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Abstract: This work presents a projection method based on Vieta–Lucas polynomials and an effective
approach to solve a Cauchy-type fractional integro-differential equation system. The suggested
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numerically supported.
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1. Introduction

In recent years, numerous issues in mathematics, engineering, physics, and allied
fields have been formulated in integral equations, notably, singular integral equations.
Singular integral equations with a Cauchy kernel are an important class of such equations.

Fractional-order differential equations have been utilized extensively in quantum
mechanics, astrobiology, medical science, chemical engineering, robust control, engineering,
physiology, and hydrodynamics to describe various events.

The purpose of [1] is to investigate the dynamical evolution of symmetric oscillator
with a fractional Caputo operator. The dynamical properties of the considered model such
as equilibria and its stability are also examined. The existence, results, and uniqueness of
proposed model solutions are considered using methods from fixed point theory. The au-
thors of [2] decoupled a Lotka–Volterra model to explore the critical typical form coefficients
of bifurcations for one-parameter and two-parameter bifurcations using a newly disclosed
nonstandard finite difference method. In [3], a neural network strategy for solving the
spatiotemporal fractional advection–diffusion equation with a nonlinear source term was
described. Utilizing shifted Legendre orthogonal polynomials with variable coefficients, the
network is created. The loss function of a neural network can be determined theoretically
based on the features of unstable fractional derivatives. Multiple and generic discrete-time
planar bifurcations were examined in [4]; using bifurcation theory and numerical continua-
tion approaches, the Hindmarsh–Rose oscillator was analyzed for the study of three types
of one-parameter bifurcation and five types of two-parameter bifurcation. Complex dynam-
ics of the Kopel model with non-symmetric response among oligopolies were described
in [5]. The studies indicated that a fixed point in a non-symmetric model may undergo fold,
transcriptional, pitchfork, and Neimark–Sacker bifurcation under specific parameters.

The most valuable features for simulating functional problems and mathematical
modeling are projection methods. These methods are efficient techniques for numerically
solving integral and integro-differential equations. Over the past two decades, practical
approaches for solving compact operator equations utilizing the Galerkin and Kulkarni
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approaches have been established. These two strategies inspired [6] to solve the follow-
ing bounded equation. In [7], the authors recently proved how to solve fuzzy integro-
differential equations with weak singularities using airfoil polynomials. The authors of [8]
presented a novel projection approach based on Legendre polynomials for evaluating
integro-differential equations of the Cauchy type. In addition, they investigated, in [9],
a projection approximation for solving integro-differential problems of the Cauchy kind
using first-order airfoil polynomials.

The orthogonality property of various significant polynomials, such as Vieta–Lucas
polynomials, is used to approach the solution of different functional equations. These
polynomials are crucial to solving functional equations.

The recurrence interaction of Vieta–Pell and Vieta–Pell–Lucas polynomials was in-
troduced in [10]. The authors defined the associated sequences and obtained the Binet
form and generating functions of Vieta–Pell and Vieta–Pell–Lucas polynomials. They also
described some differentiation rules as well as finite summation formulas.

The authors of [11] developed a collocation approach based on a novel family of orthog-
onal functions for numerically treating a class of second-order singular multi-pantograph
delay differential equations. The Vieta–Lucas functions were examined as differential bases,
and the maximum norm errors were calculated.

The variable-order fractional form of the coupled nonlinear Ginzburg–Landau equa-
tions was formulated using the non-singular variable-order fractional derivative in the
Heydari–Hosseininia concept in [12]. A numerical scheme based on shifted Vieta–Lucas
polynomials was used to solve this system.

The authors of [13] proposed a fractional model of non-Newtonian Casson and
Williamson boundary layer flow in fluid flow that takes the heat flux and slip veloc-
ity into account. The governing nonlinear system of PDEs is transformed into a nonlinear
set of coupled ODEs, which is then solved using Vieta–Lucas polynomials, which are used
to implement the spectral collocation method.

In [14], a new approximation technique combined with Vieta–Lucas orthogonal poly-
nomials is used to solve the advection–dispersion equation, a fractional-order mathematical
physics model.

