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Abstract: Since the accurate prediction of porosity is one of the critical factors for estimating oil and
gas reservoirs, a novel porosity prediction method based on Imaged Sequence Samples (ISS) and a
Sequence to Sequence (Seq2Seq) model fused by Transcendental Learning (TL) is proposed using well-
logging data. Firstly, to investigate the correlation between logging features and porosity, the original
logging features are normalized and selected by computing their correlation with porosity to obtain
the point samples. Secondly, to better represent the depositional relations with depths, an ISS set is
established by slidingly grouping sample points across depth, and the selected logging features are in
a row. Therefore, spatial relations among the features are established along the vertical and horizontal
directions. Thirdly, since the Seq2Seq model can better extract the spatio-temporal information of the
input data than the Bidirectional Gate Recurrent Unit (BGRU), the Seq2Seq model is introduced for
the first time to address the logging data and predict porosity. The experimental results show that it
can achieve superior prediction results than state-of-the-art. However, the cumulative bias is likely to
appear when using the Seq2Seq model. Motivated by teacher forcing, the idea of TL is proposed to
be incorporated into the decoding process of Seq2Seq, named the TL-Seq2Seq model. The self-well
and inter-well experimental results show that the proposed approach can significantly improve the
accuracy of porosity prediction.

Keywords: porosity prediction; deep learning; transcendental learning; imaged sequence samples;
logging data

MSC: 68T07

1. Introduction

As one of the critical indicators in petrophysics, porosity is a measure of the pore space
in reservoir rocks, which can represent the reservoir’s oil and gas content [1,2]. Therefore,
predicting porosity is crucial for calculating oil reserves, organizing field development,
maximizing oil recovery, etc. [3]. The traditional core porosity measurement is performed on
the core extracted by logging in the laboratory [4]. Nevertheless, it is challenging to provide
continuous rock porosity over a large depth range since experimental procedures are time-
consuming, expensive, and only limited assessment data at discrete sample locations can
be obtained [5]. The logging data are the most prevalent type of information in the oil and
gas field. The data are generally continuous throughout the well, accurate in depth, high in
resolution, complete in type, and easy to use [6,7]. With the development of various logging
equipment and logging techniques, the amount of geological information contained in
the logging data has increased exponentially. Porosity prediction using logging data has
become a research hotspot [8–10].

Statistical techniques in mathematics are usually used to analyze logging data and
reveal porosity trends in conventional methods. Gu et al. [11] built a porosity fitting model
by employing stepwise regression and N-way analysis of variance algorithms, respectively.
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A statistical approach combining N-way analysis of variance and multivariate linear fit-
ting (MLF) [12] was further proposed to inverse porosity only from logging source data,
which decreased its dependency on physical model parameters compared to the method
in [11]. However, reservoirs are typically characterized by geological heterogeneity, so the
obtained logging data are usually distributed in a spatially non-uniform and non-linear
pattern, which leads to a complex correlation between reservoir porosity and logging
features [13–15]. Common mathematical models have a limited capacity to create non-
linear mappings, and as a result, they cannot accurately capture the intricate geological
information inherent in logging data to some extent [16–18]. The use of ML on reservoir
data has yielded promising results [19–21]. Zou et al. [22] performed porosity prediction
using uncertainty quantification based on Random Forest (RF), which could achieve higher
regression efficiency. Yasin et al. [23] combined Support Vector Regression machine (SVR)
and a Particle Swarm Optimization algorithm (PSO) to forecast the lithology and porosity
distribution using both cable logging and core data, and achieved more stable prediction
results. Gamal et al. [24] developed an ANN model for building porosity prediction cubes.
Chen et al. [25] designed a back propagation neural network model optimized by a genetic
algorithm, which can optimize structural parameters and realize a global search for optimal
solutions by self-learning and self-adaptation.

Although machine learning techniques can establish nonlinear mappings, they have
limited learning ability, poor generalization ability, and are more sensitive to changes in
the data environment [26]. Therefore, it is commonly effective only for data with simple
relations, and cannot accurately describe the complex relations between porosity and log-
ging features. Deep learning is a new research field in machine learning motivated by
building deep neural networks that imitate the interpretive mechanisms of outer data in
the human brain, such as images, sounds and text [27]. A new direction for mathematical
research was provided by deep learning algorithms, and deep learning algorithms achieve
continuous innovation with the development of mathematics, algorithm theory and en-
gineering practice. There have been recent advancements in porosity prediction using
deep learning algorithms like Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), etc. [28–30]. In addition, strong continuity exists in original point samples
of logging data generally under the effect of stratigraphic deposition. According to this,
Feng [31] proposed a reservoir porosity prediction method based on CNN in which the
formation mechanism of reservoir pores is fully considered. Thus, the local intrinsic relation
of rock properties in a short term can be taken into account by the filter window to obtain
better predictive performance [32]. From the perspective of reservoir deposition continuity,
Wang et al. [33,34] viewed the logging data as time-series data in the vertical direction
and then used the RNN to learn the temporal correlations. It effectively compensated for
the deficiency of traditional depth network that could not provide contextual information.
On this basis, Wang et al. [35] further constructed a one-dimensional CNN to learn local
correlations and hierarchical correlations of logging data, and also built a Bidirectional
RNN (BRNN) to learn the tendency of features with depth and contextual information.
Although the aforementioned methods have improved the prediction effect to some extent,
they usually increase the computational complexity and are prone to overfitting when using
the point samples directly. The Seq2Seq network model [36] has an adaptable structure,
which means it can be fine-tuned to fit a wide variety of inputs and perform well in a
variety of prediction and classification tasks. Therefore, the Seq2Seq network based on
serial RNN is introduced first to predict the porosity in this paper.

