Moreover, for optimum ordering policies, re-ordering points, and cost values
of the system, four metaheuristic algorithms were utilized that include Grey Wolf Optimizer (GWO),
Genetic Algorithm (GA), Moth–Flame Optimization (MFO) Algorithm, and Differential Evolution
(DE) Algorithm. Based on the results, reliable suppliers cannot meet all of the demands; therefore,
we should sometimes count on unreliable suppliers to reduce unmet demand.

Keywords: inventory policy; mathematical modeling; decision making; Markov chain

MSC: 90c40

1. Introduction

Any production system consists of different parts required to function well, to produce
without losing performance. Over time, however, breakdowns might happen to any part
of a system, which is unavoidable. These breakdowns might interrupt the production
process and prevent meeting production goals, which might also lead to losing demand
or profitability opportunities in the state where the product is demanded [1]. Accordingly,
the malfunctioning time of systems must be minimized. To minimize system breakdown
time, spare parts must be accessible. On the other hand, buying and storing spare parts is
often costly, and these parts are especially vulnerable to obsolescence risk [2]. As a result,
good spare part inventory management is critical in managing system costs. Furthermore,
there are only a few suppliers of specialized spare parts. Indeed, if the main supplier does
not provide spare parts or if supplies are disrupted, the part must be supplied by another
supplier [3]. This issue raises the price considerably and lengthens the delivery time.

Since single sourcing is rigid and supplier reliance is high, supply chain managers
employ multiple sourcing to reduce costs and mitigate operational risks by using different
supplier characteristics. Additionally, since it is hard to find the best replenishment ap-
proach for a multi-supplier model, practitioners and academics have long been interested
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in how to best execute and coordinate replenishment and inventory management with
many varying supply alternatives [4].

Multiple sourcing is a broad term that may relate to any inventory system or replenish-
ment decision issue in which two or more supply sources, transportation modes, delivery
alternatives, or transit speeds must be chosen [5].

Many firms maintain many inventory items in practice, and scientific procedures
and tools are required to efficiently handle such a large number of inventory items [6].
As a result, researching the multi-product inventory management issue has real-world
implications and is still a difficult topic to solve today. The multi-product inventory issue
is now receiving a lot of attention [7]. In most states, however, it is possible to purchase
elsewhere, from an emergency supplier; for example, the desired part could be available in
another company’s warehouse. Accordingly, it is vital to consider supplier disruption as a
critical component of inventory management [8]. As a result, one of the most important
tools for dealing with supply disruptions is proper inventory management. For proposed
and regular control of orders and inventories, obtaining values of two main parameters,
including the amount of each order time and suitable date of order, is usually paramount [9].
Different orders and inventory control systems must be designed in a structure consistent
with each industry’s conditions to respond to the two factors mentioned above. It is evident
that numerical values of the above parameters depend on several factors, including different
inventory costs, consumption rate, certain or probabilistic (stochastic) consumption, and
the required level of reliability to keep an inventory of any specific commodity [10,11]. They
also depend on constraints acting on an industrial unit. Based on these factors and their
impact on an industrial unit, different inventory control systems for various commodities
at a time are defined.

As a result, order systems are classified into two categories: order point systems
and periodic order systems. Several parameters, such as demand, demand locations, and
the ability of centers to provide service and their usable capacity, were not accurately
predictable due to the uncertain nature of some significant supply chain factors. As an
outcome, effort is made to employ some techniques that take these uncertainties into consid-
eration as much as possible while providing demanders with a high-quality response [12].
Efficient and perfect supply chains are more subject to disruption, and efficiency and risk
are inversely correlated. Organizations cannot merely focus on cost reduction for a long
time, and supply chain investors must pay attention to how these capitals and changes
affect the disruption in the supply chain [13]. Besides, the studied disruptions are often
general and do not take account of specific conditions and the reason behind the occurrence
of disruption, while considering that these issues can significantly contribute to the selected
strategy to reduce the effects and tackle the disruption [14].

Nowadays, according to current competitive conditions, companies try to reduce their
inventory level to reduce their costs. In inventory management and control of organizations,
there must be a balance between spare part inventory level and cost and risk imposed by
lack of spare parts when demanded. It is obvious that this spare part inventory level is
affected by the device’s properties and reliability [15].

Most previous studies have considered inventory maintenance with an assumption of
unlimited access to spare parts [10]. Considering that this assumption increases inventory
costs, the costs can significantly be reduced by considering an optimal spare part inventory
level [16].

Polito and Watson [17] developed a model that may be used to create a multi-echelon
and multi-product distribution system. In a multi-product and multi-period inventory
control, Moin and co-workers [18] looked at the optimum ordering amount. Pal [19]
presented a stochastic inventory model with product recovery and inspection policy is
incorporated for lot-sizing.

Murray et al. [20] studied a price-setting and multi-product newsvendor with mod-
erate assets capacity. Choi and Ruszczyski [21] used a risk aversion hypothesis in their
multi-product inventory model; however, their model also considered independent product
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requirements. Over the past few years, many researchers have prioritized the multi-product
inventory model in their studies. Ramkumar and coworkers [22] suggested a mixed-integer
linear programming explanation to unravel this problem. Hosseinifard [23] devised a linear
penalty/bonus system to estimate optimal stocking resolution for choosing a strategic
supplier by utilizing the stochastic dynamic programming technique.