In the last two decades, numerous results for solving compact operator equations
using the Galerkin and Kulkarni approaches have been established. These two approaches
are used to approach the solution of the following bounded equation, as cited in [6]:

x− Ax = y,

where A is a bounded linear operator, y is a know function, and x is a unknown function.
The author examined an approximation of the following equation:

xG
n − AnxG

n = Πny,

with approximate solution xn and approximate operator An. The author originally estab-
lished approximate operator An as a Galerkin approximation.

AG
n := Πn AΠn.

Here, G stands for Galerkin, and (Πn)n≥1 is a sequence of bounded projections each
one of finite rank, that is,

Π2
n = Πn also Π∗n = Πn.

Second, he utilized Kulkarni’s approximation in the following manner:

AK
n := Πn A + AΠn −Πn AΠn.
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More recently, the authors of [15] introduced a novel projection approach for the
following system of classical Cauchy integro-differential equations on L2([0, 1],C) using
shifted Legendre polynomials.

ϕ′(τ) +
∮ 1

0

ω(ς)

ς− τ
dς = h(τ), 0 ≤ τ ≤ 1,

ω′(τ) +
∮ 1

0

ϕ(ς)

ς− τ
dς = k(τ), 0 ≤ τ ≤ 1,

ϕ(0) = 0, ω(0) = 0.

This work presents a projection method for solving the following system of fractional
Cauchy integro-differential equations on L2([0, 1],C):

cDη
0+ ϕ(τ) +

∮ 1

0

ω(ς)

ς− τ
dς = h(τ), 0 ≤ τ ≤ 1,

cDη
0+ω(τ) +

∮ 1

0

ϕ(ς)

ς− τ
dς = k(τ), 0 ≤ τ ≤ 1,

r−1

∑
k=0

τk

k!
ϕ(k)(0) = 0,

r−1

∑
k=0

τk

k!
ω(k)(0) = 0, r− 1 < η < r.

We turn the problem into a system of two separate equations that looks like this:{
cDη

0+Ω +KΩ = H,
cDη

0+φ−Kφ = K.

Our aim is employ Vieta–Lucas polynomials and present an approximation scheme to
solve the above system. The solution is found for two different linear equation systems. The
existence of a solution to the approximation equation is demonstrated, and an investigation
of error analysis is presented. The theory is illustrated with numerical examples.

The remaining sections of this research paper are described in the following: The
following section discusses some of the fundamental terms and theoretical concepts used
in fractional theory. Section 3 discusses the system of fractional Cauchy integral equations.
Section 4 discusses some key aspects of Vieta–Lucas polynomials and the development of
the method. Section 5 improves the convergence of the approximate solution and estimates
the error analysis. Section 6 explores some numerical examples.

2. Preliminaries

In this section, we begin by reviewing some of the basic terms and theoretical concepts
used in fractional theory.

Let Γ indicate the fundamental Euler Gamma function in the analysis of fractional
differential equations.

Definition 1. The left-sided Riemann–Liouville fractional integral of order η > 0 of an integrable
function ω : (0, ∞)→ R is described by

Jη
0+ω(τ) :=

1
Γ(η)

∫ τ

0

ω(ς)

(τ − ς)1−η
dς, τ > 0.

Remark 1. The above integral can be represented in convolution form as follows:

Jη
0+ω(τ) = (ψη ? ω)(τ),
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where

ψη(τ) :=

{
τη−1/Γ(η), τ > 0,
0, τ ≤ 0.

Definition 2. The left-sided Riemann–Liouville fractional derivative of order η > 0 of a continuous
function ω : (0, ∞)→ R is defined by

Dη
0+ω(τ) :=

1
Γ(1− η)

d
dτ

∫ τ

0

ω(ς)

(τ − ς)η dς.

Remark 2. For η > 0, we have

Dη
0+ω(τ) =

d
dτ

J1−η
0+ ω(τ),

Jη
0+Dη

0+

(
ω(τ)−ω(0)

)
= ω(τ)−ω(0).

Definition 3. For an absolutely continuous function ω, the Caputo fractional derivative of order
η > 0 is defined by

cDη
0+ω(τ) = J1−η

0+
d

dτ
ω(τ) =

1
Γ(1− η)

∫ τ

0
(τ − ς)−ηω′(ς)dς.

Remark 3. For a continuous function ω, the relationship between the Caputo and Riemann–
Liouville fractional derivatives is provided by

cDη
0+ω(τ) = Dη

0+(ω(τ)−ω(0)), η > 0.

