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Abstract: The purpose of this article is to discuss some new aspects of the vector-valued metric
space. The idea of an arbitrary binary relation along with the well-known F contraction is used to
demonstrate the existence of fixed points in the context of a complete vector-valued metric space
for both single- and multi-valued mappings. Utilizing the idea of binary relation, and with the
help of F contraction, this work extends and complements some of the very recently established
Perov-type fixed-point results in the literature. Furthermore, this work includes examples to justify
the validity of the given results. During the discussion, it was found that some of the renowned
metrical results proven by several authors using different binary relations, such as partial order,
pre-order, transitive relation, tolerance, strict order and symmetric closure, can be weakened by using
an arbitrary binary relation.
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1. Introduction

As an effective tool, the classical Banach contraction principle [1] is not only widely
used in different fields of mathematics such as ordinary differential equations, partial
differential equations, integral equations, optimization, and variational analysis, but it
has been a useful tool in other subjects such as economics, game theory, and biology as
well. This theorem provides the existence and uniqueness of the fixed point of a self-map,
satisfying the contraction condition defined on a complete metric space. Since its outset,
this classical result has been revived in different forms and shapes. Scientists created
different approaches to extend, complement, and generalize this result, such as the Ciric
theorem, Caristi theorem, Boyd–Wong theorem, and Browder–Kirk theorem. In this regard,
Perov [2] made a very elegant attempt to broaden this result to mappings defined on
product spaces. Many researchers have shown keen interest in this context and have
made some very interesting contributions to metric fixed point theory. For example, Abbas
et al. [3] investigated the fixed points of Perov-type contractive mappings on a set endowed
with a graphic structure, and Filip and Petrusel [4] explored fixed-point theorems on a
set endowed with vector-valued metric. Many other researchers, namely Cretkovic and
Rakocevic [5], Altun et al. [6], Ilic et al. [7], and Vetro and Radenovic [8], discussed this
result under various circumstances to obtain fixed points. Another interesting result was
proven by Wardowski [9], who initiated the notion of F contraction to prove fixed-point
theorems, which is a real generalization of the Banach fixed-point theorem. This result was
extended by I. Altun and M. Olgun [10] to investigate fixed-point results for Perov-type
F contractions.
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Recently, Alam and Imdad [11] extended the Banach fixed-point theorem to a complete
metric space endowed with a binary relation and discussed a more generalized way to
obtain fixed points. Almalki et al. [12] initiated the notion of a vector-valued metric space
enriched with a binary relation. In this work, we extend the Perov fixed-point theorem
for single-valued and multi-valued mappings using F contraction in the framework of
a generalized metric space equipped with a binary relation. We have used a weaker
contractive inequality that only holds for those elements which are related under the binary
relation instead of the entire space.

2. Preliminaries

Through out this paper, we represent N,Z,R,R≥0, Rt, and Rt>k with the set of all
natural numbers, a set of non-negative integers, real numbers, non-negative real numbers,
real matrices of the order t× 1, and real matrices of the order t× 1 with entries greater than
k, respectively. We denote u, v ∈ Rt as u = (λ1, λ2, . . . , λt) and v = (ω1, ω2, . . . , ωt) and
set u ≤ v ( or u < v) if and only if λi ≤ ωi (or λi < ωi ), where ∀ i = 1, 2, · · · , t.

Perov [2] introduced the concept of generalized metric space, also known as vector-
valued metric space, in the following way:

Definition 1 (See [2]). A mapping ρ : M×M→ Rt is said to be a vector-valued metric on M if
the following properties are satisfied for all p, q, r ∈ M:
M1 : ρ(p, q) ≥ 0;
M2 : ρ(p, q) = 0⇔ p = q;
M3 : ρ(p, q) = ρ(q, p);
M4 : ρ(p, q) ≤ ρ(p, r) + ρ(r, q).

Here, 0 is the zero matrix of the order t× 1. Thus, the pair (M, ρ), where M be any non-empty
set and ρ may be a vector-valued metric on M, is called a generalized metric space or vector-valued
metric space.

The notions of a Cauchy sequence, convergent sequence, and completeness for vector-
valued metric spaces are alike to those for usual metric spaces. In this paper, we symbolize
the set of all square matrices of the order t× t with Mt(R≥0), where all entries are greater
than or equal to zero, the null matrix of the order t× t with 0t ∈Mt(R≥0), and the identity
matrix with It. Notice that for any matrix S ∈Mt(R≥0), we have S0 = It.

The concept of a matrix convergent to zero is elaborated upon by the following
definition and example:

Definition 2 (See [2]). A matrix S ∈Mt(R≥0) is called a matrix convergent to zero if Sn → 0t
as n→ ∞.

Example 1. If each element of {b1, b2, . . . , bt} is less than 1, then

B :=


b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bt


t×t

is convergent to zero in Mt(R≥0).

Here, we present some equivalent conditions of matrices convergent to zero from
Petrusel [4]:

Proposition 1 (See [4]). Let S ∈Mt(R≥0). Then, the following are true:

1. S is convergent to zero;
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2. All eigenvalues of S belong to an open unit disc, where |λ| < 1 (i.e., every λ ∈ C with
det(S− λIt) = 0 is such that |λ| < 1);

3. det(It − S) 6= 0, and

(It − S)−1 = It + S + · · ·+ Sn + · · · ,

4. Snu→ 0 as n→ ∞, where ∀u ∈ Rt.

Example 2 (See [6]). Let m + n ≥ 1 and p + q ≥ 1. Then, the matrix C =

(
m n
p q

)
is not

convergent to zero in M2(R≥0).

Now, let us discuss some concepts related to binary relations:

Definition 3 (See [13]). Let M be a non-empty set. Then, the Cartesian product on M is defined
as follows:

M2 = {(m, n) : m, n ∈ M}.

All subsets of M2 are known as the binary relations on M.