Sokolinskiy [24] suggested a stochastic optimization method for endogenous demand
and inventory management regarding the inspection of the function of client defections and
referrals. Mjirda [25] presented a two-phase variable neighborhood technique for solving
the problem, while Coelho [26] proposed a branch-and-cut approach. Even though the
prior models have assisted in the evolution of the operation theory for the multi-product
inventory control issue, their optimum policy for the multivariate Markov demand perspec-
tive is still missing. Sethi and Cheng [27] investigated the state-dependent policies of the
inventory by using Markov-modulated lost and demand sales. Gharaei [28] offered a math-
ematical model utilizing mixed-integer nonlinear programming for minimizing the total
costs of both buyers and the vendor and optimal batch-sizing policy by taking into consid-
eration the algorithm of augmented penalty. Khaniyev and Aliyev [29] utilized their model
in order to evaluate state-dependent policies with the asymptotic behavior of the ergodic
distribution of the process. The optimum inventory model that has a limited capacity and
rather observable Markov-modulated supply and demand procedures were investigated
by Arifolu [30] and Ozer and Atali [31] using Markov-modulated production and demand
quantity requirements to study a two-stage multi-item manufacturing system. Ahiska [32]
investigated the case of an uncertain source and managed to develop a stochastic inventory
approach based on a Markov decision processes. Parker and Olsen [33] devised a Markov
equilibrium technique in inventory competition under dynamic circumstances while as-
suming that the equilibrium in a fixed infinite-horizon is a Markov perfect equilibrium.
In addition, Barron [34] studied a make-to-stock inventory/production system that was
exposed to accidental conditions with moderate storage capacity and restrained backlog
chances, while supposing that the entry of demand pursues Markov additive processes
guided through continuous-time Markov chains. However, the theory of the Markov chain
is utilized in all the aforementioned literature, all of which solely deals with a single item
or multiple items with independent demand. Luo [35] proposed a single-product mathe-
matical model for controlling and predicting inventory systems, which includes a stable
and unstable supplier. Asadi [36] investigated a stochastic model to control inventory with
respect to the Markov chain. According to the complexities of the proposed model, they
employed two approaches, including a heuristic benchmark policy and a reinforcement
learning method, to solve their model. Ye [37] proposed an MINLP mathematical model
for determining optimized inventory policy under disruption according to the Markov
chain. They employed a two-stage algorithm to solve their complex model. Chin [38] used
the Markov chain in MINLP mathematical model for determining optimized long-term
policy. Patriarca [39] presented a Multi-Echelon Technique for inventory of Recoverable
Item Control (METRIC) to investigate the potential use of a Weibull distribution for mod-
elling items’ demand in case of failure. Milewski [40] focused on the economic efficiency of
decentralized and centralized inventory strategies of distribution products in terms of both
internal efficiency of firms and external costs of logistics processes.

In line with the studies conducted over the past years in this field, research gaps
in the studies carried out by researchers remain. Most of the research focused on one
supplier and one product, while in real world cases, there are more suppliers considering
their situations (reliable–unreliable) that provide a variety of products [36]. It is critical to
include exploring the interdependencies between up/down probabilities for the unreliable
supplier across periods. Moreover, investigating the performance of different optimization
methods to find more suitable methods to solve inventory models is vital [38]. Uncertainty
in demand and other parameters, which has an undeniable effect on the models, is not
widely considered [35].
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Therefore, this study aims to propose a multi-product mathematical model to deter-
mine optimal inventory policy by considering the Markov chain. Moreover, two reliable
and unreliable suppliers with disruption probability in the supply chain were also taken
into account. The demand for all products will also be uncertain. Given that the proposed
model will be highly complex, several meta-heuristic methods will be proposed to solve the
problem. In order to assess the model better, a state study is also implemented, and the best
assessed meta-heuristic method is employed to solve it. More specifically, in this research,
Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Moth–Flame Optimization (MFO)
Algorithm, and Differential Evolution (DE) Algorithm are applied to solve the model
faster and more accurately. To evaluate their efficiency, two factors including numbers of
iterations and spent time are investigated to discover which solution method is more useful
to solve the inventory models.

Table 1 shows this research’s contributions in comparison to the most recently pub-
lished articles which are completely relevant to this paper. Regarding all these gaps
reviewed, the present research aims to cover these neglected concepts in mathematical
inventory models. In what follows, some important innovations of the research are stated:

• Design of a mathematical model for determining optimized multi-product policy with
the Markov approach, designing a novel mathematical model to optimize multi-product
inventory control considering the Markov system under disruption and uncertainty;

• Considering lead time as an objective function;
• Considering two reliable and unreliable suppliers with different costs and delivery times;
• Using four meta-heuristic methods to estimate their performance to solve a real case

inventory model;
• Considering uncertainty in demand;
• Proposing a state study in the production of automobile spare parts.

Table 1. Previous Articles.

