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Abstract: In this paper, a new six dimensional memristor chaotic system is designed by combining
the chaotic system with a memristor. By analyzing the phase diagram of the chaotic attractors,
eleven different attractors are found, including a multi-wing attractor and symmetric attractors. By
analyzing the equilibrium point of the system, it is proven that the system has the property of a
hidden chaotic attractor. The dynamic behavior of the system when the three parameters change is
analyzed by means of LEs and a Bifurcation diagram. Other phenomenon, such as chaos degradation,
coexistence of multiple attractors and bias boosting, are also found. Finally, the simulation on the
DSP platform also verifies the accuracy of the chaotic system simulation. The theoretical analysis and
simulation results show that the system has rich dynamical characteristics; therefore, it is suitable for
secure communication and image encryption and other fields.

Keywords: hidden attractor; coexistence of multiple attractors; chaos degradation; offset boost-
ing; DSP

MSC: 34H10

1. Introduction

In the 1960s, the proposal of the Lorentz system attracted extensive attention in
chaos research. Chaos is a physical phenomenon highly sensitive to initial value. Its
development and the related research have made great progress in just a few decades,
meanwhile, the study of the chaotic system [1–11] has gradually expanded to weather,
finance, communication and other fields. Due to the study of the chaotic system model,
many different types of chaotic systems have been derived, such as the discrete chaotic
system [12–14], the memristor chaotic system, the hyperchaotic system [15–18] and so on.

The emergence of the memristor [19–22] is also a milestone event for chaos research.
Professor Chua predicted the existence of the memristor based on the principle of circuit
symmetry in 1971 and sorted out the types and principles of the memristor in subsequent
years. In 2008, the HP company successfully developed a memristor to test Chua’s theory.
At this point, the study of chaos theory entered a new stage, and people began to conjecture
and experiment on the connection between the memristor and chaos, which has also
become a research hotspot.

A special class of nonlinear dynamical systems with no equilibrium state or infi-
nite equilibrium state can exhibit hidden chaotic attractors [23–26]. In 2013, Leonov and
Kuznetsov first proposed a strict mathematical definition of the hidden chaotic attractor.
The hidden attractor has the characteristics of possessing a small attractor basin and does
not intersect with any unstable equilibrium neighborhood. Due to its hidden characteristics,
it has a broad application potential in chaos related fields. In 2008, Professor Chua replaced
the Chua diode in Chua’s circuit with a piecewise linear memristor; they first proposed
the chaotic circuit based on the memristor [27]. In 2010, a chaotic oscillator based on the
memcapacitor was presented by Hu [28]. In 2017, Wang designed a chaotic oscillator based

Mathematics 2023, 11, 24. https://doi.org/10.3390/math11010024 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010024
https://doi.org/10.3390/math11010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4807-3765
https://orcid.org/0000-0002-7774-2833
https://doi.org/10.3390/math11010024
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010024?type=check_update&version=1


Mathematics 2023, 11, 24 2 of 13

on the meminductor and memcapacitor [29]. In 2019, Yuan designed a simple chaotic
oscillator through a memristor, memcapacitor and meminductor in parallel [30].

In this paper, a new memristor chaotic system is constructed based on the memristor
and chaotic system. Interestingly, after the stability analysis of the system, the system has
a non-equilibrium state, which belongs to the category of chaotic systems with hidden
attractors. At the same time, in the process of parameter mediation, it is found that it has
many different types of chaotic attractors, which has been relatively rare in the past. In
addition, the system also has a variety of complex dynamic phenomena, including a multi-
wing chaotic attractor [31–33], symmetric chaotic attractor [34–36], chaotic degradation,
coexisting attractor and so on. Offset boosting [37–39] is also a feature of the system, which
means that the system can be controlled flexibly through the introduction of feedback states.
Finally, the feasibility of the system is verified by the DSP platform. The establishment of
the system also provides a new idea for image encryption and secure communication in
the future.