Let R be any subset of M2. Then, notice that for each pair m, n ∈ M, there are two
possibilities: either (m, n) ∈ R or (m, n) /∈ R:

1. For (m, n) ∈ R, we mean that m relates to n under R.
2. For (m, n) /∈ R, we mean that m does not relates to n under R.

M2 and φ are called the trivial binary relations of M2. The binary relation M2 is called
the universal relation or full relation, while φ is called an empty binary relation. Another
useful binary relation on M is the equality relation, identity relation, or diagonal relation
and is defined as

∆M := {(m, m) : m ∈ M}.

Throughout this paper, we use R for a non-empty binary relation, but for our conve-
nience, we write it as binary relation instead of writing a non-empty binary relation. Alam
and Imdad [11] presented the notion of R-comparative elements in the following manner:

Definition 4 (See [11]). R is a binary relation defined on M. For m, n ∈ M, if either (m, n) ∈ R
or (n, m) ∈ R, then these elements are called R-comparative elements and denoted as [m, n] ∈ R.

Using suitable conditions, a binary relation can be classified into various types. Some
of the well-known binary relations along with some important properties can be found
in [13]. The following well-known proposition states that every universal relation is a
complete equivalence relation:

Proposition 2 (See [13]). Let R be the full binary relation (universal relation) defined on a
non-empty set X. Then,R is a complete equivalence relation.

Almaliki et al. [12] extended Proposition 2.3, presented in [11], in the following manner:

Proposition 3 (See [12]). Let (X, ρ) be a generalized metric space endowed with a binary relation
R, and let T : X → X be a mapping. In addition, assume that A ∈ Mm(R+) is a matrix
convergent to zero. Then, the following contractive conditions are equivalent:

(1) ρ(Ta, Tb) ≤ Aρ(a, b), ∀a, b ∈ X with (a, b) ∈ R;

(2) ρ(Ta, Tb) ≤ Aρ(a, b), ∀a, b ∈ X with [a, b] ∈ R.

Proof. It is trivial that if (2) holds, then (1) exists. Now, we show that the existence of (1)
implies the existence of (2).



Mathematics 2023, 11, 238 4 of 18

Suppose (1) holds and a, b ∈ X with [a, b] ∈ R, which is either (a, b) ∈ R or (b, a) ∈ R.
If (a, b) ∈ R, then (2) holds directly from (1).
If (b, a) ∈ R, by using M3, we obtain

ρ(Ta, Tb) = ρ(Tb, Ta) ≤ Aρ(b, a) = Aρ(a, b).

This implies that (2) holds.

The concept of d self-closedness for an arbitrary binary relation defined on a metric
space (X, d) as presented by Alam and Imdad in [11] was recently extended by Almaliki
et al. [12] in the following way:

Definition 5 (See [12]). Let (X, ρ) be a generalized metric space endowed with a binary relation
R. Then, R is said to be ρ-self-closed if for each R-preserving sequence (an) with a limit point
a ∈ X, there exists a subsequence (ank ) of (an) with [ank , a] ∈ R, ∀k ∈ N.

Example 3. Let X = R, equipped with a generalized metric ρ, be defined by

ρ(a, b) =
[
|a− b|
|a− b|

]
and a binary relationR be defined byR = {(a, b) : a, b ≥ 0}. Consider an arbitraryR-preserving
sequence (an) with a limit point a ∈ X, where limn→∞ ρ(an, a) = 0 and anRan+1 for each n ∈ N.
With the R-preserving nature of (an), we obtain an, an+1 ≥ 0 for each n ∈ N. Additionally, the
fact that limn→∞ ρ(an, a) = 0 implies a ≥ 0, since an ≥ 0 for each n ∈ N. Thus, an, a ≥ 0 for
each n ∈ N; that is, anRa for each n ∈ N. Hence, we say that there exists a subsequence (ank ) of
(an) with [ank , a] ∈ R ∀k ∈ N.

Definition 6 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with a binary relation
R. Then, the following are true:

1. The inverse relation of R is defined as

R−1 = {(m, n) ∈ M2 : (n, m) ∈ R}.

2. The symmetric closure of R is defined as Rs = R ∪ R−1.

Almalki et al. [12] defined the notion of an R-preserving sequence that is Γ-closed,
ρ-self-closed, and R-directed in a vector-valued metric space in the following way:

Definition 7 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with a binary relation
R. Then, a sequence (cn) ⊆ M is called an R-preserving sequence if

(cn, cn+1) ∈ R, ∀n ∈ Z.

Definition 8 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with a binary relation
R. Then, an R-preserving sequence (cn) with a limit c∗ ∈ M is called ρ-self-closed if there exists a
subsequence (cnk ) of (cn) such that [cnk , c∗] ∈ R, ∀k ∈ Z.

Lemma 1 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with a binary relation
R, and let Γ : M→ M be a mapping. Then, Rs is Γ-closed whenever R is Γ-closed.

Definition 9 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with binary relation
R. A subset E of M is called R-directed if for each m, n ∈ E, ∃l ∈ M such that (m, l) ∈ R with
(n, l) ∈ R.
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The notion of a path between two points of a set endowed with a binary relation in a
vector-valued metric space was given in [12] in the following way:

Definition 10 (See [12]). Let (M, ρ) be a vector-valued metric space equipped with a binary
relation R. Then, for CR(m, n) 6= φ, ∀m, n ∈ M, we mean that for every pair m, n ∈ M, there
exists a finite subset {l1, l2, . . . , lk+1} of M such that the following are true:

1. l1 = m and lk+1 = n;
2. (li, li+1) ∈ R , ∀i = 1, 2, · · · , k.

In this case, the finite subset {l1, l2, . . . , lk+1}, is called a path in R from m to n of a length k.