Research Year Multiple
Sourcing

Unreliable
Supply

Multiple
Periods Optimality Multi

PRODUCT
Markov
Chain Disruption Uncertainty

Sha Luo
et al. 2021 - - - -

Hon Huin
Chin et al. 2021 - - - - -

Sha Luo
et al. 2021 - - - -

Patriarca
et al. 2020 - - - Scenario

Based -

Yixin Ye
et al. 2020 - - - Two-phase

algorithm - -

Asadi et al. 2020 - - Heuristic
Method - - -

This
Research

Four Meta
Heuristics

2. Materials and Methods

One retailer and two kinds of suppliers are assumed in this research; one is reliable, and
the other one is unreliable, providing the demanded item at a lower price compared with
the reliable supplier. The following method specifies an unreliable supplier’s accessibility
process. The status for an unreliable supplier can be “appropriate”, which means they can
take orders, or the status can be “inappropriate”, which means they are not taking orders.
Based on the inventory, the retailer demands the preferred price from a single supplier or
both of them. The unreliable supplier’s status and circumstances are dependent on the
demands at the start of each time period. An order that was made at the start of a time
period will be shipped at the end of that time period. A certain delivery and specified
value at the end of the time period are guaranteed for the reliable supplier. An unreliable
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supplier cannot take orders from the retailer if it is not currently at an appropriate status.
An unreliable supplier’s status is specified after the demand. If the appropriate status
changes to inappropriate at the final days of the time period, the order will be canceled,
otherwise, the unreliable supplier will deliver the order. In the case of an order to an
unreliable supplier, the fixed ordering fee (internal running cost of constructing an order)
is reimbursed at the time of the delivery.

Demand during a period is independently and equally divided between distributers.
Demand and system cost parameters are constant and do not change over time. Any unit
in the inventory during a period has a maintenance cost. If the inventory is available, each
required unit on the unit will be subtracted from the inventory. Otherwise, the demand
is reordered and restored. Any demand higher than this limit is missed, and the missed
selling cost is imposed on the retailer. The constraint that acts as the lowest limit in the
inventory limits this problem to a Markov chain process model, which can be solved by
overloading computation.

The activities that are carried out in a period are listed as follows:

• The system status depends on inventory at the beginning of the period;
• Making a decision regarding the amount of order;
• Demand is dispatched during the period and happens from the beginning of the

inventory time period;
• The order dispatched to an unreliable supplier is received at the end of the period;
• The status of unreliable suppliers is determined at the end of the period;
• The cost of missed order demand is calculated.

2.1. Mathematical Modelingl

The presented mathematical model in this research aims to determine order strat-
egy, such that the total expected cost for any period is minimized, which includes the
following states:

• Order cost is fixed and is paid to each one of the suppliers for each dispatched order;
• The number of order units (number of buying); in the research problem, it is assumed

that the number of made orders is a linear function;
• Maintenance cost; the cost of each unit for the unreliable supplier is less than the

reliable supplier;
• The cost of missed sales is considered in the number of missed sales as a linear function;
• Shortage is not allowed;
• Products are not independent of each other;
• Preparation time is considered a uniform distribution function.

2.1.1. System Status

According to the mentioned states, the system status is displayed as S = (I, J), where
I indicates inventory level and J is supplier status. J has values equal to one or zero, which
indicate appropriate or inappropriate supplier status, respectively. The inventory level of
retailers is between Imin ≤ I ≤ Imax and Imin > 0, and +∞ > Imax indicates the capacity of
the retailer’s storehouse.

2.1.2. Decision Variables

Supposing that K = (ku, kr) vector equals the order amount to two studied suppliers,
and S = (I, J) is the status of the system, the value of the order to two suppliers is indicated
as As, whose value is determined according to the retailer’s storage capacity and the status
of the unreliable supplier, which is expressed as the following equation:

As =


(ku, kr) ku ≥ 0, kr ≥ 0, ku + kr ≤ Imax − I i f j = 0

(ku, kr) ku = 0, 0 ≤ kr ≤ Imax − I i f j = 1
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2.1.3. Transition Modes and Transition Probabilities

Two fundamental Markov chain processes describe the transition status. One is related
to unreliable suppliers and the other is related to inventory status. The first is independent
of the second.

ku : The number of orders to the unreliable supplier
kr : The number of orders to the reliable supplier

The status of an inappropriate supplier is controlled by a two-status Markov chain
process with transition probability matrix, W, where Wij indicates the probability of a
transition status of an unreliable supplier from i to j during a period. In particular, we
define α as the probability of an unreliable supplier from up to down (from an appropriate
status to an inappropriate status in demand-supply), from one period to the next, and β is
the probability of inappropriate status from down to up, from one period to the next.

W =
0
1

[
α 1− α
β 1− β

]
(1)

Demand at each period for each product equals Dm, whose occurrence probability is
indicated by PDm(dm) probability function. According to the system status, which is S(I, J)
at the beginning of the period, the demand value is defined according to K = (ku, kr),
which equals dm for each product. It is expressed as the following Equation when the
system status changes to S′ = (I′, J′) demand for different products according to unreliable
supplier status.

J = 0 : Status of the inappropriate supplier is appropriate.