In addition,

cDη
0+ω(τ) = Dη

0+

(
ω(τ)−

r−1

∑
k=0

τk

k!
ω(k)(0)

)
, τ > 0, r− 1 < η < r.

3. System of Fractional Cauchy Integro-Differential Equations

Let H := L2([0, 1],C) be the space of complex-valued Lebesgue square integrable
functions on [0, 1]. In this study, a new projection technique for solving a system of fractional
Cauchy integro-differential equations using Vieta–Lucas polynomials inH is presented.

Consider the system of fractional Cauchy integro-differential equations of the follow-
ing form:

cDη
0+ ϕ(τ) +

∮ 1

0

ω(ς)

ς− τ
dς = h(τ), 0 ≤ τ ≤ 1,

cDη
0+ω(τ) +

∮ 1

0

ϕ(ς)

ς− τ
dς = k(τ), 0 ≤ τ ≤ 1,

r−1

∑
k=0

τk

k!
ϕ(k)(0) = 0,

r−1

∑
k=0

τk

k!
ω(k)(0) = 0, r− 1 < η < r.

The integral of each equation denotes the Cauchy principal value as follows:∮ 1

0

ω(ς)

ς− τ
dς = lim

ε→0

(∫ τ−ε

0

ω(ς)

ς− τ
dς +

∫ 1

τ+ε

ω(ς)

ς− τ
dς

)
,∮ 1

0

ϕ(ς)

ς− τ
dς = lim

ε→0

(∫ τ−ε

0

ϕ(ς)

ς− τ
dς +

∫ 1

τ+ε

ϕ(ς)

ς− τ
dς

)
.
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As in [16], let us consider the following transform:

φ := ω− ϕ, H := k + h;

Ω := ω + ϕ, K := k− h.

Lemma 1. Problem (1) can be expressed in the following form:

cDη
0+Ω(τ) +

∮ 1

0

Ω(ς)

ς− τ
dς = H(τ), 0 ≤ τ ≤ 1,

cDη
0+φ(τ)−

∮ 1

0

φ(ς)

ς− τ
dς = K(τ), 0 ≤ τ ≤ 1,

r−1

∑
k=0

τk

k!
Ω(k)(0) = 0,

r−1

∑
k=0

τk

k!
φ(k)(0) = 0, r− 1 < η < r.

Proof. In fact,

ω =
Ω + φ

2
, h =

H − K
2

;

ϕ =
Ω− φ

2
, k =

H + K
2

.

By substituting them into (1), we obtain

cDη
0+(Ω− φ)(τ) +

∮ 1

0

(Ω + φ)(ς)

ς− τ
dς = (H − K)(τ), (1)

cDη
0+(Ω + φ)(τ) +

∮ 1

0

(Ω− φ)(ς)

ς− τ
dς = (H + K)(τ). (2)

We derive (1) by adding Equations (1) and (2) together and then subtracting (1)
from (2).

System (1) can be rewritten in operator form as follows:{
cDη

0+Ω(τ) +KΩ(τ) = H(τ),
cDη

0+φ(τ)−Kφ(τ) = K(τ),

where K is the Cauchy integral operator, i.e.,

Kϕ(τ) :=
∮ 1

0

ϕ(ς)

ς− τ
dς, 0 ≤ τ ≤ 1.

Following [8], operator K is bounded fromH into itself.
Letting

D :=

{
ω ∈ H : ω(k) ∈ H,

r−1

∑
k=0

τk

k!
ω(k)(0) = 0, r− 1 < η < r

}
.

It is well known that

Jη
0+

cDη
0+ω(τ) = ω(τ)−

r−1

∑
k=0

τk

k!
ω(k)(0).

So,
Jη
0+

cDη
0+ω(τ) = ω(τ), for all ω ∈ D.

In addition, Jη
0+ : H → D is compact.
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4. Vieta–Lucas Polynomials

In this section, we look at a class of orthogonal polynomials. These polynomials
can be used to construct a new family of orthogonal polynomials known as Vieta–Lucas
polynomials using recurrence relations and an analytical formula.

Vieta–Lucas polynomials Vn of degree n ∈ N are defined as follows:

Vn(τ) = 2 cos(nθ), θ = cos−1
(

τ

2

)
, θ ∈ [0, π] for all |τ| ≤ 2.