Almalki et al. [12] initiated the notion of a vector-valued metric space enriched with
a binary relation in the following fashion, which is the generalized form of the result
presented by Perov [2]:

Theorem 1 (See [12]). Let (X, ρ) be a complete vector-valued metric space endowed with a binary
relationR and T : X → X be a mapping. Suppose the following:

(1) There exists a ∈ X such that (a, Ta) ∈ R;

(2)R is T-closed; that is, for each a, b ∈ X with (a, b) ∈ R, we have (Ta, Tb) ∈ R;

(3) Either T is continuous orR is ρ-self-closed;

(4) There exists a matrix A ∈Mm(R+) convergent to zero such that

ρ(Ta, Tb) ≤ Aρ(a, b), ∀a, b ∈ X with (a, b) ∈ R.

Then, T has a fixed point;

(5) Furthermore, if CR(a, b) 6= φ, ∀a, b ∈ X, then T has a unique fixed point.

Wardowski [9] initiated the notion of F contraction and defined F contraction as follows:

Definition 11 (See [9]). Let F : R>0 → R be a mapping satisfying the following properties:

F1: F is strictly increasing; in other words, for all u, v ∈ R>0, we have

u < v⇒ F(u) < F(v),

F2: For each sequence un of R>0, we have

lim
n→∞

un = 0⇔ lim
n→∞

F(un) = −∞

F3: There exists λ ∈ (0, 1) such that limun→0+ uλ
n F(un) = 0.

The set of all functions F satisfying (F1)-(F3) is denoted as F :

Definition 12 (See [9]). Let Γ be a self-mapping on a metric space (M, ρ). Then, Γ is said to be an
F contraction if F ∈ F and there exists ξ > 0 such that ∀p, q ∈ M with ρ(Γp, Γq) > 0:

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)]. (1)

Definition 13 (See [9]). From F2 and the inequality in Equation (1), we note that every F contrac-
tion Γ is also a contractive mapping, where

ρ(Γp, Γq) < ρ(p, q), ∀p, q ∈ M, Γp 6= Γq. (2)

Thus, every F contraction Γ is a continuous mapping.

The main fixed-point theorem of Wardowski [9] is given as follows:
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Theorem 2 (See [9]). Let (M, ρ) be a complete metric space and Γ : M→ M be an F contraction
mapping. Then, Γ has a unique fixed point.

Ishak Altun et al. in [10] used the concept of an F contraction in a vector-valued metric
space in the following way:

Definition 14 (See [10]). Let F : Rt>0 → Rt be a function which satisfies the following conditions:

F1: F is strictly increasing; in other words, ∀u = (ui)
t
i=1, v = (vi)

t
i=1 ∈ Rt>0 , where

u < v⇒ F(u) < F(v),

F2: For each sequence {un} =
(

u(n)
1 , u(n)

2 , . . . , u(n)
t

)
of Rt>0 , we have

lim
n→∞

u(n)
i = 0⇔ lim

n→∞
v(n)

i = −∞

for every i = 1, · · · , t, where F
[(

u(n)
1 , u(n)

2 , . . . , u(n)
t

)]
=
(

v(n)
1 , v(n)

2 , . . . , v(n)
t

)
;

F3: There exists λ ∈ (0, 1) such that limui→0+ uλ
i vi = 0, ∀i = 1, · · · , t, where

F[(u1, u2, . . . , ut)] = (v1, v2, · · · , vt).

Here, Rt>0 is the set of all t× 1 real matrices with positive entries. Then, the set of all functions
F satisfying (F1)–(F3) is denoted as F t.

Example 4. Let F : R2>0 → R2 be a function defined by

F(m1, m2) = (ln m1, ln m2)

Then, F ∈ F 2.

Example 5. Suppose F : R3>0 → R3 is a function defined by

F(m1, m2, m3) = (ln m1, m2 + ln m2,
−1 + m1√

m3
)

Then, F ∈ F 3.

By considering the class F t, Ishak Altun et al. in [10] introduced the concept of
Perov-type F contraction in the following manner:

Definition 15 (See [10]). Let (M, ρ) be a vector-valued metric space and Γ be a self-mapping on

M. If there exist F ∈ F t and ξ =
(

ξ(i)
)t

i=1
∈ Rt>0 such that

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)], ∀p, q ∈ M, ρ(Γp, Γq) > 0, (3)

then Γ is called a Perov-type F contraction.

By using the idea of a Perov-type F contraction, Ishak Altun et al. in [10] gave their
fixed-point theorem as follows:

Theorem 3 (See [10]). Let (M, ρ) be a complete vector-valued metric space and Γ be a Perov-type
F contraction. Then, the mapping Γ has a unique fixed point.

Before going into our main results, we introduce some important definitions and a
lemma with a proof, which would be important toward proving our results on F contraction
in terms of binary relation:
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Definition 16. Let (M, ρ) be a vector-valued metric space equipped with a binary relation R.
Then, a self-mapping Γ on M, is called a theoretic-order Perov-type F contraction if there exist

ξ =
(

ξ(i)
)t

i=1
∈ Rt>0 and F ∈ F t such that

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)], (4)

where ∀(p, q) ∈ R with ρ(Γp, Γq) > 0.

Lemma 2. Let (M, ρ) be a vector-valued metric space equipped with a binary relation R, Γ : M→
M be a mapping, ξ ∈ Rt>0 , and F ∈ F t. Then, the following conditions are equivalent (whenever
ρ(Γp, Γq) > 0):

1. ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)] with (p, q) ∈ R;
2. ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)] with [p, q] ∈ R.

Proof. (1)⇒ (2):
This implication is trivial.
(2)⇒ (1):
Suppose (2) holds with [p, q] ∈ R. Then, if (p, q) ∈ R, (2) directly implies (1).

Otherwise, (q, p) ∈ R, and then by the metric property M3, we have

ξ + F[ρ(Γq, Γp))] = ξ + F[ρ(Γp, Γq))] ≤ F[ρ(p, q)] = F[ρ(q, p)]

which implies the truth of (1).

We refer to the set of all fixed points of Γ in M as f ixM(Γ), the collection of all paths
from m to n (where m, n ∈ M) in R as CR(m, n) and Y as a subset of M defined as

Y := {m ∈ M : (m, Γm) ∈ R}.