J′ =
{

0
1

(2)

In Equation (2), if the supplier remains unreliable during the period, it equals 0.
Otherwise, it equals 1.

I′


max{I − d, Imin}+ ku + kr i f up

max{I − d, Imin}+ kr i f down
(3)

It is worth mentioning that when the status of the unreliable supplier changes from
appropriate to inappropriate, the value of the order to the unreliable supplier is canceled (ku).

J′ =
{

0
1

(4)

In Equation (4), if the status of the unreliable supplier changes from appropriate to
inappropriate during the period, it equals 0. Otherwise, it equals 1.

I′ = max{I − d, Imin}+ kr (5)

2.1.4. Markov Process, Markov Chain, and Markov Property

The Markov property, often known as the non-aftereffect property, specifies that the
process state is known at a certain time t. At the point t1 > t, the state at time t1 is unrelated to
the conditional probability distribution and is only concerned with the condition at time t [41].

The conditional probability distribution (CPD) function, which can be represented as
follows, is used to explain the Markov property [42]:

The random process {X(t), t ∈ T} has a state-space of I. If, at any point n in time t,
that is t1 < t2 < . . . < tn , n ≥ 3, ti ∈ T, and under the X(ti) = xi. xi ∈ I. i = 1, 2, . . . , n− 1



Mathematics 2023, 11, 42 7 of 19

condition, then the CPD function of X(tn) equals the conditional distribution function
X(tn) under the X(tn−1) = xn−1 condition:

P
{

X(tn) ≤ xn|X(t1) = x 1, |X(t2) = x 2, . . . , |X(tn−1) = x n−1
}

= P
{

X(tn) ≤ xn|X(tn−1) = x n−1
}

, xn ∈ R (6)

The process {X(t), t ∈ T} is known as a Markov process because it possesses the
Markov property. A Markov chain is a Markov process with discrete state and discrete
time in general. The following is how mathematical terminology describes it [43].

The random process {X(t), t ∈ T} has a state-space of I. It meets the following criteria
for all m non-negative integers n1, n2, . . . , nm(0 ≤ n1 < n2 < . . . < nm), any natural number
k and any i1, i2, . . . , im, j ∈ I:

P{X(nm + k) = j, |X(n1) = i1, X(n2) = i2, . . . .X(nm) = im } = P{X(nm + k) ≤
j|X(nm) = im }

(7)

The stochastic process {X(t). t ∈ T} is known as the Markov chain.

2.1.5. Transition Probability

The random process {X(t), t ∈ T} has a state-space of I. Additionally, the probability
of an n-step transition of the time m is defined as the likelihood that the model is moved to
the state j via n steps when the system is in the state I at time m, as indicated below:

p(n)ij (m) = P{Xm+n = j|Xm = i}; i, j ∈ I (8)

When n = 1, p(n)ij (m) may be denoted as pij, and the transition probability of the
Markov chain is called pij.

The transition probability p(n)ij (n) satisfies the two features listed below:

p(n)ij (n) ≥ 0; i, j ∈ I (9)

∑j∈I p(n)ij (m) = 1; i ∈ I (10)

The literature theorem proves that the Chapman Kolmogorov formula is satisfied by
the n-step Markov chain transition probability, i.e., for each positive integer h, l:

ph+l(n) = P(h)(n)P(l)(n + h) (11)

A recursive technique may be used to generate the following equation:

p(h) = (p)h (12)

A single-step transition matrix may be used to immediately create a matrix of Markov
transition from Equation (7), offering a straightforward way of calculating the transi-
tion probability.

2.1.6. The Markov Chain’s Ergodic Property

If there is a transition probability limit of the Markov chain which is unrelated to i,
then the ergodic property of the Markov chain is

lim
k→∞

pij(k) = pj; i, j ∈ I (13)

Furthermore, it can be shown that for each i, j ∈ I; j = 1, 2, . . . , N, there is pij(k) > 0,
i.e., the Markov chain is ergodic. Moreover, the limit distribution π = (π1, π2, . . .) is the
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only solution to the equations πi = ∑N
i=1 πi pij(namely π = πP) under the conditions of

πj > 0, ∑N
j=1 πj [42].

2.2. Solution Methods

In this section, four solution methods are presented and described briefly which
are applied for solving the mathematical model. The solution methods include Genetic
Algorithm (GA), Differential Evolution (DE) Algorithm, Grey Wolf Optimizer (GWO) and
Moth–Flame Optimization (MFO) Algorithm.

2.2.1. GA Solution Method

Genetic algorithm is a natural-principles-based heuristic evolutionary solution ap-
proach that may be used to solve hybrid search and optimization problems. There are
two types of GA: continuous and binary GA. The algorithm’s whole set of rules may be
found in [40].

2.2.2. DE Solution Method

Mutation, initialization, recombination, selection, and crossover are the five major
processes in this method [41]. The starting parameter is haphazardly set in specific regions,
containing lower bounds and upper bounds, to be optimized by the variables in the
initialization process. Furthermore, both the recombination and mutation processes are
aimed at producing a number of population vector trails. Additionally, the crossover aims
to arrange a parameter value crossover vector that is replicated on two vectors, the mutation
vector and the original vector. The next step, the selection process, is used to separate the
vectors so that they may be utilized as the population for further iterations [44].