The following iterative formula can be used to generate polynomial Vn:

Vn(τ) = τVn−1(τ)− Vn−2(τ), n = 2, 3, . . . , V0(τ) = 2, V1(τ) = τ.

Also, the explicit power series formula shown below can be used to calculate Vn:

Vn(τ) =
d n

2 e

∑
i=0

(−1)i nΓ(n− i)
Γ(i + 1)Γ(n + 1− 2i)

τn−2i, n = {2, 3, . . .}.

In addition, Vn are orthogonal polynomials with respect to the integral shown below:

〈
Vm,Vn

〉
=
∫ 2

−2

1√
4− τ2

Vm(τ)Vn(τ) dτ =


0, m 6= n 6= 0,
4π, m = n = 0,
2π, m = n 6= 0.

Let
VSk (τ) = Vk(4τ − 2) = V2k(2

√
τ), k = 0, 2, 3, . . .

denote the corresponding normalized sequence. Additionally, VSk are produced using the
recurrence formula shown below:

VSk+1(τ) = (4τ − 2)VSk (τ)− V
S
k−1(τ), k = 1, 2, . . . ,

with
VS0 (τ) = 2, VS1 (τ) = 4τ − 2.

We note that

VSp (τ) = 2p
p

∑
j=0

(−1)j 4p−jΓ(2p− j)
Γ(j + 1)Γ(2p− 2j + 1)

τp−j, p = {2, 3, . . .}

and 〈
VSk ,VSj

〉
ω
=
∫ 1

0
VSk (τ)V

S
j (τ)ω(τ) dτ =


0, k 6= j 6= 0,
4π, k = j = 0,
2π, k = j 6= 0,

where
ω(τ) =

1√
τ − τ2

.

Letting

∆Sj :=


VSj

2
√

π
, j = 0,

VSj√
2π

, j 6= 0.
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Now, we introduce the first six terms of ∆Sj :

∆S0 (s) =
1√
π

,

∆S1 (s) =
√

2(2s− 1)√
π

,

∆S2 (s) =

√
2
(
8s2 − 8s + 1

)
√

π
,

∆S3 (s) =

√
2
(
32s3 − 48s2 + 18s− 1

)
√

π
,

∆S4 (s) =

√
2
(
128s4 − 256s3 + 160s2 − 32s + 1

)
√

π
,

∆S5 (s) =

√
2
(
512s5 − 1280s4 + 1120s3 − 400s2 + 50s− 1

)
√

π
.

Let πSn be the chain of bounded finite rank orthogonal projections described by

πSn ψ :=
n−1

∑
j=0

〈
ψ, ∆Sj

〉
ω

∆Sj , where
〈

ψ, ∆Sj
〉

ω
:=
∫ 1

0
ω(σ)ψ(σ)∆Sj (σ)dσ.

Denote with ‖ · ‖ the corresponding norm onH. Thus,

lim
n→∞

‖πSn ϑ− ϑ‖ = 0, for all ϑ ∈ H.

LetHn represent the space covered by the first n-shifted Vieta–Lucas polynomials. It
is obvious that Jη

0+(Hn) = Hn+1.
We note that Ωn, φn ∈ D ∩Hn+1. Thus, the system{

Ω + Jη
0+KΩ = Jη

0+ H,

φ− Jη
0+Kφ = Jη

0+K

is approximated by {
Ωn + Jη

0+πSnKΩn = Jη
0+πSn H,

φn − Jη
0+πSnKφn = Jη

0+πSn K.

We assume that −1 and 1 are not eigenvalues of Jη
0+K. Thus, both operators I + Jη

0+K
and I − Jη

0+K are invertible.
We recall that Jη

0+ is compact and

lim
n→∞

‖
(

Jη
0+πSnK− Jη

0+K
)

Jη
0+K‖ = 0, lim

n→∞
‖
(

Jη
0+πSnK− Jη

0+K
)

Jη
0+πSnK‖ = 0.

Writing 
Ωn =

n

∑
j=0

an,j∆Sj ,

φn =
n
∑

j=0
bn,j∆Sj .
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We obtain 2n + 2 unknowns an,j and bn,j by solving the two separate linear systems,
n

∑
j=0

an,j

[
Dη

0+∆Sj + πSnK∆Sj
]
= πSn Jη

0+ H, with
n

∑
j=0

an,j∆Sj (0) = 0,

n
∑

j=0
bn,j

[
Dη

0+∆Sj − πSnK∆Sj
]
= πSn Jη

0+K, with
n
∑

j=0
bn,j∆Sj (0) = 0.