The structure of the paper is distributed as follows. In Section 2, the model of the
memristor and the chaotic system equation of the memristor are introduced, and the
equilibrium point of the system equation is analyzed. In Section 3, the phase diagram
of the hidden attractor is presented, and the changes in the LEs and bifurcation diagram
corresponding to three different parameters are systematically analyzed. At the same
time, the special phenomena of the system are presented, such as chaos degradation, the
coexistence of multiple attractors, offset boosting, and complexity analysis. In Section 4,
the digital circuit of the system is implemented on the DSP platform, and the correctness of
the simulation of the system is verified. Finally, some conclusions are given in Section 5.

2. Mathematical Model

The memristor model is shown below.
W(v) =

dq(v)
d(v)

= tanh(v)

i = W(v)y = tanh(v)y
d(v)

dt
= y2 − v

(1)

For the sake of showing the characteristic curve of the memristor in more detail, a
sinusoidal AC signal v =Asin(2πft) is added as the input to the memristor. Let the amplitude
A = 3. As shown in Figure 1, it can be observed that the trajectory of the u-i feature is similar
to an inclined “8”, and the sidelobe area of its characteristic curve will decrease with the
increase in frequency, which is consistent with the definition of the memristor.
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Equilibrium Points Set and Stability

We combined the memristor with the chaotic system to construct a new type of six
dimensional chaotic system, and the model of the five dimensional chaotic system we used
is as follows:
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.
x = −ax + yz + bw + u
.
y = cy− xz + k
.
z = xy− dz
.

w = xz− ew
.
u = gy

(2)

A new 6-D chaotic dynamical system with complex dynamical characteristics is con-
structed by combining the memristor and chaotic system. The specific formula is as follows:

.
x = −ax + yz + bw + cosu
.
y = cytanhv− xz + k
.
z = xy− dz
.

w = xz− ew
.
u = gy
.
v = y2 − v

(3)

In order to obtain the divergence of the chaotic system (3), the following formulas
are listed.

∇V =
∂

.
x

∂x
+

∂
.
y

∂y
+

∂
.
z

∂z
+

∂
.

w
∂w

+
∂

.
u

∂u
+

∂
.
v

∂v
(4)

When the initial conditions of the system are (1, 1, 1, 1, 1, 1) and the parameters are
a = 3, b = 0.01, c = 7, d = 31, k = 7, e = 5, g = 0.05, l = 6, it is easy to establish that the ∇V is
less than zero, indicating that the system is dissipative, which is also one of the theoretical
evidences of the existence of chaos in the system.

Then, when
.
x =

.
y =

.
z =

.
w =

.
u =

.
v = 0,

−ax + yz + bw + cosu = 0
cytanhv− xz + k = 0
xy− dz = 0
xz− ew = 0
gy = 0
y2 − v = 0

(5)

that is, the equilibrium set of the system is obtained

E∗ =

{
None, k 6= 0( cosn

a
0, 0, 0, 0, n

)
, k = 0 (6)

Next, when k = 0, the Jacobi matrix JE of the system is shown below

JE =



−a z y b −sinw 0
−z ctanhv −x 0 0 −cy

(
tanh2v− 1

)
y x −d 0 0 0
z 0 x −e 0 0
0 g 0 0 0 0
0 2y 0 0 0 0

 (7)

The characteristic equation of the system is as follows

λ6 + a1λ5 + a2λ4 + a3λ3 + a4λ2 + a5λ1 + a5 = 0 (8)

where a1 = 33.67, a2 = 55.93, a3 =−898.45, a4 =−2371.36, a5 =−335.28, a6 = 6.73, λ1 = −31.0102,
λ2 = 5.2430, λ3 = −5.0048, λ4 = −2.7456, λ5 = −0.1691, λ6 = 0.0178. According to the results
obtained, it can be concluded that the system is erratic; therefore, it also provides theoretical
support for the system to produce chaos.
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3. Numerical Diagram of the Dynamical Behaviors
3.1. Hidden Chaotic Attractor