CLρ(M) denotes the class of all non-empty closed subsets of M with a metric ρ.

Definition 17. The pair (R : Γ) between a binary relation R and a self-mapping Γ over a vector-
valued metric space (M, ρ) is called a compound structure if the following conditions hold:

(1): Y := {c ∈ M : (m, Γc) ∈ R} 6= φ;
(2): R is Γ-closed;
(3): Either R is ρ-self-closed or Γ is continuous.

Definition 18. Let M, ρ, and R have the usual meanings. Suppose Γ : M → CLρ(M) is a
multi-valued mapping. Then, R defined on M is called Γ-closed if ∀p, q ∈ M:

(p, q) ∈ R⇒ (u, v) ∈ R, ∀u ∈ Γp, ∀v ∈ Γq.

Definition 19. Let (M, ρ) be a vector-valued metric space equipped with a binary relation R and
CLρ(M) denote the class of all non-empty subsets of M. Then, the pair (R : Γ) is called a compound
structure for multi-valued mappings if the following conditions are satisfied:

1. R is Γ-closed;
2. Y := {c ∈ M : ∃u ∈ Γ(c) such that (c, u) ∈ R} 6= φ;
3. R is strongly ρ-self-closed; that is, for each sequence (cn) in M with (cn, cn+1) ∈ R for all

n ∈ N and cn
ρ−→ c, we have (cn, c) ∈ R for all n ≥ k, where k is some positive integer.

3. Main Theorem

Now, we present our first result for an F contraction in a complete metric space
endowed with a binary relation:
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Theorem 4. Let (M, ρ) be a complete metric space equipped with a binary relation R and Γ be a
self-mapping. Suppose the following:

1. The pair (R : Γ) is a compound structure;
2. ∀(p, q) ∈ R with ρ(Γp, Γq) > 0 such that

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)]

where ξ ∈ R>0 and F ∈ F , then Γ has a fixed point;
3. Furthermore, if CR(p, q) 6= φ, ∀p, q ∈ M,

then Γ has a unique fixed point.

Proof. Suppose that c0 ∈ Y is any element of M. Then, we define a Picard iterative
sequence {cn} as

c0, c1 = Γc0, c2 = Γc1 = Γ2c0, · · · , cn = Γcn−1 = Γnc0, · · · .

Then, by using the definition of Y, (c0, c1) = (c0, Γc0) ∈ R.
Under Assumption 1, R is Γ-closed. Thus, we have

(Γc0, Γ2c0), (Γ2c0, Γ3c0), (Γ3c0, Γ4c0), · · · , (Γnc0, Γn+1c0), · · · ∈ R,

or
(c1, c2), (c2, c3), (c3, c4), · · · , (cn, cn+1), · · · ∈ R.

This shows that the sequence {cn} is an R-preserving sequence.
If for some n0 ∈ N, cn0+1 = cn0 , then cn0+1 = Γcn0 = cn0 . Thus, Γ has a fixed point.

Otherwise, cn+1 6= cn for all n ∈ N, and therefore ρ(Γcn, Γcn+1) > 0, ∀n ∈ N.
Thus, under Assumption 2, we obtain

ξ + F[ρ(cn, cn+1)] = ξ + F[ρ(Γcn−1, Γcn)] ≤ F[ρ((cn−1, cn)]

or
F[ρ(cn, cn+1)] ≤ F[ρ(Γcn−1, Γcn)]− ξ.

By applying the same procedure, finally we get

F[ρ(cn, cn+1)] ≤ F[ρ(c0, c1]− nξ. (5)

By applying a limit as n→ ∞, we obtain

lim
n→∞

F[ρ(cn, cn+1)] = −∞.

With F2, we obtain
lim

n→∞
ρ(cn, cn+1) = 0+. (6)

With F3, there exists λ ∈ (0, 1) such that

lim
n→∞

[ρ(cn, cn+1)]
λF[ρ(cn, cn+1)] = 0. (7)

Now, from the inequality in Equation (5), we obtain

[ρ(cn, cn+1)]
λF[ρ(cn, cn+1)]− [ρ(cn, cn+1)]

λF[ρ(c0, c1] ≤ −n[ρ(cn, cn+1)]
λξ ≤ 0.

By taking the limit as n→ ∞, we find the following from the inequality in Equations
(6) and (7):

lim
n→∞

n[ρ(cn, cn+1)]
λ = 0
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Thus, there exists n0 ∈ N such that ∀n ≥ n0, and we have

lim
n→∞

n[ρ(cn, cn+1)]
λ ≤ 1.

We can then rearrange this to form

ρ(cn, cn+1) ≤
1

n
1
λ

. (8)

In order to show a Cauchy sequence, we take m > n ≥ n0 and use a triangular
inequality and the inequality in Equation (8) to obtain

ρ(xn, xm) ≤ ρ(cn, cn+1) + ρ(cn+1, cn+2) + · · ·+ ρ(cm−1, cm)

=
m−1

∑
j=n

ρ(cj, cj+1)

≤
∞

∑
j=1

ρ(cj, cj+1)

≤
∞

∑
j=1

1

j
1
λ

.

As the series ∑∞
j=1

1

j
1
λ

→ 0, ρ(cn, cm)→ 0. Hence, {cn} is a Cauchy sequence, and by

the completeness of M, there exists c∗ ∈ M such that cn → c∗.
Now, we will show that c∗ is a fixed point of Γ. From F1, and using Assumption 2, we

have ∀(p, q) ∈ R with ρ(Γp, Γq) > 0:

ρ(Γp, Γq) < ρ(p, q) (9)

Now, under Assumption 1, if Γ is continuous, then

cn+1 = Γcn
ρ−→ Γc∗

which means
c∗ = lim

n→∞
cn+1 = lim

n→∞
Γcn = Γc∗ ⇒ Γc∗ = c∗.