As a result, two separate linear systems are produced,
n

∑
j=0

Mn(i, j)an,j = En,i, i = 0, · · · , n,

n
∑

j=0
M̂n(i, j)bn,j = Ên,i, i = 0, · · · , n.

where, for i = 0, · · · , n− 1 and j = 0, · · · , n,

Mn(i, j) :=

[∫ 1

0

cDη
0+∆Sj (s)∆

S
i (s)ω(s)ds +

∫ 1

0

(∮ 1

0

∆Sj (σ)

σ− s
dσ

)
∆Si (s)ω(s)ds

]
,

M̂n(i, j) :=

[∫ 1

0

cDη
0+∆Sj (s)∆

S
i (s)ω(s)ds−

∫ 1

0

(∮ 1

0

∆Sj (σ)

σ− s
dσ

)
∆Si (s)ω(s)ds

]
,

Mn(n, j) := ∆Sj (0), M̂n(n, j) := ∆Sj (0),

En(i) :=
∫ 1

0
H(s)cDη

0+∆Si (s)ω(s)ds, Ên(i) :=
∫ 1

0
K(s)cDη

0+∆Si (s)ω(s)ds,

En(n) := 0, Ên(n) := 0.

5. Convergence Analysis

We now show how the current method converges. To that end, consider L2
v([0, 1], C)

to be the weighted space and ‖.‖v to be its norm.
Denote with I the identity operator. We recall that there exists M > 0 such that∥∥∥(I − πSn )ψ

∥∥∥
v
≤ M

12n3/2 , for all ψ ∈ L2
v([0, 1],C).

Since Jη
0+K is compact, according to [8], operators (I + Jη

0+πSnK)−1 and (I− Jη
0+πSnK)−1

exist for n large enough and are uniformly bounded with respect to n.

Theorem 1. Assume that k, h,Kω,Kϕ ∈ L2
v([0, 1],C). Then, there exist M1, M2 > 0 such that

‖Ωn −Ω‖v ≤
M1

12 n3/2 ,

and
‖φn − φ‖v ≤

M2

12 n3/2 .

Proof. In fact, {
Ωn + Jη

0+πSnKΩn = Jη
0+πSn H,

φn − Jη
0+πSnKφn = Jη

0+πSn K.
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Moreover,

Ω−Ωn =

[(
I + Jη

0+K
)−1

Jη
0+ H −

(
I + Jη

0+πSnK
)−1

Jη
0+πSn H

]
+
(

I + Jη
0+πSnK

)−1
Jη
0+ H −

(
I + Jη

0+πSnK
)−1

Jη
0+ H

=
(

I + Jη
0+πSnK

)−1
Jη
0+

[(
I − πSn

)
KΩ +

(
I − πSn

)
H
]
.

In addition,

φ− φn =

[(
I − Jη

0+K
)−1

Jη
0+K−

(
I − Jη

0+πSnK
)−1

Jη
0+πSn K

]
+
(

I − Jη
0+πSnK

)−1
Jη
0+K−

(
I − Jη

0+πSnK
)−1

Jη
0+K

=
(

I − Jη
0+πSnK

)−1
Jη
0+

[(
I − πSn

)
Kφ +

(
I − πSn

)
K
]
.

Hence,

Ω−Ωn =
(

I + Jη
0+πSnK

)−1
Jη
0+

[(
I − πSn

)
K(ω + ϕ) +

(
I − πSn

)
(k + h)

]
,

and thus

φn − φ =
(

I − Jη
0+πSnK

)−1
Jη
0+

[(
I − πSn

)
K(ω− ϕ) +

(
I − πSn

)
(k− h)

]
.