According to Equation (6), when k 6= 0, there is no equilibrium point in the system,
and the attractor of the chaotic system is called a hidden attractor. Here, when k = 7 is set
and the other parameters are adjusted, respectively, it is found that the system has various
types of chaotic attractors, including a structurally symmetric type, multi-vortex type and
single vortex type, as shown in Figure 2.
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Figure 2. Hidden chaotic attractor of Type I-Type XI (Y-Z plane) under initial condition of (1, 1, 1, 1, 1,
1), and b = 0.01, c = 5, k = 7, g = 0.05, l = 6, (a) a = 3, c = 7, d = 31; (b) a = 5, c = 7, d = 31; (c) a = 3, c = 12,
d = 31; (d) a = 3, c = 2.5, d = 31; (e) a = 3, c = 6.7, d = 31; (f) a = 3, c = 7, d = 11; (g) a =3.5, c = 7 d = 31; (h)
a = 8.24, c = 7, d = 31; (i) a = 8.27, c = 7, d = 31; (j) a = 3, c = 2, d = 31; (k) a = 3, c = 2.0, 1d = 31.

3.2. Analysis of Dynamic Characteristics

The LEs and bifurcation diagram is one of the classical methods to analyze nonlinear
dynamic behavior. By fixing the other parameters and testing the data changes of the
LEs and bifurcation diagram in different ranges of parameters a, c and k, respectively, the
complex dynamic characteristics can be clearly understood.

When b = 0.01, c = 7, d = 31, k = 7, e = 5, g = 0.05, l = 6, choosing the initial conditions (1,
1, 1, 1, 1, 1), and take the parameter a∈ [2, 9]. By observing the LEs and bifurcation diagram
in Figure 3, it can be seen that there are only two states; namely, the periodic state and
the chaotic state. Under the change of parameter a, all state changes are summarized in
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Table 1. The system exhibits strong sensitivity, as can be seen from a∈ [8.26, 8.30], where
the attractor varies between Type VIII and Type IX.
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Table 1. Corresponding state and LEs with the initial conditions (1, 1, 1, 1, 1), the parameters b = 2,
c = 10, d = 21, k = 3, e = 10, g = 1.15 and the different parameter a.

Range LEs State Attractor Type Range LEs State Attractor Type

0 - - - - - Divergence None 8.26–8.27 +0 - - - - Chaos Type VIII
2–2.99 0 - - - - - Period Period-1 8.28 +0 - - - - Chaos Type IX
3–3.44 +0 - - - - Chaos Type I 8.29 +0 - - - - Chaos Type VIII

3.45–3.94 +0 - - - - Chaos Type VII 8.30 +0 - - - - Chaos Type IX
3.95–8.22 +0 - - - - Chaos Type II 8.31–9 +0 - - - - Chaos Type II
8.23–8.24 +0 - - - - Chaos Type VIII 8.31–9 +0 - - - - Chaos Type II

8.25 +0 - - - - Chaos Type IX

In order to explore the change of the chaotic attractor in the change of parameter c,
choosing the initial condition is (1, 1, 1, 1, 1, 1), and a = 3, b = 0.01, d = 31, k = 7, e = 5, g = 0.05,
l = 6, the LEs and bifurcation diagram of the corresponding system when parameter c
increases from 2 to 12, Under the change of parameter c, all state changes are summarized
in Table 2, and shown in Figure 4.

Table 2. Corresponding state and LEs with the initial conditions (1, 1, 1, 1, 1), the parameters a = 10,
b = 2, e = 5, d = 21, k = 3, g = 1.15 and the different parameter c.