Therefore, c∗ is a fixed point of Γ.
Otherwise, in line with Assumption 1, if R is ρ-self-closed, then as {cn} is an R-

preserving sequence with cn → c∗, there exists a subsequence {cnk} of {cn} with [cnk , c∗] ∈
R and ρ(Γcnk , Γc∗) > 0, ∀k ∈ N.

Thus, under Lemma 2 (for m = 1) and the inequality in Equation (9), for [cnk , c∗] ∈ R,
we obtain

ρ(cnk+1, Γc∗) = ρ(Γcnk , Γc∗) < ρ(cnk , c∗)→ 0 as k→ ∞.

which yields
lim
k→∞

cnk+1 = Γ(c∗).

Hence, we obtain
Γ(c∗) = lim

k→∞
cnk+1 = lim

n→∞
cn = c∗.

which shows that c∗ is a fixed point of Γ.
Now, for uniqueness, suppose Assumption 3 holds. Thus, for p, q ∈ f ixM(Γ) with

Γp = p 6= q = Γq (i.e., ρ(Γp, Γq) > 0), there exists a path (say {m1, m2, . . . , ml+1}) of a
length l in Rs such that

m1 = p, ml+1 = q, [mi, mi+1] ∈ R, ∀i = 1, 2, · · · , l. (10)
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Now, from the triangular inequality and Equations (8)–(10), we have

ρ(p, q) = ρ(Γp, Γq)

= ρ(Γm1, Γml+1)

≤
l

∑
j=1

ρ(Γmj, Γmj+1)

<
l

∑
j=1

ρ(mj, mj+1)

≤
∞

∑
j=1

ρ(mj, mj+1)

≤
∞

∑
j=1

1

j
1
λ

−→ 0.

Thus, p = q. Hence, the fixed point of Γ is unique in M:

Remark 1. Note that if R is a complete order or M is an R-directed set, then CR(p, q) 6= φ ∀p,
q ∈ M.

Proof. If R is a complete order, then each p, q ∈ M is R-comparative (i.e., [p, q] ∈ R ∀p, q ∈
M), which implies that {p, q} is a path from p to q of a length of 1 in R. Hence, CR(p, q) 6=
φ ∀p, q ∈ M.

If M is an R-directed set, then for each p, q ∈ M, there exists r ∈ M such that (p, r) ∈ R
as well as (q, r) ∈ R. This shows that for each p, q ∈ M, we have a path {p, q, r} from p to q
of a length of 2 in R. Hence, CR(p, q) is non-empty for each p, q ∈ M.

Corollary 1. If hypotheses (1) and (2) in Theorem 4 are true with either R as a complete order or
M as an R-directed set. Then, Γ has a unique fixed point.

Example 6. Let M = A ∪ B, where A = { 1
n2 : n ∈ N} ∪ {0} and B = N with a usual metric

defined by ρ(p, q) = |p− q|, ∀p, q ∈ M. Define a binary relation as R := ∆M ∪ {(p, q) ∈ M2 :
p, q ∈ A with p < q} and a self-mapping Γ on M as

Γ(m) =

{
mn+1 if m = mn = 1

n2

m if m ∈ Z \ {1}

Clearly, for each c0 ∈ Z \ {1}, Γc0 = c0. Therefore, (c0, Γc0) ∈ R, and thus Y 6= φ. R is also
Γ-closed because if (p, q) ∈ R, then p = q or p, q ∈ A when p < q. In either case, (Γp, Γq) ∈ R.
Additionally, it is not difficult to show that Γ is continuous (and R is ρ-self-closed). Hence, the pair
(R, Γ) is a compound structure.

Now, we can take F ∈ F (with λ = 2
3 and ξ = ln 2) as

F(σ) =

{
ln σ√

σ
if 0 < σ < e2

σ− e2 + 2
e if σ ≥ e2

Now, we have to show that ∀(p, q) ∈ R, with ρ(Γp, Γq) > 0 implying

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)].

⇔ p, q ∈ A with p < q =⇒ ln 2 + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)].

⇔ p, q ∈ A with p < q =⇒ ln 2 +
ln |Γp− Γq|√
|Γp− Γq|

≤ ln |p− q|√
|p− q|
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⇔ p, q ∈ A with p < q =⇒ |Γp− Γq|
1√
|Γp−Γq| |p− q|

−1√
|p−q| ≤ 1

2
(11)

From Example 2.3 in [10], we conclude that the inequality in Equation (11) holds. Thus, all
assumptions in Theorem 4 are satisfied, and hence Γ has a fixed point in M.

In addition, for each distinct pair p, q ∈ Z \ {1} ⊆ M, we have ρ(Γp, Γq) = ρ(p, q) > 0, but

ξ + F[ρ(Γp, Γq)] > F[ρ(p, q)],

for each ξ > 0, and F ∈ F .
Therefore, the main theorem of Wardowski [9] is not applicable here.
Assumption 3 of Theorem 4 is not satisfied because for 3, 4 ∈ M, CR(3, 4) = φ. Therefore, the

fixed point of Γ may not be unique.

Now, we state the fixed point results for an F contraction for single- as well as multi-
valued mappings over vector-valued metric spaces:

Theorem 5. Let (M, ρ) be a complete vector-valued metric space equipped with a binary relation
R and Γ be a theoretic-order Perov-type F contraction such that the pair (R : Γ) is a compound
structure. Then, Γ has a fixed point.

Moreover, Γ has a unique fixed point if CR(p, q) 6= φ, ∀p, q ∈ M.

Proof. Let c0 ∈ Y ⊆ M be any element. Define a sequence {cn} as cn = Γnc0. Then, as
(c0, c1) = (c0, Γc0) ∈ R, by the definition of Γ-closedness, we have

(Γc0, Γ2c0), (Γ2c0, Γ3c0), (Γ3c0, Γ4c0), · · · , (Γnc0, Γn+1c0), · · · ∈ R

In other words, we have

(c1, c2), (c2, c3), (c3, c4), · · · , (cn, cn+1), · · · ∈ R.

which shows that {cn} is an R-preserving sequence.
If for some n0 ∈ N, cn0+1 = cn0 , then cn0+1 = Γcn0 = cn0 (i.e., Γ has a fixed point).