To consider the relationship between the point samples fully, the sequence samples
are constructed to map reservoir deposition relationships in this paper. Furthermore, the
sequence samples of different logging features are ranged to form an ISS data. Thus,
horizontal inter-feature information and vertical depositional relationships are both char-
acterized by ISS, which can accurately represent the spatial dependency and coupling
relationships between sedimentary rocks.
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Although the better prediction effects are obtained using the Seq2Seq network, it has
been discovered that cumulative bias can easily occur in the Seq2Seq structure [37]. That
is, if an error occurs in a RNN cell, then this error is propagated to the following RNN
cells. Li et al. introduced the real label values directly under the guidance of the Teacher
Forcing (TF) strategy during training to alleviate the cumulative bias [38]. However, the
exposure bias arises during the prediction process since real porosity values of the testing
sample cannot be provided. To solve this problem, the TL module is proposed to assist
the TF in the Seq2Seq network. The concept of TL is derived from the Bayesian formula
in mathematics, in which the statistical results or prior experiences are taken into account.
The label semantic information and encoding information are considered in the proposed
TL module. Thus, a TL-Seq2Seq network, which is relatively less dependent on label
semantics, is constructed. When the network prediction deviates a lot from the real value,
the TL-Seq2Seq network can provide appropriate guidance to rectify the exposure bias.
In addition, it can also resolve the issue of cumulative bias.

The remaining sections of this paper are laid out as follows. Section 2 introduces
the original dataset and gives the experimental configuration and evaluation metrics.
Section 3 introduces the methodology for preprocessing the dataset and constructing the
ISS dataset. The structures of the Seq2Seq and proposed TL-Seq2Seq models are given, and
their performances are analyzed in Section 4. Section 5 performs parametric and ablation
experiments on the TL-Seq2Seq method and compares it with other methods. A summary
of the whole paper is provided in Section 6.

2. Data Preparation and Experimental Setup

(1) Original dataset

The dataset was obtained from the real logging data of wells Luo69 and Wang76 in
the exploratory zone of ShengLi Oilfield; the relative locations of the wells are shown
in Figure 1. In both wells, data are selected from the bathymetry of 1878.5–2905 m. A total
of 8000 samples are contained. Each logging dataset is divided into 16 segments, each of
which has 500 samples, as shown in Figure 2. From the first segment, a segment is taken
as the test sample every three segments (corresponding to the 1st, 4th, 7th, 10th, 13th, and
16th segments). In this way, the test set contains 6 well segments with a total of 3000 point
samples, and the remaining 5000 point samples (10 segments) are used as the training set.

Figure 1. Relative location of logs in the study area.

Figure 2. Dataset segmentation flowchart.
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(2) Experimental environment and parameters setting

The experiments are performed on a workstation with two NVIDIA GeForce RTX
2080Ti graphics cards. The operating system is Ubuntu 18.04 LTS with torch 1.10.0 +
GPU framework.

In the experiment, the parameter initialization method that obeys the uniform distri-
bution is adopted in the model. During the training process, the batch size and number of
iterations are set to 64 and 50, respectively. The standard SGD with a momentum of 0.9 and
weight decay of 0.0005 is used as the optimizer. The initial learning rate is set to 0.01, and
the MultiStepLR learning rate decay strategy is used. The decreasing value interval is set
to 6∼20 and γ is set to 0.12. The mean square error loss function is used. The dropout rate
is set to 0.5. The optimal effects have been achieved by the proposed method under these
basic parameters setting. And the effects keep high levels within a certain range of each
parameter value, which to some extent indicates the robustness of the network. To maintain
consistency, the settings are used in all the methods mentioned in this paper except the
methods quoted from others’ papers.

(3) Evaluation indicators

The coefficient of determination (R2) and the Root Mean Square Error (RMSE) are used
to evaluate the performance of the model. Mean Absolute Error (MAE), Mean Squared
Error(MSE), RMSE, and R2 are commonly used to evaluate the regression prediction
models. The MAE represents the average of the absolute differences between the actual and
predicted values in the data set, in which the average of the residuals is measured. It is a
nondifferentiable function, that is, the gradient updated by MAE in the calculation of neural
networks is always the same. Therefore, MSE is selected in the loss function in this paper.
For consistency, MAE is not considered here. MSE is a differentiable function that measures
the variance of residuals. It is sensitive to dimensions. RMSE can eliminate the influence of
dimensions, so it can describe the distribution of predicted values around the regression
line. Moreover, due to the high prediction performance of the model in this paper, the
calculation error is relatively small. According to this, a more intuitive numerical display
can be presented by RMSE under the action of the square root. R2 is used to measure the
degree of correlation between the predicted result and the true value. It represents the
proportion of dependent variables interpreted by a linear regression model. It is a unitless
fraction and can eliminate the influence of the dispersion degree of the original data, so
that it can objectively evaluate the fitting degree of the model.