Range LEs State Attractor Type Range LEs State Attractor Type

0 - - - - - Divergence None 2.11–2.99 +0 - - - - Chaos Type IV
2–2.01 +0 - - - - Chaos Type X 3–6.59 0 - - - - - Period Period-1

2.02–2.03 +0 - - - - Chaos Type IV 6.60–6.79 +0 - - - - Weak chaos Type V
2.04–2.05 +0 - - - - Chaos Type XI 6.79–10.61 +0 - - - - Weak chaos Type I
2.06–2.09 +0 - - - - Chaos Type IV 10.62–12 +0 - - - - Chaos Type III

2.1 +0 - - - - Chaos Type X

At the interval 2 ≤ c ≤ 2.1, it can be found that the chaotic attractor of the system is
highly sensitive and transforms between Type X, Type XI and Type IV. Moreover, the chaotic
attractor changes from single-scroll to multi-scroll and then reverts to single-scroll, and its
multi-scroll has a high degree of symmetry, which is also a very interesting phenomenon.
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In order to further understand how parameter k affects the change of the chaotic
attractor of the system, the initial condition is set as (1, 1, 1, 1, 1, 1), letting parameter
k∈ [0, 8], and a = 3, b = 0.01, c = 7, d = 31, e = 5, g = 0.05, l = 6. The LEs and its corresponding
bifurcation diagram of variable parameter k is shown in Figure 5, and all state changes are
summarized in Table 3.
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Table 3. Corresponding state and LEs with the initial conditions (1, 1, 1, 1, 1), the parameters a = 10,
b = 2, c = 10, d = 31, e = 10, g = 1.15 and the different parameter k.

Range LEs State Attractor Type Range LEs State Attractor Type

0 - - - - - Divergence None 2.02–3.03 +0 - - - - Period Period-2
0–1.64 +0 - - - - Chaos Type II 3.04–4.29 +0 - - - - Chaos Type I

1.65–1.88 +0 - - - - Chaos Type I 4.3–8 +0 - - - - Period Period-2
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It can be observed from Figure 5 that when the parameter k∈ [0, 1.64], the maximum
LEs is positive, and the bifurcation graph is in an obvious chaotic state. When parameter
k ≤ 2.02, the chaos attractors separate into different types, such as Type I, Type II and Type
V. The specific dynamic characteristics under the different parameters of the system are
recorded in Table 3.

From Tables 1–3, the types of some attractors are the same, but their chaotic states
are different, which is closely related to the difference in the value of the maximum LEs.
Sometimes the parameter change is not big, but its attractor state has great changes; this is
also a situation that reflects the chaotic characteristics of the high sensitivity, it also provides
theoretical support for the development of chaotic secure communication in the future.



Mathematics 2023, 11, 24 7 of 13

3.3. Chaos Degradation

Chaos refers to the unpredictable and random-like motion of deterministic dynamical
system due to its sensitivity to the initial value. Due to its unpredictability, as the time line
lengthens, its possible chaotic state will become unstable, and it is possible to degenerate
from the stable chaotic state to the periodic state, which is called chaos degradation. In the
simulation of the system, when a = 3, b = 0.01, c = 2.05, d = 31, k = 7, e = 5, g = 0.05, l = 6,
and the initial condition is (1, 1, 1, 1, 1, 1). When t∈ [0, 3450], the system is in the chaos
state and chaotic attractor as shown in Figure 6c, and when t > 3450s, the system quickly
degenerates from the chaos state to the periodic state, as shown in Figure 6d.
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3.4. Coexisting-Attractors

Due to the high sensitivity of chaos to the initial value, it is found that when only
the initial value of the chaotic system is changed, the chaotic attractor’s position or shape
changes are called coexisting-attractors. The high sensitivity of the initial value is one of the
most important characteristics of chaotic systems, which means that the study of coexisting
attractors has become one of the hot topics in nonlinear dynamics. As many different
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attractors have been found in the simulation of the chaotic system, it is very meaningful to
study the co-existence attractors of different attractors. When b = 0.01, e = 5, k = 7, g = 0.05,
l = 6, the coexistence attractors in the Y-Z plane are shown in Figure 7, and their initial
values are, respectively, (1, 1, 1, 1, 1, 1) and (1, 1, 1, 1, π, 1).
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3.5. Offset Boosting Scheme