Otherwise, xn+1 6= cn for all n ∈ N, and thus ρ(Γcn, Γcn+1) > 0, ∀n ∈ N. Suppose that

ρ(cn, cn+1) =
(

u(1)
n , u(2)

n , · · · , u(t)
n

)
and

F[ρ(cn, cn+1)] =
(

v(1)
n , v(2)

n , · · · , v(t)
n

)
.

As ρ(Γcn, Γcn+1) > 0, by definition of Γ, there exist ξ =
(

ξ(i)
)t

i=1
∈ Rt>0 and F ∈ F t,

such that
ξ + F[ρ(cn, cn+1)] = ξ + F[ρ(Γcn−1, Γcn)] ≤ F[ρ((cn−1, cn)]

or
F[ρ(cn, cn+1)] ≤ F[ρ(Γcn−1, Γcn)]− ξ.

Thus, we obtain
F[ρ(cn, cn+1)] ≤ F[ρ(c0, c1)]− nξ.

In component form, we have(
v(i)

n

)t

i=1
≤
(

v(i)
0

)t

i=1
− n

(
ξ(i)
)t

i=1

v(i)
n ≤ v(i)

0 − nξ(i), ∀i = 1, 2, · · · , t. (12)
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By letting n→ ∞, we have

lim
n→∞

v(i)
n = −∞, ∀i = 1, 2, · · · , t.

By using F2, we have

lim
n→∞

u(i)
n = 0+, ∀i = 1, 2, · · · , t. (13)

Now, with F3, there exists λ ∈ (0, 1) such that

lim
n→∞

[
u(i)

n

]λ
v(i)

n = 0, ∀i = 1, 2, · · · , t. (14)

From Equation (12), we have for all n ∈ N and i = 1, 2, · · · , t the following:

v(i)
n ≤ v(i)

0 − nξ(i).

By multiplying both sides by
[
u(i)

n

]λ
, we obtain

[
u(i)

n

]λ
v(i)

n −
[
u(i)

n

]λ
v(i)

0 ≤ −n
[
u(i)

n

]λ
ξ(i), ∀i = 1, 2, · · · , t.

By taking the limit to be n→ ∞, we find the following from Equations (13) and (14):

lim
n→∞

n
[
u(i)

n

]λ
= 0, ∀i = 1, 2, · · · , t.

Therefore, by the definition of the limit, for ε = 1, ∃N(i) ∈ N such that ∀n ≥ N(i), we
have

n
[
u(i)

n

]λ
≤ 1, ∀i = 1, 2, · · · , t.

Consider n0 = max{N(i) : i = 1, 2, · · · , t}. Then, for all n ≥ n0, we have

n
[
u(i)

n

]λ
≤ 1, ∀i = 1, 2, · · · , t.

⇒ u(i)
n ≤

1

n
1
λ

, ∀i = 1, 2, · · · , t. (15)

In order to show that {cn} is a Cauchy sequence, by taking m > n ≥ n0, a triangular
inequality, and the inequality in Equation (15), we have

ρ(cn, cm) ≤ ρ(cn, cn+1) + ρ(cn+1, cn+2) + · · ·+ ρ(cm−1, cm)

=
(

u(i)
n

)t

i=1
+
(

u(i)
n+1

)t

i=1
+ · · ·+

(
u(i)

m−1

)t

i=1

=

(
m−1

∑
j=n

u(i)
j

)t

i=1

≤
(

∞

∑
j=1

u(i)
j

)t

i=1

≤
(

∞

∑
j=1

1

j
1
λ

)t

i=1

.
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As the series ∑∞
j=1

1

j
1
λ

is convergent to 0, then ρ(cn, cm) → 0. Therefore, {cn} is a

Cauchy sequence. Hence, by the completeness of M, there exists c∗ ∈ M such that cn → c∗

as n→ ∞.
Using definition of Γ and F1, we have ∀(p, q) ∈ R with ρ(Γp, Γq) > 0:

ρ(Γp, Γq) < ρ(p, q) (16)

From the definition of (R : Γ), if Γ is continuous, then we have

cn+1 = Γcn
ρ−→ Γc∗,

such that
lim

n→∞
cn+1 = lim

n→∞
Γcn = Γc∗ ⇒ Γc∗ = c∗.

Then, Γ has a fixed point.
Otherwise, if R is ρ-self-closed, then as {cn} is an R-preserving sequence with cn → c∗,

there exists a subsequence {cnk} of {cn} with [cnk , c∗] ∈ R and ρ(Γcnk , Γc∗) > 0, ∀k ∈ N.
Thus, according to Lemma 2 and the inequality in Equation (16), for [cnk , c∗] ∈ R, we

obtain
ρ(cnk+1, Γc∗) = ρ(Γcnk , Γc∗) < ρ(cnk , c∗)→ 0 as k→ ∞.

which yields
lim
k→∞

cnk+1 = Γ(c∗).

Hence, we have
Γ(c∗) = lim

k→∞
cnk+1 = lim

n→∞
cn = c∗.

which shows that c∗ is a fixed point of Γ.
For the sake of uniqueness, we assume that CR(p, q) 6= φ, ∀p, q ∈ M; that is, we can

find a path between every pair of M. Suppose, on the contrary, that p, q ∈ f ixM(Γ) with
Γp = p 6= q = Γq (i.e., ρ(Γp, Γq) > 0).

Then, for p, q ∈ f ixM(Γ) ⊆ M, there exists a path {m1, m2, · · · , ml+1} such that the
following are true:

1. m1 = p, ml+1 = q;
2. [mi, mi+1] ∈ R, ∀i = 1, 2, · · · , l.