In conclusion, both RMSE and R2 are selected as the evaluation indicators since they
can quantify the suitability of a linear regression model. When R2 is closer to 1, the two
variables are highly correlated. On the contrary, a smaller value of RMSE indicates a better
prediction. These two indicators can be calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳi)

2
(2)

where n represents the number of samples, yi means the true value of the sample, ŷi denotes
the predicted value of the sample, and ȳi refers to the mean value of the samples.

3. Imaged Sequence Sample Dataset Construction

Due to the extremely nonlinear and geologically heterogeneous quality of the logging
data, it is insufficient to accurately characterize the correlation between features and
porosity only using the point sample separately in the raw data [39–41]. Therefore, the first
proposal to convert the original point samples to ISS is made in this paper. Deep deposition



Mathematics 2023, 11, 39 5 of 23

information is integrated into the ISS, so that the characteristics of depositional strata can
be explored thoroughly to make predictions better. The construction process is divided into
three parts: data normalization, logging features selection, and imaged sequence sample
construction, as shown in Figure 3. The specific process is described as follows.

Figure 3. Flowchart of the ISS dataset construction.

3.1. Selection of Logging Features

Each well contains the following 10 features: spontaneous potential (SP); compensation
density (DEN); natural gamma (GR); transverse wave velocity (DTS); 2.5 m bottom gradient
resistivity (R25); compensated neutron log (CNL); caliper (CAL); acoustic transit time (AC);
resistivity digital focused logging (RDFL); and azimuth (AZIM). The linear correlation
between two variables (X,Y) can be measured by correlation coefficient (r) that is computed
as Equation (3). The correlation coefficient between every feature and porosity (POR) is
ranked and shown as a heat map in Figure 4. It can be seen that the RDFL and AZIM
features in both wells are less correlated with porosity. Besides, considering that in some
scenarios, the features may not all be available when analyzing logging data. That means
fewer features are required in similar scenarios. Therefore, these two low-coefficient
features are removed and the remaining eight logging features are retained as sample
features. In other scenarios, the features can be determined according to the situation based
on this idea.

r(X, Y) =
Conv(X, Y)√
Var[X]Var[Y]

(3)

where Conv denotes covariance, and Var denotes variance.

Figure 4. Heat map of correlation coefficients between 10 features and porosity. (a) Well Luo69.
(b) Well Wang76.

3.2. Data Standardization

The features in the logging data have different dimensions. Take the two logging fea-
tures R25 and DTS with the largest dimension difference as an example, R25 is distributed
between 2–5, while DTS is distributed between 150–340, as shown in Figure 5. When
they are inputted directly into the network, the role of features with higher values in the
prediction will be emphasized and the role of features with lower values will be decreased,
which will lead to the less accurate predictions and slower convergence [42]. Therefore,
the parameter sequences need to be normalized before constructing the sequence dataset.
After the standardization, the ranges of the two features are crossed, while the respective
change trend is retained.

The max-min normalization method is chosen to perform a linear transformation on
the original data. Assume that the data set contains M feature sequences x1, x2 , ..., xM, each
of which contains n samples. The sequences after normalization are calculated by
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x′i =
xi −min1≤j≤n

{
xij
}

max1≤j≤n
{

xij
}
−min1≤j≤n

{
xij
} , 0 ≤ i ≤ M− 1 (4)

The normalized feature sequences x′1, x′2 , ..., x′M are in the range [0–1].

Figure 5. Distributions of R25 and DTS from the (a) original dataset and (b) standardization dataset.

3.3. ISS Dataset Construction

The variation of each feature with depth in the Wang76 well between 2065–2128 m
logging depth is depicted in Figure 6. All features expect SP and DEN exhibit the opposite
tendencies with porosity. Thus, it can be accounted that there is a transversal correlation
among the features in the logging data. In addition, the features are affected by the layer
deposition process. The ISS dataset is constructed in this paper, which can simultaneously
represent the transversal correlations between the features and the depth correlation within
a feature.

Figure 6. Well logging curve for Wang76.
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The ISS construction process is depicted in Figure 7. The normalized features are
laid on the left side of the dotted line, the normalized porosity is set on the right side.
The sliding windows (for instance, with a window length of 4) are set to frame the data in
the depth direction during construction, then the ISS can be obtained by converting the
framed block data into an image.

Each column of the ISS represents a type of feature, which can be seen to vary continu-
ously in color with depth direction and retain the correlation with the porosity. For example,
DEN and SP have a negative relationship with porosity. It can be seen that DEN and SP
are from dark to light in the fourth and final columns, and their porosity is from dark
to light colors. The other features are positively correlated with porosity variation; the
colors change consistently. The sequence length in the ISS is determined experimentally
in Section 5.1.

Figure 7. ISS construction process.

4. Porosity Prediction Based on Seq2Seq and TL-Seq2Seq Network Model

The Seq2Seq Network is based on a serial recurrent neural network structure and
can process spatial–temporal information of the input data. It has been proven quite
effective in both classification and prediction tasks [43]. Therefore, this paper first proposes
that the Seq2Seq Network can be used in the porosity prediction tasks. Furthermore, the
TL-Seq2Seq model that integrates the concept of transcendental learning is proposed to
address the exposure bias problem that is easy to occur in Seq2Seq. The flow of this section
is shown in Figure 8.

Figure 8. Flowchart of the porosity prediction based on TL-Seq2Seq model.

4.1. Porosity Prediction Based on Seq2Seq Network
4.1.1. Seq2Seq Network

A typical Seq2Seq network architecture with an encoder and a decoder is shown
in Figure 9. To enhance the learning ability of the network and optimize the network
parameters, the multilayer bidirectional cyclic structure can be used in the encoder part [44].
Given that the decoder function usually runs in a single step, a unidirectional cyclic
structure is required. BGRU and GRU are selected as the encoder and decoder of the
Seq2Seq network, respectively. Both the input and output of Seq2Seq are sequences.
The input sequence is passed to the encoder according to the time step, the encoded



Mathematics 2023, 11, 39 8 of 23

information C that contains the hidden parameters and the encoder output sequence is
obtained. The obtained data are then sent to the decoder to decode the prediction sequence.

Figure 9. Seq2Seq network structure.

A start character <eos> and an end character <dos> are typically set in the input
sequence to label the sequence range in Seq2Seq Network. Since the sample length of
the sequence constructed in this paper is fixed, the starting and ending characters are not
mandatory. Thus, the output of the final encoding stage can be sent directly into the first
input of the decoder, which can maximize circular structure’s encoding capabilities. Finally,
the output of each time step in the decoder is integrated as the predicted sequence.

If the structures are different for the encoder and decoder, the dimensions of their
hidden layers are not aligned. When the BGRU is used in the encoder and the GRU is used
in the decoder, the hidden state of the first time step in the decoder can be calculated by

hd
0 = Wh

[ −→
he

t′←−
he

t′

]
(5)

where Wh is the learnable weight of the linear layer,
−→
he

t′ and
←−
he

t′ denote the forward and
backward hidden layer states, respectively, the superscripts e, d denote the encoder and
decoder, respectively.

4.1.2. Codec Unit of Seq2Seq

The GRU is adopted as the basic structure of the codec in Seq2Seq, as shown in Figure 10.
Similar to the ordinary RNN cell, the current state is dependent on not only the current
input but also the output of the prior cell state in the GRU, which enables the processing
of sequence data by associating contextual semantics [45]. Additionally, the transmission
state is also controlled by the gating signals r and z, which can successfully overcome the
gradient explosion and gradient disappearance phenomena that easily arise in RNN while
dealing with long sequences [46]. The status transfer process is as follows.

Figure 10. Flow chart of status transmission for GRU cell.

First, the reset gate signal and update gate signal z are calculated using the prior
communicated state ht−1 and the current moment input xt. h′ mainly contains the current
input xt, and selectively receives the hidden state ht−1 at the previous moment. Finally, the
current status ht is obtained according to h′ and ht−1. Thus, the processes of forgetting
and remembering are happening simultaneously in the GRU. The detailed calculation is
as follows:

r = σ(Urxt + Wrht−1) (6)
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z = σ(Uzxt + Wzht−1) (7)

h′ = tanh(Uhxt + Wh(r� ht−1)) (8)

ht = (1− z)� ht−1 + z� h′ (9)

where σ(·) denotes the sigmoid activation function, U and W denote the learnable weights
of the linear layer. � symbolizes the Hadamard product. Gate signal z is between 0 and
1. The information is ”remembered“ more when z is closer to 1, and is ”forgotten“ more
when it is closer to 0.

The BGRU neural network contains a forward RNN and a backward RNN, both of
which connect the input and output layers [47], as shown in Figure 11. It shows how to
convey every input sequence to the output layer while keeping the whole historical and
prospective context.

Figure 11. BGRU network.

For time step t, a batch of input data xt ∈ Rn×d is given, where n is the number of
samples, d is the number of inputs in each sample. The hidden layer activation function is
denoted as φ. In the bidirectional architecture,

−→
H t ∈ Rn×k and

←−
H t ∈ Rn×k represent the

forward and backward hidden layer states of the current time step, respectively, where k is
the number of hidden cells. Their update formulas are as follows:

−→
H t = φ

(
W( f w)

xh xt + W( f w)
hh
−→
H t−1 + b( f w)

h

)
(10)

←−
H t = φ

(
W(bw)

xh xt + W(bw)
hh
←−
H t+1 + b(bw)

h

)
(11)

where W( f w)
xh ∈ Rd×h, W( f w)

hh ∈ Rh×h, W(bw)
xh ∈ Rd×h, W(bw)

hh ∈ Rh×h are the linear layer
learnable weights; f w and bw denote the forward and backward layers, respectively;
b( f w)

h ∈ R1×h and b(bw)
h ∈ R1×h indicate bias. Then, the hidden layer state Ht ∈ Rn×2k can

be obtained by stacking the forward hidden layer state
−→
H t with the backward hidden layer

state
←−
H t, and is sent to the output layer. The final output Ot ∈ Rn×q (q is the number of

output cells) is calculated by:
Ot = WhqHt + bq (12)

where weighting matrix Whq ∈ R2h×q, and bias bq ∈ R1×q.

4.1.3. Porosity Prediction Simulation Experiments

To evaluate the proposed method, the porosity is predicted based on the point sample
of wells Luo69 and Wang76 by using the BGRU (baseline method) and Seq2Seq network,
respectively. In addition, the Seq2Seq network is used to predict the porosity based on the
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ISS (denoted as Seq2Seq & ISS). Their network structure follows the settings in Table 1.
Their performance and the computational burden: floating point operations per second
(Flops), parameters (Params) and GPU memory occupation (Memory) is computed, as
shown in Table 2. As can be seen from the table, although the computational burden has
increased, the prediction accuracy has significantly improved by using the Seq2Seq method.

Table 1. The structural parameters of networks.

Method Encoder Units Decoder Units Hidden Layers

BGRU 256 \ 2
Seq2Seq 256 128 2

Seq2Seq & ISS 256 128 2

Table 2. The results obtained by the different methods based on wells Luo69 and Wang76.

Method Luo69 Wang76 Flops/M Params/M Memory/G
R2 RMSE R2 RMSE

BGRU 0.9377 ± 0.07% 0.0755 ± 0.16% 0.9463 ± 0.04% 0.0723 ± 0.06% 14.11 0.73 1.67
Seq2Seq 0.9590 ± 0.43% 0.0498 ± 0.37% 0.9590 ± 0.29% 0.0632 ± 0.13% 223.17 1.79 42.26

Seq2Seq &ISS 0.9768 ± 0.35% 0.0459 ± 0.35% 0.9679 ± 0.31% 0.0560 ± 0.09% 221.43 1.77 32.39

To observe intuitively, the predicted porosities using different methods are plotted
in Figure 12 with depth ranges between 2065–2127 m and 2253–2315 m, respectively. It can
be seen that the Seq2Seq method outperforms the BGRU on the porosity prediction task.
The accuracy of porosity prediction using the Seq2Seq & ISS method is improved compared
to only using the Seq2Seq method.

Figure 12. Prediction of Seq2Seq and BGRU for wells Luo69 and Wang76.

4.2. Porosity Prediction Based on TL-Seq2Seq Model
4.2.1. Proposed TL-Seq2Seq Model

Although the Seq2Seq network has achieved pretty good results in the porosity pre-
diction task, the exposure bias problem is prone to occur in training the Seq2Seq network.
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Motivated by the idea of TL, the truth value is introduced to optimize the Seq2Seq network
and avoid the exposure bias. Thus, the TL module is incorporated into the decoding pro-
cess, as shown in Figure 13. The proposed model consists of three main modules: Encoder,
TL and Decoder.

First, the spatio-temporal feature vector C is obtained by encoding the ISS feature
using the BGRU module, which contains the hidden state H and the output sequence
(enc_seq). Then, enc_seq is sent to the TL module. In the TL module, the enc_seq and
the ISS label (true_seq) are fused with the output sequence of a certain time step in the
decoder (dec_seq), respectively. One of them is selected by the TF strategy to form the
transcendental learning knowledge (TL-seq). Finally, the hidden layer data H is loaded
into the decoder that contains the GRU structure and a linear layer, and the prediction
result (Pred value) is then obtained by decoding the TL-seq. Details are provided below.

Figure 13. TL-Seq2Seq network structure.

4.2.2. TL Module

The Seq2Seq’s network training can be sped up to converge by introducing real label
values [48]. The generation of prediction sequences during the training process would be
largely dependent on true label values that are directly fed into the decoder as context
vectors. During the testing process, the entire sequence is generated alone in the decoder
due to the loss of the real sequence guidance. Thus, a significant deviation can occur in the
predicted sequence, called “exposure bias” [49,50], which easily leads to overcorrection.

To get rid of this exposure bias, the TL module is constructed to obtain the TL knowl-
edge as the input of the decoder, in which both the encoded information from the encoder
and the true label information are used. The hierarchical TL network module that interacts
with the decoder is shown in Figure 14, which is discussed in detail below.

Figure 14. The hierarchical TL network module interacting with decoder.

When t = 1, the encoder’s output sequence enc_seq is used as input to the decoder;
when t > 1, the context vector ct or dt is used instead, which includes either the en-
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coded information or the true value. Thus, the input I of the encoder at each moment is
expressed as:

I =
{

enc_seq , t = 1
f (ct, dt) , 1 < t < N − 1

(13)

where the function f represents the TF strategy that can decide which context vector is as-
signed to I. The context vectors ct and dt are obtained by stacking the encoded sequence and
the true values with the output sequence at moment t (t > 1) in the decoder, respectively.

ct = Wc

[
enc_seq

Ot

]
, dt = Wd

[
true_seq

Ot

]
(14)

where Ot is the output of the previous step in the decoder, Wc and Wd are the learnable
weight of the linear layer.

The decoder’s dependence on real labels can be reduced by adding the TL module,
which thereby avoids the overfitting issue of the Seq2Seq and improves the generalization
ability of the network. Meanwhile, the encoder’s output sequence is joined at each stage of
the decoder’s computation, which enables the decoder to combine the encoding information
that is closest to the original input sequence. Therefore, the calculation error can also be
corrected, and then the accuracy of the predicted sequences will be improved.

The general TL-Seq2Seq model consists of multi-modules, and the prediction se-
quences (Pred_value) can be generated after the ISS data are fed into the model. The equa-
tion for the obtained TL-Seq2Seq model is expressed as follows. First, the ISS Feature is
processed by BGRU to obtain center vectors (C) that contain the encoding information
(enc_seq) and hidden layer data (H). Then, in TL, ISS Label and enc_seq are fused with
the decoding information(dec_seq), respectively. The TF is used to make decisions on the
two fused sequences to obtain Transcendental Learning knowledge (TL-seq). Next, the
output (Ot) that at every time step is obtained after the hidden layer data are loaded and
the TL-seq is processed by GRU. Finally, all outputs (O) are inputted to a full connection
layer, and the final prediction sequence is obtained.

C = (H, enc_seq) = BGRU(ISS Feature) )
TL_seq = TF((ISS Label, dec_seq), (enc_seq, dec_seq))
Ot = dec_seq = GRU(TL_seq)
Pred_value = FC(O)

(15)

4.2.3. Porosity Prediction Simulation Experiments

Based on the ISS dataset constructed in this paper, comparison experiments are con-
ducted using the Seq2Seq network and the TL-Seq2Seq network. The TL-Seq2Seq follows
the settings in Table 3. The R2 is 0.9889 and 0.9856 for Luo69 and Wang76, respectively, when
using TL-Seq2Seq, which is better than Seq2Seq (0.9768 and 0.9679, as shown in Table 2).
The predicted porosities using the proposed methods are plotted in Figure 15, with depth
ranges between 2090–2120 m and 2283–2317 m, respectively. The predicted results from
TL-Seq2Seq are shown by the solid blue line, which fits the real curve (the solid black line)
better than the results from Seq2Seq (the red dot line), especially in places where the porosity
is more volatile.

Table 3. The structural parameters of the proposed method.

Method Encoder Units Decoder Units Hidden Layers TF Rate

TL-Seq2Seq & ISS 256 128 2 0.45
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Figure 15. Comparison experimental results using Seq2Seq and TL-Seq2Seq.

5. Experimental Results and Analysis
5.1. Parameter and Structure Selection

(1) Experiments on the number and order of logging features

According to the analysis of the correlation coefficient between logging features and
porosity in Section 3.2, the logging features are ranked in descending order as SP, DEN,
GR, DTS, R25, CNL, CAL, and AC. To examine the contribution of the logging features
to porosity prediction, comparative experiments based on the TL-Seq2Seq are performed,
where the logging features are gradually increased in the aforementioned order. The exper-
imental results are displayed in the truncation graphs as shown in Figure 16. It is clear that
the final forecast accuracy is increased by using more logging features. The rising trend of
prediction accuracy becomes slow at 7–10. A weak gain is generated when adding the last
AC (the Feature added from 7 to 8) whose correlation with porosity is the smallest of the
eight selected features. This means that AC can be retained, but not many more features
should be considered. This supports our selection of features in Section 3.1.

Figure 16. The experimental results using different numbers of logging features from (a) well Luo69
and (b) well Wang76.

Since the three features SP, GR and DEN have high correlation with POR, one set
of comparative experiments (based on the TL-Seq2Seq) is set up: the three features are
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placed at the beginning, middle and end of all the features, as well as disorder, to further
investigate the influence of parameter order on the prediction results. The experimental
results are shown in Table 4. It can be seen that the order of the curves has a minimal
impact on the results. In this paper, the disordered features (AC, CAL, CNL, DEN, DTS,
GR, R25, and SP) are adopted according to the average performance of the two wells.

Table 4. Selection experiments of logging parameter sequence.

Position Luo69 Wang76 Average Values
R2 RMSE R2 RMSE R2 RMSE

beginning 0.9878 0.0333 0.9852 0.0380 0.9865 0.0356
Middle 0.9868 0.0347 0.9863 0.0365 0.9865 0.0356

End 0.9896 0.0307 0.9846 0.0387 0.9871 0.0347
Disorder 0.9888 0.0319 0.9856 0.0374 0.9872 0.0346

(2) Experiments on the sequence length in ISS

The sequence sample may not be able to express enough deposition information when
the depth range is narrow. Otherwise, it may have trouble focusing on the stratigraphic
information when the depth range is broad. The sequence length is determined by the
comparative experiments based on the TL-Seq2Seq. The results are shown in Figure 17.
As seen from the Figure 17, the highest R2 and the smallest RMSE are obtained when the
sequence length is 4. Therefore, in this paper, the sequence length is set to 4.

Figure 17. The sequence length selection experimental results on (a) R2 and (b) RMSE for ISS data.

(3) Experiments on the codec structure selection in TL-Seq2Seq

A group of comparison experiments are designed to investigate the cyclic network
structure in TL-Seq2Seq, which uses the RNN-RNN, BRNN-RNN, GRU-GRU and BGRU-
GRU codec structures, respectively. The experimental results are shown in Figure 18. It can
be seen that the GRU structure can achieve superior prediction results compared to RNN.
The prediction results obtained by using the BGRU-GRU structure have the highest R2, the
smallest RMSE, so the BGRU-GRU structure is used in this paper.
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Figure 18. The Structure selection experimental results on (a) R2 and (b) RMSE for TL-Seq2Seq.

(4) Experiments on the number of hidden layer cells in TL-Seq2Seq

The numbers of hidden layer units of the encoder and decoder in the TL-Seq2Seq are
determined by experiments, whose results are shown in Figure 19. It can be seen that the
results are best when the number of hidden layer units is set to 256 in the encoder and 128
in the decoder. Therefore, the numbers of hidden layer units for the encoder and decoder
are set to 256 and 128 in this paper, respectively.

Figure 19. The number selection experimental results on (a) R2 and (b) RMSE for hidden layer cells.

(5) Network performance analysis

The parameters and structure have been set according to the prior experiments.
The trainings using the TL-Seq2Seq are performed 50 rounds. The training loss and
validation loss are displayed in Figure 20. It shows that the training loss decreases quickly,
and the validation loss is already at a low level after the first round of training. Eventually,
the network is able to converge and maintain a steady state after 20 rounds of training,
which indicates the good robustness of the proposed method.
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Figure 20. Loss in training using the proposed TL-Seq2Seq method (Wang76 well).

5.2. Ablation Experiments

An ablation study with several configurations is carried out to further evaluate the
specific contributions of each module in the proposed approach: ISS dataset, Seq2Seq
structure and TL module. The BGRU is set as the baseline method, which does not contain
any of the three modules. Experiments are conducted on wells Luo69 and Wang76 to
evaluate the performance, and the results are shown in Table 5.

Table 5. Ablation experimental results with different modules.

Number Method Luo69 Wang76 Average Value
R2 RMSE R2 RMSE R2 RMSE

¬ BGRU 0.9377 0.0755 0.9463 0.0723 0.9420 0.0739
­ BGRU & ISS 0.9715 0.0509 0.9598 0.0627 0.9656 0.0568
® Seq2Seq 0.9729 0.0498 0.9590 0.0632 0.9659 0.0565
¯ Seq2Seq & ISS 0.9768 0.0459 0.9679 0.0560 0.9723 0.0500
° TL- Seq2Seq 0.9737 0.0490 0.9680 0.0558 0.9708 0.0524
± TL- Seq2Seq & ISS 0.9889 0.0317 0.9856 0.0374 0.9872 0.0345

Firstly, by comparing ­ and ¬, ¯ and ®, and ± and °, it can be concluded that the
prediction effectiveness is improved to some extent after using the ISS data, which reflects
the superiority of the sequence feature. Secondly, by comparing the prediction results with
different network structures (® vs. ¬), the performance improvement brought by using
the Seq2Seq structure can be clearly seen. The baseline network is a component of the
Seq2Seq network. Seq2Seq not only inherits the prediction ability of the baseline network,
but also improves the prediction performance through the serial structure. Lastly, it is
proved that the performance using the hierarchical TL network module is further improved
by comparing ° and ®, and ± and ¯.

The performance using the proposed TL-Seq2Seq method surpasses all other methods’
performance by learning ISS data and using hybrid decoding with label sequences. In two
wells, the R2 obtained by TL-Seq2Seq improve about 4.97% and 3.89% over the baseline
method (± vs. ¬), which indicates that the proposed three modules can work well together
to improve the prediction accuracy. The average values of these comparison methods in
the two wells are plotted in Figure 21. It can be seen intuitively from the figure that the
prediction performance is improving with the combination of various modules.
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Figure 21. Average performance on two wells of the added modules.

5.3. Model Performance

The prediction models for the two wells are obtained based on the ISS dataset using
the TL-Seq2Seq method, and the predicted porosities at the sample points are plotted
in Figure 22. The predicted values and the real values are remarkably similar, which
demonstrates how well the proposed method predicts the porosity.

Figure 22. Fitting curve of core porosity and the prediction porosity using TL-Seq2Seq network at
test samples. (a) Well Luo69, (b) Well Wang76.

5.4. Comparison of Methods

To evaluate the performance of the proposed method, this paper compares six recent
advanced algorithms whose parameters setting follow the literature, and the experimental
results are shown in Table 6. It shows that machine learning algorithms can produce
better prediction results than conventional MLF algorithms. The CRNN is constructed by
combining CNN and RNN, where the convolutional units are able to extract depth feature
information. This is similar to the idea of constructing sequence samples and assigning
depth information to the data in this paper, which is suitable for addressing the task of
porosity prediction and achieves better prediction accuracy. In this paper, the Seq2Seq
network and TL-Seq2Seq network are constructed to train the ISS dataset, respectively.
It can be seen that both methods achieve better results compared with other methods,
and the TL-Seq2Seq network is the best among all methods. The average values of these
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comparison methods in the two wells are plotted in Figure 23. It can be seen intuitively
from the figure that the prediction performance is improving with the combination of
various modules.

Table 6. The comparison between the proposed methods and the advanced algorithms.

Method Luo69 Wang76 Average Value Flops/M Params/M Memory/G
R2 RMSE R2 RMSE R2 RMSE

MLF [12] 0.9445 0.0713 0.9344 0.0799 0.9394 0.0756 \ \ \
RF [22] 0.9495 0.0680 0.9724 0.0518 0.9609 0.0599 \ \ \

SVR-PSO [23] 0.9477 0.0694 0.9619 0.0609 0.9548 0.0651 \ \ \
ANN [24] 0.9606 0.0600 0.9483 0.0710 0.9544 0.0655 2.52 0.14 0.01
BGRU [33] 0.9653 0.0561 0.9667 0.0568 0.9660 0.0564 14.38 0.88 1.78
CRNN [34] 0.9563 0.0632 0.9797 0.0444 0.9680 0.0538 184.17 1.63 25.99

Seq2Seq&ISS
(Proposed 1) 0.9768 0.0459 0.9679 0.0560 0.9723 0.0500 221.43 1.77 32.39

TL-Seq2Seq&ISS
(Proposed 2) 0.9889 0.0317 0.9852 0.0380 0.9870 0.0348 262.979 1.78 33.27

Figure 23. The performance of multiple comparison methods in the average well.