2.2.3. GWO Solution Method

The Grey Wolf method is based on the grey wolf’s natural leadership hierarchy and
hunting process. To imitate the leadership system, four sorts of grey wolves are used: delta,
omega, beta, and alpha. Furthermore, the key processes of hunting are supposed to be
seeking prey, surrounding the prey, and assaulting the prey in this algorithm. Mirjalili [34]
goes into detail about this method. As a consequence, while configuring the algorithm, the
agent’s number is assumed to be 6, and the findings are verified using the benchmark test
performer, which is specified in [45].

2.2.4. MFO Solution Method

The Moth Flame method is a night-time moth fly behavior-inspired optimization
approach. Mirjalili [45] explains how this optimizer was inspired by transverse orientation.
The benchmark test function, which is specified as F8 [35], is used to verify the findings,
and the dimensions’ number in this optimization is regarded to be six for this approach.

3. Results

The input values to the model are collected based on the case study of the South Pars
Complex Company. The model we are discussing is a two-level supply chain under a
vendor inventory management strategy. A number of retailers, each of which has a definite
demand, at regular intervals, order a fixed amount of a type of product to the seller. In
other words, the demand of retailers is discrete and the period that this demand is met
at the beginning of each period. For direct delivery of these orders from the seller to the
retailers, there are different schedules. The seller also orders a fixed amount to the main
supplier at specified intervals to meet the retailers’ demand. In Table 2, the input values of
the parameters of each product are presented separately. In order to model the uncertainty
in procurement time for eight products, procurement time is considered as the probability
function in Table 3.
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Table 2. Products and their input value.

Products Tag CUm Crm fm hm Im Lm

Electromotor E1 8500 9500 50 4 2 0

Right gearbox E2 250 280 43 5 3 0

Turbocharger E3 1400 1480 45 2 4 0

Left gearbox E4 250 275 65 7 3 3

Controller E5 15,000 16,500 55 6 5 5

Pressure measuring tool E6 1400 1470 43 8 3 5

Flow intensity measuring tool (E7) E7 780 820 48 4 5 0

Flow level measuring tool (E8) E8 920 975 46 5 3 0

Table 3. Average and variance of products demand.

Products Variance (Min) Average (Min)

Electromotor (E1) 2 10

Right gearbox (E2) 1 15

Turbocharger (E3) 3 14

Left gearbox (E4) 2 13

Controller (E5) 1 5

Pressure measuring tool (E6) 1 7

Flow intensity measuring tool (E7) 1 10

Flow level measuring tool (E8) 6 13

For solving the presented mathematical model, a Dell laptop with 8Gig RAM, Intel
Core i7 CPU and Microsoft Win10 is used. Moreover, coding and model solving by
metaheuristic methods are performed in MATLAB software. Moreover, to achieve the
exact and optimum solution, small size and medium size problems are solved by GAMS
software and CPLEX solver. Before solving the real case study, which is a complex model,
to validate the solving methods, the model is solved based on some small and medium
size problems. To do so, the model is solved with small and medium problems by four
mentioned meta-heuristic solution methods and the exact solution of CPLEX to compare
their performance by the exact method. As shown in Table 4, all of metaheuristic methods
run the problems with marginal variation. However, regarding the Figure 1, the GWO
method was able to find the best answer with minimum variation.
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Table 4. Optimal value of meta-heuristics methods and exact methods.

Optimal Value and Variation

Sample problem CPLEX GA Variation MFO Variation GWO Variation DE Variation
Small problem No. 1 722 719 0.004155 721 0.001385 722 0 723 −0.00139
Small problem No. 2 459 460 −0.00218 459 0 459 0 459 0
Small problem No. 3 625 625 0 624 0.0016 624 0.0016 623 0.0032

Medium problem No. 1 1335 1337 −0.0015 1334 0.000749 1335 0 1334 0.000749
Medium problem No. 2 3779 3786 −0.00185 3779 0 3778 0.000265 3777 0.000529
Medium problem No. 3 4403 4400 0.000681 4401 0.000454 4403 0 4405 −0.00045

After performance evaluation of the meta-heuristics methods, they are applied to
solve the real case model to optimize a complex problem. Output data which are generated
by the mentioned solution methods are investigated.

As can be seen in Figures 2 and 3, the GWO algorithm demonstrates a more proper
answer compared to the other optimization methods. The preparation time and the financial
costs have been considered in the optimization, where the optimization of each is not
sufficient, and both factors should be taken into consideration together. The MFO, GWO
and DE algorithms obtained the best cost function, but there is a difference in the lower
convergence time of the GWO algorithm. The maximum passed the time for the executed
algorithms is relevant to the GA with the maximum spent time.
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As can be seen from Figure 1, the convergence of the objective function for different
solution methods is such that in the sixth iteration none of them were able to converge
continuously. In the sixth iteration, the GWO algorithm was able to reach an acceptable level
of convergence, and in the seventh iteration, it was also able to maintain this convergence.
The MFO algorithm, which had the worst result of all the algorithms in the first iteration,
converged very quickly in the next iterations, and finally in the eighth iteration, it converged
faster than the other two algorithms. On the other hand, the two MFO and GWO algorithms,
which performed better in convergence, recorded almost the same time in the first iteration.
It was GWO that recorded the shortest convergence time. The GWO algorithm not only
performed better in convergence, but was also able to do so in less time.
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Before providing the optimal value for each introduced product, defining some expla-
nations regarding the different transition states is required. As discussed in the model of
the research problem in Section 2, there are two states for ordering the products.