As we found (for example, ρ(mj, mj+1) = (γ
(i)
j )t

i=1) with the triangular inequality, and
from Equations (15) and (16), we have

ρ(p, q) = ρ(Γp, Γq) = ρ(Γm1, Γml+1)

≤
l

∑
j=1

ρ(Γmj, Γmj+1) <
l

∑
j=1

ρ(mj, mj+1)

=
l

∑
j=1

(
γ
(i)
j

)t

i=1
=

(
l

∑
j=1

γ
(i)
j

)t

i=1

≤
(

∞

∑
j=1

γ
(i)
j

)t

i=1

≤
(

∞

∑
j=1

1

j
1
λ

)t

i=1

−→ 0.

Thus, p = q, which is a contradiction. Hence, the fixed point of T is unique.
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Example 7. Let M = A ∪ B, where A = { 1
n2 : n ∈ N} ∪ {0} and B = {2, 3, 4, 5} and with the

vector-valued metric defined as ρ(p, q) = (|p− q|, |p− q|), ∀p, q ∈ M. Define a binary relation
as R := ∆M ∪ {(p, q) ∈ M2 : p, q ∈ A with p < q} and the self-mapping Γ on M as

Γ(m) =

{
mn+1 if m = mn = 1

n2 ;
m if m ∈ {0, 2, 3, 4, 5}.

Clearly, for each c0 ∈ {0, 2, 3, 4, 5}, Γc0 = c0. Therefore, (c0, Γc0) ∈ R, and thus Y 6= φ.
R is also Γ-closed because if (p, q) ∈ R, then p = q or p, q ∈ A with p < q. In either case,
(Γp, Γq) ∈ R. Additionally, it is not difficult to show that Γ is continuous (and R is ρ-self-closed).
Hence, the pair (R, Γ) is a compound structure.

Now, we can take F ∈ F 2 (with λ = 2
3 and ξ = (ln 2, 1)) as

F(m1, m2) =


(

ln m1√
m1

, −1√
m2

)
if m1 ≤ e;(

m1
e
√

e , −1√
m2

)
if m1 > e.

Now, in order to show that Γ is a theoretic-order Perov-type F contraction, we have to show
that ∀(p, q) ∈ R with ρ(Γp, Γq) > 0 implies

ξ + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)].

⇔ p, q ∈ A with p < q =⇒ (ln 2, 1) + F[ρ(Γp, Γq)] ≤ F[ρ(p, q)].

⇔ p, q ∈ A with p < q =⇒ (ln 2, 1) +

(
ln |Γp− Γq|√
|Γp− Γq|

,
−1√
|Γp− Γq|

)
≤
(

ln |p− q|√
|p− q|

,
−1√
|p− q|

)

⇔ p, q ∈ A with p < q =⇒
(

ln 2 +
ln |Γp− Γq|√
|Γp− Γq|

, 1− 1√
|Γp− Γq|

)
≤
(

ln |p− q|√
|p− q|

,
−1√
|p− q|

)

⇔ p, q ∈ A with p < q =⇒ ln 2 +
ln |Γp− Γq|√
|Γp− Γq|

≤ ln |p− q|√
|p− q|

& 1− 1√
|Γp− Γq|

≤ −1√
|p− q|

⇔ p, q ∈ A with p < q =⇒


|Γp− Γq|

1√
|Γp−Γq| |p− q|

−1√
|p−q| ≤ 1

2

&
1√
|Γp−Γq|

− 1√
|p−q|

≥ 1.

(17)

Now, suppose p = 1
u2 and q = 1

v2 with u > v. Then, clearly p, q ∈ A with p < q, and also



Mathematics 2023, 11, 238 15 of 18

|Γp− Γq|
1√
|Γp−Γq| |p− q|

−1√
|p−q| = |Γq− Γp|

1√
|Γq−Γp| |q− p|

−1√
|q−p|

=

(
1

(v + 1)2 −
1

(u + 1)2

) 1√
1

(v+1)2
− 1
(u+1)2

(
1
v2 −

1
u2

) −1√
1

v2 −
1

u2

=

(
(u + 1)2 − (v + 1)2

(v + 1)2(u + 1)2

) 1√
(u+1)2−(v+1)2

(v+1)2(u+1)2
(

u2 − v2

v2u2

) −1√
u2−v2
v2u2

=

(
(u + 1)2 − (v + 1)2

(v + 1)2(u + 1)2

) (v+1)(u+1)√
(u+1)2−(v+1)2

(
u2 − v2

v2u2 · u + v + 2
u + v + 2

) −vu√
u2−v2

=

(
(u + 1)2 − (v + 1)2

(v + 1)2(u + 1)2

) (v+1)(u+1)√
(u+1)2−(v+1)2 ×

(
(u + 1)2 − (v + 1)2

(v + 1)2(u + 1)2 · (u + v)(v + 1)2(u + 1)2

(u + v + 2)v2u2

) −vu√
u2−v2

=

(
(u + 1)2 − (v + 1)2

(v + 1)2(u + 1)2

) (v+1)(u+1)√
(u+1)2−(v+1)2

− vu√
u2−v2

×(
(u + v + 2)v2u2

(u + v)2(v + 1)2(u + 1)2

) vu√
u2−v2

.

However, as (u+1)2−(v+1)2

(v+1)2(u+1)2 ≤ 1
2 , (v+1)(u+1)√

(u+1)2−(v+1)2
− vu√

u2−v2 ≥ 1 and ( (u+v+2)v2u2

(u+v)2(v+1)2(u+1)2 <

1. Thus, we have

|Γp− Γq|
1√
|Γp−Γq| |p− q|

−1√
|p−q| ≤ 1

2
and

1√
|Γp− Γq|

− 1√
|p− q|

≥ 1.