Letting

δ :=
∥∥∥∥(I + Jη

0+πSnK
)−1

∥∥∥∥∥∥∥Jη
0+

∥∥∥,

γ :=
∥∥∥∥(I − Jη

0+πSnK
)−1

∥∥∥∥∥∥∥Jη
0+

∥∥∥,

we obtain

‖Ωn −Ω‖v ≤ δ
[∥∥∥(I − πSn

)
K(ω + ϕ)

∥∥∥
v
+
∥∥∥(I − πSn

)
(k + h)

∥∥∥
v

]
≤ δ

[∥∥∥(I − πSn

)
K(ω + ϕ)

∥∥∥
v
+
∥∥∥(I − πSn

)
(k + h)

∥∥∥
v

]
≤ δ

[
M3

12 n3/2 +
M4

12 n3/2

]
,

for some constants M3, M4 > 0. Moreover,

‖φn − φ‖v =

∥∥∥∥(I − Jη
0+πSnK

)−1[
Jη
0+

(
I − πSn

)
Kφ + Jη

0+

(
I − πSn

)
K
]∥∥∥∥

v

≤ γ
[∥∥∥(I − πSn

)
K(ω− ϕ)

∥∥∥
v
+
∥∥∥(I − πSn

)
(k− h)

∥∥∥
v

]
≤ γ

[
M5

12 n3/2 +
M6

12 n3/2

]
,

for some constants M5, M6 > 0.
Letting

M1 := δ max{M3, M4} and M2 := γ max{M5, M6},

we obtain the desired results.
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6. Numerical Example

In this section, numerical experiments are established to illustrate the results presented
in the previous section. In these numerical evaluations, the Maple programming language
was implemented.

Example 1. We study the fractional integro-differential system (1) in this example, which has the
exact solution as follows:

ϕ(τ) =
1
2

τ3, ω(τ) =
1
2

(
τ3 − 2τ2

)
, η =

1
3

.

In this case, we obtain

Ω(τ) = τ3 − τ2, φ(τ) = −τ2.

H(τ) = − 1
120Γ

( 2
3
) [− 243τ8/3 + 120Γ

(
2
3

)
τ3 ln(τ) + 216τ5/3

− 120Γ
(

2
3

)
τ3 ln(−τ + 1)− 120Γ

(
2
3

)
τ2 ln(τ) + 120Γ

(
2
3

)
τ2 ln(−τ + 1)

− 120Γ
(

2
3

)
τ2 + 60τ + 20Γ

(
2
3

)]
and

K(τ) = − 1
10Γ

( 2
3
) [18τ5/3 − 10Γ

(
2
3

)
τ2 ln(1− τ) + 216τ5/3

+ 10Γ
(

2
3

)
τ2 ln(τ)− 10Γ

(
2
3

)
τ − 5Γ

(
2
3

)]
.

To show the efficiency of this example, we shall offer some numerical testes. For example, for
n = 7, unknowns a7,0 · · · a7,7 are as follows:

a7,0 = −0.78334× 10−1, a7,1 = −0.39165× 10−1,

a7,2 = 0.78330× 10−1, a7,3 = 0.39165× 10−1,

a7,4 = −5.6631× 10−7, a7,5 = −0.17120× 10−5,

a7,6 = −3.2531× 10−7, a7,7 = −0.14416× 10−5.

Approximate solution Ω7 is given by

Ω7(τ) = −0.16755× 10−3τ + 0.98870τ3 + 0.30814× 10−1τ4 − 0.44449× 10−1τ5

+ 0.32446× 10−1τ6 − 0.94226× 10−2τ7 − 0.99779τ2 − 0.21845× 10−5.

In addition,

b7,0 = −0.46998, b7,1 = −0.62666,

b7,2 = −0.15668, b7,3 = 0.30641× 10−5,

b7,4 = −0.28020× 10−5, b7,5 = 0.44393× 10−5,

b7,6 = −0.20660× 10−5, b7,7 = 0.25847× 10−5.

Approximate solution φ7 is provided by

φ7(τ) = 0.71009× 10−3τ + 0.29927× 10−1τ3 − 1.0066τ2 − 0.11933× 10−4

− 0.71647× 10−1τ4 + 0.93245× 10−1τ5 − 0.62505×10−1τ6 + 0.16894× 10−1τ7.



Mathematics 2023, 11, 32 11 of 14

Table 1 shows the numerical findings obtained for Example 1 using the method we
suggest.