• First state: When the unreliable supplier state is improper, all demands are supplied by
the reliable supplier in entire states. With respect to the policy, we have the following:
The orders level is equal to the maximum inventory level of the products that the
reliable supplier can supply; if the demand exceeds the supply capacity, the demands
are retarded.

• Second state: When the unreliable supplier is in the proper situation, the four following
states will occur:

# State 1: With respect to the lower supply cost of the unreliable supplier, the
demands are supplied merely from one supplier. With respect to the ordering
policy, the maximum order level could be supplied.

# State 2: The demand should be satisfied from both suppliers. In this state, if
the demand is lower than the capacity of the reliable supplier, the remaining
demands from the unreliable supplier are satisfied to the level.

# State 3: The required demands are supplied from the two suppliers. In this state,
before the demand, each supplier’s inventory is investigated. Then, concerning
the available inventory level, the two suppliers supply the required demand.

# State 4: The demand is supplied merely from the reliable supplier.

With respect to the defined states above, Tables 5–12 demonstrate the results of inves-
tigating each aforementioned state.

With respect to Tables 5–12 addressing the optimal policies of each different state, we
conclude the following from the indicated Tables.

• Given that the reliable supplier in the state four supplies all spare part demands, the
demand is missed in several states, which imposes a cost on the system. This increase
in the cost indicates its effect on the whole system, as shown in Table 11.

• In the third state, given that inventory of both suppliers is examined before making
an order, the missed sale cost is zero. The total system cost is insignificant in this
state compared to the fourth state. The only advantage of this state is the lack of
missed sales.

• Since a reliable supplier first supplies the demands, maintenance cost is reduced in
the second state. Accordingly, as indicated in Table 11, the system cost is reduced
significantly compared to the third and fourth states.
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• In this state, given that unreliable suppliers supply all demands, the probability of
missed sales is increased. However, due to the low cost of buying from this supplier,
the total cost of this state is significantly lower than the previous state.

Table 5. Optimal ordering policies for product (E1).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 4 4 3 5 0/1 1 4 3 - - - -

0/2 4 - - 5 4 6 2 0/2 1 2 7 - - - -

0/3 4 - - 6 8 4 4 0/3 1 4 4 - - - -

0/4 3 4 5 - - - - 0/4 2 7 9 7 12 4 4

0/5 3 - - 4 6 2 6 0/5 2 4 8 11 9 5 3

0/6 3 9 13 - - - - 0/6 2 3 5 7 12 4 4

0/7 2 8 12 7 12 4 4 0/7 2 5 7 11 9 5 3

0/8 2 8 13 11 9 5 3 0/8 3 - - 5 4 6 2

0/9 1 5 4 - - - - 0/9 3 5 4 - - - -

1 1 6 8 - - - - 1 3 - - 4 6 2 6

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

9500 1 7600 4500 - - - - 8500 1 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

4 2 3 2 1 3 3 2 50 2 55 45 44 34 34 22

Table 6. Optimal ordering policies for product (E2).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 4 3 5 4 0/1 1 6 9 - - - -

0/2 4 - - 4 6 2 4 0/2 1 5 9 - - - -

0/3 4 - - 8 4 4 8 0/3 1 1 3 - - - -

0/4 3 6 7 5 7 7 10 0/4 2 2 8 12 7 12 4

0/5 3 7 9 - - - - 0/5 2 2 8 13 11 9 5

0/6 3 4 8 - - - - 0/6 2 2 8 12 7 12 4

0/7 2 4 3 6 9 4 12 0/7 2 2 8 13 11 9 5

0/8 2 4 6 5 6 4 9 0/8 3 - - 4 8 3 7

0/9 1 8 4 - - - - 0/9 3 - - 3 6 4 8

1 1 4 3 - - - - 1 3 3 6 - - - -

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

280 1 255 240 - - - - 250 1 220 215 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

5 2 5 8 5 9 4 7 43 2 44 67 34 41 25 35
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Table 7. Optimal ordering policies for product (E3).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 2 7 9 7 0/1 1 2 7 - - - -

0/2 4 - - 2 4 8 11 0/2 1 2 4 - - - -

0/3 4 - - 2 3 5 7 0/3 1 2 3 - - - -

0/4 3 - - 2 5 7 11 0/4 2 2 5 2 7 9 7

0/5 3 - - 2 7 9 7 0/5 2 2 7 2 4 8 11

0/6 3 - - 2 4 8 11 0/6 2 2 4 2 3 5 7

0/7 2 2 7 9 7 12 4 0/7 2 2 3 2 5 7 11

0/8 2 2 4 8 11 9 5 0/8 3 2 5 - - - -

0/9 1 2 7 - - - - 0/9 3 2 7 - - - -

1 1 2 4 - - - - 1 3 2 4 - - - -

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

1480 1 1400 1470 - - - - 1400 1 1270 1380 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