5.5. Experiments of Inter-Well

It has been demonstrated that excellent porosity prediction can be achieved within a
single well using the proposed TL-Seq2Seq and ISS method. To evaluate the generalization
of the proposed method, the inter-well porosity prediction experiments are performed
further. The Luo69 is set as the train set. The well Wang76 is set as test set 1, and the Shi13
well is added as test set 2. The relative location of the well Shi13 is depicted in Figure 24.
The Shi13 is farther from the Luo69 than the Wang76.

Figure 24. The relative position of the well Shi13.
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5.5.1. Performance Testing of the Proposed Method on Porosity Prediction

Performance testing based on TL-Seq2Seq and baseline methods (BGRU) is conducted
on two test wells. For visual observation, the predicted results of the sections (2065–2128 m)
contained in two test wells are selected and plotted in Figure 25, respectively. For the
Wang76 well, subtle changes in porosity with depth can be accurately predicted by the
proposed method, and these changes are also able to match the lithological changes. The R2

can reach more than 0.9730, which is much higher than the baseline method (0.8451) and
is almost as good as the inner-well prediction (0.9852). In the prediction of the well Shi13,
the results show considerable disagreement between true curves and predicted curves.
It may be caused by the distance between the test well and the training well, as well as the
different construction conditions of the two wells. Besides, the R2 obtained by the proposed
method is 0.6725, and the R2 obtained by the baseline method is 0.6241, which indicates
that the proposed method is a superior method. Although the R2 is relatively lower than
the result based on Wang76, the approximate range and change trend of predicted values is
similar to that of the true values, which means the proposed method is effective.

Figure 25. Partial prediction results of porosity for well Wang76 and Shi13.

5.5.2. Comparison of Methods

To better evaluate the proposed method, comparison experiments are conducted
based on inter-well datasets with the same five algorithms that are already mentioned in
Section 5.4. The comparison methods are implemented according to the parameters setting
in the literature, and the experimental results are shown in Table 7. It can be seen that the
proposed method can achieve the best results among all the compared methods. The result
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using the ANN method is the worst among all methods, which are probably not suitable
for the inter-well dataset prediction task due to using the original parameters setting
or network structure [22]. The simplest MLF method used for the inter-well prediction
task is able to obtain relatively good prediction results. CRNN performs well in the
comparison experiments, which again indicates that a performance improvement in the
porosity prediction can be achieved by feature processing like that described in this paper.
The average values of these comparison methods in the two wells are plotted in Figure 26. It
can be seen intuitively from the figure that the proposed methods can achieve better effects.

Table 7. The comparisons between the proposed methods and the other advanced algorithms based
on inter-well data.

Method Wang76 Shi13 Average Value Flops/M Params/M Memory/G
R2 RMSE R2 RMSE R2 RMSE

MLF [12] 0.8827 0.1068 0.6241 0.2063 0.7534 0.1565 \ \ \
RF [22] 0.6937 0.1726 0.3881 0.2632 0.5409 0.2179 \ \ \

SVR-PSO [23] 0.5890 0.1376 0.2282 0.2243 0.4086 0.1809 \ \ \
ANN [24] −0.3932 0.3681 −0.8388 0.4564 −0.6160 0.4122 1.89 0.14 0.01
BGRU [33] 0.8451 0.1227 0.6241 0.2063 0.7346 0.1645 7.40 0.88 1.80
CRNN [34] 0.9551 0.0660 0.6397 0.2020 0.7974 0.1340 88.79 1.63 25.64

Seq2Seq &ISS
(Proposed 1) 0.9624 0.0604 0.6534 0.1981 0.8079 0.1292 152.23 1.77 30.96

TL-Seq2Seq &ISS
(Proposed 2) 0.9730 0.0511 0.6725 0.1926 0.8227 0.1218 152.25 1.78 30.98

Figure 26. The performance of multiple comparison methods in average well.

6. Conclusions

The Seq2Seq network and the improved TL-Seq2Seq model with ISS data are proposed
in this paper to predict porosity. The single point samples are firstly integrated into an ISS
to provide small-scale spatial variability characteristics of subsurface complex reservoirs.
Then, a Seq2Seq network based on BGRU-GRU is built to predict porosity, which can
effectively realize the porosity prediction. Moreover, the problems of cumulative bias
and exposure bias, which are prone to occur in Seq2Seq, are addressed by the proposed
TL modules. In the TL-Seq2Seq network, the encoding information and label semantic
information are referenced to form TL knowledge, which can make the network converge
faster and better. Compared with other methods, experimental results show that the
performance of the proposed TL-Seq2Seq model is the best, which has the highest R2

(0.9872, for average well) and the smallest RMSE (0.0345, for average well). In this way,
reliable basis and space constraints for further research can be provided, such as geological
modeling and rock mechanics parameters modeling. Meanwhile, it also provides a new
idea for the mathematical research.
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Some issues still remain in the investigated porosity prediction method due to the
constraints of experimental conditions and time. In the future, time-frequency analysis
can be performed on the ISS to obtain multi-scale feature information, such as wavelet
transform. In addition, since the logging data only provide information in the vertical
direction in some wells and cannot cover the lateral information of the whole reservoir
area, porosity prediction will be performed based on the seismic data with wider coverage.
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