The method of arbitrarily displacing chaotic attractors and their attractor pools without
changing the system solution is called offset boosting. The specific method is to introduce a
new variable and then control the system. As the system variable w, as an independent
linear term, appears separately in the system equation, a new variable q is introduced
to boost the variable w, thus achieving the effect of controlling the whole system. The
improved system equation is shown below.
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.
x = −ax + yz + b(w− q) + cosu
.
y = cytanhv− xz + k
.
z = xy− dz
.

w = xz− e(w− q)
.
u = gy
.
v = y2 − v

(9)

Let the initial conditions be (1, 1, 1, 1, 1, 1), and the parameters a = 3, b = 0.01, c = 7,
d = 31, k = 7, e = 5, g = 0.05, l = 6. Then, adjust the parameter q from 0 to 70, in sequence with
step size 10. It can be observed from the 3-D diagram, shown in Figure 7, that the attractor
moves straight along the direction of w. This means that the variable q can successfully
control the movement of the attractor. Meanwhile, the bifurcation diagram in Figure 8b
also showed a regular upward trend. Figure 8c,d shows the LES diagrams and bifurcation
diagrams of parameter q∈ [40, 50], respectively. To facilitate observation, the smaller LEs
are omitted. Hence, it clearly shows that the variables w increases as the offset q increases,
while the LEs did not change. This means that the chaotic attractor does not undergo any
change. According to the experimental results, it can be concluded that this method has a
very significant effect on controlling the attractor displacement, and it has a very promising
application prospect.
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3.6. Complexity Analysis

In general, the study of the complexity of chaotic systems is an important research
index. By using a complexity algorithm to analyze the chaotic sequence and random
sequence approximation, when the chaotic sequence is closer to the random sequence,
it is proven that its complexity is higher. In order to study the influence of parameter
changes on the system complexity, two different parameter combinations, a, d and a, k, are
introduced. As shown in Figure 9a, when a and c increase continuously with the value, the
color in the figure becomes increasingly darker, indicating higher complexity. This method
also provides an effective basis for the parameter selection of the multivariable complex
chaotic graph system.
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4. DSP Implementation

In order to verify the new memristor chaotic system, DSP is chosen to implement the
system. The specific steps of the method for the DSP-controlled D/A converter on the
sequence code is generated by the DSP corresponding simulation conversion, so that the
output sequence is displayed on the oscillation range.

As the DSP platform can only deal with discrete data, it is necessary to deal with the
continuous system first. The fourth order Runge-Kutta method is used to transform the
data into a discrete chaotic sequence, and then the iterative relation is recorded into the
DSP platform using C language. The operation process and experimental platform are
shown in Figures 10 and 11.
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Let the parameter of the system b = 0.01, c = 5, k = 7, g = 0.05, l = 6. Let the parameter
of the system initial condition (1, 1, 1, 1, 1, 1), and change the other parameters to obtain
the numerical simulation results, as shown in Figure 12:
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It can be observed in Figure 13 that the phase diagram realized on DSP is highly
consistent with the phase diagram simulated, which proves the correctness of the digital
circuit simulation of the system.
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5. Conclusions

In this paper, a new 6-D chaotic system is constructed by combining a memristor with a
chaotic system, and its dynamical characteristics are studied numerically. By analyzing the
phase diagram of the chaotic attractor, it is found that the system has many different types
of hidden attractors, and the shape of the attractor changes with the change of parameters.
At the same time, when the parameters change, the chaos will degenerate. In addition,
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a new control variable q is introduced into the state variable w during the system bias
boost. The state variable w varies linearly with the offset q, and its LES does not change
significantly, which indicates that the w sequence can be flexibly changed by introducing
control variables. Finally, the accuracy of the system simulation is verified on DSP. This
paper provides a reference for the future research of the hidden chaotic attractor, bias boost
and circuit implementation.
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