2 2 2 5 3 4 5 9 45 2 30 35 34 40 45 55

Table 8. Optimal ordering policies for product (E4).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 3 7 9 3 0/1 1 3 7 - - - -

0/2 4 - - 3 4 8 3 0/2 1 3 4 - - - -

0/3 4 - - 2 4 3 2 0/3 1 2 4 - - - -

0/4 3 3 7 - - - - 0/4 2 2 4 3 7 9 3

0/5 3 3 4 - - - - 0/5 2 1 8 3 4 8 3

0/6 3 2 4 - - - - 0/6 2 1 4 2 4 3 2

0/7 2 2 7 9 7 12 4 0/7 2 3 7 2 4 6 2

0/8 2 2 4 8 11 9 5 0/8 3 3 7 - - - -

0/9 1 3 7 - - - - 0/9 3 - - 3 7 9 3

1 1 3 4 - - - - 1 3 - - 3 4 8 3

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

275 1 3 7 - - - - 250 1 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

7 2 3 7 9 3 7 9 65 2 35 45 34 44 51 55
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Table 9. Optimal ordering policies for product (E5).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 2 7 9 7 0/1 1 8 11 - - - -

0/2 4 - - 2 4 8 11 0/2 1 5 7 - - - -

0/3 4 - - 2 3 5 7 0/3 1 7 11 - - - -

0/4 3 2 7 - - - - 0/4 2 2 7 9 7 12 4

0/5 3 2 4 - - - - 0/5 2 2 4 8 11 9 5

0/6 3 2 3 - - - - 0/6 2 2 3 5 7 12 4

0/7 2 2 5 2 7 9 7 0/7 2 2 5 7 11 9 5

0/8 2 2 7 2 4 8 11 0/8 3 8 11 - - - -

0/9 1 2 4 - - - - 0/9 3 5 7 - - - -

1 1 2 3 - - - - 1 3 - - 8 11 9 8

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

16,500 1 1600 16,500 - - - - 15,000 1 13,500 15,000 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

6 2 4 6 3 6 5 8 55 2 50 55 42 50 55 55

Table 10. Optimal ordering policies for product (E6).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 3 6 6 9 0/1 1 2 7 - - - -

0/2 4 - - 3 7 5 10 0/2 1 5 9 - - - -

0/3 4 - - 4 8 3 7 0/3 1 3 8 - - - -

0/4 3 4 8 - - - - 0/4 2 3 4 8 3 4 8

0/5 3 5 9 - - - - 0/5 2 3 5 9 3 5 9

0/6 3 5 8 - - - - 0/6 2 3 5 8 3 5 8

0/7 2 3 6 3 5 7 9 0/7 2 2 3 6 2 3 6

0/8 2 3 5 3 5 4 7 0/8 3 - - 3 4 8 3

0/9 1 2 8 - - - - 0/9 3 - - 3 5 9 3

1 1 2 6 - - - - 1 3 - - 3 5 8 3

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

1470 1 1400 1470 - - - - 1400 1 1365 1400 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

8 2 3 4 8 3 4 8 43 2 20 35 38 43 32 43
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Table 11. Optimal ordering policies for product (E7).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 3 4 8 3 0/1 1 3 6 - - - -

0/2 4 - - 3 5 9 3 0/2 1 3 7 - - - -

0/3 4 - - 3 5 8 3 0/3 1 4 8 - - - -

0/4 3 - - 2 3 6 2 0/4 2 3 6 6 9 3 6

0/5 3 - - 2 3 5 2 0/5 2 3 7 5 10 3 7

0/6 3 - - 1 2 8 1 0/6 2 4 8 3 7 4 8

0/7 2 3 6 1 2 6 1 0/7 2 3 6 6 9 3 6

0/8 2 3 7 3 4 8 3 0/8 3 3 6 - - - -

0/9 1 4 8 - - - - 0/9 3 3 7 - - - -

1 1 5 9 - - - - 1 3 4 8 - - - -

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

820 1 800 820 - - - - 780 1 700 780 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

4 2 3 6 6 9 3 6 48 2 40 42 38 42 28 39

Table 12. Optimal ordering policies for product (E8).