Hence, Equation (17) is satisfied.
Now, if p = 0 and q = 1

v2 , then clearly p, q ∈ A with p < q and

|Γp− Γq|
1√
|Γp−Γq| |p− q|

−1√
|p−q| =

∣∣∣∣ 1
(v + 1)2

∣∣∣∣
1√

1
(v+1)2 ·

∣∣∣∣ 1
v2

∣∣∣∣
−1√

1
v2

=
v2v

(v + 1)2(v+1)

=
v2(v+1)

(v + 1)2(v+1)
· 1

v2

=

(
v

v + 1

)2(v+1)
· 1

v2

≤ 1
2

.

In addition, for p = 0 and q = 1
v2 , clearly, p, q ∈ A with p < q. Therefore, we have

1√
|Γp− Γq|

− 1√
|p− q|

=
1√

1
(v+1)2

− 1√
1
v2

= (v + 1)− v

= 1.
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Hence, Equation (17) is satisfied. Thus, Γ is a theoretic-order Perov-type F contraction such
that the pair (R : Γ) is a compound structure. Therefore, under Theorem 5, Γ has a fixed point in M.

Additionally, as for 3, 4 ∈ M, we have ρ(Γ3, Γ4) = ρ(3, 4) = (1, 1) > 0, but

ξ + F[ρ(Γp, Γq)] > F[ρ(p, q)],

for each ξ ∈ Rt>0 , and F ∈ F t.
Therefore, the main theorem of Ishak Altun et al. [10] is not applicable here.
The last assumption of Theorem 5 is not satisfied, because for 4, 5 ∈ M, CR(4, 5) = φ. Thus,

the fixed point of Γ may not be unique.

Theorem 6. Let (M, ρ) be a complete vector-valued metric space equipped with any binary relation
R and Γ : M→ CLρ(M) be a multi-valued mapping. Suppose the following:

1. the pair (R : Γ) is a compound structure for multi-valued mappings;
2. For each (p, q) ∈ R and u ∈ Γp, ∃v ∈ Γq such that

ξ + F[ρ(u, v)] ≤ F[ρ(p, q)], (18)

where ξ ∈ Rt>0 and F ∈ F t.

Then, Γ has a fixed point.

Proof. Let c0 ∈ Y ⊆ M be any element. Then, there exists c1 ∈ Γc0 such that (c0, c1) ∈ R.
Now, under Assumption 2, for (c0, c1) ∈ R and c1 ∈ Γc0, there exists c2 ∈ Γc1 such that

ξ + F[ρ(c1, c2)] ≤ F[ρ(c0, c1)],

which implies
F[ρ(c1, c2)] ≤ F[ρ(c0, c1)]− ξ (19)

As R is Γ-closed, then (c1, c2) ∈ R, and again, under assumption 2, for (c1, c2) ∈ R and
c2 ∈ Γc1, there exists c3 ∈ Γc2 such that

ξ + F[ρ(c2, c3)] ≤ F[ρ(c1, c2)],

and (c2, c3), which implies by the inequality in Equation (19) that

F[ρ(c2, c3)] ≤ F[ρ(c1, c2)]− ξ ≤ F[ρ(c0, c1)]− 2ξ.

By continuing in this way, we obtain a sequence {cn} defined as cn ∈ Γcn−1, ∀n ∈ N
such that (cn, cn+1) ∈ R (i.e., {cn} is R-preserving) and

F[ρ(cn, cn+1)] ≤ F[ρ(c0, c1)]− nξ (20)

By letting ∀n ∈ N, we obtain

ρ(cn, cn+1) =
(

u(1)
n , u(2)

n , · · · , u(t)
n

)
and

F[ρ(cn, cn+1)] =
(

v(1)
n , v(2)

n , · · · , v(t)
n

)
.

Through the same steps as those in Theorem 5, we have ∀n ≥ n0 and

u(i)
n ≤

1

n
1
λ

, ∀i = 1, 2, · · · , t. (21)
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Now, as in the inequality in Equation (21), a triangular inequality, and for m > n ≥ n0,
we obtain

ρ(cn, cm) ≤ ρ(cn, cn+1) + ρ(cn+1, cn+2) + · · ·+ ρ(cm−1, cm)

=
(

u(i)
n

)t

i=1
+
(

u(i)
n+1

)t

i=1
+ · · ·+

(
u(i)

m−1

)t

i=1

=

(
m−1

∑
j=n

u(i)
j

)t

i=1

≤
(

∞

∑
j=1

u(i)
j

)t

i=1

≤
(

∞

∑
j=1

1

j
1
λ

)t

i=1

−→ 0.

Therefore, {cn} is a Cauchy sequence. By using the completeness of M, we find c ∈ M
such that cn → c. By using F1 and Assumption 2, for (p, q) ∈ R, we find that

ρ(u, v) ≤ ρ(p, q), where u ∈ Γp, v ∈ Γq. (22)

As R is strongly ρ-self-closed, we obtain (cn, c) ∈ R, ∀n ≥ N0, where N0 is any
natural number. Thus, under Assumption 2 and the inequality in Equation (22), for each
(cn, c) ∈ R,∀n ≥ N0 and cn+1 ∈ Γcn, there exists c∗ ∈ Γc such that

ρ(cn+1, c∗) ≤ ρ(cn, c)→ 0 as n→ ∞.

However, we also have

c∗ = lim
n→∞

cn+1 = lim
n→∞

cn = c.

Hence, c ∈ Γc.

4. Conclusions

In this manuscript, a new generalization for the classical Perov fixed-point theorem is
given. The proposed results are for both single-valued as well as multi-valued mappings. In
a complete vector-valued metric space, the well-known F contraction is endowed with an
arbitrary binary relation to attain fixed-point results. A relatively weaker contractive condi-
tion is used compared with those in the recent literature, as in this work, the contractive
condition is required to hold only for those points which are related to each other under
some particular binary relation and not for the entire space. This work also reveals that
instead of using different binary relations, one can choose an arbitrary binary relation to
obtain some of the famous and well-known fixed-point results.
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