Table 1. Numerical results for Example 1.

n ‖Ω−Ωn‖v ‖φ−φn‖v

3 4.1428 × 10−5 1.5520 × 10−4

5 8.6994 × 10−6 3.5924 × 10−5

7 9.6542 × 10−8 8.2544 × 10−8

13 7.2543 × 10−13 7.2547 × 10−12

17 9.2541 × 10−15 3.8531 × 10−14

Figure 1 depicts the graphs of the achieved absolute errors for Example 1. Here, we
note that the τ symbol in the figures refers to the τ-axis labels.

Figure 1. Comparison of exact solutions Ω and φ and approximate solutions Ωn and φn, respectively,
for the first example, where n = 7.

Example 2. Various types of fractional integro-differential and integral systems can be studied
and solved with the proposed method. As a second example for testing, we consider the system of
fractional logarithmic integro-differential equations of the following form:

cDη
0+ ϕ(τ) +

∮ 1

0
ω(ς) ln|ς− τ|dς = h(τ), 0 ≤ τ ≤ 1,

cDη
0+ω(τ) +

∮ 1

0
ϕ(ς) ln|ς− τ|dς = k(τ), 0 ≤ τ ≤ 1,

r−1

∑
k=0

τk

k!
ϕ(k)(0) = 0,

r−1

∑
k=0

τk

k!
ω(k)(0) = 0, r− 1 < η < r,

which has the following exact solution:

ϕ(τ) = −1
2

(
τ3 + τ4

)
, ω(τ) =

1
2

(
τ4 − τ3

)
, η =

1
2

.

Here, we have

Ω(τ) = −τ3, φ(τ) = τ4.
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We provide some numerical tests to demonstrate the efficacy of this illustration. If n = 5, then
the values of a5,0 · · · a5,5 are as shown below:

a5,0 = −0.39168, a5,1 = −0.58757,

a5,2 = −0.23503, a5,3 = −0.39169× 10−1,

a5,4 = 0.15704× 10−5, a5,5 = 9.5589× 10−7.

Approximate solution Ω5 is given by

Ω5(τ) = 0.15159× 10−3τ − 0.30425× 10−3τ2 − 0.99947τ3 + 0.39048× 10−3τ5

+ 0.68731× 10−5.

In addition,

b5,0 = 0.34276, b5,1 = 0.54834,

b5,2 = 0.27418, b5,3 = 0.78336× 10−1,

b5,4 = 0.97933× 10−2, b5,5 = 5.6341× 10−7.

Approximate solution φ5 is provided by

φ5(τ) = −0.79785× 10−5τ + 0.99955τ4 + 0.27127× 10−3τ3 − 0.23936× 10−4τ2

+ 0.45188× 10−4 + 0.23015× 10−4τ5.

Figure 2 illustrates the numerical results produced for Example 2 using the indicated
approach.

Figure 2. Comparison of exact solutions Ω and φ and approximate solutions Ωn and φn, respectively,
for the second example, where n = 5.

Example 3. Now, we consider the above system of fractional logarithmic integro-differential
equations, with the same exact solutions.

ϕ(τ) = −1
2

(
τ3 + τ4

)
, ω(τ) =

1
2

(
τ4 − τ3

)
.

In Table 2, we examine the influence of fractional order η on the approximate solutions.
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Table 2. Influence of fractional order η on the approximate solutions.

η ‖Ω−Ωn‖v ‖φ−φn‖v

0.3 1.0548 × 10−5 3.1473 × 10−5

0.4 1.2668 × 10−4 1.0739 × 10−4

0.6 7.9977 × 10−6 3.2081 × 10−5

0.7 8.4737 × 10−5 4.7114 × 10−5

0.8 9.8905 × 10−5 9.2993 × 10−5

1.3 9.1313 ×10−5 9.7317 ×10−5

1.6 8.4393 × 10−5 2.3766 × 10−4

2.4 5.1952 × 10−5 7.0123 × 10−4

3.7 4.0924 × 10−5 1.4281 × 10−3

7. Conclusions

The application of projection methods is extended in this study so that it can be
applied to a fractional Cauchy singular integro-differential system. Shifted Vieta–Lucas
polynomials are a class of orthogonal polynomials that serve as the foundation of this
approach. The significance of this fractional Cauchy singular integro-differential system is
evident in mathematical sciences issues, particularly in physics interactions. It has been
observed that the fractional operator has a substantial impact on the development of the
numerical results. Numerous kinds of fractional integro-differential and integral systems
can be investigated with this method, and their solutions can be found.
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