α
Proper Improper

β
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

0/1 4 - - 3 6 6 9 0/1 1 3 6 - - - -

0/2 4 - - 3 7 5 10 0/2 1 3 7 - - - -

0/3 4 - - 4 8 3 7 0/3 1 4 8 - - - -

0/4 3 3 6 - - - - 0/4 2 3 6 6 9 3 6

0/5 3 3 7 - - - - 0/5 2 3 7 5 10 3 7

0/6 3 4 8 - - - - 0/6 2 4 8 3 7 4 8

0/7 2 3 6 3 6 6 9 0/7 2 3 6 6 9 3 6

0/8 2 3 7 3 7 5 10 0/8 3 - - 3 6 6 9

0/9 1 4 8 - - - - 0/9 3 - - 3 7 5 10

1 1 3 6 - - - - 1 3 - - 4 8 3 7

Cr
Proper Improper

Cu
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

975 1 900 965 - - - - 920 1 880 900 - - - -

h
Proper Improper

f
Proper Improper

State su Su sr Sr sr Sr State su Su sr Sr sr Sr

5 2 2 5 3 4 2 4 46 2 20 30 40 45 35 40



Mathematics 2023, 11, 42 16 of 19

According to both the defined states at the beginning of the problem and the optimal
values based on the ordering policies indicated in Tables 5–12, the optimal value for all of
these products is indicated according to four states in Table 11. According to Table 13, it is
evident that the fourth state imposes the maximum cost on the system since, as mentioned
earlier, the orders are supplied by reliable suppliers in this state. Accordingly, due to the
difference in costs between two suppliers (the cost of buying a product from a reliable
supplier is greater than buying a product from an unreliable supplier), this cost is greater
than other states.

Table 13. Optimal cost values for each spare part.

Product
State

1 2 3 4

E1 68,054 73,050 76,050 76,062

E2 2058 2133 2043 2293

E3 8449 8605 8445 8931

E4 1815 1915 1990 1999

E5 135,055 142,555 148,555 148,580

E6 11,243 11,523 11,243 11,818

E7 3948 4028 4148 4168

E8 3736 3891 3726 3951

Total sum 234,358 247,700 256,200 257,802

Based on the final reports, when it comes to reliable supplier disruption under un-
certain conditions, there is no choice but to order from the unreliable supplier to meet
demands. It is obvious that the cost of unreliable resources is higher that reliable one and
the delivery time is less reliable. However, the company will consider these flaws and
use the unreliable supplier to meet the demands of critical spare parts, since the waiting
time for a comeback of the reliable supplier is not neglectable and the time lost due to the
disruption causes the loss of demand.

4. Conclusions and Future Work

Planning and control of inventories are essential activities in supply chains and logistic
systems. Hence, various studies and research have been conducted in this field. In terms of
supply and demand, the issues in inventory planning are divided into two categories. The
first category is inventory control, along with determining price. In conventional methods,
determining price is the responsibility of the operational section, and pricing policies are
separately determined by the marketing section. However, in order to maximize total profit,
the policies and pricing must simultaneously be taken into account. Indeed, determining
a suitable price is a complicated process, and organizations must have knowledge of
operational costs, current customers, and future demand to be able to adjust and balance
prices with minimum costs.

The second category is multi-objective models. Most of the inventory models cover
the concept of different costs and services in one objective, and conventional methods are
employed to solve them. On the other hand, one of the known features of trade in today’s
world is a variety of decision-maker wishes. In multi-objective problems, the decision-
maker aims to simultaneously maximize or minimize two or several objectives. This type
of model has been employed in various fields, while few multi-objective problems have
addressed inventory control.

In this study, the inventory model is designed under the disruption condition of
suppliers for supplying critical spare parts based on the Markov chain process model.
Logistic time, time horizon, and shortage are considered probable, limitless, unallowed,
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and completely restored. Demand is considered as a function of price. The proposed
model is complex. Accordingly, the optimal system cost, ordering policies, and reorder
point must be determined. Moreover, a real state study and sensitivity analysis were
carried out on the main parameters of the model. Since most of the previous research
applied simple optimization methods, this paper decided to implement four different
meta-heuristic algorithms to solve the mathematical mode. Based on the output, all four
methods work well, though the GWO method was the best method to solve the inventory
policy decision making model. Moreover, contrary to the articles that emphasized the use
of reliable suppliers, outputs of this research show that under uncertain conditions and
disruption of reliable suppliers, it is not possible to meet all demands just by relying on
reliable suppliers, because the waiting time for a comeback of the reliable supplier is not
neglectable and the time lost due to the disruption causes the loss of demand. Regarding
the optimal value of variables in presented tables, it is clear that companies should consider
the unreliable supplier when the reliable one is under disruption, even if this approach
costs more.

This article attempted to cover neglected aspects to improve previous research; how-
ever, there were some barriers in addressing all of the neglected concepts. This research
does not have access to long-term data to plan for long horizon planning. Considering
uncertainty in some parameters such as delivery time of goods and transportation capacity
requires a more comprehensive mathematical model. Moreover, four meta-heuristic meth-
ods are applied to solve the model which work well, however a heuristic method might be
much useful to solve the mathematical optimization in this case.

In future research, other probability approaches can be employed. This combined
Fuzzy and artificial intelligence approach can be employed, and the results can be com-
pared. Moreover, a robust approach can also be used for allocation and consistency with
uncertainty. In the present study, the correlation between uncertain demand and buying
price is neglected. One of the essential problems in demand prediction is taking into ac-
count the interaction between demand and price. Given that demand is assumed uncertain,
the assumed distribution parameters of demand can be included in the model as a function
of the sales price. The function that expresses the demand distribution parameters in terms
of price can be linear or non-linear. Moreover, modeling the problem as hierarchical and
comparing weaknesses and strengths with an integrated approach. Modeling the problem
with respect to other objectives, such a minimizing change in human force, minimizing
greenhouse gas emission and industrial waste, can be considered in future